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Abstract

We observe that a certain kind of algebraic proof—which covers essentially all known
algebraic circuit lower bounds to date—cannot be used to prove lower bounds against
VP if and only if what we call succinct hitting sets exist for VP. This is analogous to
the Razborov–Rudich natural proofs barrier in Boolean circuit complexity, in that we
rule out a large class of lower bound techniques under a derandomization assumption.
We also discuss connections between this algebraic natural proofs barrier, geometric
complexity theory, and (algebraic) proof complexity.

1 Introduction

The natural proofs barrier [51] showed that a large class of circuit-based proof techniques
could not separate P from NP, assuming the existence of pseudo-random generators of a
certain strength. In light of the recent advances in techniques for lower bounds on algebraic
circuits [5–7, 11, 15, 20, 21, 23–42, 47, 52, 55], it is natural to wonder whether our current
algebraic techniques could plausibly separate VP from VNP, or whether there is some barrier
in this setting as well. People often hand-wave about an “algebraic natural proofs barrier,”
by analogy to Razborov–Rudich, but it has not been clear what this means precisely, and
to date no such barrier is known in a purely algebraic setting (see below for a discussion of
the related work by Aaronson and Drucker [2, 3] in a partially algebraic, partially Boolean
setting).

There are several difficulties in coming up with such a barrier in the algebraic context.
Razborov and Rudich’s notion of natural proof has two key ingredients: (1) largeness—the
technique works to show that random functions are hard—and (2) constructivity—deciding
whether a function satisfies the hypotheses of the technique can be done efficiently given its
truth table. These two ingredients in combination allow them to make the connection to
pseudo-random generators. However, in the algebraic world, all three of these notions are
unclear: What should largeness mean in an algebraic context? What should constructivity
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mean? Is there a good algebraic notion of pseudo-random generator?1 In a mixed Boolean-
algebraic setting, Aaronson and Drucker [2,3] provide satisfactory answers, but in a purely
algebraic setting finding a constellation of three answers to these questions that align to
give a satisfying algebraic natural proofs barrier has been an open question for more than
twenty years.

In the purely algebraic setting—algebraic circuits over an arbitrary field—we take large-
ness to mean Zariski-openness (the complement of the zero set of a set of polynomial
equations), and constructivity to mean that the property is computable by an algebraic
circuit whose size is polynomial in the number of coefficients of the function being tested.
These two properties cover essentially all known algebraic lower bounds to date [2,18] (see
also [53, Section 3.9]). Rather than connecting these notions directly to PRGs, we con-
nect them to a slightly different derandomization problem, but one that is natural from
the algebraic viewpoint: polynomial identity testing (PIT). Here, we suggest that the co-
efficient vectors of random linear projections of the determinant (respectively, a generic
algebraic circuit) should produce good hitting sets for restricted versions of PIT. (This is
closely related to Aaronson and Drucker’s suggestion that they form a pseudo-random fam-
ily of algebraic functions [2, 3]; see Section 1.2 for details.) We observe that if this is true,
then many proof techniques—including those of the recent advances—cannot be used to
separate VPws from VNP. As in the original natural proofs barrier, we thus show that a
strong enough derandomization assumption implies that certain techniques cannot prove
strong lower bounds. We recently learned that Forbes, Shpilka and Volk came to the same
connection with PIT independently, and were able to show some of the derandomization
assumptions unconditionally [14].

In the final two sections, we comment on how this algebraic natural proofs barrier
bears on geometric complexity theory, and how it might be used to prove lower bounds in
(algebraic) proof complexity.

1.1 The idea

Almost all algebraic circuit lower bounds to date proceed either by the substitution method,
or by a “rank-type” method, namely: associate to each polynomial f some matrix M(f)—
e. g., a matrix of partial derivatives or shifted partial derivatives, perhaps exponentially
large—show an upper bound on the rank of M(f) for any f ∈ Ceasy, and show a lower
bound on the rank of M(fhard) for some polynomial fhard. In all examples to date, the
entries of the matrix M(f) are linear functions of the coefficients of f ; as the rank of M(f)
is determined by the vanishing of its minors, we can view this method as an instance of
the following more general “polynomial method.” For a polynomial f , let coeff(f) denote
its coefficient vector. The polynomial method is to find a “meta-polynomial” T (called
“test polynomials” in [18])—whose variables are the coefficients of polynomials f—such
that T (coeff(f)) = 0 for all f ∈ Ceasy, but T (coeff(fhard)) 6= 0.

The first step here—as in the original natural proofs barrier—is to consider the circuit
complexity of the meta-polynomials T themselves, relative to their number of inputs. The
new idea here is to consider which classes of meta-polynomials have {coeff(f) : f ∈ Ceasy}
as a hitting set.

1Although Agrawal’s notion of algebraic PRG [4] is useful in its own setting, it is not clear whether it
could be used for an algebraic natural proofs barrier, and in fact connecting our formulation to Agrawal’s
PRGs remains an interesting open problem.
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Let us consider what this looks like for the rank-type methods mentioned above. Suppose
that we are considering polynomial families f = (fn)n=1,2,3... in nc variables of degree n. The
space of such polynomials has dimension

(
n+nc−1

n

)
= 2Θ(n logn). Since this will be the number

of variables of our meta-polynomials (we might call them “meta-variables”), let us denote
it by N . The matrices M(f) typically have dimension poly(N), which is still 2Θ(n logn).
If we are considering whether or not M(f) has rank ≤ r or > r, then we are considering
the (non)vanishing of the (r + 1) × (r + 1) minors, which are themselves determinants of
size at most poly(N)× poly(N). Therefore, these meta-polynomials lie in the circuit class
we denote VPws(N), which is defined just like VPws, but where everything—degree, circuit
size, etc.—is measured as a function of the number of variables N . This circuit complexity
upper bound on the meta-polynomials is the algebraic analogue of Razborov and Rudich’s
constructivity criterion.

Now, suppose we want to prove a lower bound against some class Ceasy using such a rank-
type argument. If the coefficient vectors of polynomials in Ceasy form a hitting set (perhaps
infinite) for VPws(N), then no meta-polynomial as in the preceding paragraph can vanish on
Ceasy, precluding such arguments. This is the fundamental connection we advance between
algebraic circuit lower bounds (by the polynomial method) and polynomial identity testing.

1.2 Relationship with previous work

Efremenko, Landsberg, Schenck, and Weyman [12, 13] proved unconditionally that the
method of shifted partial derivatives cannot prove a lower bound stronger than Ω(n2) on
the permanent versus determinant problem. While parts of their methods are not specific
to these polynomials, their results are specific to the method of shifted partial derivatives.
In contrast, our general framework has the potential to rule out proving lower bounds by
any method where the meta-polynomials are easily computable. While in this paper all our
results are conditional, some of them are made unconditional in Forbes–Shpilka–Volk [14].

Aaronson and Drucker [2, 3] (see Aaronson’s survey [1, Section 6.5.3] for an overview)
had similar ideas, but ours differ in several respects. One strength of their work compared to
ours is that they considered not just algebraic, but mixed Boolean-algebraic settings—that
is, considering polynomials over finite fields as Boolean functions of the bitwise description
of the field elements—and this allowed them to draw equivalences between the existence
of Boolean and (suitably formulated) algebraic pseudo-random functions. In contrast, our
work is purely algebraic, and rather than using pseudo-random generators, we use hitting
sets for polynomial identity testing.

The difference between their work and ours which allows us to make the connection
with PIT is as follows. They considered a polynomial family fn to be pseudo-random if it
could not be distinguished from a random polynomial family of similar degree by any meta-
polynomial computed by small circuits Cn, in the sense that Pr[fn(Cn(fn(x))) = fn(x)] was
negligible as a function of n (smaller than 1/nc for any c) [3, Slide 8]. In order for this to
make sense, they considered polynomial families (fn) over fields of growing size Fp(n) (and
the probability is taken uniformly over x ∈ Fnp(n)). This is quite close to the usual Boolean
definition of pseudo-randomness, which is what allowed them to make that connection. In
contrast, we say that a meta-polynomial computed by some circuit Cn distinguishes one
polynomial fn from another polynomial gn if Cn outputs 0 when given the coefficient vector
of fn as input, and outputs a nonzero value when given the coefficient vector of gn. (By using
interpolation, we can replace “coefficient vector” with “vector of evaluations at sufficiently
many points” for any class which supports interpolation, that is, which is closed under
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affine linear transformations of the variables.) By only considering a meta-polynomial to
distinguish one polynomial from another by its vanishing/non-vanishing, rather than in the
probabilistic sense of pseudo-randomness, we are able to work over arbitrary fields, and
make the connection with PIT instead of pseudo-random functions.

We note, however, that if in their work one instead considers algebraic Turing machines
(a la Blum–Shub–Smale) to distinguish functions—as they suggest at one point—then prob-
ability goes away. By considering the possible paths through such a machine, one gets a
condition which is a logical combination of conditions on the vanishing/non-vanishing of
certain polynomials, rather than the vanishing/non-vanishing of a single polynomial. See
Remark 1 for more details.

2 Preliminaries

A family of polynomials f = (fn) consists of one polynomial fn for each n, usually on a
number of variables that depends on n. A sequence of integers a1, a2, . . . is p-bounded if
there is a polynomial nc + c such that an ≤ nc + c for all sufficiently large n. A p-family is
a family of polynomials (fn) such that the number of variables of fn and the degree of fn
are both p-bounded. We will primarily be interested in p-families throughout.

A non-uniform algebraic complexity class is a collection of families of polynomials. VP
is the collection of p-families (fn) such that fn computable by an algebraic circuit of poly(n)
size. VNP is the collection of p-families (gn) such that there is a family (fn(x, e)) ∈ VP
such that gn(x) =

∑
e∈{0,1}poly(n) fn(x, e). VPws is the collection of p-families f = (fn)

such that fn(x) = detpoly(n)(Ln(x)) where Ln(x) is matrix whose entires are affine linear
functions of the xi. ΣΠΣ is the collection of p-families computable by polynomial-size,
depth-three, layered circuits, with a linear combination gate at the output, preceded by a
layer of multiplication gates, preceded by a layer of linear combinations of the input; that
is, the polynomial is a sum of polynomially many products of linear functions of the inputs.

A polynomial f(x1, . . . , xn) is a projection of a polynomial g(y1, . . . , ym) if there are
affine linear functions `1(~x), . . . , `m(~x) such that f(~x) = g(`1(~x), . . . , `m(~x)), identically as
polynomials. A polynomial family f = (fn) is a p-projection of a polynomial family g = (gn)
if there is a polynomial t(n) such that for all n, fn is a projection of gt(n).

Let Polyd(v) denote the space of homogeneous polynomials of degree d in v variables,
and Poly≤d(v) denote the space of (not necessarily homogeneous) polynomials of degree at
most d in v variables. Homogeneity is used for technical simplicity; essentially everything we
say can be modified to several other natural settings, such as non-homogeneous polynomials
or multilinear polynomials.

Rather than the definitional viewpoint of a complexity class as a collection of families of
polynomials, it will be useful to “reverse the order of quantifiers”, and to consider, for each
n, a subset of Polyd(n)(v(n)), and to consider a complexity class as a family of such subsets,
one for each n. This viewpoint is implicit in much work on lower bounds in algebraic
complexity theory, going back to work of Strassen (e. g., [54]), and is explicit in geometric
complexity theory (e. g., [10, 43–46]). An example will help make this clear: In terms of
lower bounds showing that some polynomial is not in VPws, it is useful to think of VPws as
being “captured” by the following family of sets:

Dn
def
= {f(x) ∈ Poly≤n(n2) : (∃L)[f(x) = detn(L(x))]}

where the L we consider here are those such that L(X) is an n × n matrix whose entries
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are affine linear combinations of the variables xi. The family D = (Dn)n=1,2,3,... captures
VPws in the sense that, given a family of polynomials g = (gn), showing that gn /∈ Dmn for
all polynomially bounded sequences (mn) and for infinitely many n proves that g /∈ VPws.
We crystalize this into the following definition:

Definition 1. A family of subsets (Fn) with Fn ⊆ Polyd(n)(v(n)) captures a non-uniform
algebraic complexity class C if:

1. For every family of polynomials (fn) with fn ∈ Fn for all n, it follows that (fn) ∈ C,
and

2. For every family of polynomials f = (fn) ∈ C, there is a polynomially bounded
sequence of integers mn such that fn ∈ Fmn for every n.

We say that (Fn) captures C with padding if we replace the last item by

2′. For every family of polynomials f = (fn) ∈ C, there are polynomially bounded
sequences of integers en,mn and a family of linear forms ` = (`n)∞n=1 such that
`n(x)enfn(x) ∈ Fmn for every n.

It is readily seen that the family Dn above captures VPws. Its homogeneous version,

Dhn
def
= {f(x) ∈ Polyn(n2) : (∃L)[f(x) = detn(L(x))]}

where we only conisder linear L (zero constant term), captures homogeneous polynomials
in VPws with padding.

Similarly, the family

SPSn
def
=

f ∈ Poly≤n(n) : [∃aijk ∈ F]

f =
n∑
i=1

d(i)∏
j=1

n∑
k=1

aijkxk


captures ΣΠΣ. While essentially all non-uniform algebraic complexity classes that are ever
considered have a natural family of sets that captures them, note that such families are not
unique. For example, VPws is also captured by the family of sets

Wn
def
= {f ∈ Poly≤n(n) : f can be computed by a weakly-skew circuit of size ≤ n}.

While each Wn is quite different from each Dn, this merely reflects the fact that weakly-
skew circuit size and determinantal complexity are not equal, despite the fact that they are
polynomially related.

Throughout, whenever we refer to a complexity class such as VPws(n), we really mean
“Fn, for any fixed family Fn that captures VPws (possibly with padding).”

2.1 Meta-polynomials and meta-complexity classes

Given a space of polynomials Polydn(vn), we may consider meta-polynomials on this space,
which are polynomials T whose variables correspond to the coefficients of polynomials in
Polydn(vn). That is, T is a polynomial in N =

(
dn+vn−1

dn

)
variables. We denote the space

of homogeneous meta-polynomials of degree D by PolyD(Polydn(vn)) ∼= PolyD(N). Given
a polynomial f ∈ Polydn(vn) and a meta-polynomial T ∈ Poly(Polydn(vn)), we denote
by T (coeff(f)) the evaluation of T at the coefficient vector of f . We will generally use
capital letters to denote meta-polynomials, their degrees, and their number of variables,
and lower-case letters for (non-meta) polynomials.
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Example. The familiar polynomial b2 − 4ac may be considered as a meta-polynomial on
the space Poly2(2) of degree 2 homogeneous polynomials in 2 variables, namely, Poly2(2) =
{ax2 + bxy + cy2 : a, b, c ∈ F}. Then T = b2 − 4ac ∈ Poly2(Poly2(2)), and evaluating T at
a polynomial f = ax2 + bxy + cy2 has the usual and natural meaning.

We will want to consider families of meta-polynomials T = (Tn) with Tn ∈ Poly(Polydn(vn)).
If vn, dn are themselves at least linear in n, then the number of variables of Tn is exponential
in n, so this family does not technically fit into the usual algebraic complexity classes as
defined above. We would nonetheless like an analogue of the above classes where Tn may
depend on more than poly(n) variables, but its other relevant quantities are polynomial in
its (usually much larger than poly(n)) number of variables. We annotate such classes with
a capital N , where Nn is the number of variables of Tn (in this case, dim Polydn(vn)).

Definition 2 (Stretched complexity classes). Given an algebraic complexity class C, and
a function N(n), we define C with stretch N , denoted C(N), as the class of families of
polynomials T = (Tn) such that there is a family T ∈ C with Tn = TN(n).

For most standard algebraic complexity classes, such as VP, VPws, VNP, or ΣΠΣ, this
is equivalent to:

Definition 2′ (Alternative definition of stretched, for standard classes). Given an algebraic
complexity class C, and a function N(n), we define C with stretch N , denoted C(N), as the
class of families of polynomials T = (Tn) such that T satisfies the hypotheses of C with
“polynomial in n” everywhere replaced by “polynomial in N(n).”

To see that the two are equivalent: Given T ∈ C(N) according to Definition 2′, if we
let n(N) be the inverse of N(n) rounded to the nearest integer, then defining a family
Tn = Tn(N(n)) satisfies Definition 2. The opposite direction is clear.

For example, VP(N) denotes the class of families of polynomials T = (Tn) where Tn has
poly(N) many variables, is of poly(N) degree, and can be computed by circuits of poly(N)
size. We define VNP(N), VPws(N) and ΣΠΣ(N) analogously.

Since we will typically be considering polynomials in poly(n) many variables with

poly(n) degree, the space Polydn(vn) will have dimension Nn = 2n
O(1)

, so we have that
n = poly(logN).

3 An algebraic natural proofs barrier via polynomial identity
testing

We start by giving our definition of “algebraic natural property;” an algebraic natural proof
in our sense will essentially be one that uses such a property. As is the case with Razborov–
Rudich natural proofs, the latter is not a precise, formal definition, but in practice this
will cause us no difficulties, and in particular does not affect our results (which are precise
and formal). In the algebraic setting, a property of polynomials is a collection of subsets
Cn ⊆ Polydn(vn) for some (usually p-bounded) sequences dn, vn. (Recall that everything we
say is easily adapted to other kinds of polynomials such as non-homogeneous or multilinear.)

Definition 3 (Natural property). A property of polynomials C = (Cn) with Cn ⊆ Polydn(vn)
is natural if it contains a set C∗n ⊆ Cn for each n satisfying the following two conditions:

1. Largeness: C∗n is the complement of the zero-set of a meta-polynomial Tn.
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2. Constructivity: The meta-polynomial family T = (Tn) has degree and circuit size
bounded by a polynomial in the number of its variables (= poly(dim Polydn(vn)) =
poly(

(
dn+vn−1

dn

)
)). That is, T ∈ VP(N) for Nn = dim Polydn(vn).

3. Usefulness: The algebraic circuit size of any family of functions (fn) with fn ∈ Cn
for all n is super-polynomial, that is, for any constant d, for sufficiently large n the
circuit size of fn is greater than nd.

Remark 1 (Deciding by (non)vanishing). It is important for the connection with PIT that
constructivity here be in terms of computing T symbolically as a polynomial (or at least,
some T ′ such that {f : T ′(f) 6= 0} ⊆ Cn), and not merely in terms of deciding whether a
given function f is contained in C∗n (as is the case with Razborov–Rudich natural proofs).

However, we note that even if we had allowed instead, say, Blum–Shub–Smale-style
algebraic Turing machines to decide, given coeff(f), whether or not f ∈ C∗n, then much of
the machinery still survives. In particular, the generic path through a BSS machine is still
Zariski-open, being the intersection of finitely many Zariski-open subsets, and the “yes/no”
output of the machine on generic inputs depends only on the vanishing/non-vanishing of a
given polynomial. However, we would then need our hitting set to hit not only this final
“decider” polynomial, but also all of the “branching” polynomials encountered along the
generic computation path. If we wanted to consider all paths through the BSS machine,
and not just the generic one, the situation becomes significantly more complicated, and
as far as we are aware hitting sets for such computations have not been considered in the
literature.

Remark 2 (Choice of field). In terms of which fields to work over, in order to make the
connection with derandomization, we want to work over fields that are large enough that
derandomizing PIT over those fields is at least plausible. For simplicity, it may be easier to
think of F as any infinite field. In principle, one could also work over a family of fields Fs(n)

of size s(n) greater than twice the degree of the polynomials under consideration (so the
Schwarz–Zippell-DeMillo–Lipton Lemma holds). Note that for s(n) < 2poly(n), the algebraic
natural proofs barrier of Aaronson and Drucker also applies [2, 3].

We generalize this to:

Definition 4 (Γ-natural against Λ). For two complexity classes Γ,Λ, a property C = (Cn)
is Γ-natural against Λ if it contains a subset C∗n ⊆ Cn satisfying:

1. Largeness: C∗n is the complement of the zero-set of a meta-polynomial Tn.

2. Γ-Constructivity: The meta-polynomial family T = (Tn) is in the meta-complexity
class Γ(N), where Nn = dim Polydn(vn).

3. Usefulness against Λ: Any family of functions f = (fn) with fn ∈ Cn for all n is not
contained in Λ.

As observed in [18], essentially all known algebraic circuit lower bounds to date are
natural in this sense; in fact, most of them are VPws-natural against the relevant complexity
class, as they are defined by the rank of a matrix of size poly(N)×poly(N) (see Section 1.1).

The key observation is the following. If there is a hitting set against VP which consists
of the coefficient vectors of polynomials of number of variables, degree, and size poly(log n),
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then there is no property that is VP-natural against VP. In other words, if for every meta-
polynomial T ∈ VP(N), there is some polynomial f ∈ VP such that T (coeff(f)) 6= 0,
then one cannot prove a lower bound against VP by exhibiting a meta-polynomial that
vanishes on a family of sets capturing VP. As all such lower bounds to date are of this
form [18], and it is reasonable to expect future such lower bounds to be as well (see, e. g., [54]
or [18, Appendix B] for a more extended discussion of this expectation), this rules out quite
a large class of lower bounds methods.

We formalize this observation with a definition and a theorem:

Definition 5 (Succinct hitting set). An algebraic complexity class Λ is a succinct hitting
set against another class Γ if there is a family of sets Λ(n) which captures Λ, such that
{coeff(f) : f ∈ Λ(n)} is a hitting set against Γ(N), where N is the dimension of the
ambient space of Λ(n). Namely, for all nonzero T ∈ Γ(N), there is some f ∈ Λ(n) such that
T (coeff(f)) 6= 0.

Theorem 1. For any two algebraic complexity classes Γ,Λ, there is a Λ-succinct hitting
set against Γ if and only if there is no property which is Γ-natural against Λ.

We have essentially already given the proof in the paragraph above.
The main open question is thus:

Open Question 1. Is VP a succinct hitting set against VP? Is VPws a succinct hitting set
against VPws?

We note that it is not even obvious whether or not VNP is a succinct hitting set against
VPws. An important first step would be to show that known hitting sets against subclasses
Γ ⊆ VP can be made Λ-succinct for as small a class Λ as possible. For several pairs (Λ,Γ)
this is achieved in [14].

Remark 3 (Generators). A generator for a class Γ is a vector-valued function ~G(x1, . . . , xs)
such that for any nonzero f ∈ Γ, f(~G(~x)) is not identically zero as a polynomial in ~x. In
other words, the image of ~G—essentially an s-dimensional variety—is a hitting set (perhaps
infinite) against Γ. The number of variables, s, is called the seed length of the generator;
generators of small seed length are useful because they reduce PIT for Γ from a many-
variable problem to s-variable PIT, which is easily solved for small s. For most standard
classes Λ, we note that if Λ is a succinct hitting set against Γ, then this set is a generator
against Γ of small seed length. For most classes—such as VP,VNP,VPws, ΣΠΣ—are the
image of a simply specified polynomial map ~G on few parameters. For example, the set of
linear projections of the n× n determinant captures VPws(n) (with padding). This means
that we may consider VPws(n) as the image of the map Mn2×n2 → Polyn(n2) which sends
an n2×n2 matrix L to the function detn(L(~x)), where we think of the n×n matrix x simply
as a vector of length n2. If VPws is a hitting set for some class Γ(N), then we may view
it as a generator for Γ(N) using the preceding encoding. The seed length of this generator
is n4 = poly(n) variables, but it outputs vectors in Polyn(n2), which has dimension N
that is exponential in n. So when VPws is a hitting set against some Γ, this generator
still reduces from finding a hitting set in N = 2Θ(n logn) variables to finding a hitting set
in n4 = poly(logN) variables. As in the preceding example of VPws and the determinant,
generators of small seed length are obvious for many classes; for VP this is somewhat less
obvious, but is still true [50].
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4 Relationship with other topics in complexity

4.1 Geometric complexity theory

In geometric complexity theory (GCT), the suggestion is not merely to use the polynomial
method to find a meta-polynomial T that vanishes on Ceasy but not on some fhard, but to
additionally take advantage of the fact that most standard non-uniform classes C(n) are
invariant under the action of some nontrivial group G, such as GLn or Sn. This is because
most measures of complexity do not depend on how we name the variables (leading to Sn
symmetry), and in many cases only change polynomially given a linear change of variables
(leading to GLn symmetry). The suggestion, without loss of generality, is thus to use a
property Cn to separate C(n) from fhard such that Cn is also sent to itself by the same
symmetry group. In this case, rather than considering a single meta-polynomial T , we may,
again without loss of generality, consider the entire linear span V of all meta-polynomials T ′

that are in the G-orbit of T . (When G is Sn it is clear that V is finite-dimensional; even over
infinite fields, however, this is also true of the GLn-orbit of T .) V is then a representation
of G or G-module; following [18] we refer to a G-module of meta-polynomials as a “test
G-module,” since its vanishing is a test for having a given G-invariant property.

For G = GLn (a natural group of symmetries for many standard algebraic circuit classes
such as VP, VPws, VNC, VNP, VQP, ΣΠΣ), every irreducible G-module contains an essen-
tially unique highest weight vector (see, e. g., [16]) (=highest weight test polynomial), which
is an “HWV obstruction” in the terminology of [8]. (Conversely, every HWV obstruction
gives rise to a test module.) Considering these HWV obstructions directly, Bürgisser and
Ikenmeyer were able to prove lower bounds on matrix multiplication using the technology
of GCT [8]. This raises the natural question of: given the label λ of an irreducible GLn-
module (λ is a partition with at most n parts, see, e. g., [16]), how computationally hard is
it to construct its (unique) highest weight test polynomial? However, from the viewpoint
of algebraic natural proofs, we are led to a related but slightly different question.

The first natural question to think of is to determine the circuit complexity of the HWV
obstructions. However, algebraic natural proofs suggests asking something still further.

Namely, suppose that Γ-natural proofs cannot prove lower bounds against Λ, and sup-
pose that Λ(n) is invariant under a group Gn (not necessarily GLn—in particular, we do
not need the theory of highest weights for what we are about to say). Then given a se-
quence of test Gn-modules Vn, potentially useful against Λ(n), if there is a sequence of
meta-polynomials Tn ∈ Vn such that (Tn)n=1,2,3,... is in Γ, then for infinitely many n, Vn is
not useful against Λ(n)—that is, Vn does not vanish identically on Λ(n). We are thus led
to the question:

Open Question 2. For any given sequence of test G-modules Vn, what is the complexity
of the easiest family of meta-polynomials (Tn ∈ Vn)?

In particular, while the complexity of any given Tn ∈ Vn doesn’t change within the orbit
of Tn, Vn itself contains all linear combinations of points on this orbit, and some such linear
combinations could have significantly lower complexity than, say, the HWVs in Vn (when
Vn is a test GLn-module).

Note that, whether or not there is a natural proofs barrier for VP, the above question
is interesting. For if there is such a barrier, then any family of test G-modules with low-
complexity polynomials cannot be used to prove lower bounds.2 Conversely, if there is no

2It is interesting to note that if, for a given sequence of labels λ(n), we could find an upper bound on the

9



such barrier, then any family of test G-modules with low-complexity polynomials might be
a good place to look for test polynomials to prove lower bounds, since we might hope that
low-complexity test polynomials would be easier to understand and therefore easier to use
to try to prove lower bounds.

This question is perhaps more immediately interesting in the following specific cases:
Given a class Γ for which it is shown in [14] that Γ-natural proofs cannot prove lower bounds
against VP, which families Vλ(n) of test GLn-modules contain a family of test polynomials
Tn such that (Tn) ∈ Γ? Note that, even for test GLn-modules V , the highest weight
meta-polynomials need not be the easiest polynomials in T . So although considering HWV
obstructions may be useful for proving lower bounds, in order to prove that certain test
GLn-modules are not useful for lower bounds, one needs to consider the more general Open
Question 2.

4.2 Algebraic proof complexity

Pitassi [48, 49] and Grochow & Pitassi [19] introduced the Ideal Proof System (IPS), for
refuting unsatisfiable CNFs using algebraic reasoning. While IPS is a very strong proof
system—at least as strong as Extended Frege—they also introduced a variant of this system
called the Geometric IPS (it is an open question whether Geometric IPS can p-simulate
general IPS). Using the connection in this paper it may be plausible to prove unconditional
lower bounds against Geometric IPS. We now discuss this in a bit more detail.

Definition (Geometric Ideal Proof System, “Geometric IPS,” [19, Appendix B]). Given
an unsatisfiable system of polynomial equations f1(~x) = · · · = fm(~x) = 0, a geometric IPS
certificate of unsatisfiability consists of an algebraic circuit C(y1, . . . , ym) such that

1. C(~0) = 1, and

2. C(f1(~x), . . . , fm(~x)) = 0, in other words, C is a polynomial relation amongst the fi.

For any algebraic circuit class C, a geometric C-IPS proof is an algebraic circuit in C on
inputs y1, . . . , ym computing some geometric IPS certificate.

This system may be used to prove that a 3CNF formula is unsatisfiable as follows. Given
a 3CNF formula with m clauses, we translate it into a system of m polynomials of degree
at most 3 in the natural way, so that any Boolean assignment to the variables satisfies
a clause iff the corresponding polynomial evaluates to 0. Then the 3CNF is unsatisfiable
iff the corresponding equations f1(~x) = · · · = fm(~x) = x2

1 − x1 = · · · = x2
n − xn = 0

are unsatisfiable over F. In [19, Appendix B] it shown that geometric IPS, without any
complexity bounds on the circuit computing a certificate, is a sound and complete proof
system for such systems of equations. In fact, over any algebraically closed field or any
dense subfield of C, they showed that the same is true even if the equations x2

i − xi = 0 are
omitted.

The idea of the geometric IPS is to consider the equations f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)
as a map f : Fn → Fm, and to note that the system of equations f1 = . . . = fm = 0 is sat-
isfiable iff 0 is in the image of the map f . A geometric IPS certificate proves that, not only

easiest family of test polynomials in any family of test GLn-modules isomorphic to Vλ(n), then this could
be used to rule out multiplicity obstructions. At the moment, there are essentially no techniques known for
ruling out multiplicity obstructions, only for ruling out occurrence obstructions, e. g., [9, 17, 22].
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is 0 not in the image, but 0 is not even in the closure of the image of the map f . The
geometric object of interest here is thus the image of the map f .

Suppose we have a family (Fn)n=1,2,... of systems of polynomial equations

Fn = (fn,1(x1, . . . , xnc), . . . , fn,nd(~x)),

such that the images of the maps fn : Fnc → Fnd are a hitting set against some circuit class
Λ. Then, by condition (2) of the above definition, no geometric Λ-IPS certificate can exist.
Although here we are using the evaluations of polynomials rather than their coefficient
vectors, note that for any class Λ capable of interpolation—that is, closed under affine
linear transformations—a succinct hitting set can be defined either in terms of coefficient
vectors or in terms of the vector of evaluations at sufficiently many points.

Open Question 3. For various Λ for which hitting sets are known, prove lower bounds on
the Geometric Λ-Ideal Proof System by finding a succinct hitting set of the following form:
there is a family of unsatisfiable 3CNFs (ϕn) such that, if fn is the above polynomial map
associated to ϕn, then the image of fn is a hitting set against Λ.

Of course, it would also be interesting to show that for certain Λ no hitting sets of this
form exist.

Unfortunately, we were unable to get the same connection to work for general IPS.
The natural object to look at for general IPS is not the image of f , but rather its graph
{(~α, ~f(~α)) : ~α ∈ Fn}. The issue is that, when the fi are themselves described by small
circuits, as is essentially always the case in instances of complexity-theoretic interest, the
function yi − fi(~x) is a very easily computable function which vanishes on the graph of f .

Open Question 4. Find and exploit an analogous connection between algebraic natural
proofs / hitting sets and (general) IPS.
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