
White-Box vs. Black-Box Complexity of Search Problems:

Ramsey and Graph Property Testing ∗

Dedicated to Oded Goldreich on the occasion of his sixtieth birthday

Ilan Komargodski† Moni Naor‡ Eylon Yogev‡

February 4, 2017

Abstract

Ramsey theory assures us that in any graph there is a clique or independent set of a certain
size, roughly logarithmic in the graph size. But how difficult is it to find the clique or independent
set? If the graph is given explicitly, then it is possible to do so while examining a linear number
of edges. If the graph is given by a black-box, where to figure out whether a certain edge
exists the box should be queried, then a large number of queries must be issued. But what if
one is given a program or circuit for computing the existence of an edge? This problem was
raised by Buss and Goldberg and Papadimitriou in the context of TFNP, search problems with
a guaranteed solution.

We examine the relationship between black-box complexity and white-box complexity for
search problems with a guaranteed solution such as the above Ramsey problem. We show
that under the assumption that collision resistant hash functions exist (which follows from the
hardness of problems such as factoring, discrete-log and learning with errors) the white-box
Ramsey problem is hard, and this is true even if one is looking for a much smaller clique or
independent set than the theorem guarantees. This is also true for the colorful Ramsey problem
where one is looking, say, for a monochromatic triangle.

In general, one cannot hope to translate all black-box hardness for TFNP into white-box
hardness: we show this by adapting results concerning the random oracle methodology and the
impossibility of instantiating it.

Another model we consider is that of succinct black-box, where there is a limitation on the
size of the black-box (but no limitation on the computation time). In this case, we show that
for all TFNP problems there is an upper bound proportional to the description size of the box
times the solution size. On the other hand, for promise problems, this is not the case.

Finally, we consider the complexity of graph property testing in the white-box model. We
show a property which is hard to test even when one is given the program for computing the
graph (under the appropriate assumptions such as the hardness of Decisional Diffie-Hellman).
The hard property is whether the graph is a two-source extractor.

∗A preliminary version of this work appeared in Proceedings of the 58th Annual Symposium on Foundations of
Computer Science (FOCS 2017) [KNY17]. Date of revision: January 1, 2019.
†Cornell Tech, NYC. komargodski@cornell.edu. Supported in part by a Packard Foundation Fellowship and by

an AFOSR grant FA9550-15-1-0262. Work was done while the author was a Ph.D. student at the Weizmann Institute
of Science, supported in part by a grant from the Israel Science Foundation (no. 950/16) and by a Levzion Fellowship.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science Israel, Rehovot 76100,

Israel. Emails: {moni.naor,eylon.yogev}@weizmann.ac.il. Supported in part by grants from the Israel Science
Foundation (no. 950/16). Moni Naor is the incumbent of the Judith Kleeman Professorial Chair.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 15 (2017)

1 Introduction

Consider a setting where one is given a large object (e.g., a graph) and the goal is to find some local
pattern (e.g., a certain subgraph) in the object or determine whether it satisfies some property. We
investigate the relationship between the black-box setting, where access to the object is via oracle
queries, and the white-box setting, where access to the object is given by a program or a circuit,
in the context of search problems in which a solution is guaranteed1 to exist and in the context of
property testing.

The Ramsey problem. The Ramsey number R(n) is the minimal number such that any graph
on R(n) vertices contains a clique or independent set of size n. The Ramsey theorem states that
for any n, it holds that R(n) is finite and moreover that R(n) ≤ 22n. This guarantee raises the
following question: Given a graph with 22n nodes, how difficult is it to find n nodes that are either
a clique or an independent set?

The standard proof of Ramsey’s theorem is actually constructive and yields an algorithm that
finds the desired clique or independent set, but explores a linear (in the graph size) number of
nodes and edges. Is it necessary to explore a large portion of the graph? This, of course, depends
on the representation of the graph and the computational model. In the black-box model, where
the access to the graph is merely by oracle queries, Impagliazzo and Naor [IN88] observed that
any randomized algorithm must make at least Ω(2n/2) queries before finding the desired clique or
independent set. This was based on the fact that a random graph on 22n vertices has no clique or
independent set of size 4n with high probability (see Section 2.2).

In this work, we are interested in the white-box model2, where the above question is phrased
as: Given a Boolean circuit encoding the edges of a graph with 22n nodes, how difficult is it to find
n nodes that are either a clique or an independent set? This question has been explicitly asked
by Buss [Bus09] and Goldberg and Papadimitriou [GP18] in the context of search problems in
the complexity class TFNP. The class TFNP, defined by Megiddo and Papadimitriou [MP91], is
the class of all search problems for which a solution is guaranteed to exist for every instance and
verifying a solution can be done efficiently. Thus, the problem where the input is a graph defined
by a circuit and the target is to find a clique or an independent set (of appropriate sizes) belongs
to the class TFNP.

Our first result is an answer to this question. We show that under the assumption that collision
resistant hash functions3 exist, there exists an efficiently samplable distribution of circuits (circuits
on 4n inputs representing graphs on 22n vertices), for which finding a clique or independent set of
size n is impossible for any polynomial-time (in n) algorithm. The proof goes along the lines of
Kraj́ıcek [Kra05], who showed a similar result in the context of the proof complexity of the Ramsey
problem.

We also prove a white-box lower bound of a similar flavor for a related problem known as the
colorful Ramsey problem. While a graph can be viewed as the edges colored in one color and
the non-edges in another, (a simple version of) the colorful Ramsey theorem says that given the
complete graph on 22n vertices and any coloring of its edges using roughly n/ log n colors, there

1We are not talking about promise problems, but rather when there is a proof that the pattern exists.
2An example of a graph given as a white-box is the Hadamard graph, where the two inputs are treated as vectors

over GF[2] and there is an edge if and only if the inner product between them is 1.
3A collision resistant hash function is a function that shrinks by one bit such that it is hard to find two inputs

that hash to the same output.

1

must exist a monochromatic triangle (see Section 2.2 for the precise statement). The question
is: given a circuit that represents such a colored graph, what is the computational complexity of
finding a monochromatic triangle? We show that this is also hard: assuming collision resistant hash
functions, finding a monochromatic triangle is impossible for polynomial-time (in n) algorithms.

On the necessity of collision resistance. We complement our result by showing that a form
of collision resistance is necessary for the hardness of a variant of the Ramsey problem. Concretely,
we consider the bipartite version of the Ramsey problem where the goal is to find a bi-clique or
bi-independent set in a bipartite graph. We show that the hardness of this problem implies the
existence of a new notion of collision resistance we call multi-collision resistant hash functions.
These functions guarantee that it is hard to find multiple inputs that hash to the same output.4

Additionally, we show the other direction: the hardness of the bipartite Ramsey problem (and the
standard Ramsey problem) can be based on the existence of multi-collision resistant hash functions.
That is, there is an equivalence between the hardness of the bipartite Ramsey problem and the
existence of multi-collision resistant hash functions.

Recently, the notion of multi collision resistance was studied in several subsequent
works [BDRV18, BKP18, KNY18, KY18] showing that this primitive is useful for various cryp-
tographic applications, including statistically-hiding succinct commitment schemes and round-
efficient zero-knowledge protocols.

Impossibility of a generic transformation. In the context of search problems, the black-box
model (in which the algorithm has only query access to the function) has been extensively studied as
it gives hope to prove unconditional query lower bounds (see Lovász et al. [LNNW95] for example)5.
It is tempting to try and translate any query lower bound (in the black-box model) into a white-box
lower bound using cryptographic assumption. We show that such a transformation is impossible
to achieve in general for search problems in TFNP.6 Specifically, we present a search problem in
TFNP for which the black-box complexity is exponential, but for any white-box implementation,
there exists an algorithm that finds the solution in polynomial time. Our impossibility result is
unconditional and does not rely on any cryptographic assumption. It is based on ideas stemming
from Canetti et al. [CGH04] concerning limitations of transferring cryptographic schemes that use
random oracles to ones that do not appeal to them (see below). Specifically, the construction utilizes
the work of Goldwasser and Kalai [GK03] on signature schemes using the Fiat-Shamir paradigm.

The succinct black-box model. In the black-box model, as we have discussed, solving the
Ramsey problem requires polynomially many queries in the size of the graph (i.e. exponential in
the subgraph we are looking for) and this is also the case for many other problems in TFNP, such as
PPP,PLS,PPAD and CLS (see [BCE+98] and [HY17]). In this model, the complexity measure is the
number of queries needed to solve the problem and the running time of the algorithm accessing the
object via queries is unbounded. In contrast, in the white-box model, the complexity is measured
as a function of the size of the representation of the object.

4Any collision resistant hash function is also multi-collision resistant, but the other direction is not known.
5Over the years several “lifting” techniques were developed in order to translate query lower bounds into lower

bounds in other models. Perhaps the most famous example is the lifting technique of [RM99, She11, GPW15] that
has been very useful in translating query lower bounds into communication complexity lower bounds.

6We note that our impossibility result only rules out a general transformation for all search problem in TFNP. It
is an interesting question to find specific problems in TFNP that admit such a transformation.

2

Model R Problem Ramsey-like TFNP

Black-Box (BB) Hard (Sec. 5) Hard ? Hard †

White-Box Easy (Sec. 5) Hard (Sec. 3) Hard ‡

Succinct Black-Box Easy (Sec. 6) Easy (Sec. 6) Easy (Sec. 6)

Table 1: A summary of our results on the complexity of search problems. R is the problem defined
in Section 5. The term “Ramsey-like” problems refer to the problems we consider in Section 3,
including Ramsey’s problem, the colorful Ramsey problem, and the bipartite Ramsey problem.
The entry marked by ? follows from [IN88], the entry marked by † follows from [HPV89], and the
entry marked by ‡ follows from [Pap94, HNY17].

We consider the question of whether the complexity should depend on the representation size
of the function in order to obtain hardness results and study the succinct black-box model (see
Definition 4) which lies between the black-box and white-box model. In this model, the complexity
is measured as a function of the size of the representation of the object, but the algorithm is
unbounded in running-time and has only black-box access to the object. More precisely, the
number of queries is measured as a function of the representation size of the object in the box. An
efficient algorithm would perform polynomially many queries in the representation size.

For this model, we show that any problem in TFNP is easy (and in particular, the Ramsey
problem). That is, there exists a (deterministic) algorithm that performs only a polynomial number
of queries (in the size of the representation of the function) and finds a solution. One interesting
takeaway from this result is that any exponential query lower bound (in the black-box model) for
a problem in TFNP must use instances of functions (i.e., “boxes”) of exponential size. In Table 1
we give a summary of the above results.

White-box graph property testing lower bounds. Property testing studies problems of the
type: given the ability to perform queries concerning local properties of an object, decide whether
the object has some (predetermined) global property, or it is far from having such a property. The
complexity of a problem is determined by the number of queries required for an algorithm to decide
the above correctly.

In all classical works in this field, access to the tested object is given via queries to a black-
box. We study the complexity of property testing given a white-box representation. The object is
represented implicitly as a program or a circuit and is given to the solver. The solver has to decide
whether the object that is encoded in the circuit has a predefined property or not.

We show that cryptographic assumptions can be useful to prove that meaningful properties
of graphs are hard to test in the white-box model by any efficient algorithm. The cryptographic
assumption we rely on is the existence of a collection of lossy functions [PW11]. A collection of
lossy functions consists of two families of functions. Functions in the first family are injective,
whereas functions in the second family are lossy, namely the size of their image is significantly
smaller than the size of their domain. The security requirement is that a description of a randomly
chosen function from the first family is computationally indistinguishable from a description of a
randomly chosen function from the second family.

We show that there exists a graph property such that, assuming a collection of lossy functions,
there exists an efficiently samplable distribution over implicitly represented graphs over 2n vertices

3

for which testing whether the graph has the property or is far from having it cannot be decided by
any polynomial-time (in n) algorithm. The property is whether the graph is a two-source extractor.

1.1 Graph-hash product

Our white-box hardness results are based on a technique we call “the graph-hash product”, where
we generate a new graph from an existing one by embedding the nodes of the new graph via a hash
function (see Definition 8). Given a graph G = (V,E) and a compressing hash function h we define
a (much larger) graph G′ = (V ′, E′) such that (u′, v′) ∈ E′ if and only if (h(u), h(v)) ∈ E.

Depending on the properties of the hash function we get various results. The key property of
this product operation is that if the hash function is collision resistant, we get that the new graph
looks locally as the original one. All of our hardness results, including the hardness of (all variants
of) the Ramsey problem and the hardness of the graph property testing, are based on variants of
this technique.

We mention that additional hardness results can be shown using our product technique. Also,
the technique is not restricted to graph problems. For example, assuming collision resistant hash
functions, we prove hardness for finding a sunflower configuration in a large family of sets of the
same size. This is a natural (total) search problem that arises from the famous sunflower lemma
of Erdös and Rado [ER60]. We refer to Appendix A for more information.

A similar graph-hash product was used by Kraj́ıcek [Kra01] relating the proof complexity of
the weak pigeonhole principle and the proof complexity of the Ramsey theorem.

1.2 Cryptographic assumptions and white-box lower bounds

For some search problems, it is known how to obtain hardness in the white-box model under certain
cryptographic assumptions. One of the first examples is due to Papadimitriou [Pap94] who showed
that the hardness of the class PPP (a subclass in TFNP) can be based on the existence of one-way
permutations (the hardness can be also based on the existence of collision resistant hash functions).
We refer to [HNY17] for more information about the assumptions that lead to white-box hardness
in TFNP.
Obfuscation. It has been recently shown that program obfuscation is very useful for proving
white-box lower bounds for search problems. An obfuscator transforms a given program (say de-
scribed as a Boolean circuit) into another “scrambled” circuit which is functionally equivalent by
“hiding” its implementation details. One could hope to take the underlying black-box instance,
obfuscate it and use this obfuscated version as the white-box instance. Obfuscation is a strong
and (still) somewhat controversial assumption (see Ananth et al. [AJN+16] for a discussion), but
if it could be used for a general transformation, then we would get a large class of white-box
hardness results. However, there are a few obstacles in applying such an approach: First, Canetti
et al. [CGH04] (followed by the work of Goldwasser and Kalai [GK03]) showed that it is impos-
sible to generically translate security of cryptographic primitives in the random oracle model into
primitives in the standard setting. Second, ideal program obfuscators (“virtual black-box”) do not
exist for general functionalities [Had00, BGI+12], so we have to work with weaker primitives such
as indistinguishability obfuscation [BGI+12, GGH+13, SW14]. One prominent instance of using in-
distinguishability obfuscation in order to prove white-box lower bounds was shown in the context of
PPAD-hardness [BPR15, GPS16, HY17, KS17], but it is hard to see how to use indistinguishability
obfuscation for a more general transformation from black-box hardness to white-box hardness.

4

Our white-box hardness results do not use obfuscation at all and as such bypass the above
issues. Furthermore, our techniques show that weaker (and much better studied) primitives can be
used to hide information in a meaningful way.

2 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For a distribution D we denote
by x← D an element chosen from D uniformly at random. For an integer n ∈ N we denote by [n]
the set {1, . . . , n}.

A function negl : N → R+ is negligible if for every constant c > 0, there exists an in-
teger Nc such that negl(n) < n−c for all n > Nc. Two sequences of random variables
X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable if for any non-uniform
probabilistic polynomial-time algorithm A, there exists a negligible function negl(·) such that
|Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| ≤ negl(n) for all n ∈ N.

2.1 Search problems in the black-box and white-box models

Let Fn = {f : {0, 1}n → {0, 1}n} be the class of all circuits f mapping n bits into n bits. We give
a definition of a search problem for the family Fn.7

Definition 1. A search problem S is a relation on 2q(n) tuples. More precisely, S = ∪∞n=1Sn, where
Sn ⊆ ({0, 1}n)q(n) × ({0, 1}n)q(n) for a polynomial q(·), such that: (i) for all f ∈ Fn, there exist
x1, . . . , xq(n) ∈ {0, 1}n for which

(
x1, . . . , xq(n), f(x1), . . . , f(xq(n))

)
∈ S, and (ii) S is computable

in polynomial time in n. The class of all such search problems is denoted TFNP.

The tuple (x1, . . . , xq(n)) is called the witness (i.e., the solution), and q(n) is the witness/solution
size. In general, a witness is not necessarily given as a sequence of points in the domain {0, 1}n but
notice that any string can be encoded as such a sequence and so our definition is without loss of
generality.

We mainly focus on three models of computation that differ either by the representation type
of the function f ∈ Fn or by the complexity measure of the solver. The models that we define
and study are the black-box model, the white-box model, and a new hybrid model we call succinct
black-box. We also mention a fourth model we call the efficient-succinct black-box model. For the
rest of this subsection, fix a polynomial q = q(n) and a search problem S ⊆ ({0, 1}n)q × ({0, 1}n)q.

In the black-box model, an algorithm is required to solve the search problem S while given only
oracle access to the function f . That is, the algorithm provides queries x and gets back the results
y = f(x). The black-box complexity of a search problem S is the number of queries needed to
solve a search problem in the worst-case, while the running time is unbounded. This model was
introduced and studied by Lovász et al. [LNNW95].

Definition 2 (Black-box complexity). The black-box complexity of S, denoted by bbc(S), is bounded
by a function T (·) if there exists an algorithm A that for sufficiently large n and any f ∈ Fn, makes
at most T (n) queries to f and outputs x1, . . . , xq such that (x1, . . . , xq, f(x1), . . . , f(xq)) ∈ S.

In the white-box model, an algorithm is required to solve the search problem S while given
an explicit representation of the function f (as a circuit). The white-box complexity of S is the

7We restrict our attention to the family Fn of length-preserving functions for simplicity.

5

running time (as opposed to the number of queries) needed (measured as a function of the size of
the representation) to solve a search problem in the worst-case. In the white-box setting, we are
mostly interested in solvers that run in polynomial-time in the size of the function.

Definition 3 (White-box complexity). The white-box complexity of S, denoted by wbc(S), is
bounded by a function T (·) if there exists an algorithm A that for sufficiently large n, given
f ∈ Fn (as a circuit) runs in time T (|f |), and outputs x1, . . . , xq such that (x1, . . . , xq, f(x1), . . . ,
f(xq)) ∈ S.

In the succinct black-box model, an algorithm is required to solve the search problem S while
given only oracle access to the function f , however, as opposed to the black-box model, the suc-
cinct black-box complexity of a search problem S is measured by the number of queries required
to solve the problem as a function of the size of the representation of f . In particular, if f is
represented succinctly by a polynomial-size (in n) circuit, then an efficient algorithm can perform
only a polynomial number of queries (but its running time is unbounded).

Definition 4 (Succinct black-box complexity). The succinct black-box complexity of S, denoted by
sbbc(S), is bounded by the function T (·) if there exists an algorithm A that for sufficiently large n
and any f ∈ Fn, makes at most T (|f |) queries to f and outputs x1, . . . , xq such that (x1, . . . , xq,
f(x1), . . . , f(xq)) ∈ S.

We also consider a model we call the efficient-succinct black-box model, which is similar to the
succinct black-box model, except that the solver’s running is bounded (in the representation size).
In Table 2 below we summarize the differences between the models.

Model Function Access Solver Running Time Rep. Size

Black-Box (BB) Oracle Unbounded Unbounded

White-Box Implicit Bounded Bounded

Succinct Black-Box Oracle Unbounded Bounded

Efficient-Succinct BB Oracle Bounded Bounded

Table 2: A summary of the different models defined.

2.2 Ramsey theory

In this section, we recall some basic definitions and facts from Ramsey theory and derive sev-
eral bounds that will be useful for us later. We refer to Graham et al. [GRS90] for a thorough
introduction and history of Ramsey theory.

A Ramsey graph is a graph that contains no clique or independent set of some predefined sizes.

Definition 5 (Ramsey graphs). A graph on N vertices is called (s, t)-Ramsey if it contains no
independent set of size s and no clique of size t. A graph is called k-Ramsey if it is (k, k)-Ramsey.

The classical result of Ramsey gives an upper bound on the size of a graph that does not contain
either an independent set or a clique of some predefined size.

6

Proposition 1. For any s, t > 1, there exists a number R(s, t) <∞ such that any graph on R(s, t)
vertices is not (s, t)-Ramsey. Moreover,

R(s, t) ≤ R(s− 1, t) +R(s, t− 1) ≤
(
s+ t− 2

s− 1

)
.

Plugging in s = t = (logN)/2, we get that

R ((logN)/2, (logN)/2) ≤
(

logN

(logN)/2

)
≤ 2logN = N,

where the inequality follows by the inequality
(

2k
k

)
≤ 22k. As a corollary of Proposition 1, we get:

Proposition 2. Every graph on N vertices has either a clique or an independent set of size 1
2 logN .

A well-known (non-explicit) construction of a Ramsey graph was given by Erdös [Erd47] as
one of the first applications of the probabilistic method. He showed that most graphs on N
vertices are (2 logN)-Ramsey (see also the book of Alon and Spencer [AS08]). It was observed
by Naor [Nao92] that Erdös’s proof actually gives a stronger statement: not only are most graphs
(2 logN)-Ramsey, but such graphs can actually be sampled with relatively few bits of randomness
(i.e., via a limited-independent family8 or a small-bias probability space [NN93]). For a function
g : {0, 1}n×{0, 1}n → {0, 1} we define the corresponding graph G on n vertices where for any u < v
(lexicographic order) it holds that (u, v) is an edge in G iff g(u, v) = 1.

Proposition 3. A graph on N vertices sampled via a (2 log2N)-wise independent hash function is
a (2 logN)-Ramsey graph with probability 1− 1/NΩ(log logN).

For completeness, the proof of this proposition is given in Appendix B.2. No explicit con-
struction of graphs matching these parameters is known, but see Section 3.2 for the state of the
art.

Given that there are constructions of k-wise independent functions mapping {0, 1}n×{0, 1}n →
{0, 1} that are succinct (the size of the representation is polynomial in n and k even for n output
bits), the proposition implies that it is possible to sample a Ramsey graph (w.h.p.) with a succinct
representation, i.e., the description length of the graph is polynomial in n. Furthermore, since
computing a (2 log2N)-wise independent function can be done in time proportional to the size of
the description, it is possible to sample a circuit that implicitly represents the graph.

The property of a graph being (s, t)-Ramsey can be equivalently phrased as a coloring property
of the complete graph KN on N vertices with two colors. Specifically, the function that defines
whether an edge exists can be thought of as a coloring of the full graph with two colors and the
existence of a clique or an independent set of size k is equivalent to the existence of a monochromatic
subgraph of size k. This raises a natural generalization of the Ramsey property for graphs with
multiple colors.

Definition 6 (Colorful Ramsey graphs). A coloring ψ :
(
N
2

)
→ [m] of the full graph KN with m

colors is called (k1, . . . , km)-Ramsey if there is no monochromatic subgraph of size ki colored with
the color i, for every i ∈ [m].

8A function family H = {h : D → R} is k-wise independent, if Prh←H[h(x1) = y1 ∨ h(x2) = y2 ∨ . . . ∨ h(xk) =
yk] = 1/|R|k, for every distinct x1, x2, . . . , xk ∈ D and every y1, y2, . . . , yk ∈ R.

7

The colorful Ramsey theorem provides, for a given number of colors, an upper bound on the
size of a clique such that any coloring must result with a monochromatic subgraph of a predefined
size.

Proposition 4. For any m and k1, . . . , km > 1, there exists a number R(k1, . . . , km) < ∞ such
that any graph on R(k1, . . . , km) vertices is not (k1, . . . , km)-Ramsey. Moreover,

R(k1, . . . , km) ≤ 2 +
m∑
i=1

(R(k1, . . . , ki−1, ki − 1, ki+1, . . . , km)− 1) .

Based on Proposition 4, we can upper bound R(k1, . . . , km) for various values of k1, . . . , km. In
particular, in the symmetric case where k1 = k2 . . . km−1 = km, we get:

Proposition 5. For every k > 2 and m > 1, it holds that R(k, . . . , k︸ ︷︷ ︸
m times

) ≤ mmk.

As a corollary of Proposition 5, we obtain a bound on the number of colors that ensure the
existence of a monochromatic subgraph of size k.

Proposition 6. Consider the full graph on N vertices. For every k < logN , and every coloring
ψ :
(
N
2

)
→ [m], where m = (logN)/k

log logN−log k , there exists a monochromatic subgraph of size k.

The proofs of Proposition 5 and 6 appear in Appendix B.1.

2.3 Randomness extractors

We consider random variables supported on n-bit strings. A random variable X is said to have
min-entropy k if for every x ∈ Supp(X) it holds that Pr[X = x] ≤ 2−k. Two random variables X
and Y are said to be ε-close if

∆(X,Y) ,
1

2
·

(∑
x

|Pr[X = x]− Pr[Y = x]|

)
≤ ε

We say that a function Ext : {0, 1}n×{0, 1}n → {0, 1} is a (k, ε)-two-source extractor if given any
two independent distributions X and Y with min-entropy k (each), then the distribution Ext(X,Y)
is ε-close to the uniform distribution on one bit [CG88].9

It is known that every (k, ε)-two-source extractor gives a 2n×2n Boolean matrix in which every
minor of size at least 2k × 2k has roughly the same number of 1’s and 0’s, namely, it has 1/2 ± ε
fraction of 1’s and 0’s (and vice versa).

The probabilistic method shows that most functions are two-source extractors with very good
parameters (in particular, they work for min-entropy log n+ 2 log(1/ε) + 1), but obtaining explicit
constructions for such functions has been a major open problem for a long time. In the last couple
of years, there has been remarkable progress [Coh16a, CZ16, BDT16, Coh16b, Li16] and nearly
optimal constructions are now known.

We will actually use the first construction of a two-source extractor given by Chor and Goldre-
ich [CG88, Theorem 9]. They showed that the inner product function (also known as a Hadamard
matrix) acts as a good two-source extractor for k which is roughly n/2:

9We only discuss and define extractors that output one bit since it is enough for our purposes.

8

Proposition 7. Let k = k(n) and ε = ε(n) be such that 2k ≥ n + 2 log(1/ε) + 2. Then, the
inner-product function is a (k, ε)-two-source extractor.

In other words, the 2n × 2n inner-products matrix has the property that every minor of size at
least 2k × 2k has 1/2± ε fraction of 1’s and 0’s.

2.4 Lossy functions and collision resistant hash functions

Collision resistant hash. Recall that a family of collision resistant hash (CRH) functions is one
such that it is hard to find two inputs that hash to the same output. More formally, a sequence
of families of functions Hn = {h : {0, 1}`1(n) → {0, 1}`2(n)}, where `1 and `2 are two functions such
that `1(n) > `2(n) for every n ∈ N, is collision resistant if for every probabilistic polynomial-time
algorithms A, there exists a negligible function negl(·) such that

Pr
h←Hn

[(x, x′)← A(1n, h); h(x) = h(x′)] ≤ negl(n).

CRH functions are known to exist under a variety of hardness assumptions such as factoring,
discrete-log, and Learning with Errors (LWE). They are not known to exist under the assumption
that one-way functions exist10, and there are oracle separation results for the two primitives [Sim98].

By default, unless we say otherwise when we assume the existence of CRH functions, then we
assume a family as above in which every function shrinks its input by one bit. It is known that such
an assumption is equivalent to a family in which every function shrinks by any fixed polynomial
factor (by iteratively applying the hash polynomially-many times).

Lossy functions. A collection of lossy functions consists of two families of functions. Functions
in the first family are injective, whereas functions in the second family are lossy, namely the size of
their image is significantly smaller than the size of their domain. The security requirement is that a
description of a randomly chosen function from the first family is computationally indistinguishable
from a description of a randomly chosen function from the second family.

Lossy functions were introduced by Peikart and Waters [PW11] and shown to be useful for a
variety of fundamental cryptographic applications. In particular, they were shown to imply collision
resistant hash functions, oblivious transfer protocols, and chosen ciphertext-secure cryptosystems.
Since their introduction they have found numerous other applications (see [FGK+13] for references).

Definition 7 ([PW11]). A collection of (n, `)-lossy functions is defined by a pair of algorithms
(G,F) such that:

1. G(1n, b), where b ∈ {0, 1}, outputs a string s ∈ {0, 1}p(n) for some fixed polynomial p(·). If
b = 0, then the algorithm F (s, ·) computes an injective function fs(·) over {0, 1}n, and if
b = 1, then the algorithm F (s, ·) computes a function fs(·) over {0, 1}n whose image size is
at most 2n−`.

2. The distribution of G(1n, 0) is computationally indistinguishable from the distribution of
G(1n, 1).

10In contrast, UOWHFs, Universal One-Way Hash Functions, where there is a fixed target x and the goal is to find
x′ that collides with it are known to exist under the assumption that one-way functions exist.

9

Lossy functions are known to exist under a variety of hardness assumptions such as Decisional
Diffie-Hellman (DDH), Learning with Errors (LWE), and factoring related assumptions (Quadratic
Residuosity and Phi-hiding) with different parameters [PW11, KOS10, HO12, FGK+13]. In our
constructions, we will rely on lossy functions with polynomial shrinkage (e.g., (n, n−n0.1)-lossy func-
tions). Such functions are known to exist based on LWE [PW11], DDH [FGK+13] and Phi-hiding
assumptions [KOS10] (but not based on Quadratic Residuosity). The construction of [KOS10] gives
a family of functions which are length-preserving.

3 Hardness of The Ramsey Problem

We show a hard distribution for the Ramsey problem. In this problem, one is given an implicit
and efficient representation of the adjacency matrix of a graph on 2n vertices, and the goal is to
find either a clique of size n/2 or an independent set of size n/2. The implicit representation of the
graph is by a circuit C : {0, 1}n × {0, 1}n → {0, 1} that represents the adjacency matrix of a graph
on 2n vertices.

In terms of Definition 1, we have q(n) =
(
n/2
2

)
and the relation S is such that

(
x1, . . . , xq(n),

f(x1), . . . , f(xq(n))
)
∈ S if and only if the edges x1, . . . , xq(n) form a clique or an independent set

of size n/2. That is, the set of vertices touched by some edge in x1, . . . , xq(n) is of size exactly n/2,
and f(x1) = . . . = f(xq(n)) = b for some b ∈ {0, 1}.11

Hardness of the Ramsey problem. We say that the Ramsey problem is hard if there exists an
efficiently samplable distribution D over circuits of size polynomial in n, {C : {0, 1}n × {0, 1}n →
{0, 1}}, that represent graphs on 2n vertices, such that for every probabilistic polynomial-time
algorithm A, there exists a negligible function negl(·) such that

Pr
C←D

[v1, . . . , vn/2 ← A(1n, C) ; v1, . . . , vn/2 form a clique or an independent set] ≤ negl(n),

where the probability is over the uniform choice of C ← D and the randomness of A. All the
efficiency requirements are polynomial in n.

The above problem is indeed in TFNP as it is guaranteed by Proposition 2 that there always
exists a monochromatic clique or independent set of size n/2. We show that under a certain cryp-
tographic assumption, the existence of collision resistant hash (CRH) functions (see Section 2.4),
there exists an efficiently samplable distribution over instances of the Ramsey problem for which
no efficient algorithm can find a solution. Recall that if CRH functions compressing by one bit
exist, then CRH functions compressing by any polynomial factor (i.e. from n bits to nδ for any
fixed constant δ > 0) exist.

Theorem 1. The Ramsey problem is hard assuming the existence of collision resistant hash func-
tions.

In the proof of Theorem 1 we use a construction of Ramsey graphs given in Proposition 3 as well
as a type of graph product operation: the operation takes as input a graph G on 2n vertices and
a hash function h : {0, 1}n+` → {0, 1}n, where ` ≥ 1 and outputs a graph G ⊗ h on 2n+` vertices,
whose edges depend on the edges in G and the hash function.

11We say that an edge (u, v) touches the vertices u and v.

10

Definition 8 (The graph-hash product). Given a graph G = (V,E), where |V | = {0, 1}n, and
a hash function h : {0, 1}n+` → {0, 1}n, define the graph G ⊗ h = (V ′, E′) as a graph on vertices
V ′ = {0, 1}n+` with edges E′ such that (u, v) ∈ E′ if and only if (h(u), h(v)) ∈ E.

Observe that given an efficient representation of G and an efficient representation of h, we have
an efficient representation of the graph G⊗ h. We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. Let k = n/4, let H be a family of collision resistant hash function from n bits
to k bits; such a family H exists under the assumption that collision resistant hash functions that
compress by one bit exist. Let G = {g : {0, 1}k × {0, 1}k → {0, 1}} be a 2k2-wise independent hash
function family, where each member g ∈ G defines a graph G on 2k vertices in the natural way
(see below). By Proposition 3, most g ∈ G define a graph G that does not contain any clique or
independent set of size 2k = n/2. The following sampling procedure yields a graph (V ′, E′), where
|V ′| = 2n:

1. Sample a collision resistant hash function h← H and a function g ← G.

2. Set G = (V,E) to be the graph with |V | = 2k vertices induced by g (see Proposition 3).

3. Output h and g as representing the graph-hash product G ⊗ h = (V ′, E′). That is, for any
x, y ∈ V ′ s.t. x < y we have that edge (x, y) ∈ E′ iff g(h(x), h(y)) = 1.

The Ramsey challenge on (V ′, E′) is to find a clique or independent set of size n/2 (since
|V ′| = 2n). We reduce the ability of an adversary to solve the Ramsey problem to an adversary
that breaks the collision resistance of h← H.

Suppose that there exists an adversary A that, given an instance of the distribution above, finds
a clique or an independent set of size n/2 = 2k in G⊗ h with probability ε > 0 (over the choice of
h, g, and the randomness of A). Denote this event by Win(A, g, h). That is,

Pr[Win(A, g, h)] ≥ ε.

Let (v1, . . . , v2k) the solution found by A, and let v′i , h(vi) for i ∈ [2k]. Let Distinct be the event
in which in the solution output by A, the values v′1, . . . , v

′
2k are distinct. Then, by the assumption

it holds that

Pr[Win(A, g, h)] = Pr[Win(A, g, h) | Distinct] · Pr[Distinct]+

Pr[Win(A, g, h) | ¬Distinct] · Pr[¬Distinct] ≥ ε (1)

We first argue that

Pr[Win(A, g, h) | Distinct] ≤ exp(−n).

Indeed, by the definition of the event Distinct, it holds that v′1, . . . , v
′
2k are distinct, and by the

definition of our graph-hash product, the sequence of vertices (v′1, . . . , v
′
2k) must form a clique or

an independent set of size 2k in G. However, by Proposition 3 we know that with probability
1− exp(−n) over g, the graph G does not contain any such independent set or clique.

Plugging this back into Equation (1), we get that

Pr[Win(A, g, h) | ¬Distinct] · Pr[¬Distinct] ≥ ε− exp(−n)

11

and, in particular,

Pr[¬Distinct] ≥ ε− exp(−n)

Recall that ε is a non-negligible term and thus we obtain an algorithm A′ that finds a collision
in h with probability ε − exp(−n), which contradicts the collision resistance property of the hash
function h. To summarize, the algorithm A′ gets as input a hash function h, samples a function
g ← G, as above, and simulates the execution of A on the graph-hash product graph G⊗ h. Given
the output of A, it searches the output for a pair of values that form a collision relative to h and
outputs them (it outputs ⊥ in case no such pair was found). By the above, two such colliding
values will appear in the output with non-negligible probability, resulting in a collision relative to
h.

Hardness for finding a smaller clique or independent set. We showed that it is hard to
find a clique or independent set of size n/2 in an implicitly represented graph of size 2n. We can
show that finding a clique or independent set of size nδ for any 0 < δ ≤ 1 is hard, by following the
proof of Theorem 1 and using a hash function that maps n bits into nδ bits (which is implied by
the existence of the hash function we used in Theorem 1).

We can even go below a fixed δ to, say, n1/
√

logn by using a hash function that compresses a
super-polynomial amount (from n bits to n1/

√
logn bits). This is known to be implied by a hash

function that compresses a single bit albeit with a super-polynomial loss in security, but it is not
known with only a polynomial loss.

Ramsey theory and proof complexity. Ramsey theory has been extensively studied in the
context of proof complexity. In particular, it is known that Ramsey’s theorem has a polynomial-size
bounded-depth Frege proof [Pud90] and it is related to the weak pigeonhole principle [Jer09].

3.1 Hardness of the colorful Ramsey problem

The colorful Ramsey problem asks, given an implicit and efficient representation of a coloring using
m colors of the edges of a graph on 2n vertices, to find a monochromatic clique of size k. We will see
a hard distribution for the colorful Ramsey problem. We focus in the case where the goal is to find
a monochromatic triangle (i.e., k = 3 above) for simplicity and remark that the proof generalizes
for larger values of k.

Hardness of the colorful Ramsey problem. We say that the colorful Ramsey problem is hard
if there exists an efficiently samplable distribution D over {ψ :

(
2n

2

)
→ [m]} – colorings of the full

graph on 2n vertices – such that for every probabilistic polynomial-time algorithm A, there exists
a negligible function negl(·) such that

Pr
C←D

[v1, v2, v3 ← A(1n, C) ; v1, v2, v3 form a monochromatic triangle] ≤ negl(n),

where the probability is over the uniform choice of C ← D and the randomness of A.
The above problem is indeed in TFNP whenever m ≤ n/(3 log n), since it is guaranteed by

Proposition 6 that there always exists a monochromatic triangle if there are only n/(3 log n) colors.
The theorem below shows that there exists a distribution over instances of the colorful Ramsey

12

problem for which no efficient algorithm can find a solution. As before, the security of the distri-
bution relies on the existence of collision resistance hash functions.

Theorem 2. The colorful Ramsey problem is hard assuming the existence of a collision resistant
hash function family.

In the proof of Theorem 2, we use an explicit construction of a colorful Ramsey coloring.

Lemma 1. Fix k > 2 and let m = 2n/ log k. There exist an efficient and explicit coloring ψ :
(

2n

2

)
→

[m] for which there is no monochromatic complete subgraph of size k.

Proof. We show a recursive construction. Assume we have a coloring ψ′ :
(

2n/k
2

)
→ [m − 2] of

the full graph on 2n/k vertices with m − 2 colors such that there is no monochromatic complete
subgraph of size k. We show how to get a coloring ψ′ :

(
2n

2

)
→ [m] of the full graph on 2n vertices

with m colors. Split the latter into k full graphs K1, . . . ,Kk each of size 2n and color each of them
(internally) using ψ′. For any edge (u, v) that crosses between copies, that is, u ∈ Ki and v ∈ Kj ,
where i < j, we assign the color m− 1 if i = 1 and with the color m otherwise.

We show that ψ is a valid coloring, namely, that there is no monochromatic complete subgraph
of size k. Consider any k vertices. If they are all from the same copy Ki for some i ∈ [k] then by
the recursive construction, they are not monochromatic. If each vertex is in a different copy, then
the clique is colored with colors m−1 and m and thus not monochromatic. Lastly, if there is a mix
of edges in between copies and among different copies, then there must be at least two edges with
different colors since the coloring within a copy is only from the colors [m − 2] while the coloring
among different copies uses colors within {m− 1,m}.

We iterate the construction above, starting from a trivial 1-vertex graph. One can see that in
each iteration we add 2 colors but multiply by k the number of vertices. Thus, after logk (2n) =
n/ log k iteration we obtain a graph with 2n vertices colored with m = 2n/ log k colors.

An explicit algorithm (not in a recursive form) for coloring the edges of the graph is given next.
Note that if we write n in the base k representation then it has m/2 coordinates.

Color(u, v) :

1. Let (u1, . . . , um/2) and (v1, . . . , vm/2) be the base k representation of u and v, respectively.

2. Let i be the minimal index such that ui 6= vi.

3. If ui = 1, then output color 2i− 1.

4. Otherwise, output color 2i.

We proceed with the proof of Theorem 2.

Proof of Theorem 2. We adapt the graph-hash product operation (see Definition 8) to support more
general coloring functions (rather than graphs). Given a coloring ψ :

(
2n

2

)
→ [m] of the full graph

with 2n vertices using m colors, and a hash function h : {0, 1}n+` → {0, 1}n, we define a coloring
of the full graph on 2n+` vertices ψ ⊗ h as follows. For any edge e = (u, v) ∈ {0, 1}n+` × {0, 1}n+`,
let u′ = h(u) and v′ = h(v). The color of e is ψ(u′, v′) (i.e., the color of (u′, v′) according to ψ) if
u′ 6= v′ and it is 1 if u′ = v′.

13

We proceed with the main construction. Let n′ = n log 3
6 logn and let ψ :

(
2n
′

2

)
→ [m] be a coloring

of the full graph on 2n
′

vertices with m , 2n′/ log 3 = n/(3 log n) colors that does not contain
a monochromatic triangle given by Lemma 1. Sample a collision resistant hash function h ← H,
where H = {h : {0, 1}n → {0, 1}n′} is a collision resistant hash function compressing n bits to n′

bits, and color the full graph on 2n vertices by ψ ⊗ h. This coloring, that consists of a description
of ψ and h, is the output of the sampling procedure of the distribution.

Suppose there exists an adversary A that, given an instance of the distribution above, finds
a monochromatic triangle in ψ ⊗ h with probability ε > 0. Denote by (i1, v1), (i2, v2), (i3, v3) ∈
{0, 1}n/2 × {0, 1}n/2 the solution found by A, and let v′i = h(i, vi) for i ∈ [3]. We first observe
that by Lemma 1 it must be that the v′i’s are not distinct. Indeed, if they are distinct then
(by the definition of our coloring-hash product) the sequence of vertices (v′1, v

′
2, v
′
3) correspond to a

monochromatic triangle in ψ, which cannot happen (since ψ does not have any such monochromatic
triangle). Given that the v′i’s are not distinct, they must contain a collision relative to h. Thus, we
obtain an algorithm A′ that finds a collision for h with the same probability ε.

3.2 The relation of Ramsey and the WeakPigeon classes

The weak pigeon class (PWPPnk) is a subclass in TFNP defined by the collision finding problem for
circuits that compress their input.

Definition 9 (PWPPnk complete problem). Given a circuit C : {0, 1}n → {0, 1}k, find x 6= y such
that C(x) = C(y). Moreover, we define PWPP = PWPPnn−1.

In [Jer16] it has been shown that the class PWPPnn−1 is equivalent to the class PWPPnnδ for
any positive constant δ. Moreover, any hard problem for PWPPnk naturally gives rise to a collision
resistant hash function.

In Theorem 1 we showed a reduction from the hardness of the Ramsey problem to the hardness
of collision resistant hash functions, that is, to PWPP. Let RAMSEY be the set of all search
problems which are reducible in polynomial-time to the Ramsey problem. Then, we get that the
class PWPP is contained under randomized reductions in the class RAMSEY. The only source of
randomness in our reduction is sampling the limited-independence hash function g ∈ G that defines
a Ramsey graph. We observe that we can overcome this issue (i.e., get a deterministic reduction)
by relying on explicit constructions of Ramsey graphs. The currently best explicit constructions of
Ramsey graphs do not get the same parameters as a random graph, and hence to use it we need a
stronger hash function (i.e., with better compression rate).

The explicit construction that we use comes from an exciting line of recent works in the area
of randomness extractors (for example [Coh16a, CZ16, BDT16, Coh16b, Li16]).12 We will use the
following theorem.

Proposition 8. There exists an explicit k-Ramsey graph on N vertices, where k ≤ 2(log logN)2.13

Applying the same proof as that of Theorem 1, but using the explicit construction of Ramsey
graphs above, results with:

12We note that any improvement on the best constructions of Ramsey graphs would imply an improvement in our
underlying assumption regarding the hash function.

13Li [Li16] shows a stronger result, namely, that k ≤ 2(log logN)·O(log log logN) , but (for simplicity) we will not use
this stronger version. Using better explicit constructions of Ramsey graphs (than the one we state in Proposition 8)
will directly imply the result in Theorem 3 based on a weaker assumption on the hash function family.

14

Theorem 3. Fix a family of collision resistant hash functions H = {h : {0, 1}n → {0, 1}2
√

log(n/2)}.
There exists a deterministic reduction from RAMSEY to breaking the collision resistance of H.

As a corollary of Theorem 3 we obtain that the class defined by the Ramsey problem (i.e., the
class RAMSEY) includes the class PWPPn

2
√

log(n/2)
.

Corollary 1. PWPPn
2
√

log(n/2)
⊆ RAMSEY.

Proof of Theorem 3. Let k = 2
√

log(n/2). Given a uniformly sampled hash function h← H, we show
that given a solver for the Ramsey problem it is possible to find collisions in h. Consider the graph
G = (V,E) with |V | = 2k vertices given by Proposition 8 and execute the Ramsey problem solver
on the graph-hash product graph G⊗ h = (V ′, E′). Notice that |V ′| = 2n and thus the solver finds
a clique or independent set of size n/2 = 2(log k)2 in G⊗h with noticeable probability ε > 0. Denote
the solution by v1, . . . , vn/2, and let v′i = h(vi) for i ∈ [n/2]. We first observe that by Proposition 8
it must be that the v′i’s are not distinct. Indeed, if they are distinct then (by the definition of our
graph-hash product) the sequence of vertices (v′1, . . . , v

′
n/2) forms a clique or an independent set of

size n/2 in G (which does not exist!). Now, given that the v′i’s are not distinct, then they must
contain a collision relative to h. Thus, we obtained an algorithm that finds a collision for h with
probability ε.

Regarding the relation between the colorful Ramsey problem and the class PWPPnn−1 we have
the following. Using Theorem 2, we obtain that the class defined by the colorful Ramsey problem,
denoted by COLORFUL-RAMSEY, includes the class PWPPnn/(6 logn). Since PWPPnn−1 is equivalent
to PWPPnnδ for any positive constant δ [Jer16], we obtain the following result.

Corollary 2. PWPP ⊆ COLORFUL-RAMSEY.

3.3 The Ramsey problem and Multi-CRH

In Theorem 1 we showed that under the assumption that CRH functions exist, the Ramsey problem
is hard. Here we study the bipartite version of the Ramsey problem and point out a tight relation-
ship to a cryptographic primitive we call multi-collision resistant hash (MCRH) functions.14

A bipartite graph on two sets of N vertices is a bipartite K-Ramsey graph if it has no K ×K
complete or empty bipartite subgraph. Ramsey’s theorem for such graphs says that every bipartite
graph on 2N vertices has a logN×logN complete or empty bipartite subgraph (see e.g., [Con08]).15

The result of Erdös [Erd47] on the abundance of (2 logN)-Ramsey graphs (see Proposition 3 and
Appendix B.2) naturally extends to the bipartite setting as well.

Analogously to the Ramsey problem on graphs, the bipartite Ramsey problem is when the graphs
are bipartite and the goal is to find a bi-clique or bi-independent set of a certain size. We focus on
the task of finding a bi-clique or bi-independent set of size n/4. We say that the bipartite Ramsey
problem is hard if there exists an efficiently samplable distribution D over {C : {0, 1}n×{0, 1}n →
{0, 1}} – circuits of size polynomial in n that represent bipartite graphs on 2n × 2n vertices – such

14Multiple collisions in hash functions were studied before in the context of iterated hash functions by Joux [Jou04].
He showed that for such functions, finding multi-collisions (a set of k messages that hash to the same value) is not
much harder than finding ordinary collisions (pairs of messages that collide).

15Given a bipartite K-Ramsey graph G on 2N vertices, one can transform it into a non-bipartite 2K-Ramsey graph
H on N vertices. The graph H is defined by the upper triangle of the adjacency matrix of G.

15

that for every probabilistic polynomial-time algorithm A, there exists a negligible function negl(·)
such that

Pr
C←D

[u1, . . . , un/4, v1, . . . , vn/4 ← A(1n, C) ; ∃b ∈ {0, 1},∀i, j ∈ [n/4] : C(ui, vj) = b] ≤ negl(n),

where the probability is over the uniform choice of C ← D and the randomness of A. All the
efficiency requirements are polynomial in n.

Roughly, a family of multi-collision resistant hash functions is one such that it is hard to find
multiple inputs that hash to the same output. More precisely, a sequence of families of functions
Hn = {h : {0, 1}`1(n) → {0, 1}`2(n)}, where `1 and `2 are two functions such that `1(n) > `2(n) for
every n ∈ N, is k-multi-collision resistant if for every probabilistic polynomial-time algorithms A,
it holds that

Pr
h←Hn

[(x1, . . . , xk)← A(1n, h); h(x1) = · · · = h(xk)] ≤ negl(n).

By default, unless otherwise stated, we assume that a family of k-MCRH functions maps strings
of length n to strings of length n − log k. This assumption ensures that a k-multi-collision exists
(but yet it is hard to find). k-MCRH functions are implied by standard CRH functions (but is
seemingly a weaker primitive).

We show that MCRH functions are sufficient and necessary for bipartite Ramsey hardness.

Theorem 4. If the bipartite Ramsey problem is hard, then there exists a family H = {h : {0, 1}n →
{0, 1}n/2} of n/4-MCRH functions.

Furthermore, if there exists a family H = {h : {0, 1}n → {0, 1}
√
n/8} of

√
n-MCRH functions,

then the bipartite Ramsey problem is hard.

Proof. We show that the hardness of the bipartite Ramsey problem implies that n/4-MCRH func-
tions exist. Let D = {C : {0, 1}n × {0, 1}n → {0, 1}} be a distribution over succinctly represented
graphs on 2n × 2n vertices such that it is hard to find a bi-clique or a bi-independent set of size
n/4. Fix v1, . . . , vn/2 ∈ {0, 1}n to be arbitrary n/2 distinct vertices on the right side. We define the

hash function hC : {0, 1}n → {0, 1}n/2 to be the concatenation of the bits C(x, v1), . . . , C(x, vn/2).

hC(x) = C(x, v1) ◦ · · · ◦ C(x, vn/2).

We claim that it is hard to find an (n/4)-multi-collision in hC by translating such a multi-collision
to a bi-clique or a bi-independent set of size n/4 in C. Let x1, . . . , xn/4 be a (n/4)-multi-collision in

hc and denote by y = hC(x1) ∈ {0, 1}n/2. Without loss of generality, assume that the string y has
more 1’s than 0’s and denote by I = {i1, . . . , in/4} ⊆ [n/2] a set of size n/4 of (distinct) indices for
which yi = 1. The collection of vertices x1, . . . , xn/4 on the left side and the vertices {vi1 , . . . , vin/4}
on the right form a bi-clique of size n/4× n/4.

For the other direction, namely that the bipartite Ramsey problem is hard if
√
n-MCRH func-

tions exist (that map n bits to
√
n/8 bits), we adapt the proof of Theorem 1. First, following

the proof of Proposition 3, a bipartite graph on 2 · 2
√
n/8 vertices sampled via an (n/16)-wise

independent family is a (
√
n/4)-Ramsey (bipartite) graph with probability at least 1− 1/N .

The hard distribution for bipartite Ramsey is defined similarly to the distribution given in
Theorem 1. Specifically, a description of a graph is given via a

√
n-MCRH function h and a

(4 log2N)-wise independent function g and an edge (x, y) is in the graph iff g(h(x), h(y)) = 1.

16

Given a bi-clique or bi-independent set u1, . . . , un/4, v1, . . . , vn/4, consider u′i = h(ui) and v′i =
h(vi) for i ∈ [n/4]. Since h is a

√
n-MCRH function, then there are at least

√
n/4 distinct values

of u′’s and
√
n/4 distinct values of v′’s (otherwise, we can break the security of h). Thus, we get

a bi-clique or bi-independent set of size
√
n/4×

√
n/4 in the graph defined by g. This contradicts

the fact that g contains no such graph (with very high probability).

Subsequent work Following this work, the notion of MCRH has been studied in depth showing a
variety of applications such as statistically-hiding commitments with short communication, various
types of efficient zero-knowledge protocols [KNY18, BKP18, BDRV18] and distributional collision
resistance [KY18].

4 Hardness of Testing an Extractor

In this section, we present a graph property which is hard to test in the white-box setting. Specif-
ically, we present a property Π and a distribution over succinctly-represented graphs for which
efficiently deciding whether an instance in the distribution has the property Π or is far from having
the property Π is impossible (under appropriate cryptographic assumptions). We briefly recall the
notions related to (graph) property testing and then describe our main result. A more elaborate
introduction can be found in [Gol11] and references therein.

A property Π is simply a set of elements in a universe of interest. A property Π is a graph
property, if it is a set of graphs closed under graph isomorphism. That is, if for every graph
G = (V,E) on N vertices and any permutation π on V it holds that G ∈ Π if and only if π(G) ∈ Π,
where π(G) = (V,E′) and E′ = {(π(u), π(v)) | (u, v) ∈ E}. A graph G = (V,E) on N vertices is
said to be ε-far from a property Π if for every N -vertex graph G′ = (V ′, E′) that has the property
Π (i.e., G′ ∈ Π), it holds that |E4E′| ≥ ε ·

(
N
2

)
(the operator 4 denotes symmetric difference).

Definition 10 (White-box property testing). An ε-tester for a graph property Π is a probabilistic
machine that, on input a Boolean circuit C : {0, 1}n × {0, 1}n → {0, 1} representing the adjacency
matrix of a 2n-vertex graph G, outputs a binary value that satisfies:

1. If G has the property Π, then the tester outputs 1 with probability at least 2/3.

2. If G is ε-far from Π, then the tester outputs 1 with probability at most 1/3.

The above definition naturally generalizes to bipartite graphs (and properties of bipartite
graphs).

The property of being an extractor. The graph property Π we are interested in is being a
two-source extractor: a bipartite graph G = (U, V,E), where |U | = |V | = 2n, is (k, δ)-balanced if
for every set U ′ ⊆ U and V ′ ⊆ V of size |U ′| = |V ′| = 2k, the induced subgraph GU ′,V ′ has 1/2± δ
fraction of edges. The induced subgraph GU ′,V ′ = (U ′, V ′, EU ′,V ′) is defined by (u, v) ∈ EU ′,V ′ if
and only if (u, v) ∈ E, u ∈ U ′ and v ∈ V ′.

We present a distribution over succinctly represented (bipartite) graphs for which testing the
above property is hard. The hardness reduces to breaking the security of a collection of lossy
functions described in Section 2.4.

17

Theorem 5. Assume the existence of a collection of (n, 2n/3)-lossy functions and consider the
bipartite graph property Π of being (0.52n, 2−n/2000)-balanced. There exist a constant ε > 0 and a
distribution over succinctly represented bipartite graphs on 2n vertices for which any ε-tester for Π
must run in super-polynomial-time.

Observe that the existence of a collection of lossy functions directly implies white-box hardness
of testing whether a given function is injective or far from being such (i.e., lossy), but we will prove
the hardness for a graph property.

Proof. Assume the existence of a collection of (n, 2n/3)-lossy functions defined by the pair of
algorithms (Gen,Eval), where for every s in the output of Gen it holds that Eval(s, ·) = fs(·) maps
strings of length n into strings of length p(n) > n for some polynomial p(·). We construct a new
collection of functions defined by a pair of algorithms (Gen′,Eval′):

1. The algorithm Gen′, on input 1n and b ∈ {0, 1}, executes the algorithm s ← Gen(1n, b) and
samples a n-wise-independent hash-function h : {0, 1}p(n) → {0, 1}n. It outputs s′ = (s, h).

2. The algorithm Eval′, on input s′ = (s, h) and x ∈ {0, 1}n, outputs h(Eval(s, x)).

Claim 1. The following holds:

1. Gen′(1n, 0) ≈c Gen′(1n, 1).

2. The algorithm Eval′(s′, ·), where s′ ← Gen′(1n, 0), computes a function fs′(·) over {0, 1}n such
that with very high probability for any y ∈ {0, 1}n it holds that | {x : fs′(x) = y} | ≤ n.

3. The algorithm Eval′(s′, ·), where s′ ← Gen′(1n, 1), computes a function fs′(·) over {0, 1}n
whose image size is at most 2n/3.

Proof. The first and last items follow immediately from the properties of (Gen,Eval). The second
item follows by a balls and bins argument. For any n elements, the probability that they all hash
to a specific value y is (2−n)n. Thus, taking a union bound over all possible values y ∈ {0, 1}n
and all possible n tuples we get that the total probability that there exists a bin with more than n
elements is at most 2n ·

(
2n

n

)
· 2−n2 ≤ exp(−n).

Fix k = 0.51n and δ = 2−n/500 and observe that

2k = 2 · 0.51n ≥ n+ 2 log(2n/500) + 2 = n+ log(1/δ) + 2.

By Proposition 7, there exists a polynomial-size Boolean circuit Bn,k,δ that acts on inputs from
{0, 1}n × {0, 1}n and succinctly represents a (k, δ)-balanced bipartite graph G = (U, V,E). Recall
that the graph G has |U | = |V | = 2n vertices on each side and has the property that every 2k × 2k

subgraph is balanced up to a fraction of δ edges.

Remark 1. Better constructions of such explicit circuits (cf., Proposition 7) are useful when only
weak lossy functions that do not compress much are available. They can also be used to get a
hardness result for testing “weaker” properties (i.e., showing hardness for testing the (k, δ)-balanced
property even for smaller values of k compared to n).

18

We define our distribution over Boolean circuits that act on inputs from {0, 1}n × {0, 1}n. Let
f ′s′(·) = Eval′(s′, ·). First, we sample a description of a random function by s′ ← Gen′(1n, b) for
b← {0, 1} chosen uniformly at random. Then, we output the following circuit Cs′ that represents a
graph G′: On input a pair of vertices u ∈ U = {0, 1}n, v ∈ V = {0, 1}n, output Bn,k,δ(f

′
s′(u), f ′s′(v)).

That is, there is an edge between u and v iff there is an edge in Bn,k,δ between f ′s′(u) and f ′s′(v).
By item 1 in Claim 1 we know that the two distributions s′ ← Gen′(1n, b) for b = 0 and b = 1

are computationally indistinguishable. Next, we show that when b = 0 then the graph G′ has the
property Π, and when b = 1 the graph is ε = 1/4 far from having the property Π, and conclude
our theorem.

The injective case. When b = 0 we claim that G′ is (k′, δ)-balanced for k′ = 1.01k ≤ 0.52n.
Consider any 2k

′ × 2k
′

subgraph H of G′. Denote by L (resp. R) the set of nodes on the left (resp.
right) side of H. For i ∈ [n], denote by Ai (resp. Bi) the values y ∈ L (resp. y ∈ R) for which there
are exactly i preimages under f ′s′ , namely,

Ai = {y ∈ L : |{x : f ′s′(x) = y}| = i} and Bi = {y ∈ R : |{x : f ′s′(x) = y}| = i}.

By item 2 in Claim 1, (w.h.p.) for i > n it holds that |Ai| = 0 so assume this is the case for the
rest of the proof. Denote by IL the set of indices i for which |Ai| ≥ 2k · i and similarly by IR the
set of indices j for which |Bj | ≥ 2k · j. This implies that∑

i∈IL,j∈IR

|Ai| · |Bj | =
∑
i,j∈[n]

|Ai| · |Bj | −
∑

i/∈IL or j /∈IR

|Ai| · |Bj |

≥ 22k′ − n2 · 2k′ · 2k · n = 22k′ − 2k
′ · 2k · n3, (2)

where the inequality
∑

i/∈IL or j /∈IR |Ai| · |Bj | ≤ n
2 · 2k′ · 2k · n follows since |IL|, |IR| ≤ n (giving the

n2 factor for the number of pairs i /∈ IL or j /∈ IR) and either |Ai| or |Bj | is smaller than 2k · n.
We will count the number of edges and non-edges between each Ai and each Bj for i ∈ IL

and j ∈ IR (the sum of these will serve as a lower bound on the total number of edges and non-
edges in H). Fix i ∈ IL and j ∈ IR. Since i, j ≤ n, in Ai (resp. Bj) there must exist at least
|Ai|/i ≥ 2k (resp |Bj |/j ≥ 2k) vertices whose values relative to f ′s′(·) are distinct. These vertices

form a (k, δ)-balanced subgraph Ĥ, namely, Ĥ contains at least

(|Ai|/i) · (|Bj |/j) · (1/2− δ).

edges and non-edges (since they can be mapped to distinct vertices in Bn,k,δ).

Counting the number of edges between Ai and Bj , any edge (and non-edge) in Ĥ will be counted
exactly i · j times. Thus, the total number of edges and non-edges between Ai and Bj is at least

|Ai| · |Bj | · (1/2− δ).

Thus, using Equation (2), the total number of edges in H is at least∑
i∈IL,j∈IR

|Ai| · |Bj | · (1/2− δ) ≥ (1/2− δ) ·
∑

i∈IL,j∈IR

|Ai| · |Bj |

≥ (1/2− δ) · 22k′ − (1/2− δ) · 2k′ · 2k · n3

≥ (1/2− δ) · 22k′ − 2k
′+k+3 logn

= (1/2− δ − 2−k
′+k+3 logn) · 22k′ .

19

Since k′ = 1.01k and k = 0.51n, we have that 2−k
′+k+3 logn = 2−0.01k+3 logn ≤ 2−n/1000 for large

enough n. Thus, letting δ′ , δ + 2−n/1000 ≤ 2−n/2000, the number of edges in H is at least∑
i∈IL,j∈IR

|Ai| · |Bj | · (1/2− δ) ≥ (1/2− δ − 2−n/1000) · 22k′

= (1/2− δ′) · 22k′ .

An analogous argument can be applied to show that the same lower bound holds on the number
of non-edges which completes the proof.

The lossy case. When b = 1 we argue that the graph G′ (represented by Cs′) is very far from
satisfying the property Π. For any value y in the image of f ′s′ we define a non-empty set A = f ′−1

s′ (y).
Since the image of f ′s′ is of size at most 2n/3, there are at most 2n/3 such disjoint sets of vertices
A1, . . . , A2n/3 ⊆ U . For any i ∈ [2n/3] we have that

∀u1, u2 ∈ Ai : f ′s′(u1) = f ′s′(u2).

Similarly, there are at most 2n/3 disjoint sets of vertices B1, . . . , B2n/3 ⊆ V for which

∀i ∈ [2n/3], v1, v2 ∈ Bi : f ′s′(v1) = f ′s′(v2).

Let IL ⊆ [2n/3] (respectively, IR ⊆ [2n/3]) be the subset of the Ai’s (respectively, Bj ’s) which
are of size at least 2k

′
. That is,

i ∈ IL ⇐⇒ |Ai| ≥ 2k
′

and j ∈ IR ⇐⇒ |Bj | ≥ 2k
′

Each pair of sets Ai, Bj for i ∈ IL, j ∈ IR, gives us a set of vertices on the left and a set of
vertices on the right which are either fully connected (if Bn,k,δ(fs(u), fs(v)) = 1 for u ∈ Ai and
v ∈ Bj) or fully disconnected (if Bn,k,δ(fs(u), fs(v)) = 0). Thus, if both Ai and Bj are of size at
least 2k

′
, each such pair contributes 1/2 · |Ai| · |Bj | edges to G′ that must be changed (added or

removed) in order for the graph G′ to possess the property Π. The number of nodes that are in a
set Ai (and similarly for Bj) which is smaller than 2k

′
is bounded by 2n/3 · 20.52n ≤ 20.9n. Thus, we

get that the number of edges that must be changed for the graph G′ to possess the property Π is
at least:∑

i∈IL,j∈IR

1

2
|Ai| · |Bj | =

1

2

∑
i∈IL,j∈IR

|Ai| · |Bj |+
1

2

∑
i/∈IL,j /∈IR

|Ai| · |Bj | −
1

2

∑
i/∈IL,j /∈IR

|Ai| · |Bj |

=
1

2

∑
i∈U,j∈V

|Ai| · |Bj | −
1

2

∑
i/∈IL,j /∈IR

|Ai| · |Bj |

≥ 1

2
· 22n − 1

2
· (20.9n)2 ≥ 1

4
· 22n.

Namely, at least 22n/4 of the edges must be changed which is a constant fraction of the total number
of edges in the graph.

20

5 Impossibility of a General Transformation

In this section, we show (unconditionally) that there cannot be a general transformation from a
black-box lower bound, to a white-box lower bound. That is, we show that there exists a problem
that has exponentially high black-box complexity, however, is solvable in polynomial time given
any white-box implementation of the search function.

We first give an informal overview of the problem we define with respect to a function f .
Consider the problem of finding a small circuit that is consistent with a large set of pairs (xi, yi)
defined by f (i.e., f(xi) = yi). In particular, the set will be larger than the size of the circuit. In the
black-box model, for a random function f , these points will be completely random, and thus the
task of finding a small circuit that is consistent is impossible (since one cannot compress random
bits). On the other hand, in the white-box model, given any circuit that computes f , the task
becomes completely trivial: simply return the circuit in hand.

This approach raises two main difficulties. First, this problem does not always have a solution
in the black-box model (which is not consistent with the definition of a search problem). Second,
the solution has no a priori bound on its size.

The first problem is solved by taking any search problem with proven high black-box complexity
(e.g., PPP or PWPP). Notice that this problem might have high white-box complexity as well.
Then, we modify our search problem to be an OR of the two problems. That is, either find a small
consistent circuit or solve the second search problem. In the black-box model, the complexity of
the new problem remains high, and moreover, a solution always exists. In the white-box model,
the problem remains solvable in polynomial time.

The second problem is solved by giving a short commitment to the circuit instead of the full
circuit, and then proving that this is a commitment to a circuit that is consistent on a random
value. To achieve this, we use techniques such as Kilian’s protocol combined with the Fiat-Shamir
paradigm to remove interaction in the random oracle model (in the black-box model we have a
random oracle!).

The search problem we define is the one considered by Goldwasser and Kalai [GK03] in the
context of showing limitations for the Fiat-Shamir paradigm. Goldwasser and Kalai showed that
there exists a 3-round public-coin identification scheme for which the Fiat-Shamir paradigm yields
an insecure digital signature with any hash function in the standard model. (In contrast, Pointcheval
and Stern [PS96] showed that in the random oracle model this paradigm always produces a signature
scheme that is secure against chosen message attacks.)

The signature scheme of Goldwasser and Kalai naturally gives rise to a search problem: Given
the public parameters of the scheme, find a valid signature for an arbitrary message. To make this
problem in TFNP, we define the problem of either finding a valid signature as above or finding a
collision in a compressing function. The latter has a guaranteed solution, so this defines a valid
search problem in TFNP.

The underlying relation Underlying the construction of Goldwasser and Kalai [GK03] is a
relation in which the instance is a function f and a valid witness, C, is a small circuit that approx-
imates f : it agrees with f on a point the depends on the description of C. For a function f ∈ Fn

21

where f : {0, 1}n → {0, 1}n the relation is:16

RfGK = {(f, C) | a = COMf (C) ∧ C(a) = f(a) ∧ |C| ≤ 2n/10},

where COMf is the tree-commitment of Kilian [Kil92] which allows for a fixed polynomial-size
commitment of any polynomial-size string and also allows for efficient decommitment for individual
bits (here f is used as a hash function by ignoring half of the output bits).

Goldwasser and Kalai showed that when f is a random function (modeled as a oracle model),
it is hard to devise a proof that one has a witness for membership in the relation with fewer than
exponentially-many queries to f (with high probability). The high-level idea is that a valid witness
C will agree with f on the point a = COMf (C). Since f is random, the point a is also random, and
hence C is a (small) circuit that approximates (the random oracle) f which does not exist (w.h.p.).
Therefore, finding such a witness is infeasible.

However, in the white-box model, given the code of f it is easy to find a proof (the code of f
is used as a witness). There are two problems with using the above as a valid search problem in
TFNP: (1) there is no guaranteed solution in the black-box setting, and (2) there is no guaranteed
solution in the white-box setting if the circuit implementing f is of size larger than 2n/10. To solve
this we allow to find solutions of a different kind: a pair of strings a 6= b such that f(a) = f(b)
or f(a) = 0. This is exactly the complete problem for the class PPP. Namely, we OR with the
relation:

RfPPP = {(a, b) ∈ {0, 1}n × {0, 1}n | a 6= b ∧ f(a) = f(b) ∨ f(a) = 0}.

This indeed solves both problems as now (1) there is always a guaranteed solution in the black-
box setting since a compressing function must have a collision (the pigeonhole principle), and (2)
such a solution can always be found with 2n queries which is polynomial in 2n/10. To summarize,
our final relation which is a search problem in TFNP is:

Rf = RfGK ∪R
f
PPP.

6 The Succinct Black-Box Model

We define and study a new model of computation which we call succinct black-box. In this model,
as in the black-box model, the solver has only query access to the object and it is measured by the
number of queries it performs in order to find a solution. However, in this model (as opposed to the
black-box model), the number of queries is measured as a function of the size of the representation
of the function. This is similar to the white-box model, where the running time is measured as
a function of the size of the representation. In particular, if the function has a polynomial-sized
representation, then an efficient algorithm in this model can perform only a polynomial number of
queries (but the running-time may be arbitrary).

We show that for any problem in TFNP, there exists a deterministic procedure that performs
only a polynomial number of queries (in the size of the representation of the function) and finds a
valid solution.

Theorem 6. For any search problem S ∈ TFNP it holds that sbbc(S) is polynomial. In particular,
if the representation size is s and any solution consists of at most k elements, then the number of
queries is O(sk/ log k).

16The bound on the size of C in [GK03] can be any super-polynomial function.

22

The assumption that the search problem is in TFNP is essential for the theorem to hold. To
see this, consider the case of point functions (functions that output 1 at a specific point and 0
everywhere else) where the goal is to find the hidden point. There exists a succinct representation
(the point itself) but any algorithm that is only allowed to query the oracle must make exponentially
many queries until it finds the hidden point.

Proof of Theorem 6. We construct an algorithm A in the succinct black-box model. Let Sn be a
search problem where any solution is of size at most k (recall that k is polynomial in n). Suppose
we are explicitly given the size s = s(n) of the representation (we will get rid of this assumption
later). We begin by showing a simplified version of the algorithm which performs O(sk) queries:

Succinct black-box algorithm:

1. Initiate a list L of all possible representations of length less than s.

2. Repeat until a solution is found:

2.1. Define f∗ : {0, 1}n → {0, 1}n such that f∗(x) = MostFrequentf∈Lf(x).

2.2. Find a solution x1, . . . , xk relative to f∗.

2.3. Query x1, . . . , xk.

2.4. If all query results are consistent with f∗, then output x1, . . . , xk.

2.5. Remove any f from L if it is not consistent with x1, . . . , xk.

The algorithm always outputs a valid solution while performing at most a polynomial number
of queries (in the size of the representation of f): First, for any f∗ such a solution exists since
the problem is in TFNP. In each round, the algorithm performs k = poly(n) queries. Since f∗ is
consistent with the most frequent value, if a solution is not found at any round then we get that
at least half of the candidates are eliminated, and thus the list L is cut by half. The initial size
of L is bound by 2s. Thus, the total number of rounds is at most s. Overall, the total number of
queries is at most ks.

Suppose now that we are not given the bound s on the size of the representation. Then, we
do a variant of binary search: we run the algorithm with alleged upper bounds s∗ = 1, 2, 4, . . .
until it halts. When we run it with s∗ ≥ s the algorithm will halt. The total cost is at most
k + 2k + 4k + · · ·+ 2sk ≤ 4ks = poly(s) and thus sbbc(Sn) is polynomial.

To get the bound O(sk/ log k) we slightly fine-tune the above algorithm. We introduce a
parameter α (which we set later) and add an extra step to the iteration (after Step 22.1.):

• While there exists an x such that Prf∈L[f(x) = f∗(x)] ≤ 1 − α query x and remove all
inconsistent f from L.

In this case, we can average between a single query that eliminates α fraction of the candidates
and k queries that together remove 1 − α fraction of the candidates. To even these two cases, we
set α such that (1 − α)k = α. Once α satisfies this equation, we get that after s/α iterations the
number of remaining candidates is at most 2s(1 − α)s/α ≤ 2se−s ≤ 1. Thus, the total number of
queries is s/α. It is hard to get an exact solution to the above equation, however, a good enough
approximation yields that log k

2k ≤ α ≤
2 log k
k . Plugging this in, we get that the number of queries is

s/α = O(sk/ log k) as required.

23

Goldberg and Roth [GR16, Theorem 3.3] investigated the number of queries needed to find
an ε-well supported Nash equilibrium in multi-player games. They showed that if the game has a
succinct representation, then there is an algorithm that performs a polynomial number of queries
in the number of players n, the number of actions m, the description length of the target game,
and finds such an equilibrium. One can view Theorem 6 as a generalization of that result.17

Efficient-succinct black-box model. We observe that our algorithm is inefficient, and thus
is not applicable in the efficient-succinct black-box model (see Section 2 and Table 2). Moreover,
there exist problems that are hard in the efficient-succinct black-box model but are easy in the
white-box model. This follows by adapting the proof from Section 5 while replacing the use of a
random oracle with a pseudorandom function18.

7 Further Research

The immediate direction this work raises is which other Ramsey-type problems are hard in the
white-box model. Consider, for instance, Schur’s Theorem that states that for every positive integer
m, there exists a number S(m) such that for every coloring of the numbers in the set {1, . . . , S(m)}
with m colors, there must be x, y and z colored with the same color such that x+y = z (see [GRS90],
Chapter 3). This property naturally gives rise to the m-Schur search problem: Given an implicit
representation of the coloring of the numbers {1, . . . , S(m)}, find x, y and z colored with the same
color and satisfy x+ y = z. Can we argue that the m-Schur problem is hard?

What are the minimal assumptions needed to obtain the hardness results for Ramsey? Are
one-way functions sufficient or is there an inherent reason why collision resistant hash functions are
needed? For the bipartite Ramsey problem, we showed that a relaxation of CRH functions (MCRH
functions) is necessary and sufficient.

Our results are “obfuscation-free”, in the sense that we needed much weaker primitives for
obtaining them than in the recent works of [BPR15, GPS16, KS17]. Can we get similar results for
showing the hardness of complexity classes such as PLS and PPAD?

We showed the general impossibility of transferring black-box results to white-box results. One
direction which might be fruitful is to find conditions on the search problems that do allow for
such general transformation from black-box to white-box. A natural candidate is when the search
problem is defined over graphs, and we are looking for a graph property (i.e., the decision of S
whether to accept or not depends solely on the presented subgraph and not on the names of the
vertices). Can we prove a transformation in this case? Can we show an impossibility?

Acknowledgments

We thank Gil Segev for fruitful discussions concerning the question of minimal assumptions leading
to the hardness of Ramsey. We thank Pavel Hubácek and Jan Kraj́ıcek for pointing out [Kra01,
Kra05].

17We thank Aviad Rubinstein for referring us to [GR16].
18A pseudorandom function is a (keyed) function that cannot be distinguished from a random function by any

polynomially bounded adversary

24

References

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Universal
constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In CRYPTO, pages 491–520, 2016.

[AS08] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, third edition,
2008.

[BCE+98] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.

[BDRV18] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
Multi-collision resistant hash functions and their applications. In Advances in Cryptol-
ogy - EUROCRYPT, pages 133–161, 2018.

[BDT16] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Explicit two-source extrac-
tors for near-logarithmic min-entropy. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:88, 2016.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 671–684, 2018.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS, pages 1480–1498, 2015.

[Bus09] Sam Buss. Introduction to NP functions and local search, 2009. Slides:
http://www.math.ucsd.edu/~sbuss/ResearchWeb/Prague2009/talkslides1.pdf.
Accessed: 2017-04-01.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited. J. ACM, 51(4):557–594, 2004.

[Coh16a] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved ramsey
graphs. In Daniel Wichs and Yishay Mansour, editors, STOC, pages 278–284. ACM,
2016.

[Coh16b] Gil Cohen. Two-source extractors for quasi-logarithmic min-entropy and improved
privacy amplification protocols. Electronic Colloquium on Computational Complexity
(ECCC), 23:114, 2016.

25

http://www.math.ucsd.edu/~sbuss/ResearchWeb/Prague2009/talkslides1.pdf

[Con08] David Conlon. A new upper bound for the bipartite ramsey problem. Journal of Graph
Theory, 58(4):351–356, 2008.

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In STOC, pages 670–683. ACM, 2016.

[ER60] Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of
London Mathematical Society, 35:85–90, 1960.

[Erd47] Paul Erdös. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53(4):292–
294, 04 1947.

[FGK+13] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev.
More constructions of lossy and correlation-secure trapdoor functions. J. Cryptology,
26(1):39–74, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In FOCS, pages 102–113, 2003.

[Gol11] Oded Goldreich. Introduction to testing graph properties. In Studies in Complexity
and Cryptography, volume 6650, pages 470–506. 2011.

[GP18] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory
of total functions. J. Comput. Syst. Sci., 94:167–192, 2018.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a Nash equilibrium. In CRYPTO, pages 579–604, 2016.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. In FOCS, pages 1077–1088, 2015.

[GR16] Paul W. Goldberg and Aaron Roth. Bounds for the query complexity of approximate
equilibria. ACM Trans. Economics and Comput., 4(4):24:1–24:25, 2016.

[GRS90] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory. John
Wiley, second edition, 1990.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, pages 443–457,
2000.

[HNY17] Pavel Hubácek, Moni Naor, and Eylon Yogev. The journey from NP to TFNP hardness.
In 8th Innovations in Theoretical Computer Science Conference, ITCS, volume 67,
pages 60:1–60:21, 2017.

[HO12] Brett Hemenway and Rafail Ostrovsky. Extended-DDH and lossy trapdoor functions.
In PKC, pages 627–643, 2012.

26

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential
lower bounds for finding Brouwer fixed points. J. Complexity, 5(4):379–416, 1989.

[HY17] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query complex-
ity and cryptographic lower bounds. In SODA, pages 1352–1371, 2017.

[IN88] Russell Impagliazzo and Moni Naor. Decision trees and downward closures. In 3rd
Annual Structure in Complexity Theory Conference, pages 29–38, 1988.

[Jer09] Emil Jerábek. Approximate counting by hashing in bounded arithmetic. J. Symb. Log.,
74(3):829–860, 2009.

[Jer16] Emil Jerábek. Integer factoring and modular square roots. J. Comput. Syst. Sci.,
82(2):380–394, 2016.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In CRYPTO, volume 3152, pages 306–316, 2004.

[Juk11] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts
in Theoretical Computer Science. An EATCS Series. Springer, second edition, 2011.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732. ACM, 1992.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 622–632, 2017.

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hashing for para-
noids: Dealing with multiple collisions. In Advances in Cryptology - EUROCRYPT,
pages 162–194, 2018.

[KOS10] Eike Kiltz, Adam O’Neill, and Adam D. Smith. Instantiability of RSA-OAEP under
chosen-plaintext attack. In CRYPTO, pages 295–313. Springer, 2010.

[Kra01] Jan Kraj́ıcek. On the weak pigeonhole principle. Fundamenta Mathematicae, 170:123–
140, 2001.

[Kra05] Jan Kraj́ıcek. Structured pigeonhole principle, search problems and hard tautologies.
J. Symb. Log., 70(2):619–630, 2005.

[KS17] Ilan Komargodski and Gil Segev. From Minicrypt to Obfustopia via private-key func-
tional encryption. In EUROCRYPT, pages 122–151, 2017.

[KY18] Ilan Komargodski and Eylon Yogev. On distributional collision resistant hashing. In
Advances in Cryptology - CRYPTO 2018, pages 303–327, 2018.

[Li16] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. Electronic Colloquium on Computational Complexity (ECCC),
23:115, 2016.

27

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the
decision tree model. SIAM J. Discrete Math., 8(1):119–132, 1995.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theo-
rems and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[Nao92] Moni Naor. Constructing ramsey graphs from small probability spaces. IBM Research
Report RJ 8810, 1992. Available at: http://www.wisdom.weizmann.ac.il/~naor/

PAPERS/ramsey.ps. Accessed: 2017-08-01.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inef-
ficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In EU-
ROCRYPT, pages 387–398, 1996.

[Pud90] Pavel Pudlák. Ramsey’s theorem in bounded arithmetic. In Computer Science Logic,
4th Workshop, CSL, pages 308–317, 1990.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM
J. Comput., 40(6):1803–1844, 2011.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combina-
torica, 19(3):403–435, 1999.

[She11] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–
2000, 2011.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

A Hardness of Finding a Sunflower

The famous Sunflower lemma, discovered by Erdös and Rado [ER60], asserts that in a sufficiently
large family of sets of the same size a configuration called “sunflowers” must occur. In this section
we show that even though the configuration is guaranteed to exist, efficiently finding it is hard
assuming that collision resistant hash functions exist.

Definition 11 (A Sunflower). A sunflower with k petals and core Y is a collection of sets S1, . . . , Sk
such that

1. Si ∩ Sj = Y for every distinct i, j ∈ [k] and

2. Si \ Y 6= ∅ for every i ∈ [k].

28

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/ramsey.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/ramsey.ps

Lemma 2 (The Sunflower lemma). Let F be a collection of distinct sets each of cardinality s. If
|F| > s!(k − 1)s, then F contains a sunflower with k petals.

We define the sunflower problem as a search problem in which one is given a collection of sets
F , each of size n, and the goal is to find a sunflower with n+ 1 petals. A circuit C : {0, 1}2n logn →
({0, 1}n)n represents the collection F of 2n log n sets, each of size n. Namely, given such a circuit,
the ith set is given by evaluating C(i) ∈ ({0, 1}n)n. Therefore, the problem is formulated as follows.

Problem 1 (The Sunflower problem). Given a circuit C : {0, 1}2n logn → ({0, 1}n)n find n + 1
indices such that C(i1), . . . , C(in+1) are a sunflower or two indices i1, i2 such that C(i1) = C(i2).

For any circuit C, either there exist two indices that encode the same set or the circuit C
encodes 22n logn = n2n ≥ 2n! · nn different sets (for n > 1). Then, according to Lemma 2, such a
collection will contain a sunflower of size n+1 and therefore this is a valid search problem in TFNP

We say that the sunflower problem is hard if there exists an efficiently samplable distribution D
over {C : {0, 1}2n logn → ({0, 1}n)n} – circuits that succinctly represent a collection of sets as above
– such that for every probabilistic polynomial-time algorithm A, there exists a negligible function
negl(·) such that

Pr
C←D

[i1, . . . , in+1 ← A(1n, C); C(i1), . . . , C(in+1) are a sunflower] ≤ negl(n),

where the probability is over the uniform choice of C ← D and the randomness of A.

Theorem 7. The sunflower problem is hard assuming the existence of collision resistant hash
functions.

Proof. We first construct a large set Fno in which there is no sunflower of size n+1 (our construction
is taken from Exercise 6.2 in [Juk11]). Fix arbitrary n pairwise disjoint sets T1, . . . , Tn ⊆ {0, 1}n
each of size n and consider the family Fno of sets of size n such that every set has exactly one
element from each Ti. That is,

Fno = {S ∈ ({0, 1}n)n | ∀i ∈ [n] : |S ∩ Ti| = 1}.

First, we observe that the family Fno is of size nn. Second, the fact that the family Fno has no
sunflowers of size n + 1 follows from the pigeonhole principle: for any j ∈ [n] there must be two
sets that contain the same element in Tj . Thus, the core Y must contain an element in each of the
Tj ’s which leaves its petals empty. Lastly, we observe that Fno has a succinct representation as a
circuit: given a number ` ∈ [nn], one can obtain the `th set of Fno by first writing ` in base n as
` = (`1, . . . , `n) and then outputting the set {Tj [`j]}i∈[n] (where Tj [`j] is the `j-th element of Tj).

We proceed with the construction of the hard distribution for the sunflower problem. To
sample a succinct representation of a collection of sets, we sample a collision resistant hash function
h : {0, 1}2n logn → {0, 1}n logn and define the circuit C ⊗ h : {0, 1}2n logn → ({0, 1}n)n as: Given an
index i ∈ {0, 1}2n logn, we first hash it down to h(i) ∈ {0, 1}n logn and then return the h(i)-th
element of Fno. The description of this circuit is polynomial in n and it consists of an evaluation
of a description of Fno (which is polynomial in n) and a single evaluation of h.

Solving the sunflower problem for C can be reduced to finding collisions relative to h. Indeed,
assume that there is an efficient adversary A that succeeds in solving the sunflower problem. First,
suppose the adversary found two indices i1, i2 such that C(i1) = C(i2). Since all the sets in Fno are

29

distinct it must be that h(i1) = h(i2) and we have found a collision in h. Now suppose that A found
a sunflower and denote the indices of the petals by i1, . . . , in+1. Also denote i′1 = h(i1), . . . , i

′
n+1 =

h(in+1). Either some two i′j ’s are identical, or they are all different. In the latter case, it must be
that i′1, . . . , i

′
n+1 are indices of n + 1 petals in Fno, but these do not exist so this cannot happen.

The former, where i′j = i′j′ for some j, j′ ∈ [n+ 1], immediately gives a collision relative to h.

B Deferred Proofs for Ramsey Graphs

B.1 An upper bound on colorful Ramsey

We restate and prove Propositions 5 and 6.

Proposition 9 (Restatement of Proposition 5). For every k > 2 and m > 1, it holds that
R(k, . . . , k︸ ︷︷ ︸

m times

) ≤ mmk.

Proposition 10 (Restatement of Proposition 6). Consider the full graph on N vertices. For every

k < logN , and every coloring ψ :
(
N
2

)
→ [m], where m = (logN)/k

log logN−log k , there exists a monochromatic
subgraph of size k.

Proof of Proposition 5. Notice that the function R(·) is monotone, namely, if k′i ≤ ki for every
i ∈ [m], then

R(k′1, . . . , k
′
m) ≤ R(k1, . . . , km).

By Proposition 4, we know that

R(k1, . . . , km) ≤
m∑
i=1

R(k1, . . . , ki−1, ki − 1, ki+1, . . . , km).

Thus, the expansion of R(k, . . . , k︸ ︷︷ ︸
m times

) using this formula, can be viewed as a tree whose root is labeled

by R(k, . . . , k︸ ︷︷ ︸
m times

) and each internal node is labeled by R(k1, . . . , km). The property of the tree is that

if a node is labeled by R(k1, . . . , km), then any of its children, labeled by R(k′1, . . . , k
′
m), satisfies

that there exists a j ∈ [n] such that k′j = kj−1 and k′i = ki for every i ∈ [m]\{j}. The leaves of the
tree are those nodes labeled by values upper bounded by R(2, . . . , 2︸ ︷︷ ︸

m times

). Notice that R(2, . . . , 2︸ ︷︷ ︸
m times

) = 2.

The value of R(k, . . . , k︸ ︷︷ ︸
m times

) is thus the sum of all the leaves of the tree. Since the value at each

leaf of the tree is 2, the value of R(k, . . . , k︸ ︷︷ ︸
m times

) is bounded by the number of leaves times 2. By the

description above, the tree is an m-ary tree with depth at most mk − 1. Hence, the total number
of leaves in the tree is at most mmk−1 which means that

R(k, . . . , k︸ ︷︷ ︸
m times

) ≤ mmk.

30

Proof of Proposition 6. It is enough to show that R(k, . . . , k︸ ︷︷ ︸
m times

) ≤ N . Thus, by Proposition 5, it is

enough to show that mmk ≤ N . Indeed, plugging in the value of m from the proposition, we get
that

log(mmk) = mk · logm

= k · (logN)/k

log logN − log k
· log

(
(logN)/k

log logN − log k

)
=

logN · (log logN − log k)− logN · log(log logN − log k)

log logN − log k

= logN − logN · log(log logN − log k)

log logN − log k
≤ logN.

Thus, mmk ≤ N , as required.

B.2 A lower bound for Ramsey graphs

We show that a random graph on n vertices is (2·logN)-Ramsey with high probability. Furthermore,
instead of sampling the graph uniformly at random, one can sample it via a limited independence
family.

Proposition 11 (Restatement of Proposition 3). A graph on N vertices sampled via a (2 · log2N)-
wise independent distribution is a (2 · logN)-Ramsey graph with probability 1− 1/NΩ(log logN).

Proof. We review the classical proof showing the existence of a (2 · logN)-Ramsey graph via the
probabilistic method. Sample a random graph G = (V,E) on |V | = N vertices, and fix any set V ′

of k vertices. The probability (over G) that V ′ forms an independent set or a clique in G is at most

2 · 2−(k2).

Applying a union bound over the set of all such sets V ′, we get that G has a clique or independent
set of size k with probability at most(

N

k

)
· 2 · 2−(k2) ≤

(
Ne

k

)k
· 2 · 2−(k2).

Plugging in N = 2k/2 (and then k = 2 logN), we get that the above probability is bounded by at
most

2k·log(2k/2·e/k)−(k2)+1 = 2k(k/2+log e−log k)−(k2)+1

≤ 2k(k/2+log e−log k)−(k2/2−k)+1

≤ 2−k log k+k log e+k+1

≤ 1/NO(log logN)

for large enough N .
Observing the above proof, one can see that it remains valid even if G is sampled from a

(2 · log2N)-wise independent distribution. Thus, we get that sampling a graph G on n vertices
from a (2 · log2N)-wise independent distribution, results with a (2 · logN)-Ramsey graph with
probability with probability at least 1− 1/NΩ(log logN).

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

