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Abstract

We study the computational complexity of emptiness problems for circuits over sets of
natural numbers with the operations union, intersection, complement, addition, and multi-
plication. For most settings of allowed operations we precisely characterize the complexity
in terms of completeness for classes like NL, NP, and PSPACE. The case where intersec-
tion, addition, and multiplication is allowed turns out to be equivalent to the complement
of polynomial identity testing (PIT).

Our results imply the following improvements and insights on problems studied in earlier
papers. We improve the bounds for the membership problem MC(∪,∩, ,+,×) studied by
McKenzie and Wagner 2007 and for the equivalence problem EQ(∪,∩, ,+,×) studied by
Glaßer et al. 2010. Moreover, it turns out that the following problems are equivalent to
PIT, which shows that the challenge to improve their bounds is just a reformulation of a
well-studied, major open problem in algebraic computing complexity:

• membership problem MC(∩,+,×) studied by McKenzie and Wagner 2007

• integer membership problems MCZ(+,×), MCZ(∩,+,×) studied by Travers 2006

• equivalence problem EQ(+,×) studied by Glaßer et al. 2010

1 Introduction

Stockmeyer and Meyer [SM73] defined and investigated membership and equivalence problems
for integer expressions. They considered expressions built up from single natural numbers by
using set operations ( , ∪, ∩), pairwise addition (+), and pairwise multiplication (×). For

example, the integer expression 1× 1 ∩ 1 describes the set of primes P.
The membership problem for integer expressions is the question of whether the set described

by a given integer expression contains some given natural number. The equivalence problem for
integer expressions asks whether two given integer expressions describe the same set. Restricting
the set of allowed operations results in problems of different complexities.

Wagner [Wag84] introduced circuits over sets of natural numbers. These circuits describe
integer expressions in a more succinct way. The input gates of such a circuit are labeled with
natural numbers, the inner gates compute set operations ( , ∪, ∩) and arithmetic operations
(+, ×). The following circuit has only 4 inner gates and describes the set of primes.

1 × ∩
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A slightly larger circuit describes the set {n ∈ P | n− 2 ∈ P}, i.e., the set of those twin primes
p for which p− 2 is also prime. Hence the set described by this circuit is infinite if and only if
the twin prime conjecture holds.

1 × ∩

2 + ∩

Wagner [Wag84], Yang [Yan01], and McKenzie and Wagner [MW07] studied the complexity
of membership problems for circuits over natural numbers (MC): Here, for a given circuit
C with numbers assigned to the input gates, one has to decide whether a given number n
belongs to the set described by C. Travers [Tra06] and Breunig [Bre07] considered membership
problems for circuits over integers (MCZ) and positive integers (MCN+), respectively. Glaßer et
al [GHR+10] investigated equivalence problems for circuits over sets of natural numbers (EQ),
i.e., the problem of deciding whether two given circuits compute the same set.

Satisfiability problems for circuits over sets of natural numbers, studied by Glaßer et al
[GRTW10], are a generalization of the membership problems investigated by McKenzie and
Wagner [MW07]: Here the circuits can have unassigned input gates. The question is, given a
circuit C with gate labels from O ⊆ {∪,∩, ,+,×}, and given a natural number n, does there
exist an assignment of natural numbers to the variable input gates such that n is contained in
the set described by the circuit?

Apart from the mentioned research on circuit problems there has been work on related
variants like functions computed by circuits [PD09] and constraint satisfaction problems over
natural numbers [GJM16, Dos16].

In the present paper, we study emptiness problems for circuits over sets of natural numbers.
In contrast to membership and satisfiability problems, here the question is whether some given
circuit C with gate labels from O ⊆ {∪,∩, ,+,×}, computes the empty set. We denote this
problem with EC(O). In extension of that we also consider circuits with unassigned input gates.
For these we consider the problem Σ1-EC(O) (resp., Π1-EC(O)), which asks whether the circuit
computes the empty set for at least one assignment (resp., for all assignments).

Our contribution to emptiness problems. For most of the emptiness problems we precisely
characterize the complexity in terms of completeness for classes like NL, P, NP, PSPACE, and
coNEXP. In the remaining cases we obtain lower and upper bounds that do not match. Our
results are summarized in Figure 2 in Section 7.

The case of EC(∩,+,×) is particularly interesting. We show that it is logspace many-one
equivalent to the complement of the well-known polynomial identity testing (PIT), which asks
whether a polynomial (given as a circuit) is identically zero. The problems are similar, still

the proof of PIT ≤log
m EC(∩,+,×) has to address two essential differences: First, PIT contains

an existential quantifier (the existence of assignments where the polynomial is non-zero), while
EC(∩,+,×) does not. Second, PIT is defined over Z, while EC(∩,+,×) is defined over N.

To show the connection to PIT and to obtain upper bounds for Σ1-EC(O) and Π1-EC(O)
it is favorable to estimate the smallest assignments that makes the circuit empty or non-empty,
respectively. If × and are not available (e.g., Π1-EC(∩,+) ∈ coNP in Theorem 20), then this
estimate is obtained by using specific systems of linear equations that consist of a large number
of short equations. Such systems of equations have small solutions by the theory of integer
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programming. If + and × are both available, (e.g., EC(∩,+,×) ≡log
m Σ1- EC(∩,+,×) in Corol-

lary 54), then we exploit the fact that the test of whether a multivariate polynomial is identically
zero is possible by evaluating this polynomial for one fixed, but large argument. If Boolean op-
erations and one arithmetic operation is available, (e.g., Σ1-EC(∪,∩, ,+) ∈ 2EXPSPACE
and Σ1-EC(∪,∩, ,×) ∈ 3EXPSPACE in Theorem 31), then we obtain upper bounds for the
complexity by applying the decidability of Presburger and Skolem arithmetic.

Regarding our most general problem EC(∪,∩, ,+,×) we show that it is logspace many-one

equivalent to MC(∪,∩, ,+,×) and EQ(∪,∩, ,+,×), it belongs to Rtt(Σ1), and is ≤log
m -hard

for LNEXP. We leave open whether EC(∪,∩, ,+,×) is decidable and we explain the difficulty
of this question: Finding a decision algorithm is at least as difficult as solving Goldbach’s
conjecture.
Our contribution to questions from previous work. Our results on emptiness problems
provide new insights and improved bounds for some problems studied in the literature.

By the equivalence mentioned above, our bounds for EC(∪,∩, ,+,×) improve the bounds
for MC(∪,∩, ,+,×) [MW07] and EQ(∪,∩, ,+,×) [GHR+10] as follows. The lower bound is
raised from NEXP to LNEXP and the upper bound is slightly reduced from RT(Σ1) to Rtt(Σ1).

We prove that PIT is logspace many-one equivalent to MC(∩,+,×) studied in [MW07],
MCZ(+,×),MCZ(∩,+,×) studied in [Tra06], and EQ(+,×) studied in [GHR+10]. This char-
acterizes the complexity of these problems and shows that the challenge to improve their known
bounds is a reformulation of a well-studied, major open problem in algebraic computing com-
plexity.

Finally we show that EQ(∩,+,×) is ≤log
m -complete for the complement of the second level of

the Boolean hierarchy over PIT. This characterizes the complexity of this equivalence problem
and also explains the difficulty of improving the known upper bound [GHR+10].

2 Preliminaries

Basic Notations. Let N (resp., Z) denote the set of natural numbers (resp., integers). N+

is the set of positive integers. For x ∈ Z the absolute value of x is denoted by abs(x), and
for a matrix of integers A = (ai,j) ∈ Zm×n for positive natural numbers m and n we define
||A||∞ = max{abs(ai,j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

L, NL, P, NP, PSPACE, and NEXP denote standard complexity classes [Pap94]. For a
nondeterministic machine M , let accM (x) be the number of accepting paths of M on input x.
The class #L consists of all functions accM , where M is a nondeterministic logarithmic-space-
bounded machine. C=L is the class of problems A for which there exist f, g ∈ #L such that for
all inputs x it holds that x ∈ A⇔ f(x) = g(x). Further information on counting classes can be
found in [All97].

Let Σi and Πi denote the levels of the arithmetical hierarchy. Moreover we use the classes

2EXPSPACE =
⋃
k≥1

DSPACE

(
22n

k
)

and 3EXPSPACE =
⋃
k≥1

DSPACE

(
222

nk
)
.

For complexity classes C and C′ let coC = {A | A ∈ C}, C ∧ C′ = {A ∩ B | A ∈ C, B ∈ C′}, and
C ∨ C′ = {A ∪B | A ∈ C, B ∈ C′}. We denote by K the Σ1-complete halting problem (for some
fixed Gödelization).

The arithmetical operations + and · are extended to sets of integers: Let A,B ⊆ Z. Then
A+B = {a+ b | a ∈ A, b ∈ B} and A×B = {a · b | a ∈ A, b ∈ B}.
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An oracle Turing machine is nonadaptive, if its queries are independent of the oracle (i.e.,
for all x and all oracles B and B′, the computations MB(x) and MB′(x) have the same sequence
of queries). For sets A and B we say that A is Turing reducible to B (A ≤T B), if there exists
an oracle Turing machine M that accepts A with B as its oracle. If M is nonadaptive, then
A is truth-table reducible to B (A ≤tt B). A is logspace Turing reducible to B (A ≤log

T B), if
there exists a logarithmic-space-bounded oracle Turing machine M (with one oracle tape) that
accepts A with B as its oracle. If M ’s queries are nonadaptive (i.e., independent of the oracle),

then A is logspace truth-table reducible to B (A ≤log
tt B). A is logspace disjunctive-truth-table

reducible to B (A ≤log
dtt B), if there exists a logspace computable function f such that for all

x, f(x) = (y1, y2, . . . , yn) for some n ≥ 1 and cA(x) = max{cB(y1), cB(y2), . . . , cB(yn)}. The

logspace conjunctive-truth-table reducibility ≤log
ctt is defined analogously. A is logspace many-

one reducible to B (A ≤log
m B), if there exists a logarithmic-space-computable function f such

that cA(x) = cB(f(x)).
For a complexity class C we define Rtt(C) = {A | there is a C ∈ C with A ≤tt C}.

Definition of circuits. A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic
graph with vertex set V ⊆ N and a designated vertex gC ∈ V . Here, graphs are allowed to have
multi-edges and are not required to be connected. We require that C is topologically ordered,
that is, if v, v′ ∈ V are vertices with v < v′, then there is no edge from v′ to v. This requirement
helps us to compare circuit problems with respect to logspace many-one reducibility, since in
logarithmic space one can test the topological ordering and hence the validity of the input
(i.e., the property that we are given an acyclic graph). Moreover, w.l.o.g. we may assume that
V = {1, . . . , r} for some r ∈ N, since circuits can be renumbered in logarithmic space.

LetO ⊆ {∪,∩, ,+,×}. A partially assigned O-circuit (O-circuit for short) C = (V,E, gC , α)
is a circuit (V,E, gC) whose nodes are labeled by the labeling function α : V → O∪N∪{�} such
that each node has indegree ≤ 2, nodes with indegree 0 have labels from N ∪ {�}, nodes with
indegree 1 have label , and nodes with indegree 2 have labels from O \ { }. In the context of
circuits, nodes are also called gates. Input gates (i.e., gates with indegree 0) with labels from N
are called assigned input gates. Input gates with label � are called unassigned. An O-circuit
whose input gates are all assigned is called completely assigned O-circuit. We use the term
integer circuit for both partially assigned O-circuits and completely assigned O-circuits. If g is
some gate of C with predecessors g′, g′′ and ⊗ = α(g), then we also write g = g′ ⊗ g′′. If g has
indegree 1 and predecessor g′ we write g = g′.

In addition to the remark regarding the topological ordering we state that there is a deter-
ministic algorithm which on input of a graph decides in logarithmic space whether the input is
an encoding of a partially or completely assigned O-circuit.

The set computed by a circuit. For an O-circuit C with unassigned input gates g1 < · · · <
gn and x1, . . . , xn ∈ N, let C(x1, . . . , xn) be the completely assigned O-circuit that is obtained
from C by modifying the labeling function α such that α(gi) = xi for i = 1, . . . , n.

Starting from a completely assigned O-circuit C = (V,E, gC , α), we inductively define the
set I(g;C) computed by a gate g ∈ V for g = 1, . . . , |V | by

I(g;C) =


{α(g)} ⊆ N if g has indegree 0,

N \ I(g′, C) if g = g′,

I(g′, C)⊗ I(g′′, C) if g = g′ ⊗ g′′.
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The set computed by C is defined as I(C) = I(gC ;C). In some cases we consider circuits C
with both assigned and unassigned inputs from Z. Here, the sets I(g;C) for a gate g and the
set I(C) are defined analogously (the complement is defined with respect to Z instead of N).

Basic constructions. It is convenient to introduce notations for basic constructions of cir-
cuits. For x ∈ N we use x as an abbreviation for the circuit ({1},∅, {1}, 1 7→ x). For O-circuits
C,C ′ for some O and ⊗ ∈ {∪,∩,+,×} let C ⊗ C ′ be the circuit obtained from C ′ and C ′′ by
feeding their output gates to the new output gate ⊗. This construction is possible in logarithmic
space. Similarly, we define C to be the circuit obtained from C by adding a new output gate
with label .

As an example, for unassigned inputs g0 and g1, consider the circuit

C = g0 ∪ {1} × {0} ∪ g1 ∩ {0} ∪ {1}.

g0 1 0 g1 0 1

∪ ∪ ∪

×

∩

Note that the circuit C(0, 1) computes the set of all prime numbers.

Definition 1. Let O ⊆ {∪,∩, ,+,×}. We define membership, emptiness, equivalence, and
satisfiability problems for circuits.

MC(O)
df
= {(C, b) | C is a completely assigned O-circuit and b ∈ I(C)}

Σ1-MC(O)
df
= {(C, b) | C is a partially assigned O-circuit u1 < · · · < un and there

exist x1, . . . , xn ∈ N such that b ∈ I(C(x1, . . . , xn))}
EQ(O)

df
= {(C1, C2) | C1, C2 are completely assigned O-circuits and I(C1)=I(C2)}1

EC(O)
df
= {C | C is a completely assigned O-circuit and I(C) = ∅}

Σ1-EC(O)
df
= {C | C is a partially assigned O-circuit with unassigned inputs u1 < · · · < un

and there exist x1, . . . , xn ∈ N such that I(C(x1, . . . , xn)) = ∅}
Π1-EC(O)

df
= {C | C is a partially assigned O-circuit with unassigned inputs u1 < · · · < un

and for all x1, . . . , xn ∈ N we have I(C(x1, . . . , xn)) = ∅, n ∈ N}
Σ1-NEC(O)

df
= Π1-EC(O)

We use the following abbreviations if confusions are impossible: we write n for of the
singleton {n}; we write C for of I(C), where C is a circuit; we write MC(∪,∩, ,+,×) for
MC({∪,∩, ,+,×}) and the like.

1In [GHR+10], equivalence problems for circuits are denoted by EC(O), which is in conflict with our notation
for emptiness problems. Therefore, we use the notation EQ(O) for equivalence problems.

5



3 General Reductions between Circuit Classes

This section provides easy reductions and equivalences between the problems EC(O), Σ1-EC(O),
Π1-EC(O), and MC(O).

Lemma 2. Let O ⊆ {∪,∩, ,+,×}. Then the following holds:

1. If ∩ ∈ O, then MC(O) ≤log
m EC(O) and Σ1-MC(O) ≤log

m Σ1-NEC(O).

2. If × ∈ O, then EC(O) ≤log
m MC(O) and Σ1-NEC(O) ≤log

m Σ1-MC(O).

Proof. 1. follows directly from the observation

(C, d) ∈ MC(O)⇐⇒ d ∈ I(C)⇐⇒ I(C ∩ [d]) 6= ∅ ⇐⇒ C ∩ [d] ∈ EC(O).

2. is a consequence of the equivalence

C ∈ EC(O)⇐⇒ I(C) 6= ∅ ⇐⇒ 0 ∈ I(C × [0])⇐⇒ (C × {0}, 0) ∈ MC(O).

Corollary 3. 1. EC(∩,+,×) is ≤log
m -hard for P.

2. EC(∪,∩,+,×) is ≤log
m -complete for coNEXP.

Proof. By Lemma 2, EC(∩,+,×) ≡log
m MC(∩,+,×), which is ≤log

m -hard for P [MW07]. By

Lemma 2, EC(∪,∩,+,×) ≡log
m MC(∪,∩,+,×), which is ≤log

m -complete for NEXP [MW07].

Proposition 4. If O ⊆ {∪,+,×} or O ⊆ { }, then

EC(O) ≡log
m Σ1-EC(O) ≡log

m Π1-EC(O) ≡log
m ∅.

Proof. For such O and any O-circuit C, the set I(C) is always non-empty.

Proposition 5. For O ⊆ {+,×} the following holds.

1. EC(∪, } ∪ O) ≡log
m EC(∩, } ∪ O) ≡log

m EC(∪,∩, } ∪ O),

2. Σ1-EC(∪, } ∪ O) ≡log
m Σ1-EC(∩, } ∪ O) ≡log

m Σ1-EC(∪,∩, } ∪ O),

3. Π1-EC(∪, } ∪ O) ≡log
m Π1-EC(∩, } ∪ O) ≡log

m Π1-EC(∪,∩, } ∪ O).

Proof. This is immediate from De Morgan’s laws.

Proposition 6. For O ⊆ O′ ⊆ {∪,∩, ,+,×} it holds that

1. EC(O) ≤log
m EC(O′),

2. Σ1-EC(O) ≤log
m Σ1-EC(O′),

3. Π1-EC(O) ≤log
m Π1-EC(O′),

4. EC(O) ≤log
m Σ1-EC(O),

5. EC(O) ≤log
m Π1-EC(O).
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4 Circuits without Arithmetic Operations

In this section we consider those emptiness problems which solely admit set operations. Apart
from the trivial problems, which belong to L, all problems are shown to be ≤log

m -complete for
one of the classes NL, P, NP, and coNP.

If we only allow intersection, then the emptiness problems turn out to be equivalent to the
graph accessibility problem for directed graphs. The question basically is whether certain input
nodes are connected with the output node.

Theorem 7. EC(∩), Σ1-EC(∩), and Π1-EC(∩) are ≤log
m -complete for NL.

Proof. By Proposition 6, it suffices to show the NL-hardness of EC(∩) and the NL-membership
of Σ1-EC(∩) and Π1-EC(∩).

MC(∩) is ≤log
m -complete for NL [MW07] and hence MC(∩) is ≤log

m -hard for NL, since NL is

closed under complement. By Lemma 2, MC(∩) ≤log
m EC(∩). Thus EC(∩) is ≤log

m -hard for NL.
To obtain the NL-membership, note that the output of an {∩}-circuit is the intersection

of all input gates that are connected to the output node. It follows that a partially assigned
{∩}-circuit C is in Σ1-EC(∩) if and only if the output gate gC is connected to at least two
input gates, which are not assigned the same number, though both may have � as their label.
Similarly, C is in Π1-EC(∩) if and only if there are at least two assigned input gates with
different labels that are connected to gC . Both properties can be tested in NL.

Once union and intersection are available, it is possible to simulate the evaluation of mono-
tone Boolean circuits and hence the corresponding problems are hard for P. As the sets of
natural numbers associated to gates in the circuit are computable in polynomial time (they are
finite or cofinite), we have EC(O) ∈ P for each O ⊆ {∪,∩, }. For emptiness problems allowing
partially assigned circuits it suffices to consider polynomially many assignments for the input
gates in order to decide whether there is an assignment for which the circuit computes the
empty set (resp., a non-empty set). Hence several problems can be shown to be P-complete.

Theorem 8. EC(∪,∩, ), EC(∪,∩), Σ1-EC(∪,∩), and Π1-EC(∪,∩) are ≤log
m -complete for P.

Proof. By Proposition 6 it suffices to show the following.

1. EC(∪,∩) is ≤log
m -hard for P

2. EC(∪,∩, ) ∈ P

3. Σ1-EC(∪,∩) ∈ P

4. Π1-EC(∪,∩) ∈ P

For statement 1, we reduce the monotone circuit value problem MCVP (which is ≤log
m -complete

for P [Gol77]) to the emptiness problem for {∩,∪}-circuits. If we identify false with {1} and
true with ∅, we observe that intersection acts like logical disjunction and union like logical
conjunction. We describe the reduction function f that transforms a Boolean circuit into an
integer circuit:

• Every input gate that is labeled true is replaced with the circuit {0} ∩ {1}.

• Every input gate that is labeled false is replaced with an input gate labeled with 1.

• Every ∧-gate is replaced with a ∪-gate.

• Every ∨-gate is replaced with an ∩-gate.
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This reduction is computable in logarithmic space, since all replacements are of fixed size. By
induction we obtain the following equivalence for all Boolean circuits C.

C ∈ MCVP⇔ C evaluates to true ⇔ f(C) computes ∅ ⇔ f(C) ∈ EC(∪,∩).

Thus EC(∩,∪) is ≤log
m -hard for P.

For the second statement we make the following observation: In a {∪,∩, }-circuit the set
computed by a node has a linear-space representation, since it either contains only numbers
that are labels of input nodes, or it is the complement of such a set. Therefore, the following
algorithm works in polynomial time: Traverse the circuit, calculate the set computed by each
gate, and check whether the set computed by the output gate is empty.

For statement 3, let C be a {∪,∩}-circuit with n unassigned input gates. Now consider
the completely assigned circuit C(x1, . . . , xn), where the xi are pairwise distinct numbers that
are different from the labels of the other input gates. We argue that if I(C(x1, . . . , xn)) is not
empty, then any other assignment y1, . . . , yn of the unassigned gates will generate a non-empty
output as well. For that purpose we prove the following stronger statement:

Claim 9. For every gate v of C, x1, . . . , xn as above, and all y1, . . . , yn ∈ N it holds that

xi ∈ I(v;C(x1, . . . , xn)) =⇒ yi ∈ I(v;C(y1, . . . , yn)) for i ∈ {1, . . . , n} and

x ∈ I(v;C(x1, . . . , xn)) =⇒ x ∈ I(v;C(y1, . . . , yn)) for x /∈ {x1, . . . , xn}.

Proof of Claim 9. The statement is shown by induction on the structure of the circuit.
Base case (i.e., v is an input gate): If xi is in I(v;C(x1, . . . , xn)), then v has the label xi

and hence is the unique input gate with that label. Therefore, I(v;C(y1, . . . , yn)) contains yi.
If x ∈ I(v;C(x1, . . . , xn)) and x /∈ {x1, . . . , xn}, then v is some assigned input gate labeled with
x. Hence v has label x also in C(y1, . . . , yn), which shows x ∈ I(v;C(y1, . . . , yn)).

Inductive step: Let v ∈ V be an arbitrary ∪-node with predecessors v1, v2 and xi ∈
I(v;C(x1, . . . , xn)) = I(v1;C(x1, . . . , xn)) ∪ I(v2;C(x1, . . . , xn)). Without loss of generality
we assume xi ∈ I(v1;C(x1, . . . , xn)). By the induction hypothesis, yi ∈ I(v1;C(y1, . . . , yn)).
This implies yi ∈ I(v1;C(y1, . . . , yn)) ∪ I(v2;C(y1, . . . , yn)) = I(v;C(y1, . . . , yn)). For ∩-nodes
we argue analogously: Let v ∈ V be an arbitrary ∩-node with predecessors v1, v2 and xi ∈
I(v;C(x1, . . . , xn) = I(v1;C(x1, . . . , xn))∩I(v2;C(x1, . . . , xn)). Hence xi ∈ I(v1;C(x1, . . . , xn))
and xi ∈ I(v2;C(x1, . . . , xn)). By the induction hypothesis, yi ∈ I(v1;C(y1, . . . , yn)) and yi ∈
I(v2;C(y1, . . . , yn)). Hence yi ∈ I(v1;C(y1, . . . , yn))∩ I(v2;C(y1, . . . , yn)) = I(v;C(y1, . . . , yn)).

The inductive step for the second implication can be shown analogously.

The claim shows that we can test whether a partially assigned circuit is in Σ1-EC(∪,∩) by
evaluating the completely assigned circuit with the described labeling. By statement 2, this can
be done in polynomial time.

Finally we turn to statement 4. Suppose that we are given a circuit C ∈ Σ1-NEC(∪,∩)
with n unassigned input gates. Then there are x1, . . . , xn ∈ N such that I(C(x1, . . . , xn)) 6= ∅.
Without loss of generality, x1, . . . , xn can be chosen from the set S of numbers that occur as
labels of assigned input gates. It follows that there is an x ∈ S ∩ I(C(x1, . . . , xn)).

By induction on the structure of the circuit it can be argued that for each gate v of C it
holds that x ∈ I(v;C(x1, . . . , xn)) =⇒ x ∈ I(v;C(x, . . . , x)).

In particular, it holds I(C(x, . . . , x)) 6= ∅. So, in order to check whether some given partially
assigned {∪,∩}-circuit C is in Σ1-NEC(∪,∩), it suffices to check whether there exists some x ∈ S
such that C(x, . . . , x) /∈ EC(∩,∪). As EC(∪,∩) is in P and the set S has not more than |C|
elements, we obtain Σ1-NEC(∪,∩) ∈ P and hence Π1-EC(∪,∩) ∈ P.
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If O contains all three set operations, then Σ1-EC(O) (resp., Π-EC(O)) can be shown to be
NP-complete (resp., coNP-complete).

Theorem 10. 1. Σ1-EC(∪,∩, ) is ≤log
m -complete for NP.

2. Π1-EC(∪,∩, ) is ≤log
m -complete for coNP.

Proof. 1. For a Boolean formula F , let CF be the {∪,∩, }-circuit obtained by replacing ∨,∧,¬
with ∪,∩, respectively. Observe that SAT ≤log

m Σ1-EC(∪,∩, ) via F 7→ CF ∩ {1}: If we
interpret sets containing 1 as true and all other sets as false, then each satisfying assignment of
F induces an assignment that generates the empty set in CF ∩ {1} and vice versa.

We now argue that Σ1-EC(∪,∩, ) ∈ NP. Let C ∈ Σ1-EC(∪,∩, ) with n unassigned
inputs, assigned inputs a1, . . . , am, and labeling function α. Moreover, let u1, . . . , un ∈ N such
that C(u1, . . . , un) = ∅. For A = {α(a1), . . . , α(am)} and B = {1+maxA, . . . , n+maxA} there
exist v1, . . . , vn ∈ A∪B such that C(v1, . . . , vn) = ∅ (for all ui ∈ A∪B let vi := ui, then choose
the remaining vi from B such that vi = vj ⇔ ui = uj). This shows C ∈ Σ1-EC(∪,∩, ) if and
only if there exist v1, . . . , vn ∈ A ∪B such that C(v1, . . . , vn) = ∅. Hence Σ1-EC(∪,∩, ) ∈ NP,
since EC(∪,∩, ) ∈ P by Theorem 8.

2. The proof is similar to the proof of 1, since SAT ≤log
m Π1-EC(∪,∩, ) via F 7→ CF∩{1}.

5 Circuits with One Arithmetic Operation

We divide this section into two parts: the emptiness problems for circuits without complement
and those with complement. Whereas we are able to show almost all of the problems of the
first part to be complete for some natural complexity class, for most problems in the second
part there are gaps between lower and upper bound. Generally, it holds that the complement
increases the complexity of the problems as it is the only operation which “produces” infinite
sets.

5.1 Circuits without Complement

In this section only those problems are relevant which admit the intersection. Otherwise the
circuits compute always non-empty sets. We start with problems admitting intersection as the
only set operation.

Theorem 11. 1. EC(∩,×) is ≤log
m -hard for coC=L.

2. EC(∩,+) is ≤log
m -complete for coC=L.

3. Σ1-EC(∩,+) ∈ coC=L.

Proof. MC(∩,×) is ≤log
m -hard for C=L [MW07] and MC(∩,×) ≤log

m EC(∩,×) by Lemma 2. This
proves the first statement. The second statement follows from [GHR+10, Lemma 2].

For the third statement, let C be a partially assigned {∩,+}-circuit with unassigned input
gates g1 < · · · < gn and output gate gC .

Claim 12. For all x, y, z, x1, . . . , xn, y1, . . . , yn ∈ N and every gate g in C the following holds. If
g computes the set {x} in C(x1, . . . , xn), g computes the set {y} in C(y1, . . . , yn), and g computes
the set {z} in C(0, . . . , 0), then g computes the set {x+ y − z} in C(x1 + y1, . . . , xn + yn).
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The claim is shown by induction on the structure of C.
If g = gi is an unassigned input gate, then it computes the sets {xi}, {yi}, {0}, and {xi+yi} =

{xi + yi − 0} in the circuits C(x1, . . . , xn), C(y1, . . . , yn), C(0, . . . , 0), C(x1 + y1, . . . , xn + yn),
respectively. If g is an assigned input gate labeled with c ∈ N, then of course it always computes
the set {c} = {c+ c− c}. This proves the induction base.

Now assume that g is an inner gate connected to the output with predecessors ga and gb.
By assumption, ga and gb compute singletons in C(x1, . . . , xn), C(y1, . . . , yn), and C(0, . . . , 0).
These are denoted by {xa}, {ya}, {za}, {xb}, {yb}, and {zb}. By induction hypothesis, ga
computes {xa + ya − za} and gb computes {xb + yb − zb} in C(x1 + y1, . . . , xn + yn).

If g is an ∩-gate, then x = xa = xb, y = ya = yb, z = za = zb, hence ga and gb both compute
{x + y − z} in C(x1 + y1, . . . , xn + yn) and thus the same holds for g. If g is a +-gate, then
x = xa+xb, y = ya+yb, z = za+zb, and hence g computes {xa+ya−za+xb+yb−zb} = {x+y−z}
in C(x1 + y1, . . . , xn + yn). This proves Claim 12.

Claim 13. C ∈ Σ1-EC(∩,+) if and only if at least one of the circuits C(0, . . . , 0), C(1, 0, . . . , 0),
C(0, 1, . . . , 0), . . . , C(0, 0, . . . , 1) belongs to EC(∩,+).

The direction from right to left is trivial. For the other direction observe that if non of the
circuits belongs to EC(∩,+), then by Claim 12, C(x1, . . . , xn) 6= ∅ for all x1, . . . , xn ∈ N and
hence C /∈ Σ1-EC(∩,+). This proves Claim 13.

From Claim 13 it follows that Σ1-EC(∩,+) ≤log
ctt EC(∩,+) ∈ C=L. The statement follows,

since C=L is closed under ≤log
ctt [AO96, Proposition 17].

Proposition 14. Π1-EC(∩,×) is ≤log
m -complete for coNP.

Proof. The statement follows from the ≤log
m -completeness of Σ1- MC(∩,×) for NP [GRTW10]

and Lemma 2.

Results Obtained from Finding Small Solutions for Systems of Linear Equations
The results in this paragraph are obtained due to the fact that there are small solutions for
specific systems of linear equations. Our systems consist of arbitrarily many equations, yet each
equation has to be short, i.e., there are not allowed to be many variables or large coefficients.

We first show Π1-EC(∩,+) ∈ coNP. However, we define our systems of linear equations
such that they can also be applied in the more general case where union is admitted.

Definition 15. Let C be a {∪,∩,+}-circuit with n unassigned input gates u1 < · · · < un and
assigned input gates v1, . . . , vk. We denote the unique element of I(vi) by ζi.

For each node v of C we inductively define a finite set Bv of sets of linear terms. For this we
introduce a variable xi for each unassigned input node ui. For each gate v the set Bv contains
only sets of terms of the form

∑n
i=1 αixi + α0 with αi ∈ N.

Basis: Define Bvi = {{ζi}} and Bui = {{xi}}.
Inductive step: Let ⊗ ∈ {∪,∩,+}. For each ⊗-node u with predecessors v and w we define:

• If ⊗ = ∪, then Bu
df
=Bv ∪Bw.

• If ⊗ = ∩, then Bu
df
={A ∪B | A ∈ Bv, B ∈ Bw}.

• If ⊗ = +, then Bu
df
={A+B | A ∈ Bv, B ∈ Bw} where A+B = {t+ t′ | t ∈ A, t′ ∈ B} for

sets of terms A and B.

10



Furthermore, for each node v, all a1, . . . , an ∈ N and each A ∈ Bv we define

La1,...,an(A)
df
={y ∈ N | ∀

( n∑
i=1

αixi + α0

)
∈ A : y =

n∑
i=1

αiai + α0}

La1,...,an(Bv)
df
=
⋃
A∈Bv

La1,...,an(A)

L(Bv)
df
=

⋃
a1,...,an∈N

La1,...,an(Bv).

We see A 6= ∅ for each A ∈ Bv and hence La1,...,an(A) is always a singleton or empty. In
the first case it contains the unique number which is obtained by each of the terms in A when
assigning ai to xi. The following lemma states that for an arbitrary node u the set La1,...,an(Bu)
is equal to the set computed by u when ai is assigned to ui.

Lemma 16. Let O ⊆ {∪,∩,+} and let C = (V,E, gC , α) be an O-circuit with unassigned input
gates u1 < · · · < un. Then the following holds.

1. For each node u of C and all a1, . . . , an ∈ N it holds that La1,...,an(Bu) = I(u;C(a1, . . . , an)).

2. For each node u of C it holds that L(Bu) =
⋃
a1,...,an∈N I(u;C(a1, . . . , an)).

3. The following statements are equivalent:

(a) C ∈ Σ1-NEC(O)

(b) C /∈ Π1-EC(O)

(c) L(BgC ) 6= ∅.

4. The following statements are equivalent:

(a) C ∈ Σ1-EC(O)

(b) There are a1, . . . , an such that La1,...,an(BgC ) = ∅.

Proof. 1. We show the statement by structural induction over the definition of circuits. The
statement is true for all input gates.

Let u be an arbitrary node with predecessors v and w. By induction hypothesis (ih)
the statement is true for the nodes v and w, i.e., La1,...,an(Bv) = I(v;C(a1, . . . , an)) and
La1,...,an(Bw) = I(w;C(a1, . . . , an)). In the following we distinguish three cases.

• u is a ∪-node: then it holds

La1,...,an(Bu) =
⋃

A∈Bu

La1,...,an(A) =
⋃

A∈Bv∪Bw

La1,...,an(A)

=
⋃
A∈Bv

La1,...,an(A) ∪
⋃

A∈Bw

La1,...,an(A) = La1,...,an(Bv) ∪ La1,...,an(Bw)

ih
= I(v;C(a1, . . . , an)) ∪ I(w;C(a1, . . . , an)) = I(u;C(a1, . . . , an)).

• u is an ∩-node: We first observe that for sets of terms B and C and all a1, . . . , an ∈ N
it holds that La1,...,an(B ∪ C) = La1,...,an(B) ∩ La1,...,an(C). Furthermore, note that by
definition, for each A ∈ Bu there are B ∈ Bv and C ∈ Bw such that A = B ∪ C.
Conversely, for each B ∈ Bv and C ∈ Bw there is an A ∈ Bu such that A = B ∪ C.
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Hence we obtain

La1,...,an(Bu) =
⋃

A∈Bu

La1,...,an(A) =
⋃

B∈Bv

⋃
C∈Bw

La1,...,an(B ∪ C)

=
⋃

B∈Bv

⋃
C∈Bw

(La1,...,an(B) ∩ La1,...,an(C))

=
⋃

B∈Bv

La1,...,an(B) ∩
⋃

C∈Bw

La1,...,an(C) = La1,...,an(Bv) ∩ La1,...,an(Bw)

ih
= I(v;C(a1, . . . , an)) ∩ I(w;C(a1, . . . , an)) = I(u;C(a1, . . . , an)).

• u is a +-node: For each A ∈ Bu there are B ∈ Bv and C ∈ Bw such that A = B + C.
Conversely, for each B ∈ Bv and C ∈ Bw there is an A ∈ Bu with A = B + C. Thus, for
all a1, . . . , an ∈ N it holds that

⋃
A∈Bu

La1,...,an(A) =
⋃
B∈Bv

⋃
C∈Bw

La1,...,an(B + C).

Claim 17. For non-empty sets of terms B and C and a1, . . . , an ∈ N it holds that
La1,...,an(B + C) = La1,...,an(B) + La1,...,an(C).

Proof of Claim 17. Let us write a for a1, . . . , an in the proof of the claim. If La(B) and
La(C) are both non-empty, say La(B) = {y} and La(C) = {y′}, then we have t(a) = y and
t′(a) = y′ for all t ∈ B and t′ ∈ C. In particular (t+ t′)(a) = y+ y′ and thus τ(a) = y+ y′

for all τ ∈ B +C. Hence La(B +C) = {y + y′}. In the other case if, say, La(B) is empty
then there are t1, t2 ∈ B such that t1(a) 6= t2(a). It follows (t1 + t)(a) 6= (t2 + t)(a) for
t ∈ C and in particular La(B + C) = ∅ as wanted. This proves the claim.

Hence we obtain

La1,...,an(Bu) =
⋃

A∈Bu

La1,...,an(A) =
⋃

B∈Bv

⋃
C∈Bw

La1,...,an(B + C)

Claim 17
=

⋃
B∈Bv

⋃
C∈Bw

(La1,...,an(B) + La1,...,an(C))

=
⋃

B∈Bv

La1,...,an(B) +
⋃

C∈Bw

La1,...,an(C) = La1,...,an(Bv) + La1,...,an(Bw)

ih
= I(v;C(a1, . . . , an)) + I(w;C(a1, . . . , an)) = I(u;C(a1, . . . , an)).

2. follows from 1.

3. It holds (a) ⇔ (b). The equivalence (a) ⇔ (c) follows from 2.

4. follows from 1.

For further arguments we need the following result, which is obtained by an estimation by
Schrijver [Sch86].

Lemma 18. Let k,m, n ∈ N+, A = (ai,j) ∈ Zm×n and b ∈ Zm such that ||A||∞, ||b||∞ ≤ k.
If there exists y ∈ Nn with Ay = b, then there exists z ∈ Nn such that Az = b and ||z||∞ ≤
(32k)12n4

.
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Proof. We adopt the following definitions from Schrijver [Sch86]. The size of a rational number
r = p/q where p and q are relatively prime integers is size(r) = 1 + dlog2(abs(p) + 1)e +
dlog2(abs(q) + 1)e. The size of a rational vector v = (v1, . . . , vn) ∈ Qn is size(v) = n+ size(v1) +
· · ·+ size(vn). The size of a rational matrix A = (ai,j) ∈ Qm×n is size(A) = mn+

∑
i,j size(ai,j).

The size of a system Ax ≤ b of rational linear inequalities is size(Ax ≤ b) = 1+size(A)+size(b).
A rational polyhedron is a set {x ∈ Rn | Ax ≤ b} for some A ∈ Qm×n and b ∈ Qm. The facet
complexity of a rational polyhedron P ⊆ Rn is the smallest number ϕ such that ϕ ≥ n and there
exists a system Ax ≤ b of rational linear inequalities defining P , where each inequality in Ax ≤ b
has size at most ϕ, i.e., there exist m ∈ N, A = (ai,j) ∈ Qm×n, and b = (b1, . . . , bm) ∈ Qm such
that P = {x ∈ Rn | Ax ≤ b} and ∀i [1 + n+ size(bi) +

∑n
j=1 size(ai,j) ≤ ϕ].

Let C =

 A
−A
−In

 ∈ Z(2m+n)×n and d =

 b
−b
0

 ∈ Z2m+n, where In denotes the identity

matrix of size n and 0 the zero element in Zn. Consider the rational polyhedron P = {x ∈
Rn | Cx ≤ d} and let ϕ be its facet complexity. Observe that ϕ ≤ 1 +n+ size(k) +n · size(k) =
(n+ 1)(1 + size(k)) ≤ (n+ 1)(1 + 1 + 1 + log2(k+ 1) + 1) = (n+ 1) · log2 16(k+ 1). By definition,
Cx ≤ d if and only if Ax ≤ b and −Ax ≤ −b and −Inx ≤ 0 if and only if Ax = b and x ∈ (R≥0)n.
Therefore, P = {x ∈ (R≥0)n | Ax = b}. By assumption, y ∈ P ∩ Zn and hence P ∩ Zn 6= ∅.
By [Sch86, Corollary 17.1b], there exists z ∈ P ∩ Zn = P ∩ Nn such that size(z) ≤ 6n3ϕ. So
size(z) ≤ 6n3(n+ 1) · log2 16(k + 1) ≤ 12n4 · log2 32k and hence ||z||∞ ≤ (32k)12n4

.

Lemma 19. Let O ⊆ {∪,∩,+} and let C = (V,E, gC , α) be an O-circuit with unassigned input
gates u1 < · · · < un and assigned input gates v1, . . . , vk. Moreover, let |C| denote the length of
the encoding of C and ξ = max(α(v1), . . . , α(vk)) + 1. Then it holds:

1. For all A ∈ BgC , each
∑n

i=1 αixi + α0 ∈ A, and all i it holds αi < ξ2|C|.

2. If there are a1, . . . , an ∈ N such that I(C(a1, . . . , an)) 6= ∅, then there are y, b1, . . . , bn ∈
{0, 1, . . . , (32 · ξ · 2|C|)12·(n+1)4} such that y ∈ I(C(b1, . . . , bn)).

3. Let A ∈ BgC and t(x1, . . . , xn) =
∑n

i=1 αixi + α0, t
′(x1, . . . , xn) =

∑n
i=1 α

′
ixi + α′0 ∈ A.

Then for ζi = ξi2i|C| it holds that t(ζ1, . . . , ζn) = t′(ζ1, . . . , ζn) if and only if αi = α′i for
all i = 1, . . . , n.

4. Let ai = ξi2i|C| for i = 1, . . . , n. If there are b1, . . . , bn ∈ N such that Lb1,...,bn(BgC ) = ∅,
then La1,...,an(BgC ) = ∅.

Proof. 1. The statement is shown by an induction.

2. Because of Lemma 16 there is an A ∈ BgC such that the set of linear equations {y =∑n
i=1 αixi + α0 |

∑n
i=1 αixi + α0 ∈ A} has a solution in the n + 1 variables y, x1, . . . , xn. Due

to Lemma 18 it holds: there is a solution y, b1, . . . , bn ∈ N such that ||(y, b1, . . . , bn)||∞ ≤

(32 · ξ · 2|C|)12·(n+1)4 . Hence y ∈ Lb1,...,bn(A)
Lemma 16
⊆ I(C(b1, . . . , bn)).

3. It suffices to show that if t(ζ1, . . . , ζn) = t′(ζ1, . . . , ζn), then αi = α′i for all i = 1, . . . , n.
Assume t(ζ1, . . . , ζn) = t′(ζ1, . . . , ζn) but there is a j such that αj 6= α′j . Now choose a minimal
j such that αj 6= α′j , hence αi = α′i for all i = 1, . . . , j − 1.

We calculate 0 = t(ζ1, . . . , ζn) − t′(ζ1, . . . , ζn) =
∑n

i=0(αi − α′i)ξi2i|C| = ξj2j|C| ·
∑n

i=j(αi −
α′i)ξ

i−j2(i−j)|C| which implies 0 6= α′j −αj =
∑n

i=j+1(αi−α′i)ξi−j2(i−j)|C| = ξ2|C| ·
∑n

i=j+1(αi−
α′i)ξ

i−j−12(i−j−1)|C| follows. This contradicts abs(α′j − αj) < ξ2|C| from 1.

4. Assume there is an A ∈ BgC with La1,...,an(A) 6= ∅. Then because of 3, it holds that
|A| = 1. Let

∑n
i=1 αixi+α0 be the unique term in A. Then

∑n
i=1 αibi+α0 ∈ Lb1,...,bn(A), which

is a contradiction to the assumption that Lb1,...,bn(BgC ) = ∅.
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Theorem 20. Π1-EC(∩,+) is ≤log
m -complete for coNP.

Proof. As Σ1-MC(∩,+) is ≤log
m -hard for NP [GRTW10] and Σ1-MC(∩,+) ≤log

m Σ1-NEC(∩,+)
according to Lemma 2, it suffices to show that Π1-EC(∩,+) = Σ1-NEC(∩,+) ∈ NP. Due
to statement 2 of Lemma 19 for an O-circuit C = (V,E, gC , α) with unassigned input gates
u1 < · · · < un we have C ∈ Σ1-NEC(∩,+) if and only if there exist x1, . . . , xn ∈ {0, 1, . . . , (32 ·
ξ · 2|C|)12·(n+1)4} such that C(x1, . . . , xn) 6= ∅. As EC(∩,+) ∈ coC=L ⊆ P (cf. Theorem 11) and
(32 · ξ · 2|C|)12·(n+1)4 ∈ 2O(|C|5), this can be done in non-deterministic polynomial time.

Theorem 21.

1. EC(∪,∩,+) and EC(∪,∩,×) are ≤log
m -hard for PSPACE.

2. Σ1-EC(∪,∩,+),Π1-EC(∪,∩,+),Π1-EC(∪,∩,×) ∈ PSPACE.

Proof. 1. The statement follows from Lemma 2, since both MC(∪,∩,+) and MC(∪,∩,×) are

≤log
m -hard for PSPACE [MW07] and PSPACE is closed under complement.

2. Let C = (V,E, gC , α) be an {∪,∩,+}-circuit with unassigned input gates u1 < · · · < un
and assigned input nodes v1, . . . , vk. Moreover, let |C| denote the length of the encoding of C
and ξ = max(α(v1), . . . , α(vk)) + 1.

According to Lemma 19.4, in order to test whether C ∈ Σ1-EC(∪,∩,+) it suffices to verify
C(ξ2|C|, . . . , ξn2n|C|) = ∅. The latter is equivalent to i /∈ C(ξ2|C|, . . . , ξn2n|C|) for all i =
0, . . . , ξn2n|C|+|C| as the circuit cannot produce larger numbers. From MC(∪,∩,+) ∈ PSPACE
[MW07] it follows Σ1-EC(∪,∩,+) ∈ PSPACE.

According to statement 2 of Lemma 19 the circuit C is in C ∈ Σ1-NEC(∪,∩,+) if and
only if there are y, b1, . . . , bn ∈ {0, 1, . . . , (32 · ξ · 2|C|)12·(n+1)4} such that (C(b1, . . . , bn), y) ∈
MC(∪,∩,+). Thus Σ1-NEC(∪,∩,+) ∈ PSPACE.

From Lemma 2 and Σ1-MC(∪,∩,×) ∈ PSPACE [GJM16, Theorem 2] we obtain that
Σ1-NEC(∪,∩,×) ∈ PSPACE. Since PSPACE is closed under complement, the proof is com-
plete.

The problems Σ1-EC and EC for the sets of operations {∩,×} and {∪,∩,×} should belong
to this subsection, but have not been mentioned so far. The reason is that Theorem 50 below
yields a general tool that in particular is applicable to these problems. The corresponding
results can be found in the Corollaries 56 and 57.

5.2 Circuits with Complement

We start with a preliminary subsection providing results on the complexity of Presburger
and Skolem arithmetic. Then we prove upper bounds for the problems over { ,∪,∩,+} and
{ ,∪,∩,×}. These are also our best upper bounds for the problems over { ,+} and { ,×}.
Finally, we show that PSPACE is a lower bound for EC( ,+) and EC( ,×), which is the best
known lower bound for all problems in this section.

5.2.1 Preliminaries from Presburger and Skolem Arithmetic

We consider first-order formulas over N or N+ that consist of variables x0, x1, . . ., logical symbols
¬,∨,∃, function symbols +,×, and symbols 0, 1, 2, 3, 5, 7, . . . for constants. We use (H1 ∧H2),
(H1 → H2), and ∀xH as abbreviation for ¬(¬H1∨¬H2), (¬H1∨H2), and ¬∃x¬H respectively.
When formulas are used as inputs of algorithms, we assume that the subscripts of variables and
constants are encoded in binary. Th(N; +,=) denotes the Presburger arithmetic, which is the
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first-order theory of the natural numbers with addition (and without constants). Th(N+;×,=)
denotes the Skolem arithmetic, which is the first-order theory of the positive natural numbers
with multiplication (and without constants). Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) denotes the first-
order theory of the natural numbers with multiplication and constants for 0, 1, and all prime
numbers. Th(N+;×,=, 1, 2, 3, 5, 7, . . .) denotes the first-order theory of the positive natural
numbers with multiplication and constants for 1 and all prime numbers.

Theorem 22. 1. Th(N; +,=) ∈ DSPACE
(
22cn

)
⊆ 2EXPSPACE for some c > 0. [FR75]

2. Any positive integer of binary length n can be encoded by a formula of length O(n) in the
Presburger arithmetic Th(N; +,=). [Opp78]

Regarding the Skolem arithmetic we need the statement

Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=),

which appears implicitly in the literature (e.g., [Bès02]). For the sake of completeness we provide
a proof which is divided into two parts:

1. Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1, 2, 3, 5, 7, . . .)

2. Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=).

We start with the first reduction and sketch the idea of the non-trivial part of the proof, namely
Th(N;×,=, 1, 2, 3, 5, 7, . . .) ≤p

m Th(N+;×,=, 1, 2, 3, 5, 7, . . .). The reduction modifies a given
formula as follows (where we assume that all atoms of H are of the form either x · y = z or
x = c for variables x, y, z, and a constant c):

1. each quantifier ∃x is replaced with ∃x∃x′, where x′ is a new variable

2. each term x = c is replaced with (x = c ∧ x′ = 1)

3. each term x · y = z is replaced with
(x′ = y′ = z′ = 1 ∧ x · y = z) ∨ ((x′ 6= 1 ∨ y′ 6= 1) ∧ z′ 6= 1)

The idea is that each variable x is represented by a pair of variables (x, x′), which stands for
the value x if x′ = 1, and for the value 0 otherwise.

We will need the following definition:

Definition 23. For two interpretations I and I ′ and variables y1, . . . , yk for k ∈ N it holds
I
y1,...,yk= I ′ if and only if I(y) = I ′(y) for all y /∈ {y1, . . . , yk}.

Moreover, for a quantifier-free formula H with variables y1, . . . , yn and a1, . . . , an ∈ N we denote
by H(a1, . . . , an) the formula obtained from H by replacing every occurrence of yi with ai and
write [H(a1, . . . , an)] for the truth value of H(a1, . . . , an).

Proposition 24. Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1, 2, 3, 5, 7, . . .)

Proof. It holds that Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N;×,=, 1, 2, 3, 5, 7, . . .), since z = 0

for a variable z can be expressed by ∀x(x · z = z).
Next we argue for Th(N;×,=, 1, 2, 3, 5, 7, . . .) ≤p

m Th(N+;×,=, 1, 2, 3, 5, 7, . . .). Let H be a
given first-order formula, which is interpreted over N. We may assume that the atoms of H are
of the form either xi · xj = xk or xi = c for a constant c ∈ N+. We construct an equivalent
first-order formula H+ which is interpreted over N+. Each variable xi in H is represented by
the pair of variables (x2i, x2i+1) in H+. More precisely, H+ is obtained from H as follows:
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1. each variable xi is replaced by x2i

2. each quantifier ∃x2iH1 is replaced with
∃x2i∃x2i+1(x2i+1 = 1 ∨ x2i+1 = 2) ∧ (x2i+1 = 1 ∨ x2i = 1) ∧H1

3. each term x2i = c is replaced with (x2i+1 = 1 ∧ x2i = c)

4. each term x2i · x2j = x2k is replaced with
((x2i+1 = x2j+1 = x2k+1 = 1 ∧ x2i · x2j = x2k) ∨ ((x2i+1 6= 1 ∨ x2j+1 6= 1) ∧ x2k+1 6= 1))

We show

H ∈ Th(N;×,=, 1, 2, 3, 5, 7, . . .) ⇐⇒ H+ ∈ Th(N \ {0};×,=, 1, 2, 3, 5, 7, . . .). (1)

For each interpretation I over N we define a corresponding interpretation I+ over N+ as
follows:

I+(xj) =


I(xi) if j = 2i and I(xi) 6= 0
1 if j = 2i+ 1 and I(xi) 6= 0
1 if j = 2i and I(xi) = 0
2 if j = 2i+ 1 and I(xi) = 0

Claim 25. For each formula H and all interpretations I over N it holds that I(H) = I+(H+).

Proof. (IB) If H = (xi · xj = xk), then

H+ = ((x2i+1 = x2j+1 = x2k+1 = 1 ∧ x2i · x2j = x2k) ∨ ((x2i+1 6= 1 ∨ x2j+1 6= 1) ∧ x2k+1 6= 1))

and we obtain:

I+(H+) = [((I+(x2i+1) = I+(x2j+1) = I+(x2k+1) = 1 ∧ I+(x2i) · I+(x2j) = I+(x2k)) ∨ ((I+(x2i+1) 6= 1 ∨ I+(x2j+1) 6= 1) ∧ I+(x2k+1) 6= 1))]

= [(I+(x2i+1) = I+(x2j+1) = I+(x2k+1) = 1 ∧ I+(x2i) · I+(x2j) = I+(x2k))] ∨ [(I(xi) = 0 ∨ I(xj) = 0) ∧ I(xk) = 0]

= [(I(xi) 6= 0 ∧ I(xj) 6= 0 ∧ I(xk) 6= 0 ∧ I+(x2i) · I+(x2j) = I+(x2k))] ∨ [I(xi) · I(xj) = I(xk) = 0]

= [(I(xi) 6= 0 ∧ I(xj) 6= 0 ∧ I(xk) 6= 0 ∧ I(xi) · I(xj) = I(xk))] ∨ [I(xi) · I(xj) = I(xk) = 0]

= [I(xi) · I(xj) = I(xk) 6= 0] ∨ [I(xi) · I(xj) = I(xk) = 0]

= [I(xi) · I(xj) = I(xk)]

= I(H)

If H = (xi = c) for a constant c ∈ N+, then H+ = (x2i+1 = 1 ∧ x2i = c) and we obtain:

I+(H+) = I+(x2i+1 = 1 ∧ x2i = c)

= [I(xi) 6= 0 ∧ I+(x2i) = c]

= [I(xi) 6= 0 ∧ I(xi) = c]

= I(xi = c)

= I(H)

(IS) If H = ¬H1, then H+ = ¬H+
1 and I+(H+) = I+(¬H+

1 ) = 1 − I+(H+
1 ) = 1 − I(H1) =

I(¬H1) = I(H).
If H = (H1 ∨ H2), then H+ = (H+

1 ∨ H
+
2 ) and I+(H+) = I+(H+

1 ∨ H
+
2 ) = I+(H+

1 ) ∨
I+(H+

2 ) = I(H1) ∨ I(H2) = I(H1 ∨H2) = I(H).
If H = ∃xiH1, then H+ = ∃x2i∃x2i+1(x2i+1 = 1 ∨ x2i+1 = 2) ∧ (x2i+1 = 1 ∨ x2i = 1) ∧H+

1

and we argue as follows:

1. If I+(H+) = 1, then there is some I ′
x2i,x2i+1

= I+ such that I ′(x2i+1 = 1 ∨ x2i+1 = 2) =
I ′(x2i+1 = 1∨x2i = 1) = I ′(H+

1 ) = 1. It follows that I ′(x2i+1) ∈ {1, 2} and if I ′(x2i+1) = 2,

then I ′(x2i) = 1. Let I0
xi= I such that

I0(xi) =

{
0 if I ′(x2i+1) = 2
I ′(x2i) otherwise.
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Observe that I+
0 = I ′. Hence I+

0 (H+
1 ) = 1 and from induction hypothesis it follows

I0(H1) = 1. Together with I0
xi= I this implies I(∃xiH1) = 1 and hence I(H) = 1.

2. If I(H) = 1, then there is some I0
xi= I such that I0(H1) = 1 and by induction hypothesis,

I+
0 (H+

1 ) = 1. From the definition of I+
0 it follows that I+

0 (x2i+1 = 1 ∨ x2i+1 = 2) =
I+

0 (x2i+1 = 1 ∨ x2i = 1) = 1. Hence I+
0 ((x2i+1 = 1 ∨ x2i+1 = 2) ∧ (x2i+1 = 1 ∨ x2i =

1) ∧ H+
1 ) = 1. From I+

0

x2i,x2i+1
= I+ it follows that I+(∃x2i∃x2i+1(x2i+1 = 1 ∨ x2i+1 =

2) ∧ (x2i+1 = 1 ∨ x2i = 1) ∧H+
1 ) = 1. This shows I+(H+) = 1.

This completes the proof of Claim 25.

If H ∈ Th(N;×,=, 1, 2, 3, 5, 7, . . .), then for I with I(xi) := 0 for all i ∈ N it holds that
I(H) = 1 and by Claim 25, I+(H+) = 1, which shows I ′(H+) = 1 for all I ′ (as H is a
sentence), and hence H+ ∈ Th(N+;×,=, 1, 2, 3, 5, 7, . . .).

Conversely, if H+ ∈ Th(N+;×,=, 1, 2, 3, 5, 7, . . .), then for I ′ with I ′(xi) := 1 for all i ∈ N we
have I ′(H+) = 1. Note that for I with I(xi) := 1 for all i ∈ N it holds that I+ = I ′. Therefore,
I+(H+) = 1 and by Claim 25, I(H) = 1, which shows H ∈ Th(N;×,=, 1, 2, 3, 5, 7, . . .) (as H is
a sentence).

This shows the equivalence (1) and finishes the proof of Proposition 24.

Now we sketch the idea of the reduction Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1).

Let H be a first-order sentence and let C = {q1, . . . , qn} ⊆ P be the set of constants 6= 1 that
appear in H. For p ∈ C and q ∈ P, let Hp,q be the formula that is obtained from H if each
occurrence of p is replaced with q and vice versa. It holds that H is true if and only if Hp,q is
true, since swapping prime factors p and q yields a one-one correspondence between assignments
of variables in H and assignments of variables in Hp,q. Therefore, H is true if and only if H ′

is true, where H ′ is the formula obtained from H by replacing the occurrences of q1, . . . , qn
with new variables z1, . . . , zn respectively and requiring that z1, . . . , zn are distinct primes. The
latter is possible with the following formula:∧

i

¬∃a∃b(a 6= 1 ∧ b 6= 1 ∧ a · b = zi) ∧
∧
i 6=j

zi 6= zj .

This shows Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1) via H 7→ H ′.

Proposition 26. Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=).

Proof. First we argue for Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1) via H 7→ H ′. Let p

and q be distinct primes. Define πp,q(n) = npbqa/paqb, where a = max{i | pi divides n} and
b = max{i | qi divides n}. So πp,q swaps the factors p and q in the prime factorization of a
given number. For a term T , let Tp,q be the term that is obtained from T if each occurrence of
p is replaced with q and vice versa. For a first-order formula H, let Hp,q be the formula that is
obtained from H if each occurrence of p is replaced with q and vice versa. For an interpretation
I let Ip,q be the interpretation defined by Ip,q(xi) = πp,q(I(xi)) for all variables xi.

Claim 27. For all terms T and all interpretations I it holds that I(T ) = πp,q(Ip,q(Tp,q)).

Proof. (IB) For variables T = xi we have

πp,q(Ip,q(Tp,q)) = πp,q(Ip,q(T )) = πp,q(πp,q(I(T ))) = I(T ).

For constants T = r ∈ P ∪ {1} we have

πp,q(Ip,q(Tp,q)) = πp,q(Ip,q(πp,q(r))) = πp,q(πp,q(r)) = r = I(T ).
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(IS) For products T = T ′ · T ′′ we have

πp,q(Ip,q(Tp,q)) = πp,q(Ip,q(T
′
p,q · T ′′p,q))

= πp,q(Ip,q(T
′
p,q) · Ip,q(T ′′p,q))

= πp,q(Ip,q(T
′
p,q)) · πp,q(Ip,q(T ′′p,q))

= I(T ′) · I(T ′′) = I(T ′ · T ′′) = I(T ),

which proves the claim.

Claim 28. For all first-order formulas H and all interpretations I it holds that I(H) =
Ip,q(Hp,q).

Proof. (IB) For H = (T ′ = T ′′) we have

Ip,q(Hp,q) = Ip,q(T
′
p,q = T ′′p,q)

= [Ip,q(T
′
p,q) = Ip,q(T

′′
p,q)]

= [πp,q(Ip,q(T
′
p,q)) = πp,q(Ip,q(T

′′
p,q))]

= [I(T ′) = I(T ′′)] = I(T ′ = T ′′) = I(H).

(IS) For H = ¬H ′ we have

Ip,q(Hp,q) = Ip,q(¬H ′p,q) = 1− Ip,q(H ′p,q) = 1− I(H ′) = I(¬H ′) = I(H).

For H = (H ′ ∨H ′′) we have

Ip,q(Hp,q) = Ip,q(H
′
p,q ∨H ′′p,q)

= [Ip,q(H
′
p,q) ∨ Ip,q(H ′′p,q)]

= [I(H ′) ∨ I(H ′′)] = I(H ′ ∨H ′′) = I(H).

For H = ∃xH ′ we have

Ip,q(Hp,q) = Ip,q(∃xH ′p,q) = max
I′

x
= Ip,q

I ′(H ′p,q)
(∗)
= max

I′′
x
= I

I ′′p,q(H
′
p,q) = max

I′′
x
= I

I ′′(H ′) = I(∃xH ′) = I(H),

where (∗) holds, because (i) if I ′
x
= Ip,q, then for I ′′ such that I ′′

x
= I and I ′′(x) = πp,q(I

′(x)) it

holds that I ′ = I ′′p,q and (ii) if I ′′
x
= I, then for I ′ such that I ′

x
= Ip,q and I ′(x) = πp,q(I

′′(x)) it
holds that I ′ = I ′′p,q. This proves the claim.

Let H be a first-order sentence and let C = {q1, . . . , qn} ⊆ P be the set of constants 6= 1
that appear in H. By Claim 28, for all distinct primes p, q and all interpretations I it holds that
I(H) = I(Hp,q). Therefore, H is true if and only if H ′ is true, which is the sentence obtained
from H by replacing the occurrences of q1, . . . , qn with new variables z1, . . . , zn respectively and
requiring that z1, . . . , zn are distinct primes. The latter is possible with the following formula:∧

i

¬∃a∃b(a 6= 1 ∧ b 6= 1 ∧ a · b = zi) ∧
∧
i 6=j

zi 6= zj .

This shows Th(N+;×,=, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=, 1) via H 7→ H ′.

Finally, Th(N+;×,=, 1) ≤log
m Th(N+;×,=), since e = 1 for a variable e can be expressed by

∀x(x · e = x).

Corollary 29. Th(N;×,=, 0, 1, 2, 3, 5, 7, . . .) ≤p
m Th(N+;×,=) ∈ 3EXPSPACE.

Proof. The reduction follows from the Propositions 24 and 26. Th(N+;×,=) is decidable by

an alternating Turing machine in time 222
O(n)

with n alternations [Grä89]. In particular it is

decidable in space 222
O(n)

[FR79].
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5.2.2 Upper Bounds

The main results in this section are obtained by applying the decidability of Presburger and
Skolem arithmetic. In contrast, the bounds in the following theorem are a consequence of results
from [MW07].

Theorem 30. EC(∪,∩, ,+),EC(∪,∩, ,×) ∈ PSPACE.

Proof. By Lemma 2 and MC(∪,∩, ,×) ∈ PSPACE [MW07] it holds EC(∪,∩, ,×) ∈ PSPACE.
Next, let C be a completely assigned {∪,∩, ,+}-circuit, and f(n) = n2n. An induction on

the number of gates shows that I(C) either completely contains the set {m ∈ N | m ≥ f(|C|)},
or is disjoint from it. Since MC(∪,∩, ,+) ∈ PSPACE [MW07], we can test in polynomial space,
whether (C, k) ∈ MC(∪,∩, ,+) for all k ≤ f(|C|) + 1. Hence EC(∪,∩, ,+) ∈ PSPACE.

The proof of the following theorem closely follows [GJM15, Theorem 1], which deals with
Σ1-MC(∪,∩, ,×) by reducing the problem to a formula in Skolem arithmetic. For the first part
we modify that proof by replacing × with + and therefore argue via Presburger arithmetic.

Theorem 31. 1. Σ1-EC(∪,∩, ,+),Π1-EC(∪,∩, ,+) ∈ 2EXPSPACE.

2. Σ1-EC(∪,∩, ,×),Π1-EC(∪,∩, ,×) ∈ 3EXPSPACE.

Proof. We start with part 1. By De Morgan’s laws, it suffices to consider {∪, ,+}-circuits.
Let C be a {∪, ,+}-circuit with gates g1 < . . . < gr, where g1, . . . , gn (n ≤ r) are the input
gates which are split into the assigned input gates g1, . . . , gm with labels y1, . . . , ym ∈ N and the
unassigned inputs gm+1, . . . , gn. We may assume gr to be the output gate. For every gate gk
we shall construct in polynomial time in |C| a formula ϕk = ϕk(x1, . . . ,xn, ik,vk, bk) over the
structure (N; +,=) such that for any assignment of variables xm+1, . . . , xn, vk ∈ N, bk ∈ {0, 1}
and ik = 1, . . . , k, the closed formula ϕk(y1, . . . , ym, xm+1, . . . , xn, ik, vk, bk) is true if and only
if bk = 1↔ vk ∈ I(gik ;C(xm+1, . . . , xn)) is true. The result follows from Theorem 22, since

C ∈ Σ1-EC(∪, ,+)⇐⇒ ∃xm+1, . . . ,xn ∀vr vr /∈ C(xm+1, . . . ,xn)

⇐⇒ ∃xm+1, . . . ,xn ∀vr ϕr(y1, . . . , ym,xm+1, . . . ,xn, r,vr, 0)

and

C ∈ Σ1-NEC(∪, ,+)⇐⇒ ∃xm+1, . . . ,xn ∃vr ϕr(y1, . . . , ym,xm+1, . . . ,xn, r,vr, 1).

Note that part 2 of Theorem 22 is needed in order to ensure that the description of the constant
y1, . . . , ym does not need too much space.

To construct ϕk, we proceed inductively. Let ϕ0 be the tautology

b0 ∨ ¬b0 ∨ (x1 + . . .+ xn + i0 + v0 = 0)

and ψk = [ik 6= k → (ik−1 = ik ∧ vk−1 = vk ∧ bk−1 = bk)]. For the input gates gk, i.e.,
k = 1, . . . , n, we let

ϕk = ∃ik−1,vk−1, bk−1

(
ϕk−1 ∧ ψk ∧ [(ik = k ∧ bk = 0)→ (xk 6= vk ∧ ik−1 = 0)]

∧ [(ik = k ∧ bk = 1)→ (xk = vk ∧ ik−1 = 0)]
)
.

Observe that the free variables in ϕk are x1, . . . ,xn, ik,vk, bk and that the ϕk thus defined
satisfy the claim from above for all k ≤ n.
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Next, we define ϕk for n < k ≤ r. If gk is a complement gate with predecessor gj then, in
particular j < k due to the topological ordering of g1, . . . , gr. We let

ϕk = ∃ik−1,vk−1, bk−1

(
ϕk−1 ∧ ψk ∧ [ik = k → (ik−1 = j ∧ vk−1 = vk∧

(bk = 1→ bk−1 = 0) ∧ (bk = 0→ bk−1 = 1))]
)
.

If gk is a ∪-gate with predecessors gj , gj′ then let

ϕk = ∃fk,f ′k ∀ek ∃ik−1,vk−1, bk−1

(
ϕk−1 ∧ ψk

∧ [(ik = k ∧ ek = 0)→ (ik−1 = j ∧ vk−1 = vk ∧ bk−1 = fk)]

∧ [(ik = k ∧ ek 6= 0)→ (ik−1 = j′ ∧ vk−1 = vk ∧ bk−1 = f ′k)]

∧ [(ik = k ∧ bk = 1)→ (fk = 1 ∨ f ′k = 1)]

∧ [(ik = k ∧ bk = 0)→ (fk = 0 ∧ f ′k = 0)])
.

If gk is a +-gate with predecessors gj , gj′ then let

ϕk = ∃fk,f ′k ∀ek ∀hk,h
′
k ∃dk ∃ik−1,vk−1, bk−1

(
ϕk−1 ∧ ψk

∧ [(ik = k ∧ bk = 1 ∧ ek = 0)

→ (fk + f ′k = vk ∧ ik−1 = j ∧ vk−1 = fk ∧ bk−1 = 1)]

∧ [(ik = k ∧ bk = 1 ∧ ek 6= 0)

→ (fk + f ′k = vk ∧ ik−1 = j′ ∧ vk−1 = f ′k ∧ bk−1 = 1)]

∧ [(ik = k ∧ bk = 0 ∧ hk + h′k = vk ∧ dk = 0)

→ (ik−1 = j ∧ vk−1 = hk ∧ bk−1 = 0)]

∧ [(ik = k ∧ bk = 0 ∧ hk + h′k = vk ∧ dk 6= 0)

→ (ik−1 = j′ ∧ vk−1 = h′k ∧ bk−1 = 0)])
.

Again, it can be checked that the ϕk thus defined satisfies the claim from above. This
concludes the proof of part 1. Part 2 can be proved analogously by using × instead of + and
Th(N;×,=, 0, 1, 2, 3, 5, 7, 11 . . .) instead of Presburger arithmetic. The formulas ϕk for this part
are thus the same as in [GJM15, Theorem 1].

5.2.3 Lower Bounds

We now move on to showing lower bounds. We prove that all problems covered by this section
are ≤log

m -hard for PSPACE. In particular, we prove the PSPACE-hardness for EC( ,+) and
EC( ,×).

Definition 32. A { ,+}-circuit over Nk (k ∈ N+) C = ((V,E), gC , α) is a completely assigned
{ ,+}-circuit where all constants are elements of Nk. For a { ,+}-circuit C = ((V,E), gC , α)
over Nk the set computed by a node g is defined as follows.

I(g;C) =


{α(g)} ⊆ Nk if g has indegree 0,

Nk \ I(g′, C) if g = g′,

I(g′, C) + I(g′′, C) if g = g′ + g′′.
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Moreover, we define I(C) = I(gC ;C) and

MC+( ,+) = {(C, b) | C is a { ,+}-circuit over Nk for some k ∈ N+, for every constant c

it holds ||c||∞ ≤ 1, ||b||∞ ≤ 3, and b ∈ I(C)}.

For some fixed k ∈ N+ we denote by ei the i-th unit vector (0, . . . , 0, 1, 0, . . . , 0), where the
i-th component is 1. For an n ∈ Nk we denote the i-th component by ni.

In order to show the PSPACE-hardness of this problem we make use of the following problem
which is known to be ≤log

m -complete for PSPACE.

Definition 33. KNF-QBF = {F | F is a closed quantified boolean formula in cnf with F ≡1}.

The proof of the following lemma is based on an unpublished proof by Reinhardt [Rei16]
showing the PSPACE-hardness of MC( ,×) (Corollary 36).

Lemma 34. MC+( ,+) is ≤log
m -hard for PSPACE.

Proof. We show KNF-QBF ≤log
m MC+( ,+). Let H = Q1x1 . . . Qmxm

∧n
j=1Kj with Qi ∈ {∃,∀}

be an arbitrary quantified boolean formula with variables x1, . . . xm and clauses Kj such that
without loss of generality each positive literal appears exactly once in the formula (else generate
H ′ by replacing all positive occurrences of xi by ¬y and replace H by ∃yH ′(x1, . . . , xm, y)∧(xi∨
y) ∧ (¬xi ∨ ¬y)). Denote the unique clause in which the positive literal xi occurs by Kj(i). We
assume that ¬xi does not appear in Kj(i) (otherwise the clause can be deleted without changing
the formula’s truth value).

We now define circuits Cm, . . . , C0 inductively. These circuits are { ,+}-circuits over Nm+n

such that all constants are unit vectors. For each of the circuits Ck and all α1, . . . , αk ∈ {0, 1}m+n

the following holds:

Qk+1xk+1 . . . QmxmH(α1, . . . , αk, xk+1, . . . , xm) ⇔
n∑
j=1

ej +
k∑
i=1

(αi + 1) · en+i +
m∑

i=k+1

3en+i ∈ I(Ck) (∗)

Then, for k = 0, we obtain Q1x1 . . . QmxmH(x1, . . . , xm)⇔
∑n

j=1 ej +
∑m

i=1 3en+i ∈ I(C0), the
desired reduction.

We now consider the case k = m. Note that Nm+n = e1 +e2. We now define sets Fi ⊆ Nn+m

for i = 1, . . . ,m. The idea is that the vector (k1, . . . , kn, 0, . . . , 0, zi, 0, . . . , 0) with zi as the
(n+ i)-th component is in Fi if and only if

1. zi = 1 and for all clauses Kj that do not contain ¬xi it holds kj = 0, or

2. zi = 2 and for all clauses Kj that do not contain xi it holds kj = 0.

So if Fi contains a vector with kj = 1 and zi = 1, then Kj contains ¬xj and hence Kj is satisfied
by xi := zi− 1 = 0. On the other hand, if Fi contains a vector with kj = 1 and zi = 2, then Kj

contains xj and hence Kj is satisfied by xi := zi − 1 = 1. Note that for the vectors in Fi we do
not require kj = 1 for all Kj satisfied by xi = zi − 1.
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Fi = Nm+n + 2en+i + en+i+ (1)∑
i′≤m,i′ 6=i

Nm+n + en+i′ + en+i+ (2)

∑
j,¬xj is in Kj

Nm+n + ej + en+i + en+i+ (3)

Nm+n + en+i + en+i + ej(i) + en+i+ (4)∑
j≤n,j 6=j(i),¬xi is not in Kj

Nm+n + ej + en+i. (5)

Each of the summands (1) - (5) of Fi contains 0. This excludes all vectors occurring in one of
the summands from Fi.

• The summand (1) equals the set of all y with yn+i = 0 or yn+i > 2.

• The summand (2) consists of all y with yn+i = 0 or yn+i′ > 0 for some i′ 6= i. Hence the
first two summands make sure that Fi contains only such vectors y for which yn+i ∈ {1, 2}
(where 1 stands for false and 2 for true) and yn+i′ = 0 for i′ 6= i.

• The summand (3) equals the set of all y with yn+i = 0 or (yn+i > 1 and yj > 0 for some
j such that Kj contains ¬xi). This excludes from Fi those vectors that correspond to the
situation that a clause Kj containing ¬xi is satisfied “by xi = 1”.

• The summand (4) consists of all y with yn+i = 0 or (yn+i 6= 2 and yj(i) > 0). This excludes
those vectors from Fi that correspond to the situation that the clause Kj(i) is satisfied
“by xi = 0”.

• The summand (5) consists of all y with yn+i = 0 or yj > 0 for some j such that j 6= j(i)
and Kj does not contain ¬xi. This excludes those vectors from Fi which correspond to
the situation that a clause Kj not containing the literals ¬xi and xi is satisfied “by the
variable xi”.

Let Cm = F1 + · · ·+ Fm. Observe that for all α1, . . . , αm it holds

H(α1, . . . , αm) = 1⇔
n∑
j=1

ej +
m∑
i=1

(αi + 1)en+i ∈ I(Cm),

which means that (∗) holds for k = m. For the direction ⇐ in the above equivalence, note that
for all y ∈ Fi it holds yn+i′ = 0 for i′ 6= i.

Now, for the step from k to k − 1, assume (∗). For further reasoning we need the following
claim.

Claim 35. It holds

Nm+n + 2en+k + en+k +
∑

1≤i≤m+n,i6=n+k

Nm+n + ei + en+k = {en+k, 2en+k}.
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Proof of Claim 35. It holds Nm+n + 2en+k + en+k = {x ∈ Nn+m | xn+k /∈ {1, 2}}. For 1 ≤ i ≤
m + n with i 6= n + k we have Nm+n + ei + en+k = {x ∈ Nn+m | xi 6= 0 oder xn+k = 0}. This
yields ∑

1≤i≤m+n,i 6=n+k

Nm+n + ei + en+k = {x ∈ Nn+m | xn+k = 0 ∨ ∃1≤i≤n+m,i 6=n+kxi 6= 0}.

Consequently,

Nm+n + 2en+k + en+k +
∑

1≤i≤m+n,i6=n+k

Nm+n + ei + en+k =

= {x ∈ Nn+m | xn+k /∈ {1, 2} ∨ ∃1≤i≤n+m,i 6=n+kxi 6= 0}

and hence

Nm+n + 2en+k + en+k +
∑

1≤i≤m+n,i6=n+k

Nm+n + ei + en+k =

= {x ∈ Nn+m | xn+k ∈ {1, 2} ∧ ∀1≤i≤n+m,i 6=n+kxi = 0} = {en+k, 2en+k}.

In the case Qk = ∃ we have:

∃xkQk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, xk, . . . , xm)

⇔ Qk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, 0, xk+1, . . . , xm)

∨Qk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, 1, xk+1, . . . , xm)

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i + en+k +
m∑

i=k+1

3en+i ∈ I(Ck)

∨
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i + 2en+k +
m∑

i=k+1

3en+i ∈ I(Ck)

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i +
m∑
i=k

3en+i ∈ I(Ck + {2en+k, en+k}) = I(Ck−1)

for Ck−1 := Ck+Nm+n + 2en+k + en+k +
∑

i≤m+n,i 6=n+k Nm+n + ei + en+k according to Claim 35.
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In the case Qk = ∀ the reasoning becomes:

∀xkQk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, xk, . . . , xm)

⇔ Qk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, 0, xk+1, . . . , xm)

∧Qk+1xk+1 . . . Qmxm H(α1, . . . , αk−1, 1, xk+1, . . . , xm)

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i + en+k +
m∑

i=k+1

3en+i ∈ I(Ck)

∧
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i + 2en+k +
m∑

i=k+1

3en+i ∈ I(Ck)

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i +
m∑
i=k

3en+i ∈ I((Ck + 2en+k) ∩ (Ck + en+k))

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i +
m∑
i=k

3en+i ∈ I(Ck + 2en+k ∪ Ck + en+k)

⇔
n∑
j=1

ej +
k−1∑
i=1

(αi + 1) · en+i +
m∑
i=k

3en+i ∈ I(Ck + 2en+k ∪ Ck + en+k) =

= I(Ck + {2en+k, en+k}) = I(Ck−1)

for Ck−1 := Ck + Nm+n + 2en+k + en+k +
∑

i≤m+n,i 6=n+k Nm+n + ei + en+k (cf. Claim 35).

Note that the circuits can be chosen such that all constants are unit vectors. Since the Fi
and Cj can be constructed in logarithmic space, the proof is complete.

The following corollary is not needed for our argumentation. We mention it, since it is a
direct consequence of the proof above, which was originally developed by Reinhardt [Rei16] to
show the PSPACE-hardness of MC( ,×).

Corollary 36 ([Rei16]). MC( ,×) is ≤p
m-hard for PSPACE.

Proof. According to Lemma 34 it suffices to show MC+( ,+) ≤p
m MC( ,×): Given a { ,+}-

circuit C over Nk for some k ∈ N+ and b ∈ Nk, replace all +-gates with ×-gates and replace the
input ei with pi, where pi is the i-th prime (1 ≤ i ≤ k). We denote the { ,×}-circuit obtained
this way by C ′. Moreover, replace b =

∑k
i=1 biei with

∏k
i=1 p

bi
i . As bi ≤ 3 for all i and as — due

to the prime number theorem — p1, . . . , pk can be determined in time p(k) for some polynomial
p, the reduction can be computed in polynomial time.

It can be seen inductively that for every gate g of C and its corresponding gate g′ in C ′ it
holds I(g′;C ′) ∩ {n ∈ N | ∀i>kpi - n} = {

∏k
i=1 p

xi
i |

∑k
i=1 xiei ∈ I(g;C)}. Thus b ∈ I(C) if and

only if b′ ∈ I(C ′).

Remark 37. Note that Corollary 36 states MC( ,×) only to be ≤p
m-hard for PSPACE. It is

not clear whether the reduction described can also be computed in logarithmic space, since a
product of polynomially many numbers of logarithmic length has to be computed.
Nevertheless, from our results presented below it follows that MC( ,×) is even ≤log

m -hard for
PSPACE (cf. Corollary 43).

Theorem 38. MC( ,+) is ≤log
m -hard for PSPACE.
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Proof. We show MC+( ,+) ≤log
m MC( ,+). Let C = ((V,E), gC , α) be a circuit over Nk for some

k ≥ 2 such that each input gate g satisfies ||α(g)||∞ ≤ 1. Furthermore, let b =
∑k

i=1 biei ∈ Nk
with bi ≤ 3 for all i. Consider the variant of C where +-gates and complement-gates compute
slightly modified addition and complement respectively, namely A + B = {x ∈ {0, 1, 2, 3}k |
x = a + b for some a ∈ A and some b ∈ B} and A = {x ∈ {0, 1, 2, 3}k | x /∈ A} respectively
(A,B ⊆ Nk). Observe that this variant generates b if and only if the original circuit generates
b. So it suffices to argue for circuits C with modified addition and modified complement.

We use the bijective mapping f : {0, 1, . . . , 7}k → {0, 1, . . . , 8k − 1} with f(x1, . . . , xk) =∑k−1
i=0 xi+18i and describe how the pair (C, b) is transformed into an MC( ,+)-instance (C ′, b′)

with labeling function α′ such that (C, b) ∈ MC+( ,+)⇔ (C ′, b′) ∈ MC( ,+).
Let n be the length of the input pair (C, b). Recall that V = {1, 2, . . . , r} for some r ∈ N.

For the sake of simplicity, for a gate g in C we will denote the corresponding gate in C ′ with
g as well, although this is formally not correct as for arbitrary two adjacent nodes in C there
will be several new nodes between them in C ′, which changes the indices of the nodes.
For m ∈ N let m̃ = 8n+m. Then let b′ = f(b) + g̃C and for each input node g of C let
α′(g) = f(α(g)) + g̃. For each inner node g in C do the following:

• If g is a +-node with predecessors g1 and g2, then delete the edges from g1 and g2 to g, let
α′(g) = , and add the following circuit Cg, where Gi = {g̃ − 1− g̃i}, A = {2 · g̃ − 1− 1},
B =

∑k−1
i=0

(
{0, 23i}+ {0, 23i+1}

)
+ {2 · g̃ − 1}, Q = {4 · g̃ − 1, 6 · g̃ − 1− 1, 6 · g̃ − 1}, and

R = {0, 4 · g̃ − 1− 1}:

A

+B

+

g2

g1 +

1

+

+ +

+ Q R

+

g

G2G1

Note that the +-gate with indegree 4 and all nodes computing sets with more than one
element are used as an abbreviation. We denote the j-th node from the left in the i-th
row by Ni,j .

• If g is a complement-node with g′ in C, then remove the edge (g′, g) and add the following

circuit Cg, where G′ = {g̃ − 1−g̃′}, A′ = {3·g̃ − 1−1}, B′ =
∑k−1

i=0

(
{0, 23i}+ {0, 23i+1}

)
+

{g̃ − 1}, Q′ = {4 · g̃ − 1}, and R = {0, 4 · g̃ − 1− 1}:

A′ 1 +

+

+

+

+

B′

g′ Q′

+

R

+ gG′

Again the +-gate with indegree 3 and all nodes computing sets with more than one element
are used as an abbreviation. We denote the j-th gate from the left in the i-th row by Mi,j .
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Claim 39. The function (C, b) 7→ (C ′, b′) is logspace computable.

Proof of Claim 39. All numbers occurring inGi, A, B, Q, R, G′, A′, B′, andQ′ can be computed
in logarithmic space. Sets of natural numbers {a, b} and {a, b, c} for a < b < c can be computed

by a circuit via {a, b} = {b− a− 1}+ {1}+{a} and {a, b, c} = {b− a− 1, c− a− 1}+ {1}+{a}
Consequently, there is a logspace computable circuit which computes the set

∑k−1
i=0

(
{0, 23i} +

{0, 23i+1}
)
.

For m ∈ N+ let Dm = {0, . . . , m̃− 1}, Em = {m̃, . . . , m̃+ 8k − 1}, D2
m = {0, . . . , 2 · m̃− 1},

E2
m = {2 · m̃, . . . , 2 · m̃+ 8k − 1}, D4

m = {0, . . . , 4 · m̃− 1}, and E4
m = {4 · m̃, . . . , 4 · m̃+ 8k − 1}.

Moreover, Fm = Dm ∪Em = {0, . . . , m̃+ 8k − 1} and F im = Di
m ∪Eim = {0, . . . , i · m̃+ 8k − 1}

for i ∈ {2, 4}. Note that Fm, F 2
m, and F 4

m are intervals of N that start at 0.

Claim 40. For each gate g of C it holds I(g, C ′) ∩ Fg = {f(x) + g̃ | x ∈ I(g;C)}.

Proof of Claim 40. Throughout this proof, x will denote an element of Nk.
If g is an input node, the statement holds. Assume g is an inner node and the statement is true
for all nodes g′ < g.

We assume g is a +-gate in C with predecessors g1 and g2. First we argue that

B ∩ F 2
g−1 = {f(x) + 2 · g̃ − 1 | 4 ≤ ||x||∞ ≤ 7} : (2)

Let y ∈ B ∩ F 2
g−1, hence y = y′ + 2 · g̃ − 1 with y′ /∈

∑k−1
i=0

(
{0, 23i} + {0, 23i+1}

)
and y′ < 8k.

Because of this and as f is bijective, there is a unique z ∈ {0, 1, . . . , 7}k with f(z) = y′ and

||z||∞ ∈ {4, 5, 6, 7}, which shows ⊆. Conversely, let y = f(z) + 2 · g̃ − 1 with ||z||∞ ∈ {4, 5, 6, 7}.
Hence f(z) /∈

∑k−1
i=0

(
{0, 23i}+ {0, 23i+1}

)
, which proves (2).

Now, we argue for

A+B + 1 ∩ F 4
g−1︸ ︷︷ ︸

=:LHS

= {0} ∪ {f(x) + 4 · g̃ − 1 | x ∈ Nk ∧ 4 ≤ ||x||∞ ≤ 7}︸ ︷︷ ︸
=:RHS

: (3)

Let y ∈ LHS. Then y = 0 ∈ RHS or it holds y > 0 and y − 1 /∈ A+B and y ∈ F 4
g−1. Thus

y−1 ∈ (A+B)∩{0, . . . , 4·g̃ − 1+8k−2} = A+(B∩F 2
g−1)

(2)
= {f(x)+4·g̃ − 1−1 | 4 ≤ ||x||∞ ≤ 7}

which implies y ∈ RHS.
Conversely, let y /∈ LHS, hence y /∈ F 4

g−1 ⊇ RHS and we are done or y ∈ F 4
g−1 and y ∈

A+B+1. Thus y > 0 and it holds y−1 /∈ (A+B)∩{0, . . . , 4·g̃ − 1+8k−2} = A+(B∩F 2
g−1)

(2)
=

{f(x) + 4 · g̃ − 1− 1 | 4 ≤ ||x||∞ ≤ 7}. Hence y /∈ RHS, which proves (3).

By induction hypothesis one has I(gi;C
′) ∩ Fgi = {f(x) + g̃i | x ∈ I(gi;C} and hence

(I(gi;C
′) +Gi) ∩ Fg−1 = {f(x) + g̃ − 1 | x ∈ I(gi;C)} for i = 1, 2. (4)

Let us observe that

I(g1;C ′) + I(g2;C ′) +G1 +G2 ⊆ {f(x) + 2 · g̃ − 1 | x ∈ I(g;C)}. (5)

Otherwise there exists an element y on the left-hand side such that y = f(x) + 2 · g̃ − 1 for

some x ∈ I(g;C) and hence y = f(x1) + g̃ − 1 + f(x2) + g̃ − 1 for suitable xi ∈ I(gi;C). By

(4), f(xi) + g̃ − 1 ∈ I(gi;C
′) + Gi and hence y ∈ I(g1;C ′) + I(g2;C ′) + G1 + G2. This is a

contradiction and shows (5).
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Next we argue for

I(g1;C ′) + I(g2;C ′) +G1 +G2 ⊇ {f(x) + 2 · g̃ − 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7} ∩ F 2
g−1. (6)

It suffices to show that every y ∈ (I(g1;C ′)+I(g2;C ′)+G1+G2)∩F 2
g−1 belongs to {f(x)+2·g̃ − 1 |

x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7}. By assumption, y = y1 + y2 for suitable yi ∈ I(gi;C
′) + Gi.

Together with (4) we obtain y1, y2 ≥ g̃ − 1. If yi /∈ Fg−1 for some i ∈ {1, 2}, then yi ≥ g̃ − 1+8k

and hence y ≥ 2 · g̃ − 1 + 8k /∈ F 2
g−1, a contradiction. So y1, y2 ∈ Fg−1. By (4), for i ∈ {1, 2}

there exists xi ∈ I(gi;C) such that yi = f(xi) + g̃ − 1. Hence y = f(x1 + x2) + 2 · g̃ − 1. If

||x1 + x2||∞ ≤ 3, then y ∈ {f(x) + 2 · g̃ − 1 | x ∈ I(g;C)}, otherwise y ∈ {f(x) + 2 · g̃ − 1 | x ∈
Nk ∧ 4 ≤ ||x||∞ ≤ 7}. This proves (6).

Consequently, due to

I(N1,6;C ′) ∩ F 4
g−1 =

(
I(g1;C ′) + I(g2;C ′) +G1 +G2 +A+ {1}

)
∩ F 4

g−1

=
((
I(g1;C ′) + I(g2;C ′) +G1 +G2 ∩ F 2

g−1

)
+A+ {1}

)
∩ F 4

g−1

it holds

I(N1,6;C ′) ∩ F 4
g−1

(5)

⊇
(
({f(x) + 2 · g̃ − 1 | x ∈ I(g;C)} ∩ F 2

g−1) +A+ {1}
)
∩ F 4

g−1

=
(
(D2

g−1 ∪ {f(x) + 2 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)}) +A+ {1}
)
∩ F 4

g−1

=
(
{2 · g̃ − 1− 1, . . . , 4 · g̃ − 1− 2} ∪ {f(x) + 4 · g̃ − 1− 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)}+ {1}

)
∩ F 4

g−1

=
((
{0, . . . , 2 · g̃ − 1− 2} ∪ {f(x) + 4 · g̃ − 1− 1 | x ∈ I(g;C)}

)
+ {1}

)
∩ F 4

g−1

= {1, . . . , 2 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C)} (7)

and analogously

I(N1,6;C ′) ∩ F 4
g−1

(6)

⊆
(
({f(x) + 2 · g̃ − 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7} ∩ F 2

g−1) +A+ {1}
)
∩ F 4

g−1

=
(
(D2

g−1 ∪ {f(x) + 2 · g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)}) +A+ {1}
)
∩ F 4

g−1

=
(
{2 · g̃ − 1− 1, . . . , 4 · g̃ − 1− 2} ∪ {f(x) + 4 · g̃ − 1− 1 | x ∈ {0, 1, 2, 3}k − I(g;C)}+ {1}

)
∩ F 4

g−1

=
((
{0, . . . , 2 · g̃ − 1− 2} ∪ {f(x) + 4 · g̃ − 1− 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7}

)
+ {1}

)
∩ F 4

g−1

= {1, . . . , 2 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7}. (8)

Hence we obtain

{0, 2 · g̃ − 1, . . . , 4 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)}

= {1, . . . , 2 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7} ∩ F 4
g−1

(8)

⊆ I(N1,6;C ′) ∩ F 4
g−1 = I(N1,7;C ′) ∩ F 4

g−1 (9)

(7)

⊆ {1, . . . , 2 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C)} ∩ F 4
g−1

= {0, 2 · g̃ − 1, . . . , 4 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)}. (10)

By the definition of the circuit Cg, I(N2,6;C ′) = I(N1,7;C ′) + A+B + 1. By (10), all

positive elements in I(N1,7, C
′) are ≥ 2 · g̃ − 1. By (3), all positive elements in A+B + 1
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are ≥ 4 · g̃ − 1. As g̃ − 1 > 8n > 8k (the latter holds since b ∈ Nk is part of the input)

it holds that if y ∈ I(N2,6, C
′) ∩ F 4

g−1, then y ∈ I(N1,7, C
′) or y ∈ A+B + 1. Therefore,

I(N2,6;C ′) ∩ F 4
g−1 =

(
I(N1,7;C ′) ∩ F 4

g−1

)
∪
(
A+B + 1 ∩ F 4

g−1

)
and thus

I(N2,6;C ′) ∩ F 4
g−1

(10)

⊆ {0} ∪ {2 · g̃ − 1, . . . , 4 · g̃ − 1− 1}∪

{f(x) + 4 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)} ∪ {f(x) + 4 · g̃ − 1 | 4 ≤ ||x||∞ ≤ 7}

= {0} ∪ {2 · g̃ − 1, . . . , 4 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)}

and

I(N2,6;C ′) ∩ F 4
g−1

(3),(9)

⊇ {0} ∪ {2 · g̃ − 1, . . . , 4 · g̃ − 1− 1}∪

{f(x) + 4 · g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)} ∪ {f(x) + 4 · g̃ − 1 | 4 ≤ ||x||∞ ≤ 7}

= {0, 2 · g̃ − 1, . . . , 4 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)}.

Thus

I(N2,6;C ′) ∩ F 4
g−1 = {0, 2·g̃−1, . . . , 4·g̃−1−1} ∪ {f(x) + 4·g̃−1 | x ∈ {0, 1, . . . , 7}k−I(g;C)}.

This yields I(N2,7;C ′) ∩ F 4
g−1 = {1, . . . , 2 · g̃ − 1 − 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C)}.

It follows from g̃ > 8n > 8k that 10 · g̃ − 1 − 1 /∈ Fg and thus ({f(x) + 4 · g̃ − 1 | x ∈
I(g;C)}+ {6 · g̃ − 1− 1, 6 · g̃ − 1}) ∩ Fg = ∅. Therefore, we obtain

I(N2,8;C ′) ∩ Fg =
((
I(N2,7;C ′) ∩ F 4

g−1

)
+Q

)
∩ Fg

=
(
{1, . . . , 2 · g̃ − 1− 1}+Q

)
∪
(
{f(x) + 4 · g̃ − 1 | x ∈ I(g;C)}+ {4 · g̃ − 1}

)
= {4 · g̃ − 1 + 1, . . . , g̃ − 1} ∪ {f(x) + g̃ | x ∈ I(g;C)}

and for similar reasons

I(N2,10;C ′) ∩ Fg =
(
{4 · g̃ − 1 + 1, . . . , g̃ − 1} ∪ {f(x) + g̃ | x ∈ I(g;C)}+R

)
∩ Fg

=
(
({0, . . . , 4 · g̃ − 1}+R) ∩ Fg

)
∪
(
({f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)}+R) ∩ Eg

)
= {0, . . . , g̃ − 1} ∪ ({f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)}.

Consequently, I(g;C ′) ∩ Fg = {f(x) + g̃ | x ∈ I(g;C)}.

Now we assume that g is a complement-gate with predecessor g′ in C. Since A+B = A′+B′,
from (3) we obtain

A′ +B′ + 1 ∩ F 4
g−1 = {0} ∪ {f(x) + 4 · g̃ − 1 | 4 ≤ ||x||∞ ≤ 7}. (11)

From the induction hypothesis we obtain (I(g′;C ′)+G′)∩Fg−1 = {f(x)+g̃ − 1 | x ∈ I(g′;C)} =

{f(x) + g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)}. This yields I(g′;C ′) +G′ +A′ ∩ {0, . . . , 4 · g̃ − 1 +

8k − 2} = {0, . . . , 4 · g̃ − 1− 2} ∪ {f(x) + 4 · g̃ − 1− 1 | x ∈ I(g;C) ∨ 4 ≤ ||x||∞ ≤ 7} and thus

I(M1,5;C ′) ∩ F 4
g−1 = {0} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)}. (12)
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By (11) and (12) all positive elements of A′ +B′ + 1∩F 4
g−1 and I(M1,5;C ′)∩F 4

g−1 are at least

4 · g̃ − 1. Since 8 · g̃ − 1 > 8n > 8k it holds

I(M2,4;C ′) ∩ F 4
g−1 = (I(M1,5;C ′) ∩ F 4

g−1) + (A′ +B′ + 1 ∩ F 4
g−1)

= (I(M1,5;C ′) ∩ F 4
g−1) ∪ (A′ +B′ + 1 ∩ F 4

g−1)

= {0} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, 2, 3}k − I(g;C)} ∪ {f(x) + 4 · g̃ − 1 | 4 ≤ ||x||∞ ≤ 7}

= {0} ∪ {f(x) + 4 · g̃ − 1 | x ∈ {0, 1, . . . , 7}k − I(g;C)},

which implies

I(M2,7;C ′) ∩ Fg = I(M2,4;C ′) ∩ F 4
g−1 +Q′ ∩ Fg

=
(
{1, . . . , 4 · g̃ − 1− 1} ∪ {f(x) + 4 · g̃ − 1 | x ∈ I(g;C)}

)
+Q′ ∩ Fg

= D4
g−1 ∪ {4 · g̃ − 1} ∪ {f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)}.

Consequently,

I(g, C ′) ∩ Fg =
(
I(M2,7;C ′) ∩ Fg

)
+R ∩ Fg

=
(
(D4

g−1 ∪ {4 · g̃ − 1}) +R
)
∪
(
({f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)}+R) ∩ Fg

)
∩ Fg

= Dg ∪
(
{f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)}+ {0}

)
∩ Fg

= Dg ∪ {f(x) + g̃ | x ∈ {0, 1, . . . , 7}k − I(g;C)} ∩ Fg = {f(x) + g̃ | x ∈ I(g;C)}.

It follows from the claim that (C, b) ∈ MC+( ,+) ⇔ (C ′, b′) ∈ MC( ,+). This completes
the proof.

The following lemma is essentially due to Sigmund [Sig16]. He provided the proof of the
second statement and the main idea of the proof of the first statement.

Lemma 41. It holds

1. NMC( ,+) ≤log
m EC( ,+) and

2. EC( ,+) ≤log
m EC( ,×)

Proof. 1. Let C be a completely assigned { ,+}-circuit and b ∈ N. It holds {1, . . . , b} =

{0}+ {b− 1}+ {1} and {b+ 2, . . . , 2b+ 2} = 0 + {b}+ {b+ 2}. Let without loss of generality

0 ∈ I(C) (else consider (C + {1}, b+ 1) instead of (C, b)).

1. Let M = I(C) + {1, . . . , b}+ {1}. Because of 0 ∈ I(C) and {1, . . . , b} = {0} ∪ {b+ 1, . . . }
we have I(C) +{1, . . . , b} = I(C)∪{b+ 1, . . . }. Hence M = (I(C) ∪ {b+ 1, . . . }) + {1} =
(I(C) + {1}) ∪ {b+ 2, . . . } = I(C) + {1}∩{0, . . . , b+1} = {0}∪{x+1 | x 6∈ I(C)∧x ≤ b}.

2. Let M ′ := M + {b+ 2, . . . , 2b+ 2}. Due to 0∈M and {b+ 2, . . . , 2b+ 2} = {0, . . . , b+1}∪
{2b+3, . . . } we have M+{b+ 2, . . . , 2b+ 2} = (M+{0, . . . , b+1})∪(M+{2b+3, . . . }) =
{0, . . . , b + 1 + maxM} ∪ {2b + 3, . . . }. Thus M ′ = {b + 2 + maxM, . . . , 2b + 2}. So we
get M ′ = ∅ ⇔ maxM > b⇔ maxM = b+ 1⇔ b+ 1 ∈M ⇔ b 6∈ I(C).
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Let C ′ the { ,+}-circuit for M ′ and note that C ′ can be computed in logarithmic space.
According to our argumentation above it holds (C, b) ∈ NMC( ,+)⇔ C ′ ∈ EC( ,+).

2. Let f : P(N)→ P(N) with f(A) = {2a | a ∈ A} × (2N + 1) = {2a · (2n+ 1) | a ∈ A,n ∈ N},
where P(N) = {A | A ⊆ N}. Let C be a completely assigned { ,+}-circuit. With the following
modifications we receive a { ,×}-circuit C ′:

1. Replace each +-gate with a ×-gate.

2. Replace each input gate g with a { ,×}-circuit Cg such that the output node gCg of Cg is

connected to all successors of g and gCg computes the set f(I(g;C)) = {2I(g;C) · (2n+ 1) |
n ∈ N}. Note that such a circuit can be computed in logarithmic space since 2I(g;C) can
be computed via the binary representation of I(g;C), which is part of the input, and

2N + 1 = {2} × 2× 3.

3. For each complement-gate g and its predecessor g′ add new nodes such that we have

g = g′ × ((2N + 1) ∪ {0}), where (2N + 1) ∪ {0} = {2} × {0}.

To complete the proof we show the following statement inductively: For each gate g in C it
holds I(g;C ′) = f(I(g;C)).

If g is an input gate of C, the statement is true. Let g be a ×-node with predecessors g1

and g2. By induction hypothesis it holds I(gi;C
′) = f(I(gi;C)) for i = 1, 2. Hence

I(g;C ′) = ({2x | x ∈ I(g1;C)} × (2N + 1))× ({2x | x ∈ I(g2;C)} × (2N + 1))

= {2x+y | x ∈ I(g1;C), y ∈ I(g2;C)} × (2N + 1)

= f(I(g;C)).

Now, assume g is a -gate with predecessor g′. By induction hypothesis it holds I(g′;C ′) =
f(I(g′;C)). Thus

I(g;C ′) = I(g′;C ′)× ((2N + 1) ∪ {0}) = f(I(g′;C))× ((2N + 1) ∪ {0})
= {2x | x ∈ I(g′;C)} × (2N + 1)× ((2N + 1) ∪ {0})
= ({2x | x ∈ I(g′;C)} × ((2N + 1))) ∪ {0}
= {2x | x /∈ I(g′;C)} × (2N + 1)

= f(I(g;C)).

Theorem 42. EC( ,+) and EC( ,×) are ≤log
m -hard for PSPACE.

Proof. Both statements follow from Lemma 41.

With these results we can improve the lower bound for MC( ,×) stated in Corollary 36.

Corollary 43. MC( ,×) is ≤log
m -hard for PSPACE.

Proof. The statement follows from Theorem 42 and Lemma 2.
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6 Circuits with both Arithmetic Operations

Besides proving bounds for emptiness problems with + and ×, we improve the known lower
and upper bounds for MC(∪,∩, ,+,×) [MW07] and EQ(∪,∩, ,+,×) [GHR+10]. Then we
provide arguments that suggest the difficulty of proving the decidability of EC( ,+,×) and
EC(∪,∩, ,+,×, ). Finally we draw connections to polynomial identity testing (PIT) and show
that the open questions for the complexities of MC(∩,+,×) [MW07], MCZ(∩,+,×),MCZ(+,×)
[Tra06], and EQ(+,×) [GHR+10] are reformulations of the well-studied, major open question
for the complexity of PIT.

6.1 Upper and Lower Bounds for Undecidable Problems

We start by proving upper and lower bounds for certain undecidable emptiness problems.

Theorem 44.

1. EC(∪,∩, ,+,×) ∈ Rtt(Σ1).

2. Σ1-EC(∪,∩, ,+,×) ∈ Σ2 and Π1-EC(∪,∩, ,+,×) ∈ Π2.

3. Π1-EC(∩,+,×) and Π1-EC(∪,∩,+,×) are ≤log
m -complete for Π1.

4. Σ1-MC( ,+,×) and Σ1-EC( ,+,×) are ≤log
m -hard for Σ1.

5. Π1-EC( ,+,×) is ≤log
m -hard for Π1.

Proof. 1. It suffices to show EC(∪,∩, ,+,×) ≤tt K. By [GHR+10, Lemma 5], there exists a
Turing machine M with oracle K that on input of a completely assigned {∪,∩, ,+,×}-circuit
C computes a completely assigned {∪,∩, ,+,×}-circuit D and a set Z ⊆ {0} such that the
label 0 does not appear in D and I(C) = IN+(D) ∪ Z. Here IN+(D) denotes the set computed
by D when gates with label compute the complement with respect to N+. The proof of
[GHR+10, Lemma 5] shows that M on input C asks at most 3n adaptive queries, where n is the
number of gates in C. These queries can be replaced by 3n · 23n nonadaptive queries (i.e., 3n

queries for each of the 23n possible answer vectors). Moreover, Breunig [Bre07] shows that on
input (D,x) where x ∈ N it is decidable in polynomial space whether x ∈ IN+(D). Hence with
one additional query to K we can determine whether IN+(D) is empty, which in turn allows us
to decide whether I(C) = IN+(D) ∪ Z is empty. This shows EC(∪,∩, ,+,×) ≤tt K.

2. Σ1-EC(∪,∩, ,+,×) is computably enumerable in EC(∪,∩, ,+,×). By statement 1 this
shows Σ1-EC(∪,∩, ,+,×) ∈ Σ2. Similarly we obtain Π1-EC(∪,∩, ,+,×) ∈ Π2.

3. By Corollary 3, EC(∪,∩,+,×) is decidable and hence Π1-EC(∪,∩,+,×) ∈ Π1. By the
Matiyasevich-Robinson-Davis-Putnam theorem [Mat70, DPR61], there exists an n ∈ N and a
multivariate polynomial p with integer coefficients such that for every A ∈ Σ1 there exists an
a ∈ N such that

x ∈ A ⇐⇒ ∃y ∈ Nn, p(a, x, y) = 0.

In the equation p(a, x, y) = 0 we can move negative monomials and negative constants to the
right-hand side. This yields multivariate polynomials l and r with coefficients from N such that

x ∈ A ⇐⇒ ∃y ∈ Nn, l(a, x, y) = r(a, x, y).

Let Cl and Cr be {+,×}-circuits computing the polynomials l and r, respectively. Hence

x ∈ A ⇐⇒ ∀y ∈ Nn, Cl(a, x, y) 6= Cr(a, x, y)

⇐⇒ (Cl(a, x, ·) ∩ Cr(a, x, ·)) ∈ Π1-EC(∩,+,×),
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where Cl(a, x, ·) and Cr(a, x, ·) denote the circuits obtained from Cl and Cr by assigning a and
x to the first inputs, while leaving the remaining inputs unassigned. On input x, the {∩,+,×}-
circuit Cl(a, x, ·) ∩ Cr(a, x, ·) can be constructed in logarithmic space, since Cl, Cr, and a do

not depend on x. So A ≤log
m Π1-EC(∩,+,×), which proves the third statement of the theorem.

4+5. For A ∈ Σ1 let a, Cl, and Cr be as above. So it holds that

x ∈ A⇐⇒ ∃y ∈ Nn, Cl(a, x, y) = Cr(a, x, y). (13)

It remains to formulate the equality on the right-hand side as a membership (resp., emptiness)
problem. For this we define the following auxiliary circuits, where x, y ∈ N, the set {0, 1} is

generated by {0}+ {1}, and the set N is generated by {1}+ {2}.

C1(x, y)
df
= {y}+ {1}+ (({x}+ {1})× {0, 1}) =

{
{y + 1} if x > y
∅ otherwise

C2(x, y)
df
= {0} × C1(x, y) + {1} =

{
{0, 1} if x > y
{0} otherwise

C3(x, y)
df
= C2(x, y) + C2(y, x) =

{
{0, 1} if x 6= y
{0} otherwise

From (13) we obtain

x ∈ A ⇐⇒ ∃y ∈ Nn, 1 ∈ C3(Cl(a, x, y), Cr(a, x, y))

⇐⇒ (C3(Cl(a, x, y), Cr(a, x, y)), 1) ∈ Σ1-MC( ,+,×).

This shows A ≤log
m Σ1-MC( ,+,×), since the circuits C3, Cl, and Cr do not depend on x.

For Σ1-EC( ,+,×) we define further auxiliary circuits.

C4(x, y)
df
= {1}+ C3(x, y) =

{
{1, 2} if x 6= y
{1} otherwise

C5(x, y)
df
= C4(x, y) + {0, 1} =

{
{2} if x 6= y
N otherwise

We obtain A ≤log
m Σ1-EC( ,+,×), since by (13) the following holds.

x ∈ A ⇐⇒ ∃y ∈ Nn, C5(Cl(a, x, y), Cr(a, x, y)) = ∅
⇐⇒ C5(Cl(a, x, y), Cr(a, x, y)) ∈ Σ1-EC( ,+,×)

For Π1-EC( ,+,×) let

C6(x, y)
df
= C3(x, y) + ({2} × N) =

{
N if x 6= y
2N otherwise.

We obtain A ≤log
m Π1-EC( ,+,×), since by (13) the following holds.

x ∈ A ⇐⇒ ∀y ∈ Nn, C6(Cl(a, x, y), Cr(a, x, y)) = ∅
⇐⇒ C6(Cl(a, x, y), Cr(a, x, y)) ∈ Π1-EC( ,+,×)
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6.2 Connecting Emptiness with Membership and Equivalence Problems

We show that with the operations , +, and × one can express a Boolean combination of
emptiness problems as a single emptiness problem. Therefore, truth-table reductions to certain
emptiness problems can be transformed into many-one reductions. This allows us to show
certain emptiness problems to be many-one equivalent to membership problems and equivalence
problems. As a byproduct we improve the known lower and upper bounds of MC(∪,∩, ,+,×)
[MW07] and EQ(∪,∩, ,+,×) [GHR+10].

Lemma 45. If { ,+,×} ⊆ O and B ∈ P, then there exists an f ∈ FL such that for all O-
circuits C1, . . . , Cn it holds that (cEC(O)(C1), . . . , cEC(O)(Cn)) ∈ B ⇔ f(C1, . . . , Cn) ∈ EC(O).

Proof. Ladner [Lad75] showed that the circuit value problem is ≤log
m -complete for P. From

the proof it follows that one can construct in logarithmic space in n a Boolean circuit C over
{∨,¬} such that for all b1, . . . , bn ∈ {0, 1}, C(b1, . . . , bn) = cB(b1, . . . , bn). We translate C into
an O-circuit C ′, where a Boolean value 1 (resp., 0) is represented by the empty (resp., a non-
empty) set. First we replace C’s inputs with C1, . . . , Cn, which represent the Boolean values
cEC(O)(C1), . . . , cEC(O)(Cn). Each ∨-gate can be replaced with a +-gate, since the sum of two O-
circuits is empty if and only if one of them generates the empty set. A ¬-gate with predecessor x

can be replaced with the circuit ((x× {0}) + {1}+ {2}), which is of constant size. This circuit
generates the empty set if and only if x does not compute the empty set. Overall we obtain an O-
circuit C ′ in logarithmic space such that (cEC(O)(C1), . . . , cEC(O)(Cn)) ∈ B ⇔ C ′ ∈ EC(O).

Proposition 46. The following holds if { ,+,×} ⊆ O.

1. If A ≤log
tt EC(O), then A ≤log

m EC(O).

2. If A ≤p
tt EC(O), then A ≤p

m EC(O).

3. If A ≤tt EC(O), then A ≤m EC(O).

4. If EC(O) is ≤m-hard for Σ1, then it is ≤m-hard for Rtt(Σ1).

5. If EC(O) ∈ Σ1 ∪Π1, then EC(O) ∈ REC.

Proof. If A ≤log
tt EC(O), then there exists a nonadaptive logspace oracle Turing machine M

that accepts A with EC(O) as oracle. Hence there exists a logspace computable function q and
a logspace Turing machine M ′ such that

1. q(x) = (C1, . . . , Cn) is the sequence of queries of the computation M(x) and

2. M ′ on input x together with the oracle answers computes cA(x), i.e.,
M ′(x, cEC(O)(C1), . . . , cEC(O)(Cn)) = cA(x).

We may even assume that M ′ has no access to x, i.e., M ′(cEC(O)(C1), . . . , cEC(O)(Cn)) = cA(x),

since we can use the oracle answers cEC(O)(1) = 0 and cEC(O)(1 + 2) = 1 to encode the single
bits of x (e.g., a bit 0 is encoded by two answer bits 00, a bit 1 is encoded by two answer bits 11,
and the end of x is marked by two answer bits 10). In particular, the set B = {z | M ′(z) = 1}
belongs to P. By Lemma 45, there exists an f ∈ FL such that for all O-circuits C1, . . . , Cn it
holds that (cEC(O)(C1), . . . , cEC(O)(Cn)) ∈ B ⇔ f(C1, . . . , Cn) ∈ EC(O). Hence for all x, where
q(x) = (C1, . . . , Cn), it holds that

x ∈ A ⇔ (cEC(O)(C1), . . . , cEC(O)(Cn)) ∈ B
⇔ f(C1, . . . , Cn) ∈ EC(O).
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So A ≤log
m EC(O), which proves the first statement. The second one is shown analogously.

From A ≤tt EC(O) it follows that there exists a total, computable function that on input x
returns a list of queries C1, . . . , Cn and a Boolean circuit C over {∨,¬} with n inputs such that

x ∈ A ⇔ C(cEC(O)(C1), . . . , cEC(O)(Cn)) = 1.

The construction in the proof of Lemma 45 shows that from C we can compute an O-circuit C ′

such that
C(cEC(O)(C1), . . . , cEC(O)(Cn)) = 1 ⇔ C ′ ∈ EC(O).

Therefore, A ≤m EC(O), which proves the third statement.

Statement 4 follows from statement 3. Statement 5 holds, since EC(O) ≡log
m EC(O) by the

first statement.

As a corollary we obtain that EC(∪,∩, ,+,×), MC(∪,∩, ,+,×), and EQ(∪,∩, ,+,×)

are equivalent and ≤log
m -hard for LNEXP.

Corollary 47.

1. MC(∪,∩, ,+,×) ≡log
m EQ(∪,∩, ,+,×) ≡log

m EC(∪,∩, ,+,×) ≡log
m EC(∪,∩, ,+,×).

2. Σ1-MC(∪,∩, ,+,×) ≡log
m Σ1-EC(∪,∩, ,+,×) ≡log

m Σ1-NEC(∪,∩, ,+,×).

3. EC(∪,∩, ,+,×),MC(∪,∩, ,+,×),EQ(∪,∩, ,+,×) ∈ Rtt(Σ1) and these problems are

≤log
m -hard for Rlog

T (NEXP) = LNEXP.

4. EC( ,+,×) is ≤m-hard for Σ1 if and only if it is ≤m-complete for Rtt(Σ1).

5. EC(∪,∩, ,+,×) is ≤m-hard for Σ1 if and only if it is ≤m-complete for Rtt(Σ1).

Proof. By [GHR+10], MC(∪,∩, ,+,×) ≡log
m EQ(∪,∩, ,+,×). By Lemma 2, it holds that

MC(∪,∩, ,+,×) ≡log
m EC(∪,∩, ,+,×) and Σ1-MC(∪,∩, ,+,×) ≡log

m Σ1-NEC(∪,∩, ,+,×).

The reduction C 7→ ((C × {0}) + {1}+ {2}) shows EC(∪,∩, ,+,×) ≡log
m EC(∪,∩, ,+,×) and

Σ1-NEC(∪,∩, ,+,×) ≡log
m Σ1-EC(∪,∩, ,+,×), which proves 1 and 2.

In statement 3, the membership in Rtt(Σ1) follows from the first statement and Theorem 44.

McKenzie and Wagner [MW07] show that MC(∪,∩, ,+,×) is ≤log
m -hard for NEXP. By Propo-

sition 46.1 in conjunction with the first statement, it is ≤log
m -hard for Rlog

tt (NEXP). Ladner and

Lynch [LL76] show that A ≤log
T B if and only if A ≤log

tt B. Hence MC(∪,∩, ,+,×) is ≤log
m -hard

for Rlog
T (NEXP). The same holds for EC(∪,∩, ,+,×) and EQ(∪,∩, ,+,×), because of the

first statement.
Statements 4 and 5 follow from Proposition 46 and Theorem 44.

We prove further equivalences between membership and emptiness problems, this time for
{ ,+,×}-circuits.

Proposition 48. 1. MC( ,+,×) ≡log
m EC( ,+,×) ≡log

m EC( ,+,×).

2. Σ1-MC( ,+,×) ≡log
m Σ1-EC( ,+,×) ≡log

m Σ1-NEC( ,+,×).

Proof. The reduction C 7→ ((C × {0}) + {1}+ {2}) shows EC( ,+,×) ≡log
m EC( ,+,×) and

Σ1-EC( ,+,×) ≡log
m Σ1-NEC( ,+,×). By Lemma 2, it holds EC( ,+,×) ≤log

m MC( ,+,×)

and Σ1-NEC( ,+,×) ≤log
m MC( ,+,×).
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The reduction MC( ,+,×) ≤log
m EC( ,+,×) is as follows. On input (C, b) it computes the

numbers d = min{2n | n ≥ 1 and b < 2n} and e = 2d− b− 1, and returns the circuit C2, where

C1
df
= (((C + {e})× {0, 1}) + {1})× {0, 1} and

C2
df
= C1 × {2d}.

Note that the set {0, 1} is generated by {0}+ {1}. Moreover, the reduction is computable in
logarithmic space.

It remains to show b ∈ C if and only if C2 = ∅. Note that C1 = (C + {2d − b}) ∪ {0, 1}.
From d > b it follows that 2d − b ≥ d + 1 and hence 0, 1 ∈ C1 and 2, . . . , d /∈ C1. If b ∈ C,
then 2d = b + (2d − b) ∈ C1 and hence C2 = ∅, since 1 ∈ C1 and 1 ∈ {2d}. If C2 = ∅, then
C1 × {2d} = N 3 2d and hence 2d ∈ C1, since 2d is a power of two and no proper divisor of 2d
belongs to C1. Note that 2d ∈ C1 implies b ∈ C.

The same reduction shows Σ1-MC( ,+,×) ≤log
m Σ1-EC( ,+,×).

6.3 The Difficulty of EC(−,+,×) and EC(∪,∩,− ,+,×)

In Theorem 42 and Corollary 47 we showed that EC( ,+,×) is ≤log
m -hard for PSPACE and

EC(∪,∩, ,+,×, ) is ≤log
m -hard for LNEXP. By Theorem 44, both problems belong to Rtt(Σ1).

It is an open question whether these problems are decidable. This subsection explains the
difficulty of finding such decision algorithms.

Goldbach conjectured that every even integer greater than 2 is the sum of two primes. At
the time the conjecture was made 1 was considered to be prime, but later the opposite view
became accepted. Let P1 = P ∪ {1}. Below we formulate both variants, Goldbach’s original
conjecture (GC1) and the one that nowadays is called Goldbach’s conjecture (GC).

GC1 = ∀n ≥ 2 ∃p, q ∈ P1 [2n = p+ q]

GC = ∀n ≥ 2 ∃p, q ∈ P [2n = p+ q]

We define circuits that express the truth of these conjectures, where P1 stands for 1× 1, P
for 1× 1 ∩ 1, and {0, 1} for 0 + 1.

C1 = ((P1 + P1)× {0, 1}) + {0, 1}
C = P + P ∩ (2× {0, 1})

We show the following equivalences.

(i) GC1 is true if any only if C1 ∈ EC( ,+,×).

(ii) GC is true if and only if C ∈ EC(∪,∩, ,+,×, ).

If GC1 is true, then (P1 +P1)×{0, 1} ⊇ 2N and hence I(C1) = ∅. Assume that GC1 is false and
let n ≥ 2 such that 2n /∈ P1 +P1. This implies 2n−1 /∈ P1 +P1, since otherwise 2n−1 = 2+p for
some odd p ∈ P and hence 2n = 3+p ∈ P1+P1, which is a contradiction. So 2n−1, 2n /∈ P1+P1,
which implies 2n−1, 2n /∈ (P1+P1)×{0, 1} and hence 2n /∈ ((P1+P1)×{0, 1})+{0, 1}. Therefore,
C1 /∈ EC( ,+,×). This proves (i) and a similar argument shows (ii).

The equivalences (i) and (ii) tell us the following: If one finds decision algorithms for
EC( ,+,×) and EC(∪,∩, ,+,×) and proves them to be correct, then this solves Goldbach’s
conjectures, since the computation of the algorithm is a proof/refutation. Hence finding such
decision algorithms and proving their correctness is at least as difficult as solving Goldbach’s
conjecture.
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Even more confusing, it is possible that EC( ,+,×) and EC(∪,∩, ,+,×) are decidable, but
one cannot find and prove decision algorithms: Let us assume for the moment that GC and GC1

are independent of Zermelo–Fraenkel set theory (ZFC) with the usual definition of N within ZFC,
which is considered to be plausible by some researchers [Knu02]. This assumption implies that
GC and GC1 hold in elementary arithmetic (otherwise there are simple counterexamples refuting
the sentences [Aar03]), but we cannot prove them in ZFC. Moreover, the assumption implies
that no sentence of the form “the algorithm A decides EC(∪,∩, ,+,×) (resp., EC( ,+,×))”
can be proved in ZFC, since otherwise the computation of A on input C is a proof/refutation of
GC (resp., GC1). Still it is possible that sentences of the form “EC(∪,∩, ,+,×) is decidable”
are provable in ZFC. So in such a situation, there exist decision algorithms, but one cannot find
them and prove them to be correct.

The relationship to Goldbach’s conjecture suggests the difficulty of proving the decidability
of EC( ,+,×) and EC(∪,∩, ,+,×). It raises our main open question: Are these problems
decidable? By Proposition 48, the decidability of EC( ,+,×) is equivalent to the decidability
of MC( ,+,×). By Corollary 47, the decidability of EC(∪,∩, ,+,×) is equivalent to the
decidability of MC(∪,∩, ,+,×) and EQ(∪,∩, ,+,×).

6.4 Connection between Emptiness and Σ1-Emptiness

We show that the emptiness and the Σ1-emptiness problem are equivalent for the circuits
over {∩,+,×}, {∪,∩,+,×}, {∩,×}, and {∪,∩,×}, respectively. The proof exploits the fact
that the test of whether a multivariate polynomial with coefficients bounded by some constant
K is identically zero is possible by evaluating this polynomial for one fixed large argument
only dependent on K and the total degree of the polynomial. To obtain the assertion for
{∪,∩,+,×} and {∪,∩,×}, one additionally has to observe that this argument depends only on
the polynomial’s degree, but not on the number of its monomials.

As a corollary we obtain the equivalence of the emptiness, the Σ1-emptiness, and the non-
membership problem for {∩,+,×}-circuits. Moreover, we show Σ1-EC(∩,+,×) ∈ RP and the
coNEXP-completeness of Σ1-EC(∪,∩,+,×).

Along the way we also prove the equivalence of emptiness and Σ1-emptiness for circuits
over Z, which is important for the proof of Theorem 58 in Subsection 6.5. For this we define
the integer variants of MC(+,×), MC(∩,+,×), EC(∩,+,×), and Σ1- EC(∩,+,×). Given O ⊆
{∩,∪, ,+,×}, let

MCZ(O)
df
= {(C, b) | C is a completely assigned O-circuit such that the assigned

inputs have labels from Z and b ∈ I(C) }
ECZ(O)

df
= {C | C is a completely assigned O-circuit such that the assigned

inputs have labels from Z and I(C) = ∅ }
Σ1- ECZ(O)

df
= {C | C is a partially assigned O-circuit with unassigned inputs u1 <

· · · < un such that the assigned inputs have labels from Z and
there exist x1, . . . , xn ∈ Z such that I(C(x1, . . . , xn)) = ∅ }.

A systematic study of the membership problems MCZ(O) was done by Travers [Tra06].

Lemma 49 ([LV03]). Given a polynomial f(x1, . . . , xn) over R with total degree at most d, the
substitution xi 7→ x(d+1)i−1

has the property that f is identically zero on R if and only if the
new univariate polynomial is identically zero on R.

Theorem 50. 1. EC(∩,+,×) ≡log
m Σ1- EC(∩,+,×).

2. ECZ(∩,+,×) ≡log
m Σ1- ECZ(∩,+,×).
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3. EC(∪,∩,+,×) ≡log
m Σ1- EC(∪,∩,+,×).

4. EC(∩,×) ≡log
m Σ1- EC(∩,×).

5. EC(∪,∩,×) ≡log
m Σ1- EC(∪,∩,×).

Proof. It suffices to show the reductions from the right-hand to the left-hand sides. We argue
that these reductions are achieved by the same mapping described below.

Let C be a {∪,∩,+,×}-circuit with unassigned input gates g1, . . . , gk and assigned input
gates g′1, . . . , g

′
k′ . Let n − 1 denote the depth of C, i.e., the maximum number of nodes on a

path from an input node to the output node, which can be determined in logarithmic space by
a depth first search. Let ω = max({abs(α(g′i)) + 2 | i = 1, . . . , k′}). The reduction is given by

C 7→ Cn,ω, where Cn,ω is defined as follows: Let v = (v1, . . . , vk) where vi = ω2ni
. Define Cn,ω

as the circuit obtained from C by assigning (v1, . . . , vk) to (g1, . . . , gk) in such a way that the
large number vi is generated by the {×}-circuit which squares the number ω precisely ni times.
Observe that the mapping C 7→ Cn,ω is computable in logarithmic space.

Claim 51. 1. C ∈ Σ1- EC(∩,+,×) if and only if Cn,ω ∈ EC(∩,+,×).

2. C ∈ Σ1- ECZ(∩,+,×) if and only if Cn,ω ∈ ECZ(∩,+,×).

Proof of Claim 51. We only show the second statement, as the first one can be deduced simi-
larly. If Cn,ω ∈ ECZ(∩,+,×), then C ∈ Σ1- ECZ(∩,+,×), as is witnessed by v. It remains to
show the converse implication. So, suppose for the sake of contradiction that there is some C ∈
Σ1- ECZ(∩,+,×) such that I(Cn,ω) 6= ∅. By assumption, there exists w = (w1, . . . , wk) ∈ Zk
such that I(C(w)) = ∅. Let g be the first ∩-gate connected to the output gate that computes
the empty set in C(w), and let gl (resp., gr) be the left (resp., right) predecessor of g. Hence gl
and gr compute singletons {al} and {ar} in C(w) such that al 6= ar.

The number generated in gl (resp., gr) can be written as a multivariate polynomial pl (resp.,
pr) in g1, . . . , gk. These polynomials are obtained inductively by assigning one polynomial to
each gate: the univariate polynomial gi to the unassigned input gate gi, the constant polynomial
c to assigned input gates with label c ∈ Z, and the polynomial ql + qr (resp., ql · qr, ql) to a
+-gate (resp., ×-gate, ∩-gate), where ql (resp., qr) is the polynomial of the left (resp., right)
predecessor. Note that all gates above g compute non-empty sets. Hence the left and right
predecessors of each ∩-gate above g compute the same number, which shows that it does not
matter whether one chooses the polynomial of the left or right predecessor.

An induction shows that pl(w) = al and pr(w) = ar. Hence pl(w) 6= pr(w). Another
induction shows that pl and pr are of degree at most d = 2n − 1. Let p′l and p′r be the

polynomials obtained from pl and pr after the substitution gi → x(d+1)i−1
. The application of

Lemma 49 to the polynomial p = pl − pr shows that p is identically zero on R if and only if
p′

df
= p′l − p′r is identically zero on R. So by pl(w) 6= pr(w), p′ is not identically zero on R.

In the expanded form of pl and pr, the absolute values of the coefficients of the monomials are
less than ω2n−1

, which is shown by induction. Hence also the absolute values of the coefficients of
the expanded forms of p′l and p′r are less than ω2n−1

, because different monomials ge11 · · · g
ek
k and

g
e′1
1 · · · g

e′k
k remain different after the substitution gi → x(d+1)i−1

. So the absolute values of the

coefficients of p′ are less than 2 ·ω2n−1 ≤ ω2n . Observe that pl(v) = p′l(ω
2n) and pr(v) = p′r(ω

2n).
Thus p′(ω2n) = pl(v) − pr(v) = 0, since by assumption I(Cn,ω) 6= ∅ and hence pl(v) = pr(v).
Since p′ is not identically zero on R, it can be written as p′ = xj ·

∑r
i=0 aix

i for suitable j, r ∈ N
and ai ∈ Z such that −ω2n < ai < ω2n and a0 6= 0. From p′(ω2n) = 0 we obtain

∑r
i=0 aiω

i2n = 0.
Hence ω2n ·

∑r
i=1 aiω

(i−1)2n = −a0, which implies that the absolute value of a0 is ≥ ω2n . This
contradicts the above observation on the coefficients of p′.
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The claim proves the statements 1 and 2 of the theorem. It basically remains to argue that
the reduction Σ1- EC(∪,∩,+,×) ≤log

m EC(∪,∩,+,×) is achieved by the same function.
Consider an arbitrary {∪,∩,+,×}-circuit C = (V,E, gC , α) with unassigned input gates

g1, . . . , gk. We assume without loss of generality that the output gate of C is no ∪-gate (otherwise
add a new output gate which multiplies the former output gate with 1). Let D be the circuit
defined as follows: Fix t = |V | and let (h1, . . . , ht) be the elements of V such that for i < j
there is no edge from hi to hj . For i = 1, . . . , t do the following: If hi has outdegree ≥ 2, then
determine the outdegree s of hi and its successors u1, . . . , us. Then, for j = 2, . . . , s, delete the
edge from hi to uj , add a new node h with α(h) = α(hi) such that h has the same predecessors
as hi and there is an edge from h to uk.

Thus it holds by construction:

Claim 52. All nodes in D have outdegree 1, the depth of D is the same as the depth of C, and
for all x1, . . . , xk ∈ N one has I(C(x1, . . . , xk)) = I(D(x1, . . . , xk)).

Let w1, . . . , wm be the ∪-gates of D such that for i < j there is no edge from wi to wj . We
fix this ordering of the ∪-gates. Let π : {1, . . . ,m} → {l, r} be total and for any gate g in D, let
the left (resp., right) predecessor of g be denoted by gl (resp., gr). By successively modifying
D we define an {∩,+,×}-circuit Dπ: for i = 1, . . . ,m add an edge from (wi)π(i) to the unique
successor of wi and afterwards, delete wi and all edges it is incident with. Thus, we obtain an
{∩,+,×}-circuit Dπ whose depth is not greater than the depth of D.

Claim 53. Let x1, . . . , xk ∈ N. Then I(D(x1, . . . , xk)) = ∅ if and only if for every total
π : {1, . . . ,m} → {l, r} it holds I(Dπ(x1, . . . , xk)) = ∅.

Proof of Claim 53. “⇒”: Let π : {1, . . . ,m} → {l, r}. Note that Dπ contains all the gates
of D except for the ∪-gates. It can be shown inductively that for any gate g of Dπ it holds
I(g;Dπ(x1, . . . , xk)) ⊆ I(g;D(x1, . . . , xk)). Since both circuits have the same output gate the
proof of this direction is complete.

“⇐”: We show the contraposition. Hence assume I(D(x1, . . . , xk)) 6= ∅. Choose some
x ∈ I(D(x1, . . . , xk)). In the following we construct a map π : {1, . . . ,m} → {l, r} such that
x ∈ I(Dπ(x1, . . . , xk)):

1. Let U = {gD} where gD is D’s output node. For every gate g we establish an initially
undefined attribute g.no. Let gD.no = x.

2. While U is not empty:

(a) Extract a gate g from U and let y = g.no.

(b) Let gl (resp., gr) be the left (resp., right) predecessor of g. If g has no predecessor,
proceed with the next iteration of the loop.

(c) If g is a +-gate (resp., ×-gate):

• Choose y1 ∈ I(g1;D(x1, . . . , xk)) and y2 ∈ I(g2;D(x1, . . . , xk)) such that y1 +
y2 = y (resp., y1 · y2 = y).

• Let gl.no = y1 and gr.no = y2.

• Add gl and gr to U .

(d) If g is an ∩-gate:

• Let gl.no = y and gr.no = y.

• Add gl and gr to U .

(e) If g is a ∪-gate:
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• g = wj for some 1 ≤ j ≤ m.

• If y ∈ I(gl; I(D(x1, . . . , xk)), let π(j) = l, gl.no = y, and add gl to U . Otherwise
let π(j) = r, gr.no = y and add gr to U .

3. For all j for which π(j) has not been defined yet let π(j) = l.

4. Return π.

As all gates have outdegree at most 1, each gate is considered at most once. The attribute
g.no is defined for g if and only if g and Dπ’s output gate are connected in Dπ. Let g be
such a gate. Then it can be seen inductively that I(g;Dπ(x1, . . . , xk)) = {g.no} and hence
I(Dπ(x1, . . . , xk)) = {x}.

In the following we assume without loss of generality that the depths of all Dπ and D
are equal (otherwise multiply 1 to the output gate of Dπ for correspondingly many times).
Furthermore, for all circuits C, D, and Dπ, the assigned input gates are mapped onto the same
numbers respectively. Note that Claim 51 does not only hold for C but also for every {∩,+,×}-
circuit with the same depth and the same assigned inputs, i.e., in particular it holds for all Dπ.
Hence it holds

C ∈ Σ1- EC(∪,∩,+,×)

Claim 52⇔ D ∈ Σ1- EC(∪,∩,+,×)

Claim 53⇔ there are x1, . . . , xk such that for all π : {1, . . . ,m} → {0, 1}: Dπ(x1, . . . , xk) = ∅
Claim 51⇔ for all π : {1, . . . ,m} → {0, 1}: Dπ

n,ω ∈ EC(∩,+,×)

⇔ for all π : {1, . . . ,m} → {0, 1}: Dπ(ω2n , . . . , ω2kn) ∈ EC(∩,+,×)

Claim 53⇔ D(ω2n , . . . , ω2kn) ∈ EC(∪,∩,+,×)

Claim 52⇔ C(ω2n , . . . , ω2kn) ∈ EC(∪,∩,+,×)

⇔ Cn,ω ∈ EC(∪,∩,+,×),

which proves the third statement.

We recall that the reduction presented at the beginning of the proof modifies an input
circuit without adding gates of the type ∪ or +. Hence as {∩,×}- and {∪,∩,×}-circuits are
specific {∪,∩,+,×}-circuits, the same reduction shows that the fourth and fifth statement hold
as well.

Corollary 54. EC(∩,+,×) ≡log
m Σ1- EC(∩,+,×) ≡log

m MC(∩,+,×) ≡log
m EQ(+,×).

Proof. MC(∩,+,×) ≡log
m EQ(+,×) was shown by McKenzie and Wagner [MW07]. The remain-

ing equivalences follow from Lemma 2 and Theorem 50.

Corollary 55. 1. Σ1-EC(∩,+,×) ∈ RP.

2. Σ1-EC(∪,∩,+,×) is ≤log
m -complete for coNEXP.

Proof. The first statement follows from Corollary 54 and MC(∩,+,×) ∈ coRP [MW07]. The
second one follows from Theorem 50 and Corollary 3.

Theorem 50 directly implies some results which actually belong to Section 5.
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Corollary 56. 1. Σ1-EC(∩,×) ∈ P.

2. EC(∩,×) ≡log
m Σ1- EC(∩,×) ≡log

m MC(∩,×).

Proof. Follows from Lemma 2 and MC(∩,×) ∈ P [MW07].

Corollary 56 shows the equivalence of EC(∩,×), Σ1- EC(∩,×), and MC(∩,×). Therefore,
improving the non-matching bounds for EC(∩,×) is as difficult as improving the bounds for
MC(∩,×), which is an open problem from [MW07].

Corollary 57. Σ1-EC(∪,∩,×) is ≤log
m -complete for PSPACE.

Proof. Follows from Theorem 21 and Theorem 50.

6.5 Connection to Polynomial Identity Testing

According to the previous section, the problems EC(∩,+,×), Σ1- EC(∩,+,×), EQ(+,×), and
MC(∩,+,×) are equivalent. We extend this list by adding ECZ(∩,+,×), Σ1- ECZ(∩,+,×),
MCZ(∩,+,×), MCZ(+,×), and PIT. This connection to PIT is especially interesting as it
explains the difficulty of several open questions, namely the non-matching lower and upper
bounds of MC(∩,+,×) in [MW07], MCZ(∩,+,×) and MCZ(+,×) in [Tra06], and EQ(+,×) in
[GHR+10]. In addition, this connection settles the question for the complexity of EC(∩,+,×)
and Σ1- EC(∩,+,×).

PIT (polynomial identity testing) is the following problem: For a given integer circuit con-
sisting of input gates associated with variables/constants from Z and internal gates for addi-
tion/multiplication over Z, one has to decide whether the polynomial described by the circuit is
identically zero or not. The term identically zero means that the polynomial must be formally
zero, i.e., if we write it as a linear combination of monomials with coefficients from Z, then all
coefficients are zero. For the ring Z this is equivalent to requiring that the polynomial is zero
on Z. (For other rings this makes a difference: for example over F2, the polynomial x2 + x is
not identically zero, although it is zero on F2.) Formally, we can define PIT as the following
problem concerning {+,×}-circuits over Z.

PIT
df
= {C | C is a {+,×}-circuit with unassigned inputs u1 < · · · < un

such that the assigned inputs have labels from Z and for all
x1, . . . , xn ∈ Z it holds that I(C(x1, . . . , xn)) = {0} }

It is known that PIT ∈ coRP [IM83], but proving the exact complexity of PIT is considered
as one of the greatest challenges in algebraic computing complexity [Sax09] and theoretical
computer science in general [SY10]. This fundamental problem has many applications, e.g., a
deterministic primality test [AKS04]. For further background on PIT we refer to the articles
[Sax09, SY10, Sax13, KL15].

The equivalence to PIT shows that EC(∩,+,×), Σ1- EC(∩,+,×), and each of the open
questions from [MW07, Tra06, GHR+10] that were mentioned above is just a reformulation of a
well-studied, major open question in algebraic computing complexity. Moreover, Kabanets and
Impagliazzo [KI04] substantiate the hardness of obtaining subexponential or even polynomial-
time algorithms for PIT by showing that it implies that NEXP 6⊂ P/poly or the permanent is
not computable by polynomial size arithmetic circuits over Q with divisions. Both statements
are expected to be difficult to prove.

Theorem 58. EC(∩,+,×) ≡log
m MC(∩,+,×) ≡log

m EQ(+,×) ≡log
m PIT ≡log

m ECZ(∩,+,×).
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Figure 1: Subcircuits Ck+1 that replace gates of the type +, ∩, or × in the proof of Theorem 58,
where the direction of the edges is top-down. By Claim 59, the numbers k − 3, k, k − i, k − j,
k + 1 − i, and k + 1 − 2k are generated by subcircuits that can be constructed in logarithmic
space.

Proof. By Corollary 54 it holds EC(∩,+,×) ≡log
m MC(∩,+,×) ≡log

m EQ(+,×). Moreover,

EQ(+,×) ≤log
m PIT via (C1, C2) 7→ (C1 + (C2 × {−1})), since for {+,×}-circuits C1 and C2 it

holds I(C1) = I(C2) if and only if I((C1 +(C2×{−1}))) = {0}. This shows EQ(+,×) ≤log
m PIT.

Note that PIT ≤log
m Σ1- ECZ(∩,+,×) via the reduction C 7→ C ∩ {0}. By Theorem 50, this

implies PIT ≤log
m ECZ(∩,+,×).

It remains to show ECZ(∩,+,×) ≤log
m EC(∩,+,×). Let C be an {∩,+,×}-circuit without

unassigned inputs and with assigned inputs having labels from Z. Without loss of generality,
we may assume that there is exactly one input gate g1 and that this gate has the label −1 (if
not, we can construct an equivalent circuit with this property in logarithmic space). Moreover,
for i ∈ N let i = 23i .

We convert C into a circuit C ′ over N, which simulates the computation of C such that
each value computed in C is represented by two positive numbers. More precisely, each gate gi
in C is simulated by a subcircuit Ci, which has two output gates g+

i and g−i . A value v ∈ Z
computed in gi is represented by the numbers i+ v and i− v computed in g+

i and g−i . We will
argue that both numbers are positive.

We will use the following claim to construct in logspace in the size of C certain terms
involving i.
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Claim 59. There exists a logspace machine that on input 2i and 2j, where 1 ≤ i ≤ j, constructs
{+,×}-circuits over N that compute the numbers i− 3, i− 1, i, j − i, and i+ 1− 2i.

Proof of Claim 59. Consider a {+,×}-circuit computing the polynomial p(x) = (x + 3)2(x +
2) + (x + 5)(x + 1) + 1 and observe that p(y − 3) = y + 1 − 3 for all y ∈ N. The repeated
application of this circuit yields one for i − 3. By adding 2 and 3 we obtain circuits for i − 1
and i respectively.

Now consider a {+,×}-circuit computing the polynomial q(x) = (x+1)(x+2)x and observe
that q(y − 1) = y + 1 − y for all y ∈ N. With this circuit we can build another one that first
computes i − 1, i+ 1 − 1, . . . , j − 1 − 1 as above, then i+ 1 − i, i+ 2 − i+ 1, . . . , j − j − 1 by
applying q, and finally

∑j−1
k=i k + 1− k = j − i.

Let r(x) = (x + 3)(x + 5)(x + 1) + 2(x + 3) and observe that r(i − 3) = i+ 1 − 2i. This
yields a {+,×}-circuit for i+ 1− 2i by first computing i− 3 as above and then applying r.

We inductively convert C into C ′: The assigned input gate g1 with label −1 is replaced by
a subcircuit C1 that consists of the gates g+

1 and g−1 with labels 1 + (−1) = 7 and 1− (−1) = 9.
Every +-gate, ×-gate, or ∩-gate gk+1 (k ≥ 1) with predecessors gi and gj is replaced by the
corresponding subcircuit Ck+1 shown in Figure 1. Finally, if gs is the output gate of C, then
g+
s is the output gate of C ′.

The construction of C ′ is possible in logarithmic space, since by Claim 59, the subcircuits
Ck can be constructed in logarithmic space. Moreover, all numbers computed in C ′ are positive,
since the two input gates have positive labels and we use only gates of the type ∩, +, or ×.

Claim 60. For every gate gk in C it holds that I(g+
k ) = k + I(gk) and I(g−k ) = k − I(gk).

Proof of Claim 60. The claim is proved by induction on the structure of the circuit. For the
assigned input gate g1 the claim holds by the definition of g+

1 and g−1 , which yields the induction
base.

For a +-gate gk+1 with predecessors gi and gj we obtain

I(g+
k+1) = I(g+

i ) + I(g+
j ) + (k − i) + (k − j) + (k + 1− 2k)

= I(gi) + I(gj) + i+ j + k − i+ k − j + k + 1− 2k = k + 1 + I(gk+1)

and analogously I(g−k+1) = k + 1− I(gk+1).
For a ×-gate gk+1 with predecessors gi and gj we obtain

I(g+
k+1) = (I(g+

i ) + k − i)(I(g+
j ) + k − j) + k(I(g−i ) + k − i) + k(I(g−j ) + k − j) + k

2
(k − 3)

= (I(gi) + k)(I(gj) + k) + k(2k − I(gi)− I(gj)) + k
2
(k − 3)

= I(gi)I(gj) + k(I(gi) + I(gj)) + k
2

+ 2k
2 − k(I(gi) + I(gj)) + k

3 − 3k
2

= k
3

+ I(gi)I(gj) = k + 1 + I(gk+1)

and

I(g−k+1) = (I(g−i ) + k − i)(I(g+
j ) + k − j) + k(I(g+

i ) + k − i) + k(I(g−j ) + k − j) + k
2
(k − 3)

= (k − I(gi))(k + I(gj)) + k(2k + I(gi)− I(gj)) + k
2
(k − 3)

= k
2

+ k(I(gj)− I(gi))− I(gi)I(gj) + 2k
2 − k(I(gj)− I(gi)) + k

3 − 3k
2

= k
3 − I(gi)I(gj) = k + 1− I(gk+1).
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For an ∩-gate gk+1 with predecessors gi and gj we obtain

I(g+
k+1) = (I(g+

i ) + (k + 1− i)) ∩ (I(g+
j ) + (k + 1− j))

= (I(gi) + k + 1) ∩ (I(gj) + k + 1)

= k + 1 + (I(gi) ∩ I(gj)) = k + 1 + I(gk+1)

and analogously I(g−k+1) = k + 1− I(gk+1).

The claim implies ECZ(∩,+,×) ≤log
m EC(∩,+,×) via C 7→ C ′.

Corollary 61. MCZ(∩,+,×) ≡log
m MCZ(+,×) ≡log

m PIT.

Proof. We have MCZ(∩,+,×) ≤log
m ECZ(∩,+,×) via (C, b) 7→ C ∩ {b}. By Theorem 58,

ECZ(∩,+,×) ≤log
m EQ(+,×). Note that EQ(+,×) ≤log

m MCZ(+,×) via (C1, C2) 7→ (C1 +
({−1} × C2), 0).

Hence MCZ(∩,+,×) ≡log
m MCZ(+,×) ≡log

m ECZ(∩,+,×). By Theorem 58, ECZ(∩,+,×) ≡log
m

PIT.

Corollary 62. EC(∩,+,×) ≡log
m Σ1- EC(∩,+,×) ≡log

m ECZ(∩,+,×) ≡log
m Σ1- ECZ(∩,+,×) ≡log

m

PIT.

Proof. Follows from the Theorems 50 and 58.

6.6 EQ(∩,+,×) versus PIT

When looking at Theorem 58 one must ask the question of whether EQ(∩,+,×) can be added,
i.e., whether EQ(∩,+,×) is equivalent to PIT. We show that this is unlikely. More precisely,

we prove that EQ(∩,+,×) is ≤log
m -complete for PIT ∨ coPIT , which is the complement of the

second level of the difference hierarchy [KSW87] over PIT . We already know that EQ(+,×) is

≤log
m -complete for PIT . Therefore, if EQ(∩,+,×) ≡log

m PIT, then PIT = PIT ∨ coPIT and

hence PIT ≡log
m PIT ∈ RP ⊆ NP. Kabanets and Impagliazzo [KI04] show that PIT ∈ NP is

unlikely, since it implies NEXP ∩ coNEXP 6⊂ P/poly or the permanent is not computable by
polynomial-size arithmetic circuits over Q with divisions. This also explains the difficulty of
improving the upper bound for EQ(∩,+,×) from BPP [GHR+10] to coRP or even P (since this

implies PIT ≤log
m EQ(∩,+,×) ∈ coRP).

Definition 63. PIT df
=Rlog

m (PIT).

Lemma 64. 1. PIT ∨ PIT = PIT .

2. coPIT ∧ coPIT = coPIT .

Proof. Note that in both cases ⊇ holds by definition.
1. Let A,B ∈ PIT . Thus there are f, g ∈ FL such that A ≤log

m PIT via f and B ≤log
m PIT

via g. Consider the FL-function x 7→ f(x) · g(x). As Z[x1, . . . , xn] for any n does not contain
any zero divisors it holds that f(x) · g(x) computes the polynomial identically zero if and only
if one of the polynomials computed by f(x) and g(x) is identically zero.

Thus A ∪B ≤log
m PIT ∈ PIT .

2. Let A,B ∈ coPIT . Then A,B ∈ PIT . According to 1. it holds A ∪ B ∈ PIT . Hence

A ∪B = A ∩B ∈ coPIT . This shows coPIT ∧ coPIT ⊆ coPIT .
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Lemma 65. {(C1, C2) | C1 ∈ EC(∩,+,×) or C2 /∈ EC(∩,+,×)} is ≤log
m -complete for PIT ∨

coPIT .

Proof. Due to Theorem 58 it holds {(C1, C2) | C1 ∈ EC(∩,+,×) or C2 /∈ EC(∩,+,×)} ≡log
m

{(x, y) | x ∈ PIT or y /∈ PIT} and therefore, it suffices to show that {(x, y) | x ∈ PIT or y /∈
PIT} is ≤log

m -complete for PIT ∨coPIT . Let A ∈ PIT ∨coPIT . Then there are B ∈ PIT and

C ∈ coPIT such that A = B ∪ C. Hence B ≤log
m PIT via some FL-function f and C ≤log

m PIT
via some FL-function g. Thus x 7→ (f(x), g(x)) shows A ≤log

m {(x, y) | x ∈ PIT or y /∈ PIT}.
Furthermore {(x, y) | x ∈ PIT or y /∈ PIT} ∈ PIT ∨ coPIT because {(x, y) | x ∈

PIT or y /∈ PIT} = {(x, y) | x ∈ PIT}∪{(x, y) | y /∈ PIT} where {(x, y) | x ∈ PIT} ∈ PIT and
{(x, y) | y /∈ PIT} ∈ coPIT .

Proposition 66. EQ(∩,+,×) is ≤log
m -complete for PIT ∨ coPIT .

Proof. We first show EQ(∩,+,×) ∈ PIT ∨ coPIT . Since each {∩,+,×}-circuit computes
either a singleton set or the empty set, a pair (C1, C2) of {∩,+,×}-circuits is in EQ(∩,+,×) if
and only if one of the following two conditions holds:

• C1 ∩ C2 /∈ EC(∩,+,×)

• C1, C2 ∈ EC(∩,+,×).

Hence

EQ(∩,+,×) = {(C1, C2) | C1 ∩ C2 /∈ EC(∩,+,×)}︸ ︷︷ ︸
=:A

∪{(C1, C2) | C1, C2 ∈ EC(∩,+,×)}︸ ︷︷ ︸
=:B

,

where according to Theorem 58 A ∈ PIT and B = {(C,C ′) | C ∈ EC(∩,+,×)} ∩ {(C,C ′) |
C ′ ∈ EC(∩,+,×)} ∈ coPIT ∧ coPIT Lemma 64

= coPIT .

We show {(C1, C2) | C1 ∈ EC(∩,+,×) or C2 /∈ EC(∩,+,×)} ≤log
m EQ(∩,+,×) via the

FL-function (C1, C2) 7→ (0 × C1, 0 × (C1 + C2)). If C1 ∈ EC(∩,+,×), then both 0 × C1 and
0× (C1 + C2) compute ∅. If C1 /∈ EC(∩,+,×), then we distinguish two cases:

• C2 ∈ EC(∩,+,×): then 0×C1 computes the set {0} whereas 0× (C1 +C2) computes the
empty set.

• C2 /∈ EC(∩,+,×): then 0× C1 and 0× (C1 + C2) both compute the set {0}.

7 Conclusions and Open Questions

The results of this paper are summarized in Figure 2. For most of the emptiness problems it
was possible to precisely characterize their complexity, while in some cases the lower and upper
bounds do not match.

Our results provide new insights and improved complexity bounds for the following prob-
lems: MC(∪,∩, ,+,×),MC(∩,+,×) studied in [MW07], MCZ(+,×),MCZ(∩,+,×) studied in
[Tra06], and EQ(∪,∩, ,+,×),EQ(+,×),EQ(∩,+,×) studied in [GHR+10].

The main open problem is to improve the bounds for EC( ,+,×) and EC(∪,∩, ,+,×).
Here the state of knowledge is as follows:
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O EC l.b. EC u.b. Σ1-EC l.b. Σ1-EC u.b. Π1-EC l.b. Π1-EC u.b.

∩ NL, 7 NL NL NL, 7 NL NL, 7

∪ ∩ P, 8 P P P, 8 P P, 8

∩ + coC=L, 11 coC=L coC=L coC=L, 11 coNP, 20 coNP, 20

∩ × coC=L, 11 P coC=L P, 56 coNP, 14 coNP, 14

+ PSPACE, 42 PSPACE PSPACE 2EXPSPACE PSPACE 2EXPSPACE

× PSPACE, 42 PSPACE PSPACE 3EXPSPACE PSPACE 3EXPSPACE

∪ ∩ P P, 8 NP, 10 NP, 10 coNP, 10 coNP, 10

∪ ∩ + PSPACE, 21 PSPACE PSPACE PSPACE, 21 PSPACE PSPACE, 21

∪ ∩ × PSPACE, 21 PSPACE PSPACE PSPACE, 57 PSPACE PSPACE, 21

∩ + × coPIT , 58 coPIT coPIT coPIT , 62 Π1, 44 Π1

+ × PSPACE Rtt(Σ1) Σ1, 44 Σ2 Π1, 44 Π2

∪ ∩ + PSPACE PSPACE, 30 PSPACE 2EXPSPACE, 31 PSPACE 2EXPSPACE, 31

∪ ∩ × PSPACE PSPACE, 30 PSPACE 3EXPSPACE, 31 PSPACE 3EXPSPACE, 31

∪ ∩+× coNEXP, 3 coNEXP coNEXP coNEXP, 55 Π1 Π1, 44

∪ ∩ +× LNEXP, 47 Rtt(Σ1), 44 Σ1 Σ2, 44 Π1 Π2, 44

Figure 2: Upper bounds mean membership in the class, lower bounds stand for ≤log
m -hardness

for the class. Numbers refer to results in this paper. Gray cells do not contain references, since
by Proposition 6 these results are obtained from white cells. Subsets O that are missing in
the first column either correspond to trivial problems (Proposition 4) or can be transformed by
De Morgan’s law to an equivalent subset (Proposition 5). PIT is the class of problems that
are logspace many-one reducible to polynomial identity testing, which is a well-studied problem
in algebraic computing complexity. It is known that P ⊆ PIT ⊆ coR and it is a major open
problem to improve these bounds.

1. Both problems are equivalent to problems studied in [MW07, GHR+10]. More pre-

cisely, EC( ,+,×) ≡log
m MC( ,+,×) and EC(∪,∩, ,+,×) ≡log

m MC(∪,∩, ,+,×) ≡log
m

EQ(∪,∩, ,+,×). (Corollary 47, Proposition 48)

2. Finding a decision algorithm is at least as difficult as solving Goldbach’s conjecture.
(Subsection 6.3)

3. The problems are either decidable or outside Σ1 ∪Π1. (Proposition 46)

4. The problems are ≤m-hard for Σ1 if and only if they are ≤m-complete for Rtt(Σ1).
(Corollary 47)

Another open problem is to improve the complexity bounds whenever we have 2EXPSPACE
or 3EXPSPACE as upper bounds. The latter are consequences of the decidability of the
Presburger and Skolem arithmetic. It is possible that more specific proof techniques can
improve these bounds. By Lemma 2, Π1-EC(∪,∩, ,×) is equivalent to the complement of
Σ1-MC(∪,∩, ,×), which has already been investigated in [GRTW10, GJM16].

A third open problem is to improve the bounds for EC(∩,×) and Σ1-EC(∩,×). Both
problems are equivalent to MC(∩,×), which has already been studied in [MW07].

Acknowledgements: We thank Klaus Reinhardt for sharing an unpublished proof of the
PSPACE-hardness of MC( ,×) (Corollary 36), which we slightly adapted to show the PSPACE-
hardness of MC+( ,+) (Lemma 34), and for helpful discussions on the PSPACE-hardness of
MC( ,+). Moreover, we thank Jakob Sigmund for helpful discussions and contributions to the
proof of Lemma 41.
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