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Abstract

We prove a randomized communication-complexity lower bound for a composed function —
OrderedSearch ◦ IP — by lifting the randomized query-complexity lower-bound of OrderedSearch
to the communication-complexity setting. We do this by extending ideas from a paper of Raz
and Wigderson [RW89]. We think that the techniques we develop will be useful in proving a
randomized simulation theorem.

We also generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any
inner-function which satisfies certain hitting property. We prove that IP satisfies this property,
and as a corollary we obtain deterministic simulation theorem for an inner-function gadget with
logarithmic block-size with respect to the arity of the outer function. This answers an open
question posed by Göös, Pitassi and Watson [GPW15]. Our result also implies the previous
results for the Indexing inner-function.
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1 Introduction

A very basic problem in computational complexity is to understand the complexity of a composed
function in terms of the complexities of the two simpler functions f and g used for the composition.
For concreteness, we consider f : {0, 1}p → Z and g : {0, 1}m → {0, 1} and denote the composed
function as f ◦ gp : {0, 1}mp → Z. The special case of Z being {0, 1} and f the XOR function has
been the focus of several works [Yao82, Lev87, Imp95, Sha03, LSS08, VW08, She12b], commonly
known as XOR lemmas. Another special case is when f is the trivial function that maps each
point to itself. This case has also been widely studied in various parts of complexity theory
under the names of ‘direct sum’ and ‘direct product’ problems, depending on the quality of the
desired solution [JRS03, BPSW05, HJMR07, JKN08, Dru12, Pan12, JPY12, JY12, BBCR13,
BRWY13a, BRWY13b, BBK+13, BR14, KLL+15, Jai15]. Making progress on even these special
cases of the general problem in various models of computation are outstandingly open.

While no such general theorems are known, there has been some progress in communication
complexity setting. In this setting the input for g is split between two parties, Alice and Bob. A
particular case of progress from a few years ago is the development of the pattern matrix method
by Sherstov [She11] and the closely related block-composition method of Shi and Zhu [SZ09],
which led to a series of interesting developments [Cha07, LSS08, CA08, She12a, She13, RY15]
resolving several open problems. In both these methods, the relevant analytic property of the
outer function is approximate degree. While the pattern-matrix method entailed the use of
a special inner function, the block-composition method, further developed by Chattopadhyay
[Cha09], Lee and Zhang [LZ10] and Sherstov [She12a, She13], prescribed the inner function to
have small discrepancy. These methods are able to lower bound the randomized communication
complexity of f ◦ gp essentially by the product of the approximate degree of f and the logarithm
of the inverse of discrepancy of g.

The following simple protocol is suggestive: Alice and Bob try to solve f using a decision tree
(randomized/deterministic) algorithm. Such an algorithm queries the input bits of f frugally.
Whenever there is a query, Alice and Bob solve the relevant instance of g by using the best
protocol for g. This allows them to progress with the decision tree computation of f , yielding
(informally) an upper bound of Mcc

(
f ◦ gp

)
= O(Mdt

(
f
)
· Mcc

(
g
)
), where M could be the

deterministic or randomized model and Mdt denotes the decision tree complexity. A natural
question is if the above upper bound is essentially optimal. The case when both f and g are
XOR clearly shows that this is not always the case.

In a remarkable work, Raz and McKenzie [RM99] showed that this näıve upper bound is
always optimal for deterministic protocols, when g is the Indexing function (IND), provided
the gadget size is polynomially large in p. This theorem was the main technical workhorse of
Raz and McKenzie to famously separate the monotone NC hierarchy. The work of Raz and
McKenzie was recently simplified and built upon by Göös, Pitassi and Watson [GPW15] to
solve a longstanding open problem in communication complexity. In line with [GPW15], we
call such theorems simulation theorems, because they explicitly construct a decision-tree for f
by simulating a given protocol for f ◦ gp. More recently, de Rezende, Nordström and Vinyals
[dRNV16] port the above deterministic simulation theorem to the model of real communication,
yielding new trade-offs for the measures of size and space in the cutting planes proof system.

In another recent work, Göös et.al. [GLM+15] proved, using different techniques, that
whenever g satisfies a certain 2-source extractor property, which the Inner-product function (IP)
does, simulation theorems in other models of communication (e.g. non-deterministic) can be
proven. This also has found several applications (see [GJ16, ABB+16] for example). Despite this
progress, no simulation theorem is known for the fundamental model of bounded-error randomized
communication complexity. While we do not attain this goal here, we make interesting progress
by developing new techniques and identifying some key natural properties of the inner function
g that we believe should enable proving such randomized simulation theorems in the future.

To make progress, we let f = OSp be a natural partial outer-function that we call ‘ordered
search’, and which is defined as follows: consider p-bit inputs that are promised to be of the
form 1i0p−i for some 1 ≤ i < p; then OSp(1

i0p−i) = i. It is not hard to show that a decision
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tree implementing binary search, of cost log p, is optimal even in the randomized case. Hence
OSp ◦ gp may also be solved by simulating binary search — but it is not at all clear if this is the
best possible strategy for a communication protocol. In particular, the approximate-degree-based
composition-theorems can be currently made to yield only a lower bound of Ω(n ·

√
log p) on

the randomized communication complexity. This uses the fact that OSp is known to have
approximate degree Ω

(√
log p

)
[Buh16] and IPn (the Inner-product on n bits) has discrepancy

2−Ω(n) [CG88]. The techniques of Göös et.al. [GLM+15] also do not seem to give any non-trivial
bound for the following reason: all decision-tree models considered in [GLM+15] are at least as
powerful as non-deterministic decision trees with unique witnesses. It is simple to verify that
the query-complexity of OS for such non-deterministic decision-trees is O(1), preventing the
application of main result in [GLM+15] to get a tight bound for OSp ◦ IPpn.

Exploiting the fact that small rectangular discrepancy implies a certain equi-distribution
property that we call regularity, and a certain other structural property of IP which we will
describe later, our main result shows the following:

Theorem 1.1. The bounded-error randomized communication complexity of OSp ◦ IPpn is
Θ (n log p), when n = Ω(log p).

The proof of this theorem heavily builds upon a relatively less known work of Raz and
Wigderson [RW89] which proved lower bounds on the randomized communication complexity of
a certain communication game that is derived from the monotone Karchmer-Wigderson game
corresponding to s-t connectivity problem in graphs. As we will provide more details later, our
proof uses properties of IP to directly “lift” the simple proof of the randomized decision-tree
complexity of Ordered Search to the more sophisticated model of 2-party communication. This
is one of the main reasons for us to believe that the proof technique and the concerned properties
of IP are likely to enable proving a randomized simulation theorem. This intuition seems to be
further corroborated by the following fact: we show that a natural weakening of the properties of
IP used to prove Theorem 1.1 is sufficient to yield the following deterministic simulation theorem.

Theorem 1.2. Let p ≤ 2n/10 and f : {0, 1}p → Z, where Z is any domain. Then,

Dcc
(
fp ◦ IPpn

)
= Θ

(
Ddt
(
f
)
· n
)
.

This is the first deterministic simulation theorem with logarithmic gadget size, while that
in Raz-McKenzie needed a polynomial size gadget. This answers a problem raised by both
Göös-Pittasi-Watson [GPW15] and Göös et.al. [GLM+15] of proving a Raz-McKenzie style
deterministic simulation theorem for a different inner function than Indexing with a better
gadget size. Moreover, it is not hard to verify that an IP instance easily embeds in Indexing by
exponentially blowing up the size. This enables us to also re-derive the original Raz-McKenzie
simulation theorem for the Indexing function, even attaining significantly better parameters.
That answers a question posed to us recently by Jakob Nordström [Nor16].

One aspect of the previous work of [GLM+15] is that they consider a protocol of cost C
as a partition of the universe into at most 2C rectangles, and a decision tree of height C as
a partition of the universe into at most 2C sub-cubes. But deterministic (and randomized)
protocols and decision trees induce very special partitions. To extract a more restricted object
like a deterministic (or randomized) decision tree for f from a protocol for f ◦ gp, it thus seems
very important to use the special structure of a deterministic (or randomized) communication
protocol. This is what we focus on in our work. We discuss the special properties of IP that
allow us to do this in the follow-up sections.

1.1 Our techniques

1.1.1 Deterministic simulation theorem from a hitting property

It will be convenient for us to begin the discussion in the deterministic setting, because it is
technically simpler. Here the main tool for us is to use the general framework of the Raz-McKenzie
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theorem as used by Göös-Pittasi-Watson [GPW15]. On input z ∈ {0, 1}p for f we will simulate
(in our head) the communication protocol for f ◦ gp on inputs that are consistent with queries
to z made so far. Namely, we will maintain a rectangle A×B ⊆ {0, 1}n×p × {0, 1}n×p so that
for any (x, y) ∈ A × B, gp(x, y) is consistent with z on coordinates that were queried. We
will progress through the protocol with our rectangle A × B from the root to a leaf. As the
protocol progresses, A×B shrinks according to the protocol while our goal is to maintain the
consistency requirement. For that we need that inputs in A×B allow for all possible answers of
g on coordinates not queried, yet. Hence A×B needs to be rich enough, and we are choosing a
path through the protocol that affects this richness the least. If the protocol forces us to shrink
the rectangle A×B so that we may not be able to maintain the richness condition, we query
another coordinate of z to restore the richness. Once we reach a leaf of the protocol we learn a
correct answer for f(z), because there is an input (x, y) ∈ A×B on which gp(x, y) = z (since we
preserved consistency) and all inputs in A×B give the same answer for f ◦ gp,

The technical property of A × B that we will maintain and which guarantees the nec-
essary richness is called thickness. A × B is thick on the i-th coordinate if for each input
pair (x, y) ∈ A × B, even after one gets to see all the coordinates of x and y except for
xi and yi, the uncertainty of what appears in the ith coordinate remains large enough so
that g(xi, yi) can be arbitrary. Let us denote by ExtiA(x1, . . . , xi−1, xi+1, . . . , xp) the set of
possible extensions xi such that 〈x1, . . . , xp〉 ∈ A. We define ExtiB(y1, . . . , yi−1, yi+1, . . . , yp)
similarly. If for a given x1, . . . , xi−1, xi+1, . . . , xp and y1, . . . , yi−1, yi+1, . . . , yp we know that

ExtiA(x1, . . . , xi−1, xi+1, . . . , xp) and ExtiB(y1, . . . , yi−1, yi+1, . . . , yp) are of size at least 2( 1
2 +ε)n

then for g = IPn we know that there are extensions xi ∈ ExtiA(x1, . . . , xi−1, xi+1, . . . , xp) and
yi ∈ ExtiB(y1, . . . , yi−1, yi+1, . . . , yp) such that IPn(xi, yi) = zi. Hence, we say that A × B is
τ -thick if ExtiA(x1, . . . , xi−1, xi+1, . . . , xp) and ExtiB(y1, . . . , yi−1, yi+1, . . . , yp) are of size at least
τ · 2n (or empty), for every choice of i and x1, . . . , xp, y1, . . . , yp.

So if we can maintain the thickness of A×B, we maintain the necessary richness of A×B.
It turns out that this is indeed possible using the technique of Raz-McKenzie and Göös-Pittasi-
Watson. Hence as we progress through the protocol we maintain A×B to be τ -thick and dense.
Once the density of either A or B drops below certain level we are forced to make a query to
another coordinate of z. Magically, that restores the density (and thus thickness) of A × B
on coordinates not queried. (An intuitive reason is that if the density of extensions in some
coordinate is low then the density in the remaining coordinates must be large.)

We capture the property of IPn that allows this type of argument to work for other functions
g as follows. For δ ∈ (0, 1) and integer h ≥ 1 we say that g has (δ, h)-hitting monochromatic
rectangle distributions if there are two distributions σ0 and σ1 where for each c ∈ {0, 1}, σc is
a distribution over c-monochromatic rectangles U × V ⊂ {0, 1}n × {0, 1}n (i.e., g(u, v) = c on
every pair (x, y) ∈ U × V ), such that for any set X × Y ⊂ {0, 1}n × {0, 1}n of sufficient size, a
rectangle randomly chosen according to σc will intersect X × Y with large probability. More
precisely, for any c ∈ {0, 1} and for any X × Y with |X|/2n, |Y |/2n ≥ 2−h,

Pr
(U×V )∼σc

[(U × V ) ∩ (X × Y ) 6= ∅] ≥ 1− δ.

If such distributions σ0 and σ1 exist, we say that g has (δ, h)-hitting monochromatic rectangle-
distributions. We then prove the following:

Theorem 1.3. If g has (δ, h)-hitting monochromatic rectangle-distributions, δ < 1/6, and

p ≤ 2
h
2 , then

Ddt(f) ≤ 5

h
· Dcc(f ◦ g p).

We prove this general theorem and then establish that IP over n-bits has (o(1), n5 )-hitting
rectangle-distributions. This immediately yields Theorem 1.2.

The σ0 distribution for IPn is picked as follows: To produce a rectangle U × V we sample
uniformly at random a linear sub-space V ⊆ Fn2 of dimension n/2 and we set U = V ⊥ to be the
orthogonal complement of V . Since a random vector space of size 2n/2 hits a fixed subset of
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{0, 1}n of size 2( 1
2 +ε)n with probability 1−O(2−εn), and both U and V are random vector spaces

of that size, U × V intersects a given rectangle X × Y with probability 1−O(2−εn). Hence, we
obtain (O(2−εn), ( 1

2 + ε)n)-hitting distribution for IP. For the 1-monochromatic case, we first
pick a random a ∈ Fn2 of odd hamming weight and them pick random V and U = V ⊥ inside of
the orthogonal complement of a. The distribution σ1 outputs the 1-monochromatic rectangle
(a+ V )× (a+ U), and will have the required hitting property.

1.1.2 A randomized simulation theorem from a pseudo-random property?

How could we extend our result for deterministic communication complexity and decision trees to
randomized communication and randomized decision trees? A natural way to prove the equivalent
of Theorem 1.3 in randomized setting would be to use Yao’s principle and prove Theorem 1.3 in
distributional setting. For that a single input in A×B consistent with z would not be enough
and we would need a more robust property. Interestingly, for IP, the (δ, h)-hitting monochromatic
rectangle-distribution property can be strengthened quantitatively in the following way: For our
distribution σ0, if X × Y is a large enough rectangle (|X|, |Y | ≥ 2( 1

2 +ε)n) and we sample U × V
according to σ0, then the intersection of X × Y and U × V has nearly its expected size with
high probability. Namely:

Pr
U×V∼σ0

[
(1− δ) |X × Y |

22n
≤ |(U × V ) ∩ (X × Y )|

|U × V |
≤ (1 + δ)

|X × Y |
22n

]
≥ 1− δ.

This follows by the second moment method. Similarly for σ1.
At this point, it is natural to ask whether this stronger property suffixes to show a randomized

simulation theorem. The point being that we will be able to preserve many strings in A × B
consistent with z, hence hopefully preserve the distributional success probability of our protocol.
Perhaps using some additional properties of IP such as its low discrepancy could lead to such a
result. We feel that such a proof should be possible, but unfortunately we do not know how to
prove it. However we are able to use this stronger property, together with ideas from the work of
Raz and Wigderson [RW89], to show a randomized communication-complexity lower bound for
OS ◦ IP, that is we solve the case when f = OS.

1.1.3 A decision-tree lower-bound on OS

Our goal is to prove a lower bound on the randomized communication complexity of OS ◦ IP.
Let us first look at what is the natural upper bound on this complexity. We can again obtain a
protocol for this problem by simulating a decision tree for Ordered Search, and whenever the
decision tree queries its (fictitious) input we solve the corresponding instance of IPn using n+ 1
bits of communication. The Ordered Search on instances of the form 1i0p−i can be solved by a
binary search: query a bit close to the middle of the input, if it is 0 then continue the search on
the prefix of the string, otherwise continue with the suffix. The complexity of this decision tree
is O(log p) giving the upper bound O(n log p) on the communication complexity of OS ◦ IPp

n.
Before going to the argument that the randomized communication complexity of OS ◦ IPpn is

Ω(n log p), let us first present a brief argument that the randomized decision tree complexity
of Ordered Search on inputs from F1,p is Ω(log p) where F`,r = {1i0p−i | ` ≤ i ≤ r}. We fix a
uniform distribution µ`,r on F`,r. Define OSp : F1,p → [p] by OSp(1

i0p−i) = i. We prove that no
deterministic decision tree with average success probability 2/3 over µ1,p can solve the problem
using less than 1

100 log p queries. By Yao’s principle this implies Ω(log p) lower bound on the
randomized decision tree of OSp.

Proposition 1.4. The randomized query-complexity of OSp is Ω(log p).

We will use the following lemma — which will be proven in the context of communication
complexity in a later section.
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Lemma 1.5. Let T be a deterministic decision-tree which, when given input z drawn from µ1,p,
outputs OSp(z) with probability γ. For a natural number 1 ≤ p1 ≤ p, let p2 = p− p1, let γ1 be
the success probability of T over µ1,p1 , and let γ2 be the success probability of T over µp1+1,p.
Then there exists a choice of p1 such that

1. p1, p2 ≥ p/200, and,

2. γ1, γ2 ≥ γ/2

Now suppose we have a deterministic decision-tree T which, when given input z drawn from
µ1,p, outputs OSp(z) with probability γ by making no more than t queries. From T we are going
to construct another deterministic decision-tree T ′ which, when given input z drawn from µ1,p′ ,
outputs OSp′(z) with probability γ′ within t− 1 queries, and where p′ ≥ p/200 and γ′ ≥ γ/2.

We may view T as a binary tree with each node having a coordinate to be queried and having
two children — one for each value of the query. Now suppose that T makes the first query in
the j-th coordinate, where j > p1. Let T ′ be obtained from T by contracting every query to
any coordinate > p1, by answering 0 to that query. This eliminates the first query, hence the
height of T ′ is ≤ t− 1. It is not hard to see that T ′ is a deterministic decision-tree with success
probability γ2 over µ1,p1 . The case when j ≤ p1 can be proven similarly.

We repeat this height-reduction procedure until we exhaust all the queries. In the end, we
have a deterministic decision-tree T ∗ which solves OSp∗ on the set F1,p∗ with success probability
γ∗ where p∗ ≥ 200−tp and γ∗ ≥ γ2−t. If we set γ ≥ 2/3 and t ≤ 1

100 log p, we get that T ∗, solves

OS on p∗ ≥ p9/10 coordinates, under the distribution µ0,p∗ , with success probability γ∗ ≥ p1/10,
without making any query — which is impossible. Hence any T solving OS on p coordinates with
success probability 2/3 must have query-complexity t ≥ 1

100 log p.

1.1.4 Overview of the OS ◦ IP lower-bound

The structure of the lower-bound proof on the randomized communication complexity of OS ◦ IP
resembles the structure of our deterministic simulation lemma for f ◦ IPpn. We progress through a
deterministic protocol for OS ◦ IP as before, but this time mimicking the binary search procedure
implicit in the above randomized decision-tree lower-bound for Ordered Search. However, there
will be various technical differences and challenges from the previous argument, and we will not
be explicitly constructing a decision tree for Ordered Search.

We will fix a distribution on the inputs {0, 1}n×p × {0, 1}n×p which is a lifted distribution
of µ1,p from the randomized decision tree lower bound (i.e., our distribution is uniform on
pre-images of IPpn for z sampled according to µ1,p). We will go through a deterministic protocol
for OS ◦ IPpn that has large success probability γ over our distribution, and low cost εn log p, and
we will maintain a rich set of inputs A×B as before. This time the richness will be controlled by
the density of each A and B (instead of thickness), and we must also keep track of the success
probability of the protocol within A×B.

After communicating ε′n bits our rectangle A×B shrinks according to the protocol. We use
our Sub-rectangle lemma to show that some path in the protocol tree will cause the rectangle
not to shrink too much, while simultaneously preserving most of the success probability.

After this shrinking, we will think of the coordinates of Alice’s and Bob’s inputs as being split
into two parts. If we have p coordinates of n bits each, the prefix will be a string ` ∈ {0, 1}n×p1 ,
and the suffix a string r ∈ {0, 1}n×p2 , for some p1 + p2 = p. We will then zoom-in on either
prefixes or suffixes of the remaining inputs in A×B. This effectively corresponds to querying
the other coordinates as would be done in the deterministic lower bound.

Each (say) prefix ` on Alice’s side can be extended by some number of suffixes r, so that
` × r ∈ A. Likewise for Bob. For most prefixes ` of Alice we will find an extension r = r(`),
and for most prefixes `′ of Bob we will find an extension r′ = r′(`′), such that every r and r′

have inner-product 0 on all p2 coordinates. On these inputs the Ordered Search function must
now output a coordinate in the prefix: this is why we say that we are zooming-in on the prefix.
The ` and `′ for which we cannot find a suitable r (resp. r′) are simply discarded. We will do
this zooming-in in such a way that the density of the surviving prefixes within {0, 1}n×p1 is
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substantially greater than the density of A in {0, 1}n×p. Once this happens we may communicate
another batch of ε′n bits. We also do this in a way such that the success probability of our
protocol on the surviving strings is sufficiently preserved.

Achieving simultaneously both objectives of boosting the density and preserving the success
probability is substantially harder than in the deterministic case. The main obstacle is that we
do not have apriori control over distribution of the protocol error on the inputs. For example,
it could be that we have relatively few prefixes with many extensions that carry most of the
success probability while having vast majority of prefixes with few extensions with low success
probability of the protocol. Fixing a single extension for each prefix would dramatically reduce
our success probability. Hence, the process of zooming-in involves an iterative application of
our Amplification lemma. Depending on the structure of the inputs and the distribution of the
success probability each such iteration either boosts the density of prefixes while not loosing much
of success probability (and hence achieving our objective) or it increases the success probability
while preserving the density. This increase in success probability guarantees that after a limited
number of steps we must achieve our objective.

By alternating the application of the Sub-rectangle lemma and the Amplification lemma, we
exhaust all the communication of the protocol. We now get a contradiction by having a constant
protocol with fairly large success probability, which is successful on a dense set of inputs. This
will be a contradiction similar to the case of randomized decision trees.

So how do we find the promised suffix extensions r and r′? We will use our (δ, h)-hitting
monochromatic rectangle-distribution σ0 for IP, to obtain p2 0-monochromatic rectangles. Then
every r(`) will come from Alice’s side of these rectangles, and every r′(`′) will come from Bob’s
side. The hitting property will not be enough, however. We will need to use a more elaborate
result, which we call Extension lemma, which in addition to finding extensions for most existing
prefixes is also able to find extensions which preserve the overall success probability. This latter
requirement is highly non-trivial to obtain, it is the main obstacle that needs to be overcome.

Below we briefly describe a property of IP which is used throughout the lower-bound proof, to
enforce good behavior of the rectangle A×B we are keeping track of. Regularity will ensure, for
example, that the density of A×B is approximately equal to its mass under our lifted distribution;
It is also the property from which we ultimately derive a contradiction (the non-existence of
a zero-communication protocol with sufficient success probability). The regularity property,
together with the extension lemma (which is a non-trivial strengthening of the hitting property),
are the main driving forces behind the lower-bound, and so the lower-bound will follow for any
function g other than IP for which these two properties can be proven.

1.1.5 The regularity property

Let g : {0, 1}n → {0, 1} be a Boolean function. Any rectangle A × B ⊂ {0, 1}np × {0, 1}np is
partitioned into sets OzAB = (A×B)∩ (gp)−1(z), one for each z ∈ {0, 1}p. If all of these sets are
roughly the same size — (1± δ)2−p|A×B| — then we say that A×B is δ-regular. We will say
that a function g : {0, 1}n → {0, 1} is δ-regular if A×B is δ-regular whenever |A×B| ≥ δ · 22np.
We will show in Section 4 that IPn is 2−n/10-regular.

In some sense the regularity property generalizes the notion of discrepancy to non-Boolean
outputs. This connection is explained in greater detail in [CrK+16], where the regularity property
was used by the authors for showing lower-bounds for the elimination problem (which is itself
also a composition problem in communication complexity, but where f is a relation and not a
function. See [CrK+16] for more details). We think it is a very useful and powerful property,
which will find further applications.

1.2 Organization

The sections containing more technical exposition of our results are Sections 3 and 3.2 for the
deterministic lower bound, and Sections 5 and 5.1 for the randomized lower bound. An interested
reader might want to visit these sections directly.

6



In Section 2 we recall the notion of communication complexity and decision tree complexity
— the two complexity measures that we try to connect in the rest of the paper in various settings.
We also state a few combinatorial lemmas that will come handy in subsequent sections. The
proof of deterministic simulation theorem with IP gadget is given in Section 3. This section
is organized in the following way: in Section 3.1 we provide some supporting lemmas for the
proof. In Section 3.2 we prove the deterministic simulation theorem for gadget g which has (δ, h)-
hitting rectangle distribution and in Section 3.3 we show that IP on n-bits has (o(1), n/5)-hitting
rectangle distribution.

In Section 4, we introduce the notion of regularity, lifted distributions and quality. In Section
4.4, we provide the proof of 2−n/10-regularity property of IP on n-bits. In Section 5, we delve
into the proof of communication lower-bound of OS ◦ IP. This section is organized as follows: we
first provide the main argument of the proof in Section 5.1 assuming two lemmas - Sub-rectangle
lemma and Amplification lemma - which constitute the meat of the proof. These two lemmas
are proved subsequently. In Section 5.2, we provide the proof of the Sub-rectangle lemma and
the proof of Amplification lemma is provided in Section 5.3. The proof of Amplification lemma
is re-factored into following three lemmas – each of which appears in its own subsection. In
Section 5.4, we provide the proof of extension lemma. The proof of Zooming-in lemma appears
in Section 5.5 and lastly, Section 5.6 contains the proof of Min-quality lemma.

2 Basic definitions and preliminaries

A combinatorial rectangle, or just a rectangle for short, is any product A×B, where both A and
B are finite sets. If A′ ⊆ A and B′ ⊆ B, then A′ ×B′ is called a sub-rectangle of A×B. The
density of A′ in A is α = |A′|/|A|.

Consider a product set A = A1× . . .×Ap, for some natural number p ≥ 1, where each Ai is a

subset of {0, 1}n. Let A ⊆ A and I ⊆ [p]
def
= {1, . . . , p}. Let I = {i1 < i2 < · < ik}, and J = [p]\I.

For any a ∈ ({0, 1}n)p, we let aI = 〈ai1 , ai2 , . . . , aik〉 be the projection of a onto the coordinates
in I. Correspondingly, AI = {aI | a ∈ A} is the projection of the entire set A onto I. For a
special case I = [p′] where p′ ≤ p, we denote AI as A≤p′ . Similarly, for I = [p] \ [p′], we denote
AI as A>p′ . For any a′ ∈ ({0, 1}n)k and a′′ ∈ ({0, 1}n)p−k, we denote by a′ ×I a′′ the p-tuple a
such that aI = a′ and aJ = a′′. If I = [k] for some k ≤ p, we may omit the set I and write only
a′ × a′′. For i ∈ [p] and a p-tuple a, a 6=i denotes a[p]\{i}, and similarly, A 6=i denotes A[p]\{i}. For

a′ ∈ ({0, 1}n)k, we define the set of extensions ExtJA(a′) = {a′′ ∈ ({0, 1}n)p−k | a′ ×I a′′ ∈ A};
we call those a′′ extensions of a′. Again, if A and I are clear from the context, we may omit
them and write only Ext(a′).

Notation for intervals and approximation

We will use the following notation to denote closed intervals of the real line:

• If δ is a non-negative real, 1± δ denotes the interval [1− δ, 1 + δ].

• For two intervals I = [a, b] and J = [c, d], IJ = {xy | x ∈ I, y ∈ J}, I + J = {x+ y | x ∈
I, y ∈ J}, and if 0 6∈ J , then I

J = {xy | x ∈ I, y ∈ J}.
• For an interval J = [a, b] and x ∈ R, xJ = {xy | y ∈ J}, x+ J = {x+ y | y ∈ J} and (if

0 6∈ J) x
J = {xy | y ∈ J}.

• For x, y ∈ R, we use the notation x
δ
≈ y to mean that both x ∈ (1± δ)y and y ∈ (1± δ)x.

The following claim is easy to verify:

Proposition 2.1. Let 0 ≤ δ < 1/2 and x, y be reals.

• (Weak symmetry) If x ∈ (1± δ)y then x
2δ
≈ y (since 1

1±δ ⊆ 1± 2δ).

• (Weak transitivity) If x
δ
≈ y

δ
≈ z, then x

3δ
≈ z.
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Communication complexity

See [KN97] for an excellent exposition on this topic, which we cover here only very briefly. In the
two-party communication model introduced by Yao [Yao79], two computationally unbounded
players, Alice and Bob, are required to jointly compute a function F : A×B → Z where Alice is
given a ∈ A and Bob is given b ∈ B. To compute F , Alice and Bob communicate messages to
each other, and they are charged for the total number of bits exchanged.

Formally, a deterministic protocol π : A×B → Z is a binary tree where each internal node v
is associated with one of the players; Alice’s nodes are labeled by a function av : A → {0, 1}, and
Bob’s nodes by bv : B → {0, 1}. Each leaf node is labeled by an element of Z. For each internal
node v, the two outgoing edges are labeled by 0 and 1 respectively. The execution of π on the
input (a, b) ∈ A× B follows a path in this tree: starting from the root, in each internal node v
belonging to Alice, she communicates av(a), which advances the execution to the corresponding
child of v; Bob does likewise on his nodes, and once the path reaches a leaf node, this node’s
label is the output of the execution. We say that π correctly computes F on (a, b) if this label
equals F (a, b).

To each node v of a deterministic protocol π we associate a set Rv ⊆ A×B comprising those
inputs (a, b) which cause π to reach node v. It is easy see that this set Rv is a combinatorial
rectangle, i.e. Rv = Av ×Bv for some Av ⊆ A and Bv ⊆ B.

The communication complexity of π is the height of the tree. The deterministic communication
complexity of F , denoted Dcc(F ), is defined as the smallest communication complexity of any
deterministic protocol which correctly computes F on every input.

A randomized protocol is a distribution Π over deterministic protocols π : A× B → Z. We
say that Π computes F with success probability γ if for every input (a, b), a random π chosen
according to Π will correctly compute F on (a, b) with probability ≥ γ. The communication
complexity of Π is the maximum over all π in its support. The randomized communication
complexity of F for error ε, denoted Rccε (F ), is the smallest communication complexity of any
randomized protocol which correctly computes F with success probability ≥ 1− ε.

Suppose λ is a distribution over A× B and π is a deterministic protocol as above; then the
success probability of π on λ is the probability that it will correctly compute F on inputs (a, b)
drawn from λ. We may then define the distributional communication complexity of F , with
respect to λ and error ε, denoted Dccλ,ε(F ), to be the smallest communication complexity of any
protocol having success probability ≥ 1− ε on λ. It is then well-known that:

Theorem 2.2 (Yao’s principle for communication complexity). Rccε (F ) = max
λ
Dccλ,ε(F )

Decision tree complexity

In the (Boolean) decision-tree model, we wish to compute a function f : {0, 1}p → Z when given
query access to the input, and are charged for the total number of queries we make.

Formally, a deterministic decision-tree T : {0, 1}p → Z is a rooted binary tree where each
internal node v is labeled with a variable-number i ∈ [p], each edge is labeled 0 or 1, and and
each leaf is labeled with an element of Z. The execution of T on an input z ∈ {0, 1}p traces a
path in this tree: at each internal node v it queries the corresponding coordinate zi, and follows
the edge labeled zi. Whenever the algorithm reaches a leaf, it outputs the associated label and
terminates. We say that T correctly computes f on z if this label equals f(z).

The query complexity of T is the height of the tree. The deterministic query complexity of f ,
denoted Ddt(F ), is defined as the smallest query complexity of any deterministic decision-tree
which correctly computes f on every input.

We now define the notion of randomized and distributional query complexities, in exactly
the same way as above. A randomized decision-tree is a distribution T over deterministic
decision-trees t : {0, 1}p → Z. We say that T computes f with success probability γ if for every
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input z, a random t chosen according to T will correctly compute f on z with probability ≥ γ.
The query complexity of T is the maximum query complexity over all t in its support. The
randomized query complexity of f for error ε, denoted Rdtε (f), is the smallest query complexity
of any randomized decision-tree which correctly computes f with success probability ≥ 1− ε.

Suppose µ is a distribution over {0, 1}p and t is a deterministic decision-tree as above; then
the success probability of t on µ is the probability that it will correctly compute f on inputs z
drawn from µ. We may then define the distributional query complexity of f , with respect to µ
and error ε, denoted Ddtµ,ε(f), to be the smallest query complexity of any decision-tree having
success probability ≥ 1− ε on µ. It is then well-known that:

Theorem 2.3 (Yao’s principle for query complexity). Rdtε (F ) = max
µ
Ddtµ,ε(F )

Functions of interest

The Inner-product function on n-bits, denoted IPn is defined on {0, 1}n × {0, 1}n to be:

IPn(x, y) =
∑
i∈[n]

xi · yi mod 2.

For N = 2n, the Indexing function on N -bits, INDN , is defined on {0, 1}logN × {0, 1}N to be:

INDN (x, y) = yx (the x’th bit of y).

Let F1,p = {1i0p−i | 1 ≤ i ≤ p} ⊆ {0, 1}p. The Ordered Search function on p bits is defined
on F1,p to be:

OSp(1
i0p−i) = i.

The second moment method

We will use the well-known second moment method. We use the following variant of Chebyshev’s
inequality.

Proposition 2.4 (Chebyshev’s inequality). Suppose that Xi ∈ [0, 1] and X =
∑
iXi are random

variables. Suppose also that for all i and j, Xi and Xj are anti-correlated, in the sense that

E[XiXj ] ≤ E[Xi] ·E[Xj ].

Then X is well-concentrated around its mean, namely, for every ε:

Pr[X ∈ µ(1± ε)] ≥ 1− 1

ε2µ
. (1)

Proof. First compute

E[X2] =
∑
i

E[X2
i ] + 2

∑
i 6=j

E[XiXj ];

since Xi ∈ [0, 1], and from the anti-correlation property, this is at most∑
i

E[Xi] + 2
∑
i 6=j

E[Xi]E[Xj ] ≤ µ+ µ2.

From Markov’s inequality we now have

Pr[|X − µ| ≥ εµ] = Pr[(X − µ)2 ≥ ε2µ2] ≤ E[(X − µ)2]

ε2µ2
.

Since E[(X − µ)2] = E[X2 − 2Xµ+ µ2] = E[X2 − µ2] ≤ µ,

Pr[|X − µ| ≥ εµ] ≤ µ

ε2µ2
=

1

ε2µ
.

Remark 2.5. In Section 3, we will use Proposition 2.4 where Xi’s are independent Bernoulli
random variables. In Section 5, however, we will use the full power of Proposition 2.4.
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Boosting the density of projections

Let A = L ×R for some finite sets L and R; if ` ∈ L, then denote by Ext(`) the set of r ∈ R
with `× r ∈ A; if r ∈ R, then denote by Ext(r) the set of ` ∈ L with `× r ∈ A.

Proposition 2.6. Suppose A ⊆ A has density α = |A|
|A| . Consider the two sets

AL =

{
` ∈ L

∣∣∣∣ |Ext(`)||R|
≥ 1

4
α

}
and AR =

{
r ∈ R

∣∣∣∣ |Ext(r)||L|
≥ 1

4
α

}
.

Then either |AL|
|L| ≥

1
4

√
α or |AR|

|R| ≥
1
4

√
α (or both).

Proof. Consider a Boolean matrix M = L × R such that M`,r = 1 iff ` × r ∈ A. From the
premise, we know that the fraction of 1’s in M is ≥ α. How many 1’s can we fit into a matrix M
if |AL| < α

4 |L| and |AR| < α
4 |R|? Clearly AL ×AR could well be the all 1-matrix. But in each

column of L × (R \AR) we can only fit α
4 |L| many 1’s, and in each row of (L \AL)×R we can

fit at most α
4 |R| many 1’s. Hence the total number of 1’s that we can fit in M is at most:

|AL ×AR|+ 2 · α
4
· |L| · |R| <

( α
16

+
α

2

)
· |L| · |R| < α · |L| · |R|.

Hence, either |AL| ≥ α
4 |L| or |AR| ≥ α

4 |R|.

Weighted average to uniform average

Lemma 2.7 (Weighted average to uniform average). Let A ⊆ L×R be sets, and α = |A|/(|L|·|R|)
be a real. Suppose that to each a ∈ A corresponds a non-negative real number q(a), and that

1

|A|
∑
a∈A

q(a) ≥ x.

Let AL be the projection of A onto L. For ` ∈ AL, let q(`) = 1
|ExtA(`)|

∑
r∈ExtA(`) q(`r).

Then there exists a subset A′ ⊆ AL ⊆ L with |A′| ≥ bα · |L|c and

1

|A′|
∑
`∈A′

q(`) ≥ x.

Proof. Set k = bα|L|c. Clearly, |AL| ≥ k. Let AL = {`1, . . . , `|AL|} be an ordering of AL by

decreasing value of q(`). Set A′ = {`1, . . . , `k}. It remains to show
∑k
i=1 q(`i)/k ≥ x. Denote

µi = |ExtA(`i)|
|R| . We have

|AL|∑
i=1

µi = α|L| ≤ k =

k∑
i=1

1.

It must then hold that
k∑
i=1

1− µi ≥
|AL|∑
i=k+1

µi.

For any i ≤ k < j, q(`i) ≥ q(`k) ≥ q(`j) and µj , 1− µi ≥ 0. So

k∑
i=1

q(`i)(1− µi) ≥
k∑
i=1

q(`k)(1− µi) ≥
|AL|∑
j=k+1

q(`k)µj ≥
|AL|∑
j=k+1

q(`j)µj ,

which simplifies to
k∑
i=1

q(`i) ≥
|AL|∑
j=1

µjq(`j).
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Since
|AL|∑
j=1

µjq(`j) =
1

|R|
·
∑
a∈A

q(a) ≥ |A|
|R|
· x = α · |L| · x ≥ k · x

we conclude
∑k
i=1 q(`i)/k ≥ x as required.

3 Deterministic simulation theorem

A simulation theorem shows how to construct a decision tree for a function f from a communication
protocol for a composition problem f ◦ gp. Such a theorem can also be called a lifting theorem,
if one wishes to emphasize that lower-bounds for the decision-tree complexity of f can be lifted
to lower-bounds for the communication complexity of f ◦ gp. As mentioned in Section 1, the
deterministic lifting theorem proved in [RM99], and subsequently simplified in [GPW15], uses
INDN as inner function g with N being polynomially larger than p. In this section we will show
a deterministic simulation theorem for any function which possesses a certain pseudo-random
property, which we will now define. Later we will show that the Inner-product function has this
property.

Definition 3.1 (Hitting rectangle-distributions). Let 0 ≤ δ < 1 be a real, h ≥ 1 be an integer,
and A,B be some sets. A distribution σ over rectangles within A× B is called a (δ, h)-hitting
rectangle-distribution if, for any rectangle A×B with |A|/|A|, |B|/|B| ≥ 2−h,

Pr
R∼σ

[R ∩ (A×B) 6= ∅] ≥ 1− δ.

Let g : A×B → {0, 1} be a function. A rectangle A×B is c-monochromatic with respect to g if
g(a, b) = c for every (a, b) ∈ A×B.

Definition 3.2. For a real δ ≥ 0 and an integer h ≥ 1, we say that a function g : A×B → {0, 1}
has (δ, h)-hitting monochromatic rectangle-distributions if there are two (δ, h)-hitting rectangle-
distributions σ0 and σ1, where each σc is a distribution over rectangles within A× B that are
c-monochromatic with respect to g.

The theorem we will prove in Section 3.2 is the following:

Theorem 3.3. Let h ≥ 30 and 1 ≤ p ≤ 2h/2 be integers, and δ ∈ (0, 1/16) be a real. Let
f : {0, 1}p → {0, 1} and g : A× B → {0, 1} be functions. If g has (δ, h)-hitting monochromatic
rectangle-distributions then

Ddt(f) ≤ 5

h
· Dcc(f ◦ g p).

In Section 3.3 we will show that IPn has (o(1), n5 )-hitting monochromatic rectangle-distributions,
to conclude:

Corollary 3.4. Let n be large enough integer and p ≤ 2n/10. For any function f : {0, 1}p →
{0, 1}, Ddt(f) ≤ 25

n · D
cc(f ◦ IP pn).

Jakob Nordström [Nor16] recently posed to us the challenge of proving a simulation theorem for
f ◦ INDpN (i.e. for Indexing, not Inner-product), with a gadget size N smaller than p3. We now
sketch how our techniques actually give such a result. More careful calculations allow for the
following two improvements in the bounds stated in our results above. Fix a constant ε > 0.
The following is true.

1. IPn has (o(1), n( 1
2 − ε))-hitting monochromatic rectangle-distributions.

2. Theorem 3.3 holds for p ≤ 2h(1−ε) with the conclusion being Ddt(f) = O( 1
ε·h · D

cc(f ◦ g p)).
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The second improvement requires setting ϕ to be 4 · 2−εh in the proof of Theorem 3.3. This
allow us to significantly improve the gadget size known for the Indexing function (appearing in
[RM99, GPW15]), because of the following reduction: Given an instance (a, b) ⊆ ({0, 1}np)2 of
f ◦ IPpn where p ≤ 2n/10, Alice and Bob can construct an instance of f ◦ INDpN where N = 2n. Bob
converts his input b ∈ {0, 1}np to b′ ∈ {0, 1}Np, so that each b′i = [IPn(x1, bi)〉, · · · , IPn(xN , bi)〉]
where {x1, · · · , xN} = {0, 1}n is an ordering of all n-bit strings. It is easy to see that IPn(ai, bi) =
INDN (ai, b

′
i). Hence it follows as a corollary to our result for IP:

Corollary 3.5. Whenever N ≥ p2+ε, Ddt(f) = O( 1
ε·logN · D

cc(f ◦ IND p
N )).

Also, it is worth noting that the proof of Lemma 7 (projection lemma) in [GPW15] implicitly
proves that INDn has (o(1), 3 logN/20)-hitting rectangle-distribution. Hence we can also apply
Theorem 3.3 directly to obtain a corollary similar to Corollary 3.5 (albeit with much larger
gadget size N).

Notation and definitions

In the rest of Section 3, n ≥ 1 is an integer and A = B = {0, 1}n. For an integer p, a set A ⊆ Ap
and a subset S ⊆ A, the restriction of A to S at coordinate i is the set Ai,S = {a ∈ A | ai ∈ S}.
We write Ai,SI for the set (Ai,S)I (i.e. we first restrict the i-th coordinate then project onto the

coordinates in I). Clearly Ai,S6=i is non-empty if and only if S and Ai intersect.

The density of a set A ⊆ Ap will be denoted by α = |A|
|A|p , and αi,SI =

|Ai,S
I |
|A||I| . For a set B ⊆ Bp,

we use β and βi,SI for the relevant densities.

Definition 3.6 (Aux graph, average and min-degrees). Let p ≥ 2. For i ∈ [p] and A ⊆ Ap, the
aux graph G(A, i) is the bipartite graph with left side vertices Ai, right side vertices A 6=i and
edges corresponding to the set A, i.e., (a′, a′′) is an edge iff a′ ×{i} a′′ ∈ A.

We define the average degree of G(A, i) to be the average right-degree:

davg(A, i) =
|A|
|A 6=i|

,

and the min-degree of G(A, i), to be the minimum right-degree:

dmin(A, i) = min
a′∈A6=i

|Ext(a′)|.

Definition 3.7 (Thickness and average-thickness). For p ≥ 2 and τ, ϕ ∈ (0, 1), a set A ⊆ Ap is
called τ -thick if dmin(A, i) ≥ τ · |A| for all i ∈ [p]. (Note, an empty set A is τ -thick.) Similarly, A
is called ϕ-average-thick if davg(A, i) ≥ ϕ · |A|p for all i ∈ [p]. For a rectangle A×B ⊆ Ap × Bp,
we say that the rectangle A×B is τ -thick if both A and B are τ -thick. For p = 1, set A ⊆ A is
τ -thick if |A| ≥ τ · |A|.

3.1 Four lemmas exploiting the thickness property

The following property is from [GPW15, Lemma 6].

Lemma 3.8 (Average-thickness implies thickness). For any p ≥ 2, if A ⊆ Ap is ϕ-average-thick,
then for every δ ∈ (0, 1) there is a δ

pϕ-thick subset A′ ⊆ A with |A′| ≥ (1− δ)|A|.

Proof. The set A′ is obtained by running Algorithm 1.

Algorithm 1

1: Set A0 = A, j = 0.
2: while dmin(Aj , i) < δ

pϕ · 2
n for some i ∈ [p] do

3: Let a′ be a right node of G(Aj , i) with non-zero degree less than δ
pϕ · 2

n.

4: Set Aj+1 = Aj \ {a′} ×i Ext(a′), i.e., remove every extension of a′. Increment j.

5: Set A′ = Aj .
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The total number of iteration of the algorithm is at most
∑
i∈[p] |A 6=i|. (We remove at least

one node in some G(Aj , i) in each iteration which was a node also in the original G(A, i).) So
the number of iterations is at most∑

i∈[p]

|A 6=i| =
∑
i∈[p]

|A|
davg(A, i)

≤ p|A|
ϕ2n

.

As the algorithm removes at most δ
pϕ · 2

n elements of A in each iteration, the total number of

elements removed from A is at most δ|A|, so |A′| ≥ (1 − δ)|A|. Hence, the algorithm always
terminates with a non-empty set A′ that must be δ

pϕ-thick.

Lemma 3.9. Let p ≥ 2 be an integer, i ∈ [p], A ⊆ Ap be a τ -thick set, and S ⊆ A. The set

Ai,S6=i is τ -thick. Ai,S6=i is empty iff S ∩Ai is empty.

Proof. Notice that Ai,S6=i is non-empty iff S ∩Ai is non-empty. Consider the case of p ≥ 3. Let
a ∈ A, where ai ∈ S. Set a′ = a 6=i. For j′ ∈ [p− 1], let j = j′ + 1 if j′ ≥ i, and j = j′ otherwise.

Clearly, Ext
{j}
A (a) ⊆ Ext

{j′}
Ai,S
6=i

(a′), hence the degree of a′ in G(Ai,S6=i , j
′) is at least the degree of a

in G(A, j) which is at least τ · |A|. Hence, Ai,S6=i is τ -thick.
To see the case p = 2, assume there is some string a′ ∈ A 6=i which has some extension a′′ ∈ S;

but A itself is τ -thick, so there have to be at least τ · |A| many such a′, which will then all be in

Ai,S6=i .

Lemma 3.10. Let h ≥ 1, p ≥ 2 and i ∈ [p] be integers and δ, τ, ϕ ∈ (0, 1) be reals, where
τ ≥ 2−h. Consider a function g : A × B → {0, 1} which has (δ, h)-hitting monochromatic
rectangle-distributions. Suppose A× B ⊆ Ap × Bp is a non-empty rectangle which is τ -thick,
and suppose also that davg(A, i) ≤ ϕ · |A|. Then for any c ∈ {0, 1}, there is a c-monochromatic
rectangle U × V ⊆ A× B such that

1. Ai,U6=i and Bi,V6=i is τ -thick,

2. αi,U6=i ≥
1
ϕ (1− 3δ)α,

3. βi,V6=i ≥ (1− 3δ)β,

where α = |A|/|A|p, β = |B|/|B|p, αi,U6=i = |Ai,U6=i |/|A|p−1 and β = |Bi,U6=i |/|B|p−1.

The constant 3 in the statement may be replaced by any value greater than 2, so the lemma
is still meaningful for δ arbitrarily close to 1/2.

Proof. Fix c ∈ {0, 1}. Consider a matrix M where rows correspond to strings a ∈ A 6=i, and
columns correspond to rectangles R = U × V in the support of σc. Set each entry M(a,R) to 1

if U ∩ Ext
{i}
A (a) 6= ∅, and set it to 0 otherwise.

For each a ∈ A 6=i, |Ext{i}A (a)| ≥ τ |A|, and because σc is a (δ, h)-hitting rectangle-distribution
and τ ≥ 2−h, we know that if we pick a column R according to σc, then M(a,R) = 1 with
probability ≥ 1 − δ. So the probability that M(a,R) = 1 over uniform a and σc-chosen R is
≥ 1− δ.

Call a column of M A-good if M(a,R) = 1 for at least 1− 3δ fraction of the rows a. Now it
must be the case that the A-good columns have strictly more than 1/2 of the σc-mass. Otherwise
the probability that M(a,R) = 1 would be < 1− δ.

A similar argument also holds for Bob’s set B6=i. Hence, there is a c-monochromatic rectangle
R = U × V whose column is both A-good and B-good in their respective matrices. This is our
desired rectangle R.
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We know: |Ai,V6=i | ≥ (1 − 3δ)|A 6=i| and |Bi,V6=i | ≥ (1 − 3δ)|B6=i|. Since |B 6=i| ≥ |B|/|B|, we

obtain |Bi,V6=i |/|B|p−1 ≥ (1− 3δ)|B 6=i|/|B|p−1 ≥ (1− 3δ)β. Because |A|/|A 6=i| ≤ ϕ|A|, we get

|A 6=i|
|A|(p−1)

≥ 1

ϕ
· |A|
|A|p

=
α

ϕ
.

Combined with the lower bound on |Ai,V6=i | we obtain |Ai,U6=i |/|A|p−1 ≥ (1− 3δ)α/ϕ. The thickness

of Ai,U6=i and Bi,V6=i follows from Lemma 3.9.

Lemma 3.11. Let p, h ≥ 1 be integers and δ, τ ∈ (0, 1) be reals, where τ ≥ 2−h. Consider a
function g : A× B → {0, 1} which has (δ, h)-hitting monochromatic rectangle-distributions. Let
A×B ⊆ Ap × Bp be a τ -thick non-empty rectangle. Then for every z ∈ {0, 1}p there is some
(a, b) ∈ A×B with gp(a, b) = z.

Proof. This follows from repeated use of Lemma 3.9. Fix arbitrary z ∈ {0, 1}p. Set A(1) = A and
B(1) = B. We proceed in rounds i = 1, . . . , p− 1 maintaining a τ -thick rectangle A(i) ×B(i) ⊆
Ap−i+1×Bp−i+1. If we pick Ui×Vi from σzi , then the rectangle (A(i)){i}∩Ui× (B(i)){i}∩Vi will
be non-empty with probability ≥ 1− δ > 0 (because σzi is a (δ, h)-hitting rectangle-distribution
and τ ≥ 2−h). Fix such Ui and Vi. Set ai to an arbitrary string in (A(i)){i} ∩ Ui, and bi to an

arbitrary string in (B(i)){i} ∩Bi. Set A(i+1) = (A(i))
i,{ai}
6=i , B(i+1) = (B(i))

i,{bi}
6=i , and proceed for

the next round. By Lemma 3.9, A(i+1) ×B(i+1) is τ -thick.
Eventually, we are left with a rectangle A(p) ×B(p) ⊆ A× B where both A(p) and B(p) are

τ -thick (and non-empty). Again with probability 1 − δ > 0, the zp-monochromatic rectangle
Up × Vp chosen from σzp will intersect A(p) × B(p). We again set ap and bp to come from the
intersection, and set a = 〈a1, a2, . . . , ap〉 and b = 〈b1, b2, . . . , bp〉.

3.2 Proof of the simulation theorem

Now we are ready to present the simulation theorem (Theorem 3.3). Let h ≥ 30 and 1 ≤ p ≤ 2h/2

be integers, and δ ∈ (0, 1/16) be a real. Let f : {0, 1}p → {0, 1} and g : A × B → {0, 1} be
functions. Assume that g has (δ, h)-hitting monochromatic rectangle-distributions. We assume
we have a communication protocol Π for solving f ◦ gp, and we will use Π to construct a decision
tree (procedure) for f . Let C be the communication cost of the protocol Π. If p ≤ 5C/h the
theorem is true trivially. So assume p > 5C/h. Set ϕ = 4 · 2−h/2 and τ = 2−h. The decision-tree
procedure is presented in Algorithm 2. On an input z ∈ {0, 1}p, it uses the protocol Π to decide
which bits of z to query.

The algorithm maintains a rectangle A × B ⊆ Ap × Bp and a set I ⊆ [p] of indices. I
corresponds to coordinates of the input z that were not queried, yet.
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Algorithm 2 Decision-tree procedure

Input: z ∈ {0, 1}p
Output: f(z)

1: Set v to be the root of the protocol tree for Π, I = [p], A = Ap and B = Bp.
2: while v is not a leaf do
3: if AI and BI are both ϕ-average-thick then
4: Let v0, v1 be the children of v.
5: Choose i ∈ {0, 1} for which there is A′ ×B′ ⊆ (A×B) ∩Rvi such that
6: (1) |A′I ×B′I | ≥ 1

4 |AI ×BI |
7: (2) A′I ×B′I is τ -thick.
8: Update A = A′, B = B′ and v = vi.
9: else if davg(AI , j) < ϕ|A| for some j ∈ [|I|] then

10: Query zi, where i is the j-th (smallest) element of I.
11: Let U × V be a zi-monochromatic rectangle of g such that
12: (1) Ai,UI\{i} ×B

i,V
I\{i} is τ -thick,

13: (2) αi,UI\{i} ≥
1
ϕ (1− 3δ)α,

14: (3) βi,VI\{i} ≥ (1− 3δ)β,

15: Update A = Ai,U , B = Bi,V and I = I \ {i}.
16: else if davg(BI , j) < ϕ|B| for some j ∈ [|I|] then
17: Query zi, where i is the j-th (smallest) element of I.
18: Let U × V be a zi-monochromatic rectangle of g such that
19: (1) Ai,UI\{i} ×B

i,V
I\{i} is τ -thick,

20: (2) αi,UI\{i} ≥ (1− 3δ)α,

21: (3) βi,VI\{i} ≥
1
ϕ (1− 3δ)β,

22: Update A = Ai,U , B = Bi,V and I = I \ {i}.
23: Output f ◦ g p(A×B).

Correctness. The algorithm maintains an invariant that AI ×BI is τ -thick. This invariant
is trivially true at the beginning.

If both AI and BI are ϕ-average-thick, the algorithm finds sets A′ and B′ on line 5–7 as
follows. Consider the case that Alice communicates at node v. She is sending one bit. Let A0

be inputs from A on which Alice sends 0 at node v and A1 = A \ A0. We can pick i ∈ {0, 1}
such that |(Ai)I | ≥ |AI |/2. Set A′′ = Ai. Since AI is ϕ-average-thick, A′′I is ϕ/2-average-thick.
So using Lemma 3.8 on A′′I with δ set to 1/2, we can find a subset A′ of A′′ such that A′I is
ϕ

4·|I| -thick and |A′I | ≥ |A′′I |/2. (A′ ⊆ A′′ will be the pre-image of A′I obtained from the lemma.)

Since |I| ≤ p ≤ 2h/2, the set A′I will be τ -thick. Setting B′ = B, the rectangle A′ ×B′ satisfies
properties from lines 6–7. A similar argument holds when Bob communicates at node v.

If AI is not ϕ-average-thick, the existence of U × V at line 11 is guaranteed by Lemma 3.10.
Similarly in the case when BI is not ϕ-average-thick.

Next we argue that the number of queries made by Algorithm 2 is at most 5C/h where C is
the cost of Π. In the first part of the while loop (line 3–8), the density of the current AI ×BI
drops by a factor 4 in each iteration. There are at most C such iterations, hence this density
can drop by a factor of at most 4−C = 2−2C . For each query that the algorithm makes, the
density of the current AI ×BI increases by a factor of at least (1− 3δ)/ϕ ≥ 1

2ϕ ≥ 2
h
2−3. Since

the density can be at most one, the number of queries is upper bounded by

2C
h
2 − 3

=
4C

h− 6
= 4

C

h
+ 24

C

h(h− 6)
≤ 5

C

h
, when h ≥ 30.

Finally, we argue that f(A × B) at the termination of Algorithm 2 is the correct output.
Given an input z ∈ {0, 1}p, whenever the algorithm queries any zi, the algorithm makes sure that
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all the input pairs (x, y) in the rectangle A×B are such that g(xi, yi) = zi — because U × V is
always a zi-monochromatic rectangle of g. At the termination of the algorithm, I is the set of i
such that zi was not queried by the algorithm. As 5C/h < p, I is non-empty. Since AI × BI
is τ -thick, it follows from Lemma 3.11 that A × B contains some input pair (x, y) such that
g|I|(xI , yI) = zI , and so gp(x, y) = z. Since Π is correct, it must follow that f(z) = f ◦g p(A×B).
This concludes the proof of correctness.

With greater care the same argument will allow for δ close to 1
2 . We leave the details for the

journal version of the paper.

3.3 Hitting monochromatic rectangle-distributions for IP

In this section, we will show that IPn has (4 · 2−n/20, n/5)-hitting monochromatic rectangle-
distributions. This will show a deterministic simulation result when the inner function is IPn,
i.e.,

Dcc(f ◦ IPpn) ≥ Ddt(f) · Ω(n).

All of the rectangle-distributions rely on the following fundamental anti-correlation property:

Lemma 3.12 (Hitting probabilities of random subspaces). Let 0 ≤ d ≤ n be natural numbers.
Fix any v 6= w in Fn2 , and pick a random subspace V of dimension d. Then the probability that
v ∈ V is exactly

pv =

{
2d−1
2n−1 if v 6= 0

1 if v = 0.

And the probability that both v, w ∈ V is exactly

pv,w =


(

2d−1
2

) / (
2n−1

2

)
if v, w 6= 0

pv if w = 0, and

pw if v = 0.

Hence it always holds that pv,w ≤ pvpw.

Proof. The case when v or w are 0 is trivial. The value pv = Pr[v ∈ V ] for a random subspace
V of dimension d equals Pr[Mv = 0] for a random non-singular (n− d)× n matrix M , letting
V = kerM . For any v 6= 0, v′ 6= 0, M will have the same distribution as MN , where N is some
fixed linear bijection of Fn2 mapping v to v′; it then follows that pv = pv′ always. But then

∑
v 6=0

pv = E

∑
v 6=0

[v ∈ V ]

 = 2d − 1,

and since all pv’s are equal, then pv = 2d−1
2n−1 .

Now let pv,w = Pr[v ∈ V,w ∈ V ]. In the same way we can show that pv,w = pv′,w′ for all two
such pairs, since a linear bijection will exist mapping v to v′ and w to w′ (because every v 6= w
is linearly independent in Fn2 ). And now

∑
v,w 6=0

pv,w = E

 ∑
v,w 6=0

[v ∈ V ][w ∈ V ]

 =

(
2d − 1

2

)
.

The value of pv,w is then as claimed. We conclude by estimating

pv,w
pvpw

=

(
2d−1

2

)(
2n−1

2

) · 1

pvpw
=

2d − 2

2d − 1
· 2n − 1

2n − 2
< 1.

It can now be shown that a random subspace of high dimension will hit a large set w.h.p.:
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Lemma 3.13. Consider a set B ⊆ {0, 1}n of density β = |B|
2n ≥ 8 ·2−n/4. Pick V to be a random

linear subspace of {0, 1}n of dimension d ≥ 7
15n. Then

Pr
V

[
|B ∩ V |
|V |

∈ (1± 2−n/20) · β
]
≥ 1− 1

2n/20
.

Proof. Let b1, . . . , bN be the elements of B, and define the random variables Xi = [bi ∈ V ] and
X = |B ∩ V | =

∑
iXi. The E[Xi] were computed in the proof of Lemma 3.12, which gives us

µ = E[X] =
∑
i

E[Xi] =

{
β2n 2d−1

2n−1 if 0̄ /∈ V
β2n 2d−1

2n−1 + (1− 2d−1
2n−1 ) otherwise.

Let’s look at the case where 0̄ 6∈ V . We can estimate µ as follows:

µ =

(
1 +

1

2n − 1

)
(1− 2−d)β|V | ∈ (1± 2−n/5)2β|V | ⊆ (1± 2−n/6)β|V |.

We can also show that µ ∈ (1± 2−n/6)β|V | when 0̄ ∈ V , because 1− 2d−1
2n−1 ≤ 1� 2−n/5β|V |.

Now Lemma 3.12 also says that E[XiXj ] ≤ E[Xi]E[Xj ] for all i 6= j. And so by the second
moment method (Lemma 2.4):

Pr
[
X ∈ µ

(
1± ε

2

)]
≥ 1− 4

ε2µ

which means,

Pr
[
X ∈ (1± 2−n/6)(1± ε/2)β|V |

]
≥ 1− 4

ε2β2d(1− 2−n/6)

Taking ε ≥ 2−n/20, we get,

Pr
[
X ∈ (1± 2−n/20)β|V |

]
≥ 1− 1

2 · 2n/20(1− 2−n/6)
≥ 1− 1

2n/20
.

We will show a similar result when we pick the set V in the following manner: First we pick a
uniformly random odd-Hamming weight vector a ∈ {0, 1}n, and then we pick W to be a random
subspace of dimension d ≥ 7(n− 1)/15 within a⊥; then V = a+W .

Lemma 3.14. Consider a set B ⊆ {0, 1}n of density β = |B|
2n ≥ 10 · 2−n/4. Pick V as described

above. Then

Pr
V

[
|B ∩ V |
|V |

∈ β(1± 3 · 2−n/20)

]
≥ 1− 3

2n/20
.

Proof. Let B′ = (B − a) ∩ a⊥ and let β′ = |B′|
|a⊥| . A string a ∈ {0, 1}n is called good when

β′
def
=
|(B − a) ∩ a⊥|

|a⊥|
∈ β · (1± ·2−n/20).

We will later show that if a is a uniformly random string of odd Hamming weight, then

Pr
a

[a is good] ≥ 1− 2

2n/20
. (∗)
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For every good a, Lemma 3.13 gives us:

Pr
W

[
|B′ ∩W |
|W |

∈ β′(1± 2−n/20)

∣∣∣∣ a] ≥ 1− 1

2n/20
.

Our result then follows by Bayes’ rule.

To prove (∗), suppose that a is chosen to be a uniformly random non-zero string (i.e. with
either even or odd Hamming weight). Then a⊥ is a uniformly random subspace of dimension
n− 1 ≥ 7

15n. Hence by Lemma 3.13,

Pr
a

[
|B ∩ a⊥|
|a⊥|

∈ β · (1± 2−n/20)

]
≥ 1− 1

2n/20
. (∗∗)

Now |a⊥| = 2n−1, so if a‖ denotes the complement of a⊥ (in {0, 1}n), then |a‖| = 2n−1 also, and

|B ∩ a⊥|
|a⊥|

∈ β · (1±2−n/20) ⇐⇒ |B∩a⊥| ∈ 1

2
|B| · (1±2−n/20) ⇐⇒ |B ∩ a‖|

|a‖|
∈ β · (1±2−n/20).

So (∗∗) holds with respect to the rightmost event. Since a uniformly random non-zero a has odd
Hamming weight with probability > 1

2 , it must then follow that if we pick a uniformly random a
with odd Hamming weight, then:

Pr
a

[
|B ∩ a‖|
|a‖|

∈ β · (1± 2−n/20)

]
≥ 1− 2

2n/20
.

Now notice that |a‖| = |a⊥| and that for odd Hamming weight a, B ∩ a‖ = (B − a) ∩ a⊥; this
establishes (∗).

The lemmas above are the key to constructing rectangle-distributions for IP.

Lemma 3.15. For all n large enough, IPn has (6 · 2−n/20, n/5)-hitting monochromatic rectangle-
distributions.

Proof. We define the distributions σ0 and σ1 by the following sampling methods:

Sampling from σ0: We choose a uniformly-random n
2 -dimensional subspaces V of Fn2 , and let

V ⊥ be its orthogonal complement; output V × V ⊥.

Sampling from σ1: First we pick a ∈ {0, 1}n uniformly at random conditioned on the fact
that a has odd Hamming weight; then we pick random subspace W of dimension (n− 1)/2
from a⊥, and let W⊥ be the orthogonal complement of W inside a⊥. We output V × V ‖,
where V = a+W and V ‖ = a+W⊥.

The rectangles produced above are monochromatic as required. Also, V and V ⊥ of σ0 are both
random subspaces of dimension ≥ 7

15n — as required by Lemma 3.13 — and V and V ‖ of σ1

are both obtained by the the kind of procedure required in Lemma 3.14. It then follows by a
union bound that if R is chosen by either σ0 or σ1 that, if A,B are subsets of {0, 1}n of densities
α, β ≥ 2−n/5 � 10 · 2−n/4, then

Pr
R

[
|A×B ∩R|
|R|

= (1± 9 · 2−n/20) · αβ
]
≥ 1− 6

2n/20
.

Hence the same probability lower-bounds the event that A×B ∩R 6= ∅.
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4 Regularity

We will now study a property which we believe is fundamental in the understanding of randomized
composition problems.

Suppose we have an outer function f : {0, 1}p → Z, and an inner function G : A×B → {0, 1}p,
and we wish to study the communication complexity of f ◦G. For us, G will typically be IPpn,
and A and B will typically be {0, 1}np for some n and p; but not always.

We first note that any Sub-rectangle A×B of A×B can be partitioned by the various inverse
images of G; i.e., A×B =

⋃
z∈{0,1}p OzAB , where

OzAB = O(G, z,A,B)
def
= {(a, b) ∈ A×B | G(a, b) = z} = G−1(z) ∩ (A×B).

(We will write OzAB instead of O(G, z,A,B) when G is clear from the context.)

We will say that a rectangle is regular if each part in this partition has roughly the same size; we
will say that G is regular if every large rectangle is regular:

Definition 4.1. Let 0 ≤ δ < 1 and G : A× B → {0, 1}p. A Sub-rectangle A × B of A× B is
said to be δ-regular (with respect to G), if for every z ∈ {0, 1}p

|OzAB | ∈ (1± δ) · 2−p · |A×B|.

The function G itself is said to be δ-regular if every Sub-rectangle A×B of A×B with densities
|A|
|A| ≥ δ and |B||B| ≥ δ is δ-regular.

4.1 Lifted distributions

If we wish to prove a randomized communication complexity lower-bound for f ◦G using Yao’s
principle, we must produce (constructively or otherwise) a hard distribution λ over A× B, such
that any deterministic protocol will fail to succeed with sufficient probability, when the inputs
are drawn from λ.

Now suppose that, in this setting, we have a distribution µ over {0, 1}p which we know (or
believe) to be hard for f . Then there is a natural way of producing a candidate hard distribution
for f ◦G. If we denote by Oz the entire inverse image of z ∈ {0, 1}p:

Oz = OzAB = G−1(z) ∩ (A× B),

then what we do is distribute µ(z) probability mass uniformly inside each Oz:

Definition 4.2. Let G : A × B → {0, 1}p and µ be some distribution over {0, 1}p. Then the
lifting of µ (to A × B, with respect to G) is the distribution λ = λA×B,G over A × B with
probability-mass function:

λ(a, b) = λA×B,G(a, b)
def
=
µ(G(a, b))

|OG(a,b)|
.

Any distribution λ obtained in this way is called a lifted distribution. (Again we write λ instead
of λA×B,G if A× B and G are clear from the context.)

We may now conjecture that if f is hard under µ, in some sense which may depend on the
setting, then f ◦G will be hard under λ. We will prove one such result in Section 5.
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4.2 Size equals λ-mass for regular rectangles and balanced G

Let us restrict our attention to G which are balanced in the following sense:

Definition 4.3. The inner function G : A×B → {0, 1}p is called balanced if every inverse image
Oz = G−1(z) intersects every slice (row and column) of A× B equally, i.e., if for every a ∈ A,
every b ∈ B and every z ∈ {0, 1}p

|{b′ ∈ B | G(a, b′) = z}| = 2−p|B| and |{a′ ∈ A | G(a′, b) = z}| = 2−p|A|.

For now let us observe the following remarkable property: if A×B is a δ-regular sub-rectangle

of A× B, with α = |A|
|A| , β = |B|

|B| , and λ is a lifted distribution (lifted to A× B), with respect to

some balanced inner-function G, then

λ(A×B) =
∑
z

µ(z)
|OzAB |
|Oz|

∈
∑
z

µ(z)
2−p · (1± δ) · |A×B|

2−p|A × B|
= (1± δ)αβ.

We get:

Proposition 4.4 (Size equals λ-mass for regular rectangles). Let G : A × B → {0, 1}p be
a balanced inner-function. If A × B is a δ-regular sub-rectangle of A × B and λ is a lifted
distribution, then

λ(A×B) ∈ (1± δ) · αβ.

4.3 Success probability and quality

Suppose we are given f : {0, 1}p → Z, G : A× B → {0, 1}p and distribution µ (over {0, 1}p) as
above, but we are now also given a sub-rectangle A×B of A× B, and a deterministic protocol
π : A×B → Z. Then we may define the set of inputs where π correctly computes f ◦G:

TAB
def
= {(a, b) ∈ A×B | π(a, b) = f ◦G(a, b)}.

We define:

Definition 4.5. The success probability of π on A×B (with respect to f,G and µ) is

γ
def
= Pr

(a,b)∼λ
[π(a, b) = f ◦G(a, b) | (a, b) ∈ A×B] =

λ(TAB)

λ(A×B)
.

If we let TaB = TAB ∩ {a} × B, we may define the success probability of π on a given string
a ∈ A:

γa =
λ(TaB)

λ({a} ×B)
,

so that γ =
∑
a∈A λ({a} × B | A × B) · γa — i.e. the weighted average of the γa is exactly γ.

Working with the various γa is rather cumbersome, because λ({a} ×B) can vary significantly
for different a. One can use a trick that appears in [RW89]: instead of measuring the λ-mass of
TaB with respect to the λ-mass of {a} ×B, we will measure the λ-mass of |TaB | with respect to
the λ-mass of the entire a× B.

Definition 4.6. The row-quality (with respect to f,G, µ,A,B and π) of a ∈ A is

q(a) = qrow(f,G, µ,A,B, π, a)
def
=

λ(TaB)

λ({a} × B)
.

When f,G, µ,A,B and π are clear from the context, and when it is clear that a denotes an
element of A, we will use q(a) instead of qrow(f,G, µ,A,B, π, a), and call this quantity simply the
quality of a. Note that qrow(f,G, µ,A,B, π, a) equals qrow(f,G, µ,A′, B, π, a) for any A′ ⊂ A.

Recall again that we write α = |A|
|A| and β = |B|

|B| . Then we may prove the following correspondence:
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Lemma 4.7. Let 0 ≤ δ < 1
2 . If A×B is δ-regular and G is balanced, then

1

|A|
∑
a∈A

q(a) ∈ (1± δ) · γβ.

(Hence if δ ≤ 1
2 , then also 1

|A|
∑
a∈A q(a)

2δ
≈ γβ.)

Proof. If G is balanced, then λ({a} × B) = 1
|A| , and if furthermore A×B is δ-regular, then by

Proposition 4.4 we have λ(A×B) ∈ (1± δ)αβ. Then 1
|A|
∑
a∈A q(a) equals:

1

|A|
∑
a∈A

λ(TaB)

λ({a} × B)
=
∑
a∈A

λ(TaB)

λ(A×B)
· λ(A×B) · |A|

|A|
= γ · λ(A×B)

α
∈ (1± δ)γβ.

By symmetry, the same definitions could be stated and the same lemma could be proven with
respect to Bob’s inputs. We then call it the column-quality. We will use the above correspondence
several times in the rest of the paper. It tells us that if we have a protocol with good success
probability, the average (row- or column-) quality must be high, and if we have several rows (or
columns) with high average quality, the protocol must be successful on these rows.

4.4 The regularity property for G = IPp
n

We begin by recalling the well-known notion of matrix discrepancy [KN97]:

Definition 4.8. Let g : X ×Y → {0, 1} be a function, and λ be a distribution over X ×Y . The
discrepancy of f under λ equals

Discλ(f) = max
A⊆{0,1}n,B⊆{0,1}n

∣∣∣∣∣∣
∑

a∈A,b∈B

λ(a, b) · (−1)f(a,b)

∣∣∣∣∣∣ .
It is a well-known fact that the discrepancy of IPn is at most 2−n/2 under the uniform

distribution over {0, 1}2n [see KN97, for example]. We will use this to prove regularity with
respect to IPpn:

Lemma 4.9. Let n be large enough and p < 2n/10. Then IPpn is 2−n/10-regular, i.e.: If

A × B ⊆ ({0, 1}np)2, α = |A|
2np ≥ 2−n/10 and β = |B|

2np ≥ 2−n/10, then A × B is 2−n/10-regular
with respect to IPpn.

Proof. Let gj = IPn for j < i and gj = 1− IPn for j ≥ i; then

|OzAB | =
∑
a,b

∏
j

1 + (−1)gj(aj ,bj)

2
,

where the sum is for all a, b ∈ A×B. Expanding the product and separating out the resulting
“1” term:

|OzAB | = 2−p · 22np ·

∑
a,b

2−2np +
∑

∅ 6=S⊆[p]

σS

 ,

σS ,
∑
a,b

2−2np
∏
j∈S

(−1)gj(aj ,bj).

The left term is simply αβ, we now bound |σS |. Say |S| = s; let a′ range over AS̄ , and a′′ over
Ext(a′); similarly for b′ and b′′. Then

|σS | ≤
∑
a′,b′

2−2(p−s)n

∣∣∣∣∣∣
∑
a′′,b′′

2−2sn
∏
j∈S

(−1)IPn(a′′j ,b
′′
j )

∣∣∣∣∣∣ =
∑
a′,b′

2−2(p−s)n

∣∣∣∣∣∣
∑
a′′,b′′

2−2sn(−1)IPsn(a′′,b′′)

∣∣∣∣∣∣︸ ︷︷ ︸
(∗)

.
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Let D = 2−
n
2 ; then the known upper-bound on the discrepancy of Inner-product tell us that (∗)

is upper-bounded by Ds. And then so is the entire sum. But now∑
S 6=∅
|σS | ≤

p∑
s=1

(
p

s

)
Ds = (1 +D)p − 1 ≤ eDp,

where the last inequality holds whenever pD ≤ 1 (this can be seen by taking the derivative of
both sides with respect to D). We conclude that

|OzAB |
|A×B|

∈ 2−p · (1± ep

αβ
D) ⊆ 2−p · (1± 2−n/2+2+3n/10) ⊆ 2−p · (1± 2−n/10).

At this point it worth mentioning the following remarkable result proven in [LSS08, Theorem 19]:

Lemma 4.10 (XOR-lemma for discrepancy). Let λs be the s-fold product of λ, and ⊕sg be the
s-fold XOR of g. Then

Discλs(⊕sg) ≤ 64s · Discλ(g)s

By using Lemma 4.10, it is possible to prove an analogue of the regularity property for any
function of sufficiently small discrepancy. See [CrK+16] for more details. Generalizing in another
direction, it is possible to prove that rectangle with sufficiently high average-thickness (as in
Definition 3.7) will also be regular with respect to IPpn.

It should be noted here that, comparing our technique to that of [GLM+15], our technique
of proving regularity uses the property that IP has small discrepancy under uniform distribution
and it does not exploit the two-source extractor property of IP , albeit obtaining a seemingly
weaker result.

5 Randomized lower-bound for OSp ◦ IPpn
Several lower-bounds are known for composition problems [RM99, She11, LZ10, GLM+15]; for
example, the randomized communication complexity of f ◦ IPpn is lower-bounded by n times
the WAPP-decision-tree complexity of f [GLM+15],1 and by n times the approximate-degree
of f [SZ09, Cha09, LZ10]. However, it is a plausible conjecture that the correct lower-bound is
n×Rdt(f), and this remains an outstanding open problem.

In this section, we will prove a randomized lower-bound of Ω(n log p) for the composition
problem OSp ◦ IPpn. This result does not follow from either of the lower-bounds mentioned above,
because the WAPP-decision-tree complexity of OS is O(1), and a Ω(log p) approximate-degree
lower-bound for OS is yet unknown2. However, it is fairly easy to show a lower-bound of
Rdt(OSp) = Ω(log p) as shown in Section 1.1, and we will see that our communication-complexity
lower-bound for OSp ◦ IPpn will follow the same overall structure of the randomized decision-tree
lower-bound. We think that the techniques we develop here will lead to a randomized analogue
of the simulation theorem of the previous section.

1A WAPP-decision-tree algorithm for a family of functions f : {0, 1}p → {0, 1} is a probabilistic query algorithm
which accepts with probability in [0, εα] if f(z) = 0 and with probability in [(1− ε)α, α], if f(z) = 1, where α is an
arbitrary number (that possibly depends on p), and ε < 1

2
is some constant. It is analogous to BPP algorithms, where

0 and 1 are replaced by 0 and α. By setting α sufficiently small, such algorithms can be shown to be as powerful as
non-deterministic query algorithms that have a unique witness — and such an algorithm can compute OS by guessing
the position of the bit-flip.

It should be mentioned that [GLM+15] prove simulation theorems for decision-tree and communication classes
other than WAPP, but all of these classes are at least as powerful as non-deterministic unique-witness decision-trees.

2Harry Buhrman [Buh16] has provided us with a lower-bound of Ω(
√

log p) on this approximate degree. A quantum
query-complexity lower-bound of Ω(log p) appears in [HNS02] (simplified in [CL08]), but it does not directly imply
the same lower-bound for approximate degree (even though a lower-bound for approximate degree would imply the
same lower-bound for quantum query algorithms [BBC+01, BDW02]).
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Theorem 5.1. There exists a constant c such that, if n and p are sufficiently large natural
numbers and p ≤ 2

n
1000 , then

n

c
· log p ≤ Rcc2/3(OSp ◦ IP

p
n) ≤ (n+ 1) · log p.

Overview of this section

The upper bound follows easily via binary search. The lower-bound proof is a careful adaptation
of the approach of [RW89]. It is akin in spirit to a round-reduction proof, but there are actually
no rounds, so one could call it a communication-reduction proof. In very rough terms, it proceeds
as follows: we start with a protocol that solves our problem on a certain rectangle within
{0, 1}np × {0, 1}np, and we successively obtain a new protocol which either (I) solves the same
problem with less communication on smaller rectangle in {0, 1}np × {0, 1}np, or (II) solves the
same problem on a denser rectangle within {0, 1}np′ × {0, 1}np′ for a smaller p′. Eventually we
obtain a protocol that solves a non-trivial problem with zero communication, and we can prove
that such a protocol does not actually exist. This rough description will be fleshed out in Section
5.1, before it is stated and proven in full precision in subsequent sections.

The argument will rely on two lemmas, which we call (I) Sub-rectangle lemma and (II)
Amplification lemma. The Sub-rectangle lemma is proven in Section 5.2, with the help of the
regularity property defined in Section 4. The Amplification lemma is then proven in Section 5.3;
the proof makes use of a so-called extension lemma and some supporting claims. The extension
lemma establishes a strong randomized analogue of the hitting rectangle-distribution property of
Section 3, and is proven in Section 5.4. The proofs for the supporting claims are provided in
Section 5.5 and Section 5.6.

5.1 The main argument

The proof proceeds by alternate applications of aforementioned two lemmas: One lemma says
that if we start with a protocol π for solving OSp ◦ IPpn in a very large rectangle A×B, we can fix
a part of the communication and get a protocol π′ that solves OSp ◦ IPpn in a still-somewhat-large
rectangle A′ ×B′, with a similar success probability; we call this the Sub-rectangle lemma.

The second lemma says that if we have a protocol π for solving OSp ◦ IPpn on a somewhat-large
rectangle A×B, we can zoom-in on one of the sides of the inputs (the first part or the second

part of Alice’s and Bob’s inputs), to obtain a new protocol that solves OSp ◦ IPp
′

n — so on a
smaller number of coordinates p′ — and either:

1. Works on a much-denser rectangle (though perhaps loosing a little bit on the success
probability), where density is with respect to {0, 1}np′ × {0, 1}np′ ; or

2. Works with better success probability (though perhaps loosing a little bit on the density of
the rectangle, even when measured on the smaller {0, 1}np′ × {0, 1}np′ .

Putting the two lemmas together will eventually give us that, if we start with a protocol for
solving OSp ◦ IPpn while communicating � n log p bits, we can obtain a zero-communication

protocol solving OSp ◦ IPp
′

n on a large rectangle, with success probability � 1
p′ : which we will

show is impossible.
The overall structure of the proof is very similar to [RW89]. We have simplified several steps,

but could not avoid making it more complicated in other respects.3 The core new ingredient is
the proof of the extension lemma for IP (Section 5.4).

5.1.1 The hard distribution λ

The domain of the OSp function is the set F1,p = {1i0p−i | i ∈ [p]}; let µ be a uniform
distribution on F1,p — which assigns zero probability to any z ∈ {0, 1}p \ F1,p — and let

3Specifically, we need to be able to zoom-in on both Alice’s and Bob’s inputs, which makes the proof somewhat
more delicate than [RW89], that only needed to do this for one of the players.
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λ be the lifting of µ with respect to G = IPpn (as in Definition 4.2). Suppose we have a
rectangle A × B ⊆ ({0, 1}np)2, and a protocol π : A × B → [p]; define for each i ∈ [p] the
set OiAB = {(a, b) ∈ A × B | IPpn(a, b) = 1i0p−i}, and let T iAB be the subset of OiAB on which
π(a, b) = OSp ◦ IPpn(a, b); let also OAB =

⋃
i∈[p]O

i
AB and TAB =

⋃
i∈[p] T

i
AB. Then the success

probability of π on A×B (with respect to OSp, IP
p
n and µ) is exactly

Pr
(a,b)∼λ

[π(a, b) = OSp ◦ IPpn(a, b) | (a, b) ∈ A×B]
def
=

λ(TAB)

λ(A×B)
=

1
p

∑
i |T iAB |/|Oi|

1
p

∑
i |OiAB |/|Oi|

=
|TAB |
|OAB |

.

5.1.2 Precise statements of the Sub-rectangle and Amplification lemmas

We will need to define the various parameters we want to control.

Definition 5.2 (Existence of protocol on a large rectangle). Let n, p and C be positive integers,
and let α, β, γ ∈ (0, 1]. We write

Protocol(n, p, α, β, C, γ)

for the following statement:

• Large rectangle. There exists a rectangle A×B ⊆ ({0, 1}np)2 with |A| ≥ α2np, |B| ≥ β2np;

• Protocol. And there exists a protocol π : A×B → [p] for OSp ◦ IPpn;

• Success probability. And the success probability of π on A×B w.r.t. λ is at least γ:

|TAB |
|OAB |

≥ γ.

We can now make precise statements of both lemmas. Below we show how they imply Theorem
5.1.

Lemma 5.3 (Sub-rectangle lemma). Let n, p and C be sufficiently large positive integers, and
let α, β, γ ∈ (0, 1]. If Protocol(n, p, α, β, γ, C) and α, β ≥ 2−n/20, then

Protocol
(
n, p, 2−n/10000α, 2−n/10000β, γ − 2 · 2−n/10000, max

(
C − n

20000
, 0
))

.

Lemma 5.4 (Amplification lemma). Let n, p and C be sufficiently large positive integers, and
let α, β, γ ∈ (0, 1]. Suppose that Protocol(n, p, α, β, γ, C) holds, where:

α ≥ 2 · 2− n
200 β ≥ 2 · 2− n

200

p ≤ 1
402

n
100 γ ≥ 40 · p−1/12

Then one of the following cases will hold for some p
200 ≤ p

′ < p:

Case 1 — “amplify α”. Protocol(n, p′, 1
8

√
α, 1

2β,
1
11γ,C).

Case 2 — “amplify γ”. Protocol(n, p′, 1
2α,

1
2β,

11
10γ,C).

The Amplification lemma is symmetric with respect to α and β, the only asymmetry is in
the conclusion of Case 1. We will use the lemma also in the case where we reverse the role of α
and β, to effectively obtain the conclusion Protocol(n, p′, 1

2α,
1
8

√
β, 1

11γ,C) in Case 1.

We will prove the Sub-rectangle lemma in Section 5.2, and the Amplification lemma in Sections
5.3-5.6.
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5.1.3 The formal lower-bound proof for OS ◦ IP
Let us now prove Theorem 5.1 assuming the Sub-rectangle and Amplification lemmas are true.
We will apply these two lemmas in turn, keeping track of the various parameters n, p, α, β, γ
and C. Let A0 ×B0 = ({0, 1}np0)2, where p0 ≤ 2

n
1000 . Let µ0 be a uniform distribution on the

strings {1i0p0−i | i ∈ [p0]}, and let λ0 be the lifting of µ0 to ({0, 1}np0)2. Suppose we are given a
deterministic protocol π0 to compute OSp0 ◦ IP

p0
n , having success probability 2/3 over λ0, and

using communication C0 ≤ 1
c · n log p0, where 1

c ∈ [0, 1) is a constant to be chosen later.
We will always keep in mind some values p, α, β, γ, C, and some protocol π and rectangle

A×B witnessing Protocol(n, p, α, β, γ, C). We will be modifying these objects by application of
the Sub-rectangle and Amplification lemmas. We begin with π = π0, A×B = A0 ×B0, p = p0,
α0 = β0 = 1, γ0 = 2/3 and C = C0.

Then, as long as C > 0, we repeat the following three steps:

(i) We apply the Sub-rectangle lemma (Lemma 5.3) once.

(ii) We repeatedly apply Amplification lemma (Lemma 5.4) on Alice’s side
(Protocol(n, p, α, β, γ, C)) until the Case 1 occurs during the application of the lemma at
which point α gets amplified and we continue with Step (iii).

(iii) We repeatedly apply the Amplification lemma (Lemma 5.4) on Bob’s side
(Protocol(n, p, β, α, γ, C)) until the Case 1 occurs during the application of the lemma at
which point β gets amplified.

The loop will stop within 20000
c · log p0 iterations, because C decreases by n

20000 at Step (i) in
each iteration. We will show that following invariants are maintained throughout:

(1) γ ≥ 2
3 · p

−1/25
0 (2) p0 ≥ p ≥ p1/2

0 (3) α, β ≥ 2−n/300 at the onset of each step.

If these invariants hold then n, p and γ will be large enough to apply the Sub-rectangle and

Amplification lemmas. Indeed, p is large enough as p ≥ p
1/2
0 and p0 is large enough, and

γ ≥ 2
3 ·p
−1/25
0 ≥ 2

3 ·p
−2/25 ≥ 40 ·p−1/12. We will argue about α and β separately when discussing

Invariant (3).
We will use the following constants: c1 = 20000/c, c2 = c1 ·log 128, and c3 = (c2/ log(11/10))+

1
100 . We pick constant c large enough so that 2c1 + c3 ≤ 1/(2 log 200), c3 ≤ 1/2 and c2 ≤ 1/25.

Invariant (1). Initially, γ = 2/3. At each iteration of Steps (i)-(iii), γ gets multiplied by a
factor ≥ 1/128: in Step (i) it is multiplied by 1 − o(1) ≥ 121/128 for n large enough, in Step
(ii) as long as Case 2 occurs, γ is increasing and then it gets multiplied by a factor ≥ 1/11, and
in Step (iii) it is also multiplied by a factor ≥ 1/11. Altogether, it gets multiplied by a factor

≥ 1/128. There are c1 log p0 iterations so γ ≥ 2
3 · (

1
128 )c1 log p0 ≥ 2

3 · p
−c2
0 ≥ 2

3 · p
−1/25
0 , provided

p0 is large enough.

Invariant (2). As we have seen in the previous paragraph, γ can decrease by at most factor
of p−c2 . Each application of Case 2 of the Amplification lemma increases γ by a factor at least
11/10. As γ ≤ 1 at all times, the number of times Case 2 occurs can be upper-bounded by
log11/10( 3

2 · p
c2) ≤ c3 log p0, for p0 large enough. Hence, the total number of applications of the

Amplification lemma is ≤ (c3 + 2c1) log p0. Each application of the lemma shrinks p by a factor
of at most 1/200 so by properties of c1 and c3, p can decrease by at most 1/

√
p0.
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Invariant (3). Assume α, β ≥ 2 · 2−n/300 before Step (i). Let us focus on α. α decreases by
a factor at most 2−

n
10000 in Step (i), thereby having a value at least 2−

n
300−

n
10000 ≥ 2−n/290 before

Step (ii) which is enough for an initial application of the Amplification lemma. Then α can
decrease by a total factor of at most (1/2)c3 log p0 ≥ p−c30 ≥ 2−

n
2000 during all Case 2 applications

of the lemma in Step (ii), hence before each of the applications α ≥ 2−n/290−n/2000 ≥ 2−n/253.
During the last application of the Amplification lemma (Case 1), α gets amplified by a square

root (times 1/8) to attain a value α ≥ 1
8 ·
√

2−n/253 ≥ 2−n/500. This value again permits the

use of the Amplification lemma in Step (iii) as α maintains a value at least 2−n/500−n/2000−1 ≥
2−n/400 > 2−n/300, as promised. The proof for β is very similar: it is ≥ 2−n/300 before step (i)
and ≥ 2−

n
300−

n
10000 ≥ 2−n/290 after Step (1). It then decreases by a factor of p−2c3

0 ≥ 2−
n

1000 by all
possible applications of Case 2 in Steps (ii) and (iii), thus remaining above 2−n/290−n/1000−1 ≥
2−n/224. After Case 1 is executed in Step (iii), β ≥ 1

8

√
2−n/224 ≥ 2−n/440 ≥ 2−n/300. It is

clear from the previous discussion that α, β ≥ 2 · 2−n/200 at the onset of each application of the
Amplification lemma.

By the end of the process we conclude that Protocol(n, p, α, β, γ, 0) holds, for α, β ≥ 2−
n

200 ,

and invariants (1) and (3) give us γ ≥ p−1/25
0 ≥ p−1/12, for p0 large enough. The protocol π does

not communicate at all so, it is constant. But regularity lemma (Lemma 4.9) does not allow for
a constant protocol to have such high success probability on such a large rectangle! Indeed, it
implies that each OiAB has the same size, up to 1− o(1) multiplicative factors. This means that
the fractional size of each OiAB inside OAB is approximately the same, namely 1

p · (1± o(1)), and
which gives an upper bound on the success probability of any constant protocol. Having reached
this contradiction, we are forced to conclude that our initial hypothesis about the existence of a
protocol communicating 1

cn log p0 bits was false.

5.2 Proof of the Sub-rectangle lemma

In this subsection we prove Lemma 5.3. Suppose that Protocol(n, p, α, β, γ, C) holds, with
α, β ≥ 2−n/20; let A × B, π be the promised rectangle and protocol. Then to each prefix
w ∈ {0, 1}δn of the transcript of π we can associate a sub-rectangle Rw ⊆ A×B, corresponding
to those inputs (a, b) ∈ A×B for which w is the first δn bits communicated (we will set δ ≤ 1/20
later at our convenience). The success probability on A×B is then the average success probability
over the various Rw, weighted by their λ-mass in A×B:

γ =
∑
w

λ(Rw)

λ(A×B)
· γw,

where γw = Pr(a,b)∼λ[π(a, b) = OSp ◦ IPpn(a, b) | (a, b) ∈ Rw].

Then let us discard all Rw having size smaller than 2−2δn · |A×B|. By doing so, and given
that there are at most 2δn rectangles Rw, we have discarded at most a 2−δn fraction of A×B.
Now notice that, as δ ≤ 1/20, every surviving Rw is still large enough to be 2−

n
10 -regular (by

Lemma 4.9), and that the union of the surviving rectangles holds at least a 1− 2−δn fraction of
the pairs in A×B. By Proposition 4.4 applied on each surviving Rw, their union also holds at
least a (1− 2−

n
10 )(1− 2−δn) ≥ 1− 2 · 2−δn of the λ-mass of A×B.

Hence, even assuming in the worst case that all discarded rectangles have γw = 1, we still
have ∑

surviving w

λ(Rw)

λ(A×B)
· γw ≥ γ − 2 · 2−δn.

But then there must exist a surviving Rw = A′ ×B′ with γw ≥ γ − 2 · 2−δn. Note that this Rw
has size at least 2−δn · |A×B| by our construction. At this point, we set δ to be 1/20000 to get
Lemma 5.3.
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5.3 Proof of the Amplification lemma

In this subsection we prove the Amplification lemma (Lemma 5.4). Suppose that Protocol(n, p,
α, β, γ, C) holds, where:

α ≥ 2 · 2− n
200 β ≥ 2 · 2− n

200

p ≤ 1
402

n
100 γ ≥ 40 · p−1/12

Let the rectangle A×B and protocol π : A×B → [p] witness this fact.

5.3.1 Path splitting

We first split the domain {0, 1}np into two sides {0, 1}np1 × {0, 1}np2 , called the prefix side and
the suffix side. We will do this in a way such that π still has high success probability on both
sides, and that neither side is too small.

For a given split choice p = p1 + p2, let µ1 be uniformly distributed on the strings 1i0p−i

for 1 ≤ i ≤ p1 and µ2 be uniformly distributed on the strings 1i0p−i for p1 < i ≤ p. Then (for
i ∈ {1, 2}) let λi be the lifting of µi (to ({0, 1}np)2, with respect to IPpn, see Definition 4.2), and
γi be the success probability of π on A×B (with respect to OSp, IP

p
n and µi, see Definition 4.5).

If we let

O≤p1AB =

p1⋃
i=1

OiAB , T≤p1AB =

p1⋃
i=1

T iAB , O>p1AB =

p⋃
i=p1+1

OiAB , and T>p1AB =

p⋃
i=p1+1

T iAB ,

where OiAB and T iAB were defined in Section 5.1.1, then it follows (as in Section 5.1.1) that:

γ1
def
=

λ1(TAB)

λ1(A×B)
=
|T≤p1AB |
|O≤p1AB |

, γ2
def
=

λ2(TAB)

λ2(A×B)
=
|T>p1AB |
|O>p1AB |

.

We may then show the following:

Claim (splitting). There is a choice of p1 (and thus p2) such that:

1. p1, p2 ≥ 1
200p, and

2. γ1, γ2 ≥ 99
100γ

Proof. For each i ∈ [p], let γ(i) =
|T i

AB |
|Oi

AB |
; let δ = 2−

n
10 . For any p1, p2, the regularity lemma

(Lemma 4.9) will give us the following approximate equalities:

γ1
6δ
≈ 1

p1

∑
i≤p1

γ(i), γ2
6δ
≈ 1

p2

∑
i>p1

γ(i), γ
6δ
≈ 1

p

∑
i

γ(i) 6δ
≈ p1

p
γ1 +

p2

p
γ2 (∗)

Let us derive this only for γ, as the other two equalities follow in the same way. Let O =
⋃
i∈[p]O

i,

where Oi = {(a, b) ∈ ({0, 1}np)2 | IPpn(a, b) = 1i0p−i}; then:

γ =
|TAB |
|OAB |

2δ
≈ |TAB |
αβ|O|

=

p∑
i=1

|T iAB |
αβ|O|

=
1

p

p∑
i=1

|T iAB |
αβ|Oi|

2δ
≈ 1

p

p∑
i=1

|T iAB |
|OiAB |

=
1

p

p∑
i=1

γ(i).

Both approximate equalities follow from the regularity lemma, and all exact equalities are by
definition, except for the third exact equality which follows from |O| = p|Oi| (because each Oi

set has exactly the same size 2np−p).
To avoid encumbering the argument, let us prove the existence of p1 and p2 assuming that

the equalities in (∗) hold exactly. Set L = p
200 and R = p− p

200 . If every choice of p1 between L
and R gives γ1, γ2 ≥ 99

100γ, we can just set p1 = p
2 . Otherwise, suppose without loss of generality

that there is some p′ between L and R for which γ1 <
99
100γ (the case for when γ2 is small for
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some p′ is symmetric). Let p1 be the smallest index in {p′, p′ + 1, . . . , R} for which γ1 ≥ 99
100γ.

Such an index must exist, because setting p1 = R will be enough: the number of indices i > R
is less than 1

200 fraction of all indices, so if γ1 were less than 99
100γ when p1 = R, the average γ

could not possibly be attained.
Now notice that since p′ ≥ L, γ1 can only increase by 1

L every time we increment p1. Hence for

this choice of p1, it must happen that γ1 ≤ 99
100γ+ 1

L , and since by assumption γ ≥ p−1/12 � 200
L ,

then γ1 ≤ 199
200γ. That immediately implies that, to attain the average, γ2 must be ≥ γ.

It is now easy to see how the result follows from the approximate inequalities (since δ �
1/p).

�
From now onward, we fix the choice of p1, p2 to have the properties of the previous claim.

5.3.2 High-quality subsets

Given a ∈ A, the prefix-side quality of a is the row-quality (as in Definition 4.6) with respect to
µ1 (and f = OSp, G = IPpn, A, B, and π). Similarly, we define the suffix-side quality of a ∈ A,
q2(a), to be the row-quality with respect to µ2. Define:

T≤p1aB = {b ∈ B | π(a, b) = OSp ◦ IPpn(a, b) and IPpn(a, b) = 1i0p−i for some i ∈ [p1]}, and

O≤p1a = {b ∈ {0, 1}np | IPpn(a, b) = 1i0p−i for some i ∈ [p1]}.
The following image is useful for thinking about these sets: we look at row a in the OSp ◦ IPpn

matrix; within this row, mark with a circle those columns b for which IPpn = 1i0p−i for some

i ∈ [p1]; then O≤p1a is the set of b that were marked, O≤p1aB is the set of these circles within B

and T≤p1aB is the subset O≤p1a where the protocol π is correct (these entries appear as gray-filled

circles in the picture; T≤p1aB is also a subset of B, which is why B appears in the notation).

a

B

O≤p1aB

T≤p1aB

A
{0, 1}np

{0, 1}np

O≤p1a

The sets T>p1aB and O>p1a are similarly defined with respect to i ∈ [p] \ [p1]. It then follows (as in
Section 5.1.1) that

q1(a) =
|T≤p1aB |
|O≤p1a |

q2(a) =
|T>p1aB |
|O>p1a |

,

Abbreviate δ = 2−
n
10 ; then Lemma 4.7 says that the average qi is:

1

|A|
∑
a∈A

q1(a)
2δ
≈ γ1β

1

|A|
∑
a∈A

q2(a)
2δ
≈ γ2β.
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So let us now focus on those a ∈ A which attain at least 1
10 of this average:

A1 = {a ∈ A | q1(a) > γ1β/10} A2 = {a ∈ A | q2(a) > γ2β/10}.

A1 and A2 are called the high-quality subsets of A.

5.3.3 The conditions for each of the two cases

Depending on the size of the high-quality subsets, we consider the following two exhaustive cases:

Case 1 Both |A1| and |A2| are at least 3
4 |A|,

Case 2 At least one of |A1|, |A2| is less than 3
4 |A|.

In accordance with the statement of the Amplification lemma, if Case 1 holds we will show
that Protocol(n, p′, 1

8

√
α, 1

2β,
1
11γ,C) holds, for p′ equal to either p1 or p2, — the choice of pi is

decided on the basis of the sets A1 and A2, (i.e. we “amplify” α), and if Case 2 holds we will
show that Protocol(n, p′, 1

2α,
1
2β,

11
10γ,C) holds, for p′ equal to either p1 or p2 (i.e. we “amplify”

γ), — the choice of pi, again, is decided on the basis of Ai which has size smaller than 3|A|/4.

5.3.4 Proving Case 1

Let A′ = A1 ∩ A2 — which is a set of size at least |A|/2. We will apply lemma 2.6 to find

a super-dense side of A′. Let α′ = |A′|
2np , L = {0, 1}np1 and R = {0, 1}np2 . For ` ∈ L, let

Ext′(`) = Ext
[p]\[p1]
A′ (`) be the (possibly empty) set of r ∈ R such that `× r ∈ A′ (Note that `× r,

as defined in Section 2, is the concatenation of ` with r); likewise, for r ∈ R, let Ext′(r) = Ext
[p1]
A′ (r)

be the set of ` ∈ L such that `× r ∈ A′. We define the two sets:

A′L =

{
` ∈ L

∣∣∣∣ |Ext′(`)||R|
>
α′

4

}
, A′R =

{
r ∈ R

∣∣∣∣ |Ext′(r)||L|
>
α′

4

}
.

Applying Lemma 2.6, we conclude that either A′L or A′R is 1
4

√
α′-dense in L or R, respectively.

The proof of Case 1 will use the following lemma (and its suffix-side analogue):

Lemma 5.5 (Zooming-in lemma, prefix side, weak version). Let L = {0, 1}np1 andR = {0, 1}np2 ,
where p = p1 +p2 ≤ 1

40 ·2
n/100 is a sufficiently large natural number. Suppose we have a rectangle

A′′ ×B, where both A′′ and B are subsets of L×R, and a C bit protocol π : A′′ ×B → [p]. Let
µ1 be a uniform distribution over the strings 1i0p−i for i ∈ [p1], and let λ1 be the lifting of µ1 to
(L×R)2 with respect to IPpn (as in Definition 4.2). Let q1(a) denote the row-quality with respect

to µ1 (and OSp, IP
p
n, A′′, B and π). For a given ` ∈ A′′≤p1 , denote by Ext′′(`) = Ext

[p]\[p1]
A′′ (`) the

set of extensions of `.

Suppose we have the following properties:

• A′′ and B have enough density. A′′ has prefix-side density α′′≤p1
def
=
|A′′≤p1

|
|L| which is at least

2−
n
10 , and for each ` ∈ A′′≤p1 , the density of its extensions |Ext

′′(`)|
|R| is at least 8 · 2− n

30 . The density

of B, β
def
= |B|
|L×R| , is at least 2−

n
200 .

• Minimum quality in A′′ is high. For some value γ̃ ≥ 2−
n

1200 , every a ∈ A′′ has q1(a) ≥ γ̃β.

Conclusion. Then Protocol(n, p1, (1− δ)α≤p1 , (1− δ)β, (1− δ)γ̃, C) holds, where δ = 8 · 2− n
1200 .

Here it should be noted that a Zooming-in lemma similar to the above was implicitly proven
in [RW89], though it was for the Indexing function. However, the asymmetry of the Indexing
function allowed for their proof to be somewhat simpler than what will be afforded to us. In
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Section 5.5 we will prove a stronger version of the Zooming-in lemma just presented — this
stronger version will be needed in Case 2.

Now to finish Case 1: Suppose that
|A′L|
|L| ≥

1
4

√
α′. Let A′′ ⊆ L×R contain every ` in A′L and

its extensions, i.e. A′′ = {` × r | ` ∈ A′L, ` × r ∈ A′}, and let us see why we may apply the

Zooming-in lemma above. A′′ and B have enough density since α′

4 � 2−
n
30 and β ≥ 2−

n
200 . On

the other hand, the quality q1(a) of every a ∈ A′′ is at least γ1
10β, because A′′ ⊆ A′. Hence we

set γ̃ = γ1
10 above, which is ≥ 99

1000γ ≥
99×20
1000 p

−1/12 ≥ 2−
n

1200 .

It then follows from the Zooming-in lemma that Protocol(n, p1,
1
8

√
α, 1

2β,
γ
11 , C). A similar

conclusion also follows from the analogous suffix-side Zooming-in lemma (which we state in
Lemma 5.17) if AR is super-dense. This concludes Case 1.

5.3.5 Proving Case 2

Let us suppose that |A1| < 3
4 |A|. The intuition behind Case 2 is as follows. The average

prefix-side quality of a ∈ A is γ1β, but fewer than 3
4 of the inputs in A have prefix-side quality

≥ γ1β
10 . That means, roughly, that 9

10 of all the prefix-side quality is concentrated in less than 3
4

of the strings;— then these strings must have higher than average prefix-side quality, namely
4
3 ·

9
10γ1β = 12

10γ1β. We will show that we may find a subset of the prefix-side projection of A,
and a carefully selected subset of the extensions of these prefix-sides, such that we may zoom in
on the prefix-side to get a protocol with success probability ≥ 11

10γ.
For this purpose, let A′ ⊆ A be the subset of A containing the b 3

4 |A|c strings a ∈ A that

have highest prefix-side quality q1(a). Because A1 ⊆ A′, every string a ∈ A \A′ has q1(a) < γβ
10 .

Let δ = 2−n/10. Since A×B is δ-regular (by 4.9), then from the success–quality correspondence
(Lemma 4.7), we have that 1

|A|
∑
a∈A q1(a) ≥ (1− δ)γ1β; it must now hold:

∑
a∈A′

q1(a) ≥ (1− δ − 1/10) · γ1β|A| ≥ (1− 2δ) · 12

10
· γ1β · |A′|,

i.e., the average quality in A′ is roughly 12
10 times higher. We will now show that we can prune A′

to obtain a set A′′ with an equally dense prefix-side projection A′′≤p1 , and such that all extensions
of each ` ∈ A′′≤p1 have fairly good quality. More precisely:

Lemma 5.6 (Min-quality lemma). Let L = {0, 1}np1 and R = {0, 1}np2 for some sufficiently
large natural numbers n, p1 and p2. Suppose we have a rectangle A′ × B, where both A′ and
B are subsets of L × R, and a protocol π : A′ × B → [p]. Let µ1 be uniform over the strings
1i0p−i for i ∈ [p1], and let q1(a) denote the row-quality (Definition 4.6) with respect to µ1 (and
OS, IPpn, A′, B and π). If we have fixed a subset A′′ ⊆ A, then for any given ` ∈ A′′≤p1 let

Ext′′(`) = Ext
[p]\[p1]
A′′ (`) be the set of extensions r ∈ R with `× r ∈ A′′, and define the min-quality

of `, q′′min(`), to be the minimum q1 of its extensions:

q′′min(`)
def
= min

r∈Ext′′(`)
q1(`× r).

Now suppose we have the following properties:

• A′ and B have good density. α′
def
= |A′|
|L×R| ≥ 2−

n
200 , and β

def
= |B|
|L×R| ≥ 2−

n
200 .

• Average quality is high. For some value Q ≥ 2 · 2− n
150 it holds that:

1

|A′|
∑
a∈A′

q1(a) ≥ Q.

Conclusion. Then there is a subset A′′ ⊆ A′ with the following properties:
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• A′′ has enough density. The size of the prefix-side projection is |A′′≤p1 | ≥ b(1−2−
n

120 )·α′|L|c,
and for all ` ∈ A′′≤p1 we have |Ext′′(`)| ≥ 8 · 2− n

30 |L|;

• A′′ obeys the average min-quality condition. The average min-quality over ` ∈ A′′≤p1
almost matches the average quality in A′:

1

|A′′≤p1 |
∑

`∈A′′≤p1

q′′min(`) ≥ (1− 4 · 2− n
300 ) ·Q.

A variant of the above lemma appears implicitly in [RW89]. Our proof appears in Section 5.6,
and is based on various proofs in that paper.

We apply this lemma to our rectangle A′ × B, with Q = (1 − 2δ) 12
10γ1β, which is ≥ 2 · 2− n

150

since β ≥ 2−
n

200 and γ1 ≥ 99
100γ ≥

99
100 · 40 · p−1/12 ≥ 2 · 2− n

600 . Now we have a set A′′ with
enough density and which obeys the min-quality condition; we can now apply the Lemma
5.16 (the strong version of the Zooming-in lemma which we used in Case 1), to conclude that
Protocol(n, p1,

α
2 ,

β
2 ,

11
10γ,C) must hold.

5.4 The extension lemma

We now prove what we call an extension lemma. An extension lemma is a stronger version of
the hitting rectangle-distribution property appearing in Section 3. The statement is somewhat
technical, but let us give it now in full so that we can explain the analogy with the hitting
properties.

Lemma 5.7 (0-monochromatic extension lemma). Let p and n be sufficiently large natural
numbers, such that p ≤ 1

40 · 2
n

100 . Let O be some finite set.

• Dense set of extensions. Let Ext ⊆ {0, 1}np with α = |Ext|
2np ≥ 8 · 2−n/30.

• Associated set. Suppose that to each r ∈ Ext corresponds a set Tr ⊆ O × r⊥, where

r⊥ = r⊥1 × . . .× r⊥p = {r′ ∈ {0, 1}np | IPpn(r, r′) = 0p}.

• Quality. Define the quality of r to be

q(r) ,
|Tr|

|O × r⊥|
,

and suppose that q(r) ≥ 2−n/10 for every r ∈ Ext.

• 0-monochromatic rectangle. Now pick a random product V = V1 × · · · × Vp, where each Vi is
an independent and uniformly random bn2 c-dimensional random subspace of Fn2 . Let V ⊥ denote
V ⊥1 × · · · × V ⊥p .

• Quality in the monochromatic rectangle. Finally, define

qV (r) =
|Tr ∩ (O × V ⊥)|
|O × V ⊥|

.

Conclusion. Then with probability ≥ 1− 2−
n

150 over the choice of V , there is some extension
r ∈ Ext ∩ V whose quality is preserved in the 0-monochromatic rectangle:

∃r ∈ Ext such that

{
r ∈ V (1)

qV (r) ∈ (1± 2−n/30) · q(r) (2)
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The hitting property gave us a rectangle-distribution that was almost guaranteed to hit large
rectangles. Here we have a set

⋃
r∈Ext{r} × Tr which is not necessarily a rectangle — we may

think of it as a union of slices. The extension lemma says that if there are many such slices (Ext
is big), and each slice is large within r⊥ (every q(r) is big), then by picking a 0-monochromatic
rectangle V ×V ⊥, we will with very high probability “hit” one of the slices, where “hitting” here
means that r ∈ V and Tr ∩ V ⊥ has the same density within V ⊥ as Tr has within r⊥.

This property, and the regularity of large rectangles, are the driving forces behind Theorem 5.1.

To prove the extension lemma we will need to considerably strengthen Lemmas 3.13 and 3.14,
which we will do in Section 5.4.1 and Section 5.4.2. The proof of the extension lemma itself
appears in Section 5.4.3, and the 1-monochromatic extension lemma is stated and proven in
Section 5.4.4.

5.4.1 Generalizing Section 3.3 to multiple coordinates

We begin by extending the proofs of Section 3.3 to random product subspaces.

Lemma 5.8. Let B ⊆ B = B1 × · · · × Bp, where Bj = Fn2 , and the remaining Bi’s are arbitrary

finite sets. Suppose that β = |B|
|B| ≥ 8 · 2−n

4 . Pick V to be a random subspace of Bj of dimension

d ≥ 7n
15 , and let U = B1 × · · · × V × · · · × Bp (V replaces Bj). Then

Pr

[
|B ∩ U |
|U |

∈ β(1± 2−n/20)

]
≥ 1− 1

2n/20
.

Proof. Let b1, . . . , bN be the elements of Bj (the projection of B into the j-th coordinate), and
for each bi let Ext(bi) = ExtB(bi) be the set of extensions of bi into B.

Define the random variables Xi = θi[bi ∈ V ], where θi = |Ext(bi)|/|B6=j | is the fractional size
of Ext(bi) in the set B6=j =

∏
k 6=j Bk. Note that

∑
i θi = β2n. Then the sum X =

∑
iXi equals

|B∩U |
|B6=j | = |B∩U |

|U | |V |. We wish to prove that X ∈ β|V |(1± 2−n/20) with high probability. To this

end, let us first compute E[X].

µ = E[X] =
∑
i

E[Xi] =
∑
i

θi Pr[bi ∈ V ] =

{
β2n 2d−1

2n−1 if 0̄ 6∈ Bj ,
β2n 2d−1

2n−1 + θ0(1− 2d−1
2n−1 ) otherwise.

(θ0 denotes θj for the j such that bj = 0̄.) Note that θ0 ≤ 1. Hence we can bound µ as follows:

β2n
2d − 1

2n − 1
≤ µ ≤ β2n

2d − 1

2n − 1
+ 1− 2d − 1

2n − 1
.

As we have argued in the proof of Lemma 3.13, this implies that µ ∈ (1± 2−n/6) · β|V |. Using
second moment method (Lemma 2.4) and noting that the Xi’s are anti-correlated (Lemma 3.12),
we may write:

Pr
[
X ∈ (1± 2−n/6)(1± ε/2)β|V |

]
≥ 1− 4

ε2β2d(1− 2−n/6)
.

Taking ε = 2−n/20, we get,

Pr
[
X ∈ (1± 2−n/20)β|V |

]
≥ 1− 1

2 · 2 7n
15−

n
4−

2n
20 (1− 2−n/6)

≥ 1− 1

2n/20
.

We may extend this result as follows.
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Lemma 5.9. Let B ⊆ {0, 1}np, β = |B|
2np ≥ 16 · 2−n/4, and p ≤ 1

4 · 2
n

100 . Pick V = V1 × . . .× Vp
where each Vi is an independently chosen random subspace of Fn2 , of dimension d ≥ 7n

15 . Then

Pr

[
|B ∩ V |
|V |

= β(1± 2−n/25)

]
≥ 1− 1

2n/25
.

Proof. Apply Lemma 5.8 p times, once to each coordinate. To apply Lemma 5.8, at each time,
we must ensure that the density never goes below 8 · 2−n/4. This will hold, provided that
(1− 2−n/20)p ≥ 1/2, which is always the case for our choice of p. It follows from Bayes’ rule that:

Pr

[
|B ∩ V |
|V |

= β(1± 2−n/20)p
]
≥ 1− p · 2−n/20, (3)

Now, it is not hard to verify that the interval (1± 2−n/20)p is contained in 1± 2−n/25. The
obvious direction is (1− 2−n/20)p ≥ 1− p · 2−n/20 ≥ 1− 2−n/25. For the other direction, note
that p · 2−n/20 < 1. Now, it is easy to check that for any p, δ with pδ < 1, (1 + eδp) ≥ (1 + δ)p

(by taking the derivative on both sides w.r.t. δ). Hence (1 + 2−n/20)p ≤ 1 + 2−n/25.

The above results are natural extensions of the original principle. We will also need a somewhat
technical variant of these results. It may be proven in the same way as Lemma 5.9, or more
cleverly by noticing that each r⊥i above is isomorphic to Fn−1

2 . (The n
30 in the statement is just

a very rough lower-bound on n−1
25 .)

Lemma 5.10. Let L be an arbitrary finite set, r ∈ {0, 1}np and r⊥ = r⊥1 × . . .× r⊥p , where each

r⊥i = {v ∈ Fn2 | IPn(r, v) = 0} is the perpendicular subspace to ri. Let p ≤ 1
42

n
100 , D ⊆ L × r⊥

with δ = |D|
|L×r⊥| ≥ 8 · 2−n/8. Now pick V = V1 × . . .× Vp where each Vi is a dimension d ≥ 7n

15 ,

independent random subspace of r⊥i . Set U = L × V . Then

Pr

[
|D ∩ U |
|U |

= δ · (1± 2−n/30)

]
≥ 1− 1

2n/30
.

5.4.2 Generalizing to the affine case

A similar result holds even if we work in the following scenario: Instead of picking V be a random
subspace, instead we first pick a uniformly-random vector a ∈ Fn2 of odd Hamming weight, and

then we pick W , a uniformly-random subspace of dimension d ≥ 7(n−1)
15 within a⊥. We finally

let V = a+W . The following can now be proven:

Lemma 5.11 (Analogue of Lemma 5.8). Let B ⊆ B = B1 × · · · × Bp, where Bj = Fn2 , and the

remaining Bi’s are arbitrary finite sets. Suppose that β = |B|
|B| ≥ 16 · 2−n

4 . Pick V as described

above and let U = B1 × · · · × V × · · · × Bp (V replaces Bj). Then

Pr

[
|B ∩ U |
|U |

∈ β(1± 3 · 2−n/20)

]
≥ 1− 3

2n/20
.

Proof. This proof uses Lemma 5.8 in the same way that the proof of Lemma 3.14 uses Lemma
3.13. Let B′ = B − a′ where a′ ∈ {0, 1}np has a′j = a and a′i = 0̄ for i 6= j. Also denote

U ′ = B1 × · · · × a⊥ × · · · Bp. Call a string a ∈ {0, 1}n good if

β′
def
=
|B′ ∩ U ′|
|U ′|

∈ β(1± 2−
n
20 )

We show below that if a is a uniformly-random odd-Hamming-weight string in {0, 1}n, then

Pr
a

[a is good] ≥ 1− 2

2n/20
. (∗)
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Assuming (∗), let U ′′ = B1 × · · · ×W × · · · Bp; notice that Lemma 5.8 then implies

Pr
a,W

[
|B′ ∩ U ′′|
|U ′′|

∈ β′(1± 2−n/20)

∣∣∣∣ a is good

]
≥ 1− 1

2n/20
.

This is enough to prove the theorem, as we have |U ′′| = |U | and — because b−a′ ∈ B′∩U ′′ ⇐⇒
b ∈ B ∩ U — we also have |B′ ∩ U ′′| = |B ∩ U |; the result now follows from Bayes’ rule.

(∗) is proven in much the same way as in the proof of Lemma 3.14, with the added encumbrance
of handling multiple coordinates. If we choose a to be a uniformly-random non-zero string in
{0, 1}n, then a⊥ is a uniformly-random subspace of dimension n−1. Let U0 = B1×· · ·×Fn2×· · · Bp.
Since |B||U0| = β, then applying Lemma 3.14 we conclude that

|B ∩ U ′|
|U ′|

= (1± 2−n/20) · β

must hold with probability ≥ 1− 1/2n/20 (over the choice of a). On the other hand, since a⊥

contains exactly half of the strings in Fn2 , then for U‖ = B1×· · ·×a‖×· · · Bp, we have |U‖| = |U ′|
and |B∩U

′|
|U ′| = (1± 2−n/20) · β if and only if |B∩U

‖|
|U‖| = (1± 2−n/20) · β. It then follows that, with

probability ≥ 1− 1/2n/20 over the choice of non-zero a,

|B ∩ U‖|
|U‖|

= (1± 2−n/20) · β

Now, a uniformly-random non-zero a it will be of odd Hamming weight with probability ≥ 1/2.
Also, note that when a is an odd-Hamming-weight string, then b ∈ B ∩U‖ ⇐⇒ b−a′ ∈ B′ ∩U ′,
so |B ∩ U‖| = |B′ ∩ U ′|. We then conclude that (∗) must hold.

The above lemma can then be used to prove the analogue of Lemma 5.9 for V = a+W :

Lemma 5.12 (Analogue of Lemma 5.9). Let B ⊆ {0, 1}np, β = |B|
2np ≥ 16·2−n/4, and p ≤ 1

12 ·2
n

100 .
Pick V = V1 × . . .× Vp where each Vi is chosen independently to be ai +Wi as described above.
Then

Pr

[
|B ∩ V |
|V |

= β(1± 2−n/25)

]
≥ 1− 1

2n/25
.

We are still missing the affine analogue of the technical variant (Lemma 5.10). Fix a vector
r ∈ {0, 1}n such that r 6= 0n. Denote by r‖ the set of x ∈ {0, 1}n such that IPn(x, r) = 1. Now
pick the set V by the following process: first pick a uniformly-random vector a ∈ r‖ of odd

Hamming weight; then pick W , a uniformly-random subspace of dimension d ≥ 7(n−1)
15 within

{r, a}⊥; then set V = a+W . The following is now true:

Lemma 5.13. Let B ⊆ B = B1 × · · · × Bp, where Bj = r‖ (where r ∈ {0, 1}n is 6= 0n), and the

remaining Bi’s are arbitrary finite sets. Suppose that β = |B|
|B| ≥ 16 · 2−n

4 . Pick V as stated

above and let U = B1 × · · · × V × · · · × Bp (V replaces Bj). Then

Pr

[
|B ∩ U |
|U |

∈ β(1± 5 · 2−n/20)

]
≥ 1− 10

2n/20
.

Proof. This proof mimics the proof of Lemma 5.11, with some added care to deal with the
fact that the ambient set r‖ is not a subspace — it will be enough that it is a large set within
Fn2 . Let B′ = B − a′ where a′ ∈ {0, 1}np has a′j = a and a′i = 0̄ for i 6= j. Also denote

U ′ = B1 × · · · × {a, r}⊥ × · · · Bp. Call a string a ∈ {0, 1}n good if

β′
def
=
|B′ ∩ U ′|
|U ′|

∈ β(1± 3 · 2− n
20 )
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We show below that if a is a uniformly-random odd-Hamming-weight string in r‖, then

Pr
a

[a is good] ≥ 1− 8

2n/20
. (∗)

Assuming (∗), let U ′′ = B1 × · · · ×W × · · · Bp; notice that Lemma 3.13 then implies

Pr
a,W

[
|B′ ∩ U ′′|
|U ′′|

∈ β′(1± 2−n/20)

∣∣∣∣ a is good

]
≥ 1− 1

2n/20
.

This is enough to prove the theorem, as we have |U ′′| = |U | and — because b−a′ ∈ B′∩U ′′ ⇐⇒
b ∈ B ∩ U — we also have |B′ ∩ U ′′| = |B ∩ U |; the result now follows from Bayes’ rule.

To prove (∗) we now have the added encumbrance of handling multiple coordinates, one of
which is r‖ instead of {0, 1}n. If we choose a to be a uniformly-random non-zero string in {0, 1}n,
then a⊥ is a uniformly-random subspace of dimension n− 1. Let R⊥ = B1 × · · · × r⊥i × · · · Bp,
U0 = B1 × · · · × Fn2 × · · · Bp, and U⊥ = B1 × · · · × a⊥ × · · · Bp. Since |B|

|U0| = β
2 and |R

⊥|
|U0| = 1

2 ,

then applying Lemma 3.14 twice, we conclude that

|B ∩ U⊥|
|U⊥|

= (1± 2−n/20) · β/2 and
|R⊥ ∩ U⊥|
|U⊥|

= (1± 2−n/20) · 1/2

must both hold with probability ≥ 1− 2/2n/20 (over the choice of a). On the other hand, since
a⊥ contains exactly half of the strings in Fn2 , then for U‖ = B1 × · · · × a‖ × · · · Bp, we have

|U‖| = |U⊥| and |B∩U
⊥|

|U⊥| = (1± 2−n/20) · β/2 if and only if |B∩U
‖|

|U‖| = (1± 2−n/20) · β/2. It then

follows that, with probability ≥ 1− 2/2n/20 over the choice of non-zero a,

|B ∩ U‖|
|R⊥ ∩ U⊥|

=
|B ∩ U‖|
|U‖|

|U⊥|
|R⊥ ∩ U⊥|

∈ (1± 3 · 2−n/20)β.

Now, a uniformly-random non-zero a it will be within r‖ and will be of odd Hamming weight
with probability ≥ 1/4 (here we use the fact that r is not an all-0 or all-1 string). Also, note
that when a is an odd-Hamming-weight string in r‖, then b ∈ B ∩ U‖ ⇐⇒ b − a′ ∈ B′ ∩ U ′
(here recall that Bi ⊆ r‖i also), so |B ∩ U‖| = |B′ ∩ U ′|. Finally notice that R⊥ ∩ U⊥ = U ′. We
then conclude that (∗) must hold.

We may apply Lemma 5.13 to each coordinate, exactly as in the proof of Lemma 5.9, to get:

Lemma 5.14 (Analogue of Lemma 5.10). Let L be some set, r ∈ {0, 1}np and r‖ = r
‖
1× . . .× r

‖
p,

where each r
‖
i is the affine space parallel to ri and none of the ri is an all-0 or all-1 vector. Let

p ≤ 1
402n/100, D ⊆ L× r‖ with β = |D|

|L×r‖| ≥ 32 · 2−n/4. Now pick a random V = V1 × . . .× Vp
where each Vi is picked independently as in Proposition 5.13. Then

Pr

[
|D ∩ U |
|U |

= β(1± 2−n/30)

]
≥ 1− 1

2n/30
.

5.4.3 Proof of the extension lemma

Proof of Lemma 5.7. Let us look at the following bipartite graph: on the left side we have the
different V ’s, and on the right side we have the different r ∈ Ext. We put an edge between V
and r whenever r ∈ V . Let E be the number of edges, R be the number of r’s, and S be the
number of V ’s.

From Lemma 5.9, it follows that for at least 1 − 2−n/25 fraction of the V , deg(V ) ∈ (1 ±
2−n/25)α|V |. Hence E ≥ (1− 2−n/25)Sα|V |.
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Now notice the following observation: Picking a uniformly random neighbor V of r and then
taking V ⊥ is the same as picking a uniformly random subspace V ⊥ of r⊥ of dimension dn2 e.

Call an edge (r, V ) good if (2) holds. Then from Lemma 5.10 it follows that for every r at
least a 1− 2−n/30 fraction of its edges are good. So the total number of good edges is at least
(1− 2−n/30)E.

If we remove all the edges (r, V ) from V ’s for which deg(V ) 6∈ (1± 2−n/25)αR, then because
every V has at most |V | edges, we remove no more than

2−n/25S|V | ≤ 2 · 2−n/25

α
E ≤ 2 · 2−n/25

8 · 2−n/30
E ≤ 1

4
2−

n
150E

edges. Hence after removing these edges, the total number of good edges is still at least
(1− 2−n/30 − 1

42−
n

150 )E ≥ (1− 1
22−

n
150 )E. If E′ is the number of surviving edges, then we still

have (1− 1
22−

n
150 )E′ good edges. Now notice that every surviving V has (1± 2−n/25)α|V | edges,

and so if S′ is the number of surviving V ’s, then E′ ≤ (1 + 2−n/25)α|V |S′, and the number of
V ’s without good edges is at most

1
22−

n
150E′

(1− 2−n/25)α|V |
≤ 1

2
2−

n
150

1 + 2−n/25

1− 2−n/25
S′ ≤ 2

3
2−

n
150S.

In total, the number of V ’s we removed, plus the number of V ’s without good edges, is less than
2−

n
150S. Any other V will have at least one neighbor r for which both conditions (1) and (2)

must hold.

With greater care, we would have been able to prove that the fraction of r ∈ Ext ∩ V with
property (2) is (1± o(1)) · α.

5.4.4 The 1-monochromatic extension lemma

We will also need the following 1-monochromatic analogue:

Lemma 5.15 (1-monochromatic extension lemma). Let p and n be sufficiently large natural
numbers, such that p ≤ 1

40 · 2
n

100 . Let O be some finite set.

• Dense set of extensions. Let Ext ⊆ {0, 1}np with α = |Ext|
2np ≥ 10 · 2−n/30.

• Associated set. Suppose that to each r ∈ Ext corresponds a set Tr ⊆ r‖ ×O, where

r‖ = r
‖
1 × . . .× r‖p = {r′ ∈ {0, 1}np | IPpn(r, r′) = 1p}.

• Quality. Define the quality of r to be

q(r) ,
|Tr|
|r‖ ×O|

,

and suppose that q(r) ≥ 2−n/10 for every r ∈ Ext.

• 1-monochromatic rectangle. Now pick a random product V = V1×· · ·×Vp, where each Vi is of
the form ai+Wi, where ai is a random odd-hamming-weight string and Wi is a uniformly random

subspace of a⊥i of dimension bn−1
2 c. Let V (1) denote V

(1)
1 × · · · × V (1)

p , for V
(1)
i = ai +W⊥i —

where W⊥i is the orthogonal complement of Wi within a⊥i .

• Quality in the monochromatic rectangle. Finally, define

qV (r) =
|Tr ∩ (V (1) ×O)|
|V (1) ×O|

.
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Conclusion. Then with probability ≥ 1− 2−
n

150 over the choice of V , there is some extension
r ∈ Ext ∩ V whose quality is preserved in the 0-monochromatic rectangle:

∃r ∈ Ext such that

{
r ∈ V (1)

qV (r) = (1± 2−n/30) · q(r) (2)

Proof. This proof is exactly the same proof as in Lemma 5.7, but we apply Lemmas 5.12 and 5.14
instead of Lemmas 5.9 and 5.10, respectively. The observation stated in the proof is also replaced,
as follows. The left-nodes in the graph are now of the form V = (a1+W1)×. . .×(ap+Wp). If V is
a neighbor of r, i.e. if ri ∈ ai+Wi for all i, then it also holds for all i that ai ∈ r‖ (i.e. 〈ri, ai〉 = 1),
and that W⊥i is in {ai, ri}⊥ (because for any x ∈ W⊥i , we have 〈x, ri〉 = 〈x, ai + wi〉 = 0 for
some wi ∈Wi).

It then holds that picking a uniformly random neighbor of r and then taking V ⊥ is the

same as picking the ai of odd hamming weight uniformly at random from r
‖
i and then taking a

uniformly random dn−1
2 e-dimensional subspace W⊥i within {ai, ri}⊥.

5.5 Proof of the Zooming-in lemma

We will now prove a stronger version of the Zooming-in lemma presented in Section 5.3.4.

Lemma 5.16 (Zooming-in lemma, prefix side, strong version). Let L = {0, 1}np1 and R =
{0, 1}np2 , where p = p1 + p2 ≤ 1

40 · 2
n/100 is a sufficiently large natural number. Suppose we

have a rectangle A × B, where both A and B are subsets of L × R, and a C-bit protocol
π : A × B → [p]. Let µ1 be a uniform distribution over the strings 1i0p−i for i ∈ [p1], and let
λ1 be the lifting of µ1 to (L ×R)2 with respect to IPpn (as in Definition 4.2). Let q1(a) denote
the row-quality with respect to µ1 (and OSp, IP

p
n, A,B and π). For a given ` ∈ A≤p1 , denote

by Ext(`) = Ext
[p]\[p1]
A (`) the set of extensions of `, and define the min-quality qmin(`) to be the

minimum q1 of `’s extensions:

qmin(`)
def
= min

r∈Ext(`)
q1(`× r).

• Enough density. Suppose that A has prefix-side density α≤p1
def
=
|A≤p1

|
|L| at least 2−

n
10 , and

for each ` ∈ A≤p1 , the density of its extensions |Ext(`)||R| is at least 8 · 2− n
30 ; suppose also that the

density of B, β
def
= |B|
|L×R| , is at least 2−

n
200 .

• Average min-quality condition. Finally, suppose that the average qmin(`) is bounded by

1

|A≤p1 |
∑

`∈A≤p1

qmin(`) ≥ γ̃β,

for some value γ̃ ≥ 2−
n

1200 .

• Conclusion. Then Protocol(n, p1, (1−δ)α≤p1 , (1−δ)β, (1−δ)γ̃, C) holds, where δ = 8 ·2− n
1200 .

This is a stronger statement than Lemma 5.5 of Section 5.3.4, because when q1(a) ≥ γ̃β for every
a ∈ A, obviously qmin(`) ≥ γ̃β for every ` ∈ A≤p1 .

Proof of the lemma. Fix any ` ∈ A≤p1 . To each r ∈ Ext(`) corresponds the set O≤p1`×r = O` × r⊥
of possible inputs `′ × r′ of Bob for which OS ◦ IP(`× r, `′ × r′) ≤ p1:

O` = {`′ ∈ {0, 1}p1n | ∃i ∈ [p1] IPp1n (`, `′) = 1i0p1−i}

r⊥ = {r′ ∈ {0, 1}p2n | IPp2n (r, r′) = 0p2}.
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Let us apply the extension lemma (Lemma 5.7) to each ` ∈ A≤p1 , with Ext = Ext(`), O = O`,

and with Tr = T≤p1`×rB ⊆ O` × r⊥ being the subset of Bob’s inputs b ∈ O` × r⊥ such that
π(`× r, b) = OSp ◦ IPpn(`× r, b). In this case q(r), as defined in the statement of Lemma 5.7, is
exactly:

q(r)
def
=

|Tr|
|O` × r⊥|

def
=
|T≤p1`×rB |
|O≤p1`×r |

=
λ1(T≤p1`×rB)

λ1(O≤p1`×r )

def
= q1(`× r)

(the before-to-last equality follows as in Section 5.1.1); clearly q(r) will always be greater than
qmin(`). Let us define qV (`× r) to be qV (r) as defined in Lemma 5.7, when applied to `, i.e.:

qV (`× r) =
|T≤p1`×rB ∩ (O` × V ⊥)|

|O` × V ⊥|
.

Let V = V1×· · ·×Vp, where each Vi is an independent and uniformly random bn2 c-dimensional
random subspace of {0, 1}n. Let V ⊥ denote V ⊥1 ×· · ·×V ⊥p . The extension lemma then says that

for any such ` ∈ A≤p1 a random V will, with probability at least 1− 2−
n

150 , give us a suffix-side
extension r ∈ Ext(`) ∩ V with

qV (`× r) > (1− 2−
n
30 ) · qmin(`). (I)

Since B is a large set, then Lemma 5.9 says that, with probability ≥ 1− 2−n/25, it will also hold:

βV
def
=
|B ∩ (L × V ⊥)|
|L × V ⊥|

∈ (1± 2−n/25) · β. (II)

Therefore, we may fix a single V which satisfies (II), and which satisfies (I) for a 1− 2 · 2− n
150

fraction of all the ` ∈ A≤p1 . After fixing such a V , let A′L be the set of ` for which (I) holds, and
let BV = B ∩ (L × V ⊥). Associate with each ` ∈ A′L the promised string r. From the average
min-quality condition we may now derive:

1

|A′L|
∑
`∈A′L

qV (`× r) ≥ 1

|A≤p1 |
∑
`∈A′L

(1− 2−
n
30 ) · qmin(`× r) ≥ (1− 2−

n
30 )γ̃β − 2 · 2− n

150 .

Together with (II) and our bounds on γ̃ and β (specifically γ̃ ≥ 2−
n

1200 and β ≥ 2−
n

200 ), this
implies:

1

|A′L|
∑
`∈A′L

qV (`× r) ≥
(

1− 2−
n
30 − 2 · 2− n

150

γ̃β

)
· 1

1 + 2−
n
25
· γ̃βV ≥ (1− 5 · 2− n

1200 )γ̃βV .

What does qV (` × r) mean? Let A′ = L and BV = L × V ⊥, and set GV : A′ × BV → [p] to
GV (`, `′ × r′) = IPpn(` × r, `′ × r′) = IPp1n (`, `′) 0p2 . Define a protocol πV : A′L × BV → [p] to
work as follows: Alice is given ` ∈ A′L, and Bob is given b ∈ BV ; Alice extends ` with the string
r ∈ Ext(`)∩V that testifies (I); then Alice and Bob run π on `× r and b. Let λ′1 = λA′×BV ,GV

be
the lifting of µ1 to A′×BV , with respect to GV . Finally, let T`BV

be the set of those `′×r′ ∈ BV
for which πV (`, `′ × r′) = OSp ◦GV (`, `′ × r′). It now follows (as in Section 5.1.1) that qV (`× r)
equals:

qV (`× r) def
=
|T≤p1`×rB ∩ (O` × V ⊥)|

|O` × V ⊥|
=

|T`BV
|

|O` × V ⊥|
=

λ′1(T`BV
)

λ′1(O` × V ⊥)
,

which is exactly the row-quality of ` (Definition 4.6) w.r.t OSp, GV , µ1, A
′
L, BV and πV .

By the quality–success correspondence (Lemma 4.7), it then also follows that the success
probability of πV in A′L ×BV , w.r.t λ′1, is at least (1− 6 · 2− n

1200 )γ̃.4

4To explain this in terms of the prefix-side projection of BV , what is happening here is as if Bob gets a string

b′ ∈ (BV )≤p1 with probability |Ext(b
′)|

|BV |
, i.e. weighted according to the number of extensions, and then runs the protocol

on the string b = b′b′′, where b′′ is a uniformly chosen string in Ext(b′) (which we can think of as Bob’s private
randomness).
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We may now apply the quality–success correspondence (Lemma 4.7) on Bob’s side. For a string
b ∈ BV , define its quality to be

q(b)
def
=

λ′1(TA′Lb)

λ′1(A′L ×BV )
=
|TA′Lb|
|Ob|

,

where

Ob = {` ∈ L | ∃i ∈ [p1]GV (`, b) = 1i0p−i} TA′Lb = {` ∈ A′L ∩Ob | πV (`, b) = OSp ◦GV (`, b)}.

Then Lemma 4.7 implies that

1

|BV |
∑
b∈BV

q(b) ≥ (1− 7 · 2− n
1200 ) · γ̃α′L

Now for a prefix-side of Bob `′ ∈ (BV )≤p1 , let Ext(`′) = Ext
[p]\[p1]
BV

(`′) be the set of r′ with

`′ × r′ ∈ BV . Define qavg(`′) = 1
|Ext(`′)|

∑
r′∈Ext(`′) q(`

′ × r′), so that

∑
`′∈(BV )≤p1

|Ext(`′)|
|BV |

· qavg(`′) ≥ (1− 7 · 2− n
1200 ) · γ̃α′L

Then by Lemma 2.7, there exists a set B′L ⊆ (BV )≤p1 , of size bβV |L|c, such that

1

|B′L|
∑
`′∈B′L

qavg(`′) ≥ (1− 7 · 2− n
1200 ) · γ̃α′L.

What does the qavg(`′) mean? Let µ′ be the uniform distribution over the strings 1i0p1−i

for all i ∈ [p1]. Let π′ : L × L → [p1] be the following protocol: Alice and Bob get inputs
(`, `′) ∈ A′L ×B′L; Bob chooses some input r′ ∈ Ext(`′) such that q(`′ × r′) ≥ qavg(`′), and then
they play π on `× r and `′ × r′, where r was the input satisfying (I). Then q(`′ × r′) is exactly
the column-quality of `′ with respect to OSp1 , IPp1n , µ′, A′L, B′L and π′, and the average over B′L
is also ≥ (1− 7 · 2− n

1200 ) · γ̃α′L.
It then follows again from the quality–success correspondence (Lemma 4.7) that π′ has success

probability ≥ (1− 8 · 2− n
1200 )γ̃ with respect to OSp1 , IPp1n and µ′ (i.e. on the distribution λ′ lifted

from µ′). As shown above, the density of A′L in L is ≥ (1− 2 · 2− n
150 )α≤p1 , and the density of

B′L in L is ≥ (1− 2−n/30)β.5 This concludes the proof of the lemma.

It is to be noted that the Zooming-in lemma is symmetric with respect to p1 and p2, i.e., a
similar argument will prove the following lemma:

Lemma 5.17 (Zooming-in lemma, suffix side, strong version). Let L = {0, 1}np1 and R =
{0, 1}np2 , where p = p1 + p2 ≤ 1

40 · 2
n/100 is a sufficiently large natural number. Suppose we have

a rectangle A×B, where both A and B are subsets of L×R, and a C-bit protocol π : A×B → [p].
Let µ2 be a uniform distribution over the strings 1i0p−i for i ∈ [p] \ [p1], and let λ2 be the lifting
of µ2 to (L ×R)2 with respect to IPpn (as in Definition 4.2). Let q2(a) denote the row-quality
with respect to µ2 (and OSp, IP

p
n, A,B and π). qmin(`) is defined as in Lemma 5.16 but with

respect to the extensions in the prefix-side.

• Enough density. Suppose that A has suffix-side density α>p1 at least 2−
n
10 , and for each

r ∈ A>p1 , the density of its extensions |Ext(r)||L| is at least 8 · 2− n
30 ; suppose also that the density

of B, β
def
= |B|
|L×R| , is at least 2−

n
200 .

5The loss from 2−
n
25 is just a rough way of accounting for the floor.
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• Average min-quality condition. Finally, suppose that the average qmin(r) is bounded by

1

|A>p1 |
∑

r∈A>p1

qmin(r) ≥ γ̃β,

for some value γ̃ ≥ 2−
n

1200 .

• Conclusion. Then Protocol(n, p2, (1−δ)α>p1 , (1−δ)β, (1−δ)γ̃, C) holds, where δ = 8 ·2− n
1200 .

5.6 Proof of the Min-quality lemma

We first restate the lemma for convenience. As stated before, the lemma appears implicitly in
[RW89], and the ideas of the proof below are all taken from that paper.

Lemma 5.18 (Min-quality lemma). Let L = {0, 1}np1 and R = {0, 1}np2 for some sufficiently
large natural numbers n, p1 and p2. Suppose we have a rectangle A′ × B, where both A′ and
B are subsets of L × R, and a protocol π : A′ × B → [p]. Let µ1 be uniform over the strings
1i0p−i for i ∈ [p1], and let q1(a) denote the row-quality (Definition 4.6) with respect to µ1 (and
OS, IPpn, A′, B and π). If we have fixed a subset A′′ ⊆ A, then for any given ` ∈ A′′≤p1 let

Ext′′(`) = Ext
[p]\[p1]
A′′ (`) be the set of extensions r ∈ R with `× r ∈ A′′, and define the min-quality

of `, q′′min(`), to be the minimum q1 of its extensions:

q′′min(`)
def
= min

r∈Ext′′(`)
q1(`× r).

Now suppose we have the following properties:

• A′ and B have good density. α′
def
= |A′|
|L×R| ≥ 2−

n
200 , and β

def
= |B|
|L×R| ≥ 2−

n
200 .

• Average quality is high. For some value Q ≥ 2 · 2− n
150 it holds that:

1

|A′|
∑
a∈A′

q1(a) ≥ Q.

Conclusion. Then there is a subset A′′ ⊆ A′ with the following properties:

• A′′ has enough density. The size of the prefix-side projection is |A′′≤p1 | ≥ b(1−2−
n

120 )·α′|L|c,
and for all ` ∈ A′′≤p1 we have |Ext′′(`)| ≥ 8 · 2− n

30 |L|;

• A′′ obeys the average min-quality condition. The average min-quality over ` ∈ A′′≤p1
almost matches the average quality in A′:

1

|A′′≤p1 |
∑

`∈A′′≤p1

q′′min(`) ≥ (1− 4 · 2− n
300 ) ·Q.

5.6.1 Notation

We will start with the set A′ and successively remove strings from it, thus obtaining sets
A′ ⊃ A(1) ⊃ A(2) ⊃ A′′. For some set A∗ ⊆ L × R (the notation ∗ is one of ′ ,(1) ,(2) , ′′), let
A∗L = A∗≤p1 be the projection of A∗ onto its prefix side; for every ` ∈ A∗L, let Ext∗(`) be the set
of r ∈ R with ` × r ∈ A∗, and define `’s average-quality q∗avg(`) to be the average prefix-side
quality in Ext∗(`):

q∗avg(`)
def
=

1

|Ext∗(`)|
∑

r∈Ext∗(`)

q1(`× r).
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5.6.2 Pruning ` with few extensions.

We first discard all prefix-sides having a small number of suffix-side extensions — discarding the
set:

Adiscard def
=
{
a = `× r ∈ A′

∣∣∣ |Ext′(`)| < 2−n/50 · 2np2
}

Let A(1) = A \Adiscard. Notice that we are leaving some leverage room — we preserve only
those ` having at least 2−n/50 ·2np2 extensions, but only 8 ·2−n/30 ·2np2 are needed by the enough
density condition. This is so that we can remove more extensions later, and still have enough.

Let us calculate the amount of quality that was lost. By our promise on Q and α′, we have

1

2
· 2−n/120Q|A′| ≥ 2−

n
120−

n
150−

n
200 · 2np ≥ 2−n/50 · 2np ≥ |Adiscard|

Then α(1) ≥ (1− 1
2 · 2

− n
120 ) · α′, and even if all discarded a have q1(a) = 1, we still have

1

|A(1)|
∑

a∈A(1)

q1(a) ≥
(

1− 1

2
· 2− n

120

)
·Q ≥

(
1− 2−

n
120

)
·Q. (†)

5.6.3 From weighted average to uniform average

We may rewrite (†) as:

∑
`∈A(1)

L

|Ext(1)(`)|
|A(1)|

· q(1)
avg(`) ≥ (1− 2−

n
120 ) ·Q.

Then by Lemma 2.7, there must exist a set A
(2)
L ⊆ A(1)

L , with |A(2)
L | ≥ bα(1)Lc, and such that

1

|A(2)
L |

∑
`∈A(2)

L

q(1)
avg(`) ≥ (1− 2−

n
120 ) ·Q.

We then set A(2) = {` × r | ` ∈ A(2)
L and r ∈ Ext(1)(`)}, so that Ext(2)(`) = Ext(1)(`) for every

` ∈ A(2)
L , and q

(2)
avg(`) = q

(1)
avg(`). It then holds that α

(2)
L ≥ (1− 2−

n
120 ) · α′, and every ` ∈ A(2)

L has
2−n/50 · 2np2 extensions. We have thus concluded that A(2) has good enough density, and that

the average q
(2)
avg(`) is high enough; we will prune some more to make the average qmin(`) is high

enough.

5.6.4 Forcing high min-quality

Let us ignore the set of `× r ∈ A(2) with q(2)(`) significantly less than the average q(2)(`); i.e.,
we ignore the set

Aignore def
=
{
`× r ∈ A(2)

∣∣∣ q(2)
avg(`) < 2−

n
300 ·Q

}
.

Among those `× r which we didn’t ignore, let us discard from A(2) those for which q1(`× r)
fails to be close enough to q

(2)
avg(`):

Adiscard =
{
`× r ∈ A(2) \Aignore

∣∣∣ q1(`× r) < (1− ε) · q(2)
avg(l)

}
We will set ε later. The promised set A′′ is exactly A(2)\Adiscard. I.e., we keep every ignored prefix-

side and its extensions, and for each non-ignored ` ∈ A(2)
L , we keep the set Ext′′(`) ⊆ Ext(2)(`) of

suffix-side extensions which attain (1− ε) of the average quality (average among the suffix-side
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extensions of ` in A(2)). It is easy to see that, in order to attain the average q
(2)
avg(`), the number

of surviving extensions must obey:

|Ext′′(`)| ≥ ε · q(2)
avg(`) · |Ext(2)(`)|.

For a non-ignored prefix-side `, q
(2)
avg(`) is ≥ 2−

n
300 ·Q, and we have chosen Ext(2)(`) = Ext(1)(`)

to have size at least 2−n/50 · 2np2 . So, taking ε = 8 · 2− n
300 , we can conclude that:

|Ext′′(`)| ≥ 8 · 2− n
300︸ ︷︷ ︸

ε

· 2− n
300 · 2− n

150︸ ︷︷ ︸
q
(2)
avg(`)

· 2− n
50 · 2np2︸ ︷︷ ︸
|Ext(2)(`)|

= 8 · 2−n/30 · 2np2 ;

note also that A′′L = A
(2)
L , and so α′′L ≥ (1− 2−

n
120 ) · α′ — this shows that A′′ has enough density.

Also, q(` × r) ≥ (1 − 2−
n

300 )q
(2)
avg(`) for every non-ignored prefix-side `. It then follows that A

obeys the average min-quality condition:

1

|A′′L|
∑
`∈A′′L

q′′min(`) ≥ 1

|A(2)
L |

∑
`∈A(2)

L

(1− 2−
n

300 )q′′avg(`) − 2−
n

300 ·Q

≥
(

(1− 2−
n

300 )(1− 2−
n

120 )− 2−n/300
)
·Q ≥ (1− 4 · 2− n

300 ) ·Q.
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Robin Kothari, Troy Lee, and Miklos Santha. Separations in communication
complexity using cheat sheets and information complexity. Electronic Colloquium
on Computational Complexity (ECCC), 23:72, 2016.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013. 0.

[BBK+13] Joshua Brody, Harry Buhrman, Michal Kouckỳ, Bruno Loff, Florian Speelman,
and Nikolay Vereshchagin. Towards a reverse newman’s theorem in interactive
information complexity. In Proceedings of the 28th CCC, pages 24–33, 2013. 0.

[BDW02] Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.

[BPSW05] Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A direct sum
theorem for corruption and the multiparty nof communication complexity of set
disjointness. In Proceedings of the 20th CCC, pages 52–66, 2005.

[BR14] Mark Braverman and Anup Rao. Information equals amortized communication.
IEEE Transactions on Information Theory, 60(10):6058–6069, 2014.

[BRWY13a] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct product
via round-preserving compression. In Proceedings of the 40th ICALP, pages 232–243,
2013.

[BRWY13b] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct
products in communication complexity. In Proceedings of the 54th FOCS, pages
746–755, 2013.

[Buh16] Harry Buhrman, 2016. Private communication.

[CA08] Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity of
disjointness. Technical Report TR08-002, Electronic Colloquium on Computational
Complexity (ECCC), 2008.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[Cha07] Arkadev Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three
circuits. In Proceedings of the 48th FOCS, pages 449–458, 2007.

[Cha09] Arkadev Chattopadhyay. Circuits, Communication and Polynomials. PhD thesis,
McGill University, 2009.

[CL08] Andrew M Childs and Troy Lee. Optimal quantum adversary lower bounds for
ordered search. In Proceedings of the 25th ICALP, pages 869–880. Springer, 2008.

[CrK+16] Arkadev Chattopadhyay, Pavel Dvořák, Michal Koucký, Bruno Loff, and Sagnik
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