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Abstract

In this note we show that the Raz-McKenzie simulation algorithm which lifts deterministic
query lower bounds to deterministic communication lower bounds can be implemented for
functions f composed with the Inner Product gadget 1ip(x, y) =

∑
i xiyi mod 2 of logarithmic

size. In other words, given a function f : {0, 1}n → {0, 1} with deterministic query complexity
D( f ), we show that the deterministic communication complexity of the composed function
f ◦ 1n

ip is Θ(D( f ) log n), where

f ◦ 1n
ip(x, y) = f (1ip(x1, y1), . . . , 1ip(xn, yn))

where x = (x1, . . . , xn), y = (y1, . . . , yn) and each xi and yi are O(log n) bit strings. In [RM97]
and [GPW15], the simulation algorithm is implemented for functions composed with the Index-
ing gadget, where the size of the gadget is polynomial in the input length of the outer function
f .

1 Introduction

Let f : {0, 1}n → {0, 1} be a function. Its deterministic query complexity D( f ) (also known as its
decision tree complexity) is the minimum number of queries to an unknown input z ∈ {0, 1}n that
an algorithm must make in order to compute f (z). In [RM97] and [GPW15], it is shown that there
is a gadget 1 : {0, 1}b1 × {0, 1}b2 → {0, 1} such that the composed function (now of two inputs) f ◦ 1n

has deterministic communication complexity at least Ω(D( f )) ·min{b1, b2}. This is tight, because there
is a simple communication protocol that simulates the query algorithm for f in order to compute
f ◦1n. This was proved via a simulation argument, which converts any deterministic communication
protocol P for f ◦ 1 with communication complexity C into a query algorithmA for f with query
complexity O(C/min{b1, b2}).

The gadget used in these works is the Indexing gadget, in which 1(x, y) = yx, where we think of
x as an index to a bit of y. Here, b1 = O(log n) and b2 = poly(n). Thus the blow-up of the problem
size going from the query function f to the communication function f ◦ 1 is polynomial. In this
note, we adapt the proof of [GPW15] to show that the Raz-McKenzie simulation argument also
works also when the gadget is the inner product function of logarithmic size.
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We make a few remarks about our adaptation. The analysis of the Raz-McKenzie simulation
in [GPW15] relies on two main lemmas, the Thickness Lemma and the Projection Lemma. The
Thickness Lemma is invoked whenever the simulation algorithm simulates the communication
protocol, and the Projection Lemma is invoked whenever the algorithm performs a query. Our
proof only differs in the analysis of the Projection Lemma. We believe our proof is slightly simpler
than the one given in [GPW15] (which itself is a simplification of [RM97]).

2 Notation and setup

We largely adhere to the same notation that was used in [GPW15].
Define Σ = {0, 1}b \ {0}. By 0, we mean the all 0’s string. Let 1ip : Σ × Σ → {0, 1} be the inner

product function (i.e. 1(x, y) =
∑

i xiyi mod 2).
Fix a deterministic communication protocol P for the composed function f ◦ 1n. The simulation

algorithm maintains a current node v in the communication protocol tree. Let Rv ⊆ Σn
×Σn denote

the rectangle associated with v. The simulation also maintains a rectangle S ⊆ Rv as well. We write
S = A × B.

1. Projections. Given a subset I ⊆ [n] and a set A ⊆ Σn, we write AI = {(xi)i∈I : (x1, . . . , xn) ∈
A} ⊆ ΣI.

2. Pruning. Let U ⊆ Σ, i ∈ [n], and A ⊆ Σn. Then Ai,U = {x ∈ A : xi ∈ U}. Given a rectangle
S = A × B ⊆ Σn

× Σn and a rectangle R = U × V ⊆ Σ × Σ, then Si,R denotes Ai,U
× Bi,V.

3. Neighbors. Let I ⊆ [n], J ⊆ I, and A ⊆ Σn. Letα ∈ AJ. Then we write Neighbor(α,AI) to denote
the set of β ∈ AI\J such that (α, β) ∈ AI. We say that β is a neighbor of α if β ∈ Neighbor(α,AI).

4. Min Entropy. Let I ⊆ [n], i ∈ I, and A ⊆ Σn. Then MinEntropyi(AI) denotes

log min
α∈AI\{i}

∣∣∣∣Neighbor(α,AI)
∣∣∣∣.

5. Average Entropy. Let I ⊆ [n], i ∈ I, and A ⊆ Σn. Then AvgEntropyi(AI) denotes

log
|AI|

|AI\{i}|
.

6. Thickness. Given I ⊆ [n], and A ⊆ Σn. Then A is κ-thick in I if for all i ∈ I,

MinEntropyi(AI) ≥ κ.

Given a rectangle S = A × B, we say that S is thick in I if both A and B are thick in I.

7. Potential function. Define the potential function to be Φ(S, I) := 2b|I| − log |AI × BI|.

8. Average Entropy threshold. Define κav1 = 0.9b.

9. Min Entropy threshold. Define κmin = 0.6b.

10. Size of gadget. Define b = 1000 log n.
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3 The query simulation and analysis

We describe the Raz-McKenzie simulation algorithm for the communication protocol P. Its pre-
sentation is essentially the same as in [GPW15].

1. Initialize S← Σn
× Σn, Q← ∅.

2. While v is not a leaf, do.

3. Assume that at v, Alice sends a bit to Bob. Otherwise, execute Line 4 to line 17 with A and
B exchanged.

4. If AvgEntropyi(AI) ≥ κav1 for all i ∈ I, then

5. Let v0, v1 be the children of v, Rv0 and Rv1 be the rectangle associated with v0 and v1,
respectively. Set S0 := S ∩ Rv0 and S1 := S ∩ Rv1 .

6. Let b∗ = argmaxb {|Sb
I |}.

7. Let S̃ = Ã × B̃ ⊆ Sb∗ satisfy the Thickness Lemma.

8. Update S← S̃.

9. else if AvgEntropy j(AI) < κav1 for some j ∈ I, then

10. Query z j.

11. Let R a z j-monochromatic rectangle satisfying the Projection Lemma.

12. Update S← S j,R, I← I \ { j}.

13. End.

14. End.

15. Output the value associated with v.

Figure 1: The simulation algorithm

3.1 Thickness and Projection Lemmas

The analysis of the simulation algorithm, like in [RM97, GPW15], depends on two main lemmas
(called the Thickness Lemma and the Projection Lemma) which we now present.

Lemma 1 (Thickness Lemma). Let I ⊆ [n] and let S = A × B ⊆ Σn
× Σn be a rectangle satisfying

AvgEntropyi(AI) ≥ d and AvgEntropyi(BI) ≥ d. Then there exists a subrectangle S′ = A′ × B′ ⊆ S such
that

1. For all i ∈ I, MinEntropyi(A′I) ≥ d − log 4n, MinEntropyi(B′I) ≥ d − log 4n.
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2. |S′| ≥ |S|/2.

Proof. The proof of this is the same as in [GPW15]. �

Lemma 2 (Sampling properties of random subspaces). There exist distributionsR0,R1 over rectangles
RA × RB ⊆ Σ × Σ with the following properties. For all t ∈ {0, 1}, the rectangles sampled in Rt are
t-monochromatic. Furthermore, for all v ∈ Σ, let Av be the indicator random variable for the event v ∈ RA.
Then under both R0 and R1, the variables {Av} are such that

A. Pr(Av = 1) ≥ Ω(2−b/2) for all v ∈ Σ, and

B. For all distinct v,w ∈ Σ, Pr(AvAw = 1) ≤ Pr(Av = 1) Pr(Aw = 1).

Define variables Bv analogously, and the analogous properties hold.

We defer the proof of this sampling Lemma to the end, and show how it can be used for the
Projection Lemma.

Lemma 3 (Projection Lemma). Let I ⊆ [n], and let S = A× B ⊆ Σn
×Σn be a rectangle that is κ-thick in

I, j ∈ I and t ∈ {0, 1}. Then there exists a rectangle R ⊆ Σ × Σ that is t-monochromatic such that

1. S j,R is thick in I \ { j}.

2. Φ(S j,R, I \ { j}) ≤ Φ(S, I) − 2b + AvgEntropy j(AI) + AvgEntropy j(BI) + 1.

Proof. We use the probabilistic method. Imagine sampling a rectangle R ∼ Rt as described in
Lemma 2. Let R = U × V. Assume for now that∣∣∣∣S j,R

I\{ j}

∣∣∣∣∣∣∣SI\{ j}
∣∣∣ ≥ 1/2 (1)

with non-zero probability. In particular, this implies that A j,U
I\{ j} and B j,V

I\{ j} are non-empty with
non-zero probability. Let R be a rectangle satisfying this.

The first item follows from: for all i , j,

MinEntropyi(A
j,U
I\{ j}) ≥ MinEntropyi(AI),

and similarly for B. This is because as long as A j,U
I\{ j} is non-empty, the min-entropy of under

discarding a coordinate does not decrease.
For the second item, observe that

∣∣∣∣S j,R
I\{ j}

∣∣∣∣ =

∣∣∣∣S j,R
I\{ j}

∣∣∣∣∣∣∣SI\{ j}
∣∣∣ ·

∣∣∣SI\{ j}
∣∣∣

|SI|
· |SI|

=

∣∣∣∣S j,R
I\{ j}

∣∣∣∣∣∣∣SI\{ j}
∣∣∣ · 2−(AvgEntropy j(AI)+AvgEntropy j(BI)) · |SI|
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Let S′ = S j,R and I′ = I \ { j}. By (1), we have that

Φ(S′, I′) = 2b|I′| − log
∣∣∣S′I′ ∣∣∣

= 2b(|I| − 1) − log
∣∣∣S′I′ ∣∣∣

≤ 2b|I| − log |SI| − 2b + AvgEntropy j(AI) + AvgEntropy j(BI) + 1

= Φ(S, I) − 2b + AvgEntropy j(AI) + AvgEntropy j(BI) + 1.

Thus the proof will be complete once we establish (1). We focus first on Alice’s side of the rectangle.
For all x j ∈ A{ j} and neighbors x− j ∈ Neighbor(x j,AI), let Ax− j and Ax j denote the indicator variables

for the events that x− j ∈ A j,U
I′ and x j ∈ U, respectively. We have that Ax− j = 1 iff

Tx− j :=
∑

x j∈Neighbor(x− j,AI)

Ax j ≥ 1.

Fix a x− j ∈ AI′ . We bound the probability of the event Ax− j = 0:

Pr(Ax− j = 0) ≤ Pr
(∣∣∣Tx− j − µ

∣∣∣ ≥ µ − 1
)
≤

Var
(
Tx− j

)
(µ − 1)2

where µ = ER∼Rt Tx− j and we used Chebyshev’s inequality. First, we calculate the variance:

Var
(
Tx− j

)
=

∑
x j∈Neighbor(x− j,AI)

Var(Ax j) +
∑

x j,x′j∈Neighbor(x− j,AI)

Cov(Ax j ,Ax′j
)

≤

∑
x j∈Neighbor(x− j,AI)

Pr(Ax j = 1) +
∑

x j,x′j∈Neighbor(x− j,AI)

(
Pr(Ax jAx′j

= 1) − Pr(Ax j = 1) Pr(Ax′j
= 1)

)
≤ µ

where in the first inequality we used the fact that the Ax j are indicator variables, and that Pr(AvAw =

1) ≤ Pr(Av = 1) Pr(Aw = 1) from Lemma 2.
Next, we calculate µ. By Lemma 2 again, we have that

µ = E
R∼Rt

∑
x j∈Neighbor(x− j,AI)

Ax j

=
∑

x j∈Neighbor(x− j,AI)

Pr(Ax j = 1)

≥ 2κmin ·Ω(2−b/2).

In the inequality, we used the fact that the number of neighbors of x− j is at least 2κmin , by the
thickness property of S. Thus, we have that

Pr(Ax− j = 0) ≤
2
µ
≤ O

(
2b/2−κmin

)
.
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Set δ = 2b/2−κmin . Now note that |A j,R
I′ | =

∑
x− j∈AI′

Ax− j . By Markov’s inequality, we have that the

probability more than O(
√
δ) fraction of x− j ∈ AI′ are missing from A j,R

I′ is at most O(
√
δ). Thus

with probability at least 1 −O(
√
δ), we have

|A j,R
I′ | ≥

(
1 −O(

√

δ)
)
|AI′ |.

By similar reasoning we obtain the same bound for B j,R
I′ . By the union bound we have

|S j,R
I′ | ≥

(
1 −O(

√

δ)
)2
|SI′ | =

(
1 −O(

√

δ)
)
|SI′ |

with probability 1 −O(
√
δ).

Since this probability is greater than 0, this implies there exists a rectangle R satisfying both
conclusions of the Projection Lemma. �

3.1.1 Proof of the sampling Lemma

Proof. We first describe a process to sample RA × RB ∼ R0. Sample a pair (V,W) of orthogonal
subspaces of dimension d = b/2. Set RA = V \ {0} and RB = W \ {0}.

It is easy to verify that rectangles sampled in this way are 0-monochromatic. We now verify
(A). We first observe that the marginal distribution of RA is a uniformly random d-dimensional
subspace. Let

(b
d
)
2 denote the number of d-dimensional subspaces in Fb

2; it is well known that(
b
d

)
2

=
(2b
− 1) · · · (2b

− 2d−1)
(2d − 1) · · · (2d − 2d−1)

.

Fix a v ∈ Σ. The probability that a random d-dimensional subspace contains v is exactly(b−1
d−1

)
2(b

d
)
2

=
2d
− 1

2b − 1
.

This establishes both (A) and its analogue for Bv. Now fix distinct v,w ∈ Σ. Note that since v,w
are distinct and are non-zero, they are linearly independent, and thus span a 2-dimensional space.
The probability that a random d-dimensional subspace contains both v and w is exactly(b−2

d−2
)
2(b

d
)
2

=
(2d
− 1)(2d

− 2)
(2b − 1)(2b − 2)

.

It is easy to verify that (b−2
d−2

)
2(b

d
)
2

≤


(b−1
d−1

)
2(b

d
)
2


2

,

which establishes (B).

Now we describe how to sample from R1. First, sample a vector u with odd Hamming weight.
Let G(u) denote the (b−1)-dimensional orthogonal complement of span{u}. Sample a pair (V,W) of
orthogonal subspaces of dimension d′ = b/2− 1 from within G(u). Set RA = V + u and RB = W + u.
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Again it is easy to verify that rectangles sampled in this way are 1-monochromatic. We now
verify (A). Conditioned on u, V is a uniformly random d′-dimensional subspace within G(u).
Therefore we have

Pr(Av = 1) =
∑

u:|u| is odd
〈u,v〉=1

Pr(u) · Pr(u + v ∈ V|u) =
∑

u:|u| is odd
〈u,v〉=1

Pr(u) ·

( b−2
d′−1

)
2(b−1

d′
)
2

=
∑

u:|u| is odd
〈u,v〉=1

Pr(u) ·
2d′
− 1

2b−1 − 1

The vector u is uniformly random over all odd Hamming weight vectors, which is an affine
subspace of dimension b − 1. Thus Pr(u) = 2−(b−1). The number of u’s such that |u| is odd and
〈u, v〉 = 1 (which implies that 〈u + v, v〉 = 0 and thus u + v is in G(u)) is the number of solutions to
this system of equations:

〈u,~1〉 = 1

〈u, v〉 = 1

where ~1 denotes the all one’s vector. There are 2b−2 solutions to this system when v , ~1, and 2b−1

solutions when v = ~1. Therefore

Pr(Av = 1) =

 (2d′
− 1)/(2b

− 2) if v , ~1
(2d′
− 1)/(2b−1

− 1) if v = ~1.

Now fix distinct v,w ∈ Σ. Then we have

Pr(AvAw = 1) =
∑

u:|u| is odd
〈u,v〉=〈u,w〉=1

Pr(u) · Pr(AvAw = 1|u)

=
∑

u:|u| is odd
〈u,v〉=〈u,w〉=1

Pr(u) ·

( b−3
d′−2

)
2(b−1

d′
)
2

.

Note that unless the vectors v, w, and the all ones vector ~1 are all linearly independent, the
number of u such that |u| is odd and 〈u, v〉 = 〈u,w〉 = 1 is zero. This is because if v + w = ~1, then
〈u, v〉 + 〈u,w〉 = 〈u,~1〉 = |u| = 0 mod 2, a contradiction.

Thus in the case they are all linearly independent, the number of solutions u is at most 2b−3, so
therefore

Pr(AvAw = 1) ≤
1
4

( b−3
d′−2

)
2(b−1

d′
)
2

.

But the above calculation implies that Pr(AvAw = 1) ≤ Pr(Av = 1) Pr(Aw = 1), which establishes
(B).

�

3.2 Correctness of the simulation algorithm

Claim 4. The simulation algorithm maintains the following loop invariants:
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1. S ⊆ Rv where v is the current node in the protocol tree.

2. S is κmin-thick in I.

3. 1(xi, yi) = zi for all (x, y) ∈ S and for all i ∈ [n] \ I.

Proof. The proof of this is similar in [GPW15]. The invariants are trivially satisfied initially. Assume
that they hold at the beginning of an iteration. We can also assume without loss of generality that
it is Alice’s turn to communicate in this iteration.

Suppose line 4 holds (i.e. the simulation is in the communication phase), and assume without
loss of generality that b∗ = 0. Let S = A × B and R0 = X0 × Y0. Let Ã = A ∩ X0 and B̃ = B. Since
S ⊆ Ã × B̃ ⊆ R0, Invariants 1 and 3 hold. For all i ∈ I we have that

AvgEntropyi(ÃI) =

∣∣∣(A ∩ X0)I

∣∣∣
(A ∩ X0)I\{i}

≥

∣∣∣(A ∩ X0)I

∣∣∣ /2∣∣∣AI\{i}

∣∣∣ ≥ 2κav1−1.

AvgEntropyi(B̃I) = AvgEntropyi(BI). We apply the Thickness Lemma by setting d to κav1 − 1.
Invariant 2 holds because κav1 − 1 − log 4n ≥ κmin.

Suppose line 9 holds (i.e. the simulation is in the query phase). By Invariant 2, S is κmin thick
in I. We may apply the Projection Lemma to S and get a rectangle R. Invariant 1 is unchanged.
Invariants 2 and 3 hold because of the Projection Lemma and the definition of R.

�

The correctness of the algorithm is argued similarly to the one in [GPW15]. Let v be the leaf
reached at termination. It suffices to show that there exists an

(
x, y

)
∈ Rv such that 1n(x, y) = z.

Assuming that the algorithm continues by executing line 10-12, repeatedly, once for each remaining
coordinate i ∈ I in arbitrary order until only one coordinate remains unqueried (ignoring the
condition 2 in the Projection Lemma). Let (v, I,R = A × B) be the state at the end of this extended
execution, where I = {i} is a singleton. Then MinEntropyi(A{i}) ≥ 2κminb and MinEntropyi(B{i}) ≥ 2κminb.
Hence A{i} ×B{i} is not monochromatic, because of the properties of the inner product gadget. Pick
an

(
xi, yi

)
such that 1

(
xi, yi

)
= zi and pick an

(
x, y

)
∈ A × B with this value of

(
x1, y1

)
. By Invariant

1, correctness is established.

3.3 Query complexity of the algorithm

Claim 5. The number of queries made by the simulation algorithm is at most O(C/b), where C is the
communication complexity of the protocol for f ◦ 1n.

Proof. The proof of this is the same as in [GPW15]. Note that our potential function Φ(S, I) = 0
initially, and is always nonnegative. There are most C communication rounds in the algorithm.
In every communication round, the size of S decreases by at most 4 (because we first divide S
based on the bit being communicated, and then we cut it further due to the Thickness Lemma),
so the potential function increases by at most 2. Since the potential function only increases in the
communication rounds, the potential function has a maximum of 2C. On the other hand, in each
query round of the algorithm, the potential function decreases by Ω(b). Thus there are at most
O(C/b) query rounds in the algorithm. �
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3.4 Concluding remarks

We end with two observations about our adaptation of [GPW15]. First, we note that the only place
where we used the fact that the inner product gadgets are logarithmic size are in the Thickness
Lemma (the Projection Lemma does not rely on this). In contrast, both the Thickness and Projection
Lemmas in [GPW15] require that the size of the gadget has some dependence on n. We believe our
simplifications are a step towards obtaining a simulation argument with constant-sized gadgets.

Next, readers might observe that we’ve renamed MinDeg and AvgDeg to MinEntropy and
AvgEntropy, respectively. The reason for this is because we believe it is useful to understand
the simulation argument in terms of entropies, rather than in terms of the combinatorial counting
measures of minimum degree and average degree.

To illustrate this, imagine that instead of just maintaining the set S, the algorithm keeps track of
a distribution S over Σn

× Σn. Instead of maintaining that the minimum degree of various blocks
of S are high, we ensure that the conditional min-entropy of the blocks of S are large, i.e., that
Hmin(SI

i |S
I
,i) ≥ κmin. To determine when to make a query or not, the algorithm checks whether the

conditional Shannon entropy of the various blocks of S are large or not, i.e., that H(SI
i |S

I
,i) ≥ κav1.

Correspondingly, the potential function Φ(S, I) should be nothing but the KL divergence between
the marginal distribution SI and the uniform distribution.

Using smoother measures such as KL divergence and Shannon entropy makes certain things
nicer. For example, the proof of the Projection Lemma can be expressed as an application of the
chain rule for KL divergence. Suppose that z1 is being queried, because H(A1|A,1) ≤ κav1 (where
S = A×B). Furthermore assume that I = [n]. Then observe that

Φ(S, [n]) = DKL(S‖U[n]) = DKL(S,1 ‖U,1) + E
s∼S,1

DKL

(
S1

s

∥∥∥ U1

)
where U[n] denotes the uniform distribution on Σn

× Σn, S,1 denotes the marginal distribution of
S on blocks 2 through n, S1

s denotes the distribution of S1 conditioned on a sample s drawn from
S,1. Notice that

E
s∼S,1

DKL

(
S1

s

∥∥∥ U1

)
= 2b −H(S1|S,1) ≥ b −H(A1|A,1) ≥ 0.1b.

Thus DKL(S,1 ‖U,1) ≤ Φ(S, [n]) − 0.1b. We would almost be done in showing that the potential
function decreases, except we have to show that DKL(S,1

1,R ‖U,1) ≈ DKL(S,1 ‖U,1), where S,1
1,R

denotes the distribution S,1 conditioned on the first coordinate being projected to the random
rectangle sampled according to R. Though showing this will not be as clean a calculation as the
one performed above, we believe that this calculation sketch reveals more intuition about why the
Projection Lemma should be true.

We hope that this perspective may be useful in extending the Raz-McKenzie simulation to the
randomized setting — that is, giving a simulation method to lift randomized query lower bounds
to randomized communication lower bounds.
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