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Constructing r -th nonresidue over a �nite �eld is a fundamental computational problem. A related problem is to construct an

irreducible polynomial of degree r e (where r is a prime) over a given �nite �eld Fq of characteristic p (equivalently, constructing the

bigger �eld Fqr e ). Both these problems have famous randomized algorithms but the derandomization is an open question. We give

some new connections between these two problems and their variants.

In 1897, Stickelberger proved that if a polynomial has an odd number of even degree factors, then its discriminant is a quadratic

nonresidue in the �eld. We give an extension of Stickelberger’s Lemma; we construct r -th nonresidues from a polynomial f for which

there is a d , such that, r |d and r - #(irreducible factor of f (x ) of degree d ). Our theorem has the following interesting consequences:

(1) we can construct Fqm in deterministic poly(deg(f ),m logq)-time if m is an r -power and f is known; (2) we can �nd r -th roots in

Fpm in deterministic poly(m logp)-time if r is constant and r | gcd(m, p − 1).

We also discuss a conjecture signi�cantly weaker than the Generalized Riemann hypothesis to get a deterministic poly-time

algorithm for r -th root �nding.
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1 INTRODUCTION

�e problem of �nding r -th roots in a �nite �eld is to solve xr = a given an r -th residue a ∈ Fq . Note that, without loss

of generality, we can assume r to be prime, otherwise for r = r1 · r2, we can solve the problem iteratively by �rst solving

xr1 = a and then solving yr2 = x . Moreover, we can assume r |(q − 1), otherwise x = ar
−1

mod (q−1)
is an easy solution.

It can be shown that xr = a has a solution i� a
q−1

r = 1 . If a
q−1

r , 1 then we call a an r -th nonresidue. Interestingly, the

problem of �nding an r -th nonresidue is equivalent to that of �nding r -th roots in Fq [2, 21, 29]. �is gives a randomized
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poly-time algorithm for �nding r -th roots and, thus, solves the problem for practical applications. Also, assuming

Generalized Riemann hypothesis (GRH) there is a deterministic poly-time algorithm for �nding r -th nonresidue in any

�nite �eld [3, 5, 8, 13]. For a detailed survey see [6, Chap.7].

�e special case of r = 2 is particularly well studied. �e problem now is to �nd square-roots in Fq , which is

equivalent to �nding a quadratic nonresidue in Fq . �ere are other randomized algorithms – Cipolla’s algorithm [10],

singular elliptic curves based algorithm [18], etc. �ere are also deterministic solutions for some special cases:

• Schoof [20] gave an algorithm using point counting on elliptic curves having complex-multiplication to �nd

square-roots of �xed numbers over prime �elds.

• Tsz-Wo-Sze [28] gave an algorithm to take square-roots over Fq , when q − 1 = re t and r + t = poly(logp).

However, computing square-roots over �nite �elds in deterministic polynomial time is still an open problem. �e best

known deterministic complexity for this problem is exponential, namely, Õ (p1/4

√
e ); which is also a bound on the least

quadratic nonresidue [9]. �e distribution of quadratic nonresidues in a �nite �eld is still mostly a mystery; it relates to

some interesting properties of the zeta function, see �m.6.7.

In 1897, L. Stickelberger [26] proved that if p is a prime, K is an algebraic number �eld of degree n of discriminant D,

and integer ring OK where the ideal (p) factorizes as p1p2p3 . . .ps into distinct prime ideals then(
D

p

)
= (−1)n−s Stickelberger’s Lemma . (1)

Equivalently, if the number of even degree irreducible factors of a squarefree f (x ) mod p are odd, then the discriminant

of f will be a quadratic nonresidue in Fp . Swan [27] and Dalen [11] gave alternative proofs of Stickelberger lemma.

Stickelberger lemma is used in factorization of polynomials over �nite �elds and in constructing irreducible polynomials

of a given degree over �nite �elds [12, 27, 30].

We generalize this idea of constructing quadratic nonresidues from Stickelberger’s lemma to constructing r -th

nonresidues from “special”, possibly reducible, polynomials. Formally, these “special” polynomials are over Fq and

satisfy the following factorization pa�ern,

Property 1.1. Let r be a prime and f (x ) ∈ Fq [x] be a squarefree polynomial. f satis�es Stickelberger property 1.1 if

∃d , such that, r |d and r - #

(
irreducible factor of f (x ) of degree d

)
.

Our goal is to show that the construction of such a, possibly reducible, polynomial solves many of the open problems.

It is somewhat surprising that a reducible polynomial be related so strongly to non-residuosity and irreducibility.

Our �rst main result relates Property 1.1 to the construction of r -th nonresidues in any �eld above Fp (equivalently,

�nding r -th roots there).

Theorem 1.2. Given ζr ∈ Fq and any polynomial f satisfying Property 1.1, we can �nd r -th roots in any �nite �eld of

characteristic p, in deterministic poly(deg( f ), logq)-time.

We get a stronger result in the case when we have Fpr available and r = O (1). Even r = 2 is an interesting special

case.

Corollary 1.3. We can �nd r -th roots in Fpm in deterministic poly(m logp)-time if r is constant and r | gcd(m,p − 1).

Finding an r -th nonresidue a in Fq su�ces to construct an extension Fqr . For example, we have Fq[a1/r
] � Fqr ;

equivalently, X r − a is an irreducible polynomial. However, it is not clear how to �nd r -th nonresidue given Fqr .

Anyways, the question of constructing Fqr e�ciently is of great interest [1, 23, 24] and still open.
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Our second main result relates Property 1.1 to the construction of an irreducible polynomial of degreem, wherem is

any r -power.

Theorem 1.4. Given a polynomial satisfying Property 1.1, we can construct the �eld Fqm , for any r -power m, in

deterministic poly(deg( f ),m logq)-time.

Note that, if we are given �elds Fqm1 and Fqm2 (for coprimem1,m2), we can combine them to get the �eld Fqm1
m

2

[22, Lem.3.4]. Hence, it is su�cient to be able to construct �elds whose sizes are prime powers.

Organization of the paper

In this paper, the main results and ideas are presented in Sec.3. Sec.2 has notation and preliminaries. For concreteness,

Sec.4 sketches our algorithm for �nding an r -th nonresidue in any �nite �eld, given a polynomial (in Fp [x]) satisfying

Property 1.1. We discuss some special cases of our analysis in Sec.5.

In Sec.6, we discuss few conjectures; particularly in Sec.6.2 we introduce a strictly weaker version of Generalized

Riemann hypothesis to get poly-time algorithms.

2 PRELIMINARIES

We are going to work in the �nite �eld Fq , where q = pd for some prime p. We will assume that Fq is speci�ed by a

degree d irreducible polynomial over Fp . �is can be assumed without loss of generality, see [15, �m.1.1].

Given a �nite �eld Fq and its extension Fqk , the multiplicative norm of an element α ∈ Fqk is de�ned as,

N (α ) = NFqk /Fq
(α ) = α

qk −1

q−1 .

�e following properties of �nite �elds will be useful (for proofs refer standard texts, eg. [16]).

Theorem 2.1 (Finite fields). Given a �nite �eld Fq with characteristic p and algebraic closure Fp ,

• For any a ∈ Fp , aq = a if and only if a ∈ Fq .

• For any a,b ∈ Fq , (a + b)p = ap + bp .

• �e multiplicative group F∗q is cyclic.

• Any polynomial f ∈ Fq [x] of degree k has at most k roots in Fq . �e notationZ ( f ) will be used to denote the set

of zeros of polynomial f (x ).

We are interested in �nding r -th nonresidue in Fq for a prime r . An element a ∈ Fq is called an r -th nonresidue i�

xr = a has no roots in Fq . �is possibility is there only if r |(q − 1). In that case, a is an r -th nonresidue i� a
q−1

r , 1 [6].

Using this characterization, the following lemma constructs an r -th nonresidue in Fq given an r -th nonresidue in Fqk .

Lemma 2.2 (Projection). Let r be a prime which divides q − 1. �en, α ∈ Fqk is an r -th nonresidue i� NFqk /Fq
(α ) is

an r -th nonresidue in Fq .

Proof. We know that,

NFqk /Fq
(α ) =

k−1∏
i=1

αq
i
= α

qk −1

q−1 .

Also, α ∈ Fqk is a r -th nonresidue i� α
qk −1

r , 1.
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Hence, the proof follows from the bi-implication,

α
qk −1

r , 1⇐⇒

(
α
qk −1

q−1

) q−1

r
=

(
NFqk /Fq

(α )
) q−1

r
, 1.

�

We can de�ne a multiplicative character– χr (a) := a
q−1

r –of F∗q . Notice that χr (a) , 1 i� a is an r -th nonresidue in

Fq . Multiplicativity follows from the de�nition, i.e.,

χr (ab) = χr (a)χr (b) .

Since aq−1 = 1, χr (a) is an r -th root of unity. We will denote a primitive r -th root of unity by ζr .

Since F∗q is cyclic and r | q − 1, we have that ζr exists in Fq . Note that ζ ir , i ∈ F∗r , are the (r − 1) primitive r -th roots

of unity in Fq .

One of the central algebraic tool used in our analysis is the resultant of two polynomials. Let f (x ) = amxm +

am−1x
m−1 + · · · + a0 and д(x ) = bnx

n + bn−1x
n−1 + · · · + b0 be two polynomials over a �eld F.

De�nition 2.3 (Resultant). One way to de�ne resultant of the two polynomials f ,д ∈ F[x] is by invoking the zeros of

the polynomials (in F),

R ( f ,д) := ammbnn

∏
α ∈Z (f )
β ∈Z (д)

(α − β ) = amm

∏
α ∈Z (f )

д(α ) .

We will use the following properties of resultant (for proof see [16, Chap.1]). In fact, the property (3) in Lem.2.4 can

be taken as the general de�nition of resultant, as it makes the resultant e�cient to compute even when the base ring is

not a �eld.

Lemma 2.4 (Properties of R (·)). Given polynomials f ,д,h ∈ F[x], we have that,

(1) R ( f ,д) ∈ F.

(2) Resultant is multiplicative, R ( f h,д) = R ( f ,д) · R (h,д).

(3) Resultant is the determinant of Sylvester matrix of orderm + n and, thus, can be computed in time Õ ((m + n)ω0 ),

where ω0 ≤ 2.373 is the exponent of matrix multiplication.

R ( f ,д) =

�����������������������������������

am 0 · · · 0 bn 0 · · · 0

am−1 am · · · 0 bn−1 bn · · · 0

am−2 am−1

. . . 0 bn−2 bn−1

. . . 0

...
...
. . . am

...
...
. . . bn

...
... · · · am−1

...
... · · · bn−1

a0 a1 · · ·
... b0 b1 · · ·

...

0 a0

. . .
... 0 b0

. . .
...

...
...
. . . a1

...
...
. . . b1

0 0 · · · a0 0 0 · · · b0

�����������������������������������

.
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Another tool, closely related to resultant, is called the discriminant.

De�nition 2.5 (Discriminant). �e discriminant of a polynomial f ∈ F[x] with roots Z ( f ) = {α1,α2, · · · ,αm } is

de�ned by,

∆(p) := a2m−2

m

∏
1≤i<j≤m

(αi − α j )
2 .

It is known that ∆( f ) = (−1)m (m−1)/2a−1

m · R ( f , f
′) [16, Eqn.1.11], where f ′ is the formal derivative of f . Hence,

∆( f ) ∈ F and it can be computed in poly(m) �eld operations.

Note that although resultant (resp. discriminant) is de�ned in terms of the zeros of the polynomials, it can be

computed without the knowledge of the zeros. �is relationship between the zeros and the coe�cients is very useful

computationally.

3 MAIN RESULTS

We will prove the main theorems in this section. We are interested in �nding r -th nonresidue in the �nite �eld Fq . So

we will assume that r | q − 1 in Sec.1.3 and Sec.3.2. Moreover, for r = 2 we can assume that 4|(q − 1), otherwise −1 is a

quadratic nonresidue and we are done.

Our �rst step will be to construct an r -th nonresidue using an irreducible polynomial f of degree divisible by r .

3.1 From an irreducible polynomial f – Proof of Cor.1.3

Given an irreducible polynomial f (x ) ∈ Fq[x] of degree d = rk , de�ne the following polynomial (inspired from

Lagrange resolvents):

Lf ,r :=

r−1∑
i=0

x (q
k )i ζr

i
mod f .

�e following theorem �nds an r -th nonresidue in Fq using f .

Theorem 3.1 (Irreducibility to nonresiduosity). Let f (x ) ∈ Fq [x] be an irreducible polynomial of degree d = rk

and gcd(2, r ) · r | q − 1. If Lf ,r :=
∑r−1

i=0
xq

k ·i
ζr

i
mod f , then

(
Lf ,r

) qd −1

r = ζ −1

r .

�is implies that Lf ,r is an r -th nonresidue in Fqd = Fq [x]/〈f 〉. Also, NFqd /Fq (Lf ,r ) is an r -th nonresidue in Fq .

Proof. We know that Lf ,r ∈ Fqd and ζr ∈ Fq . Taking the qk -th power,

(Lf ,r )
qk =

( r−1∑
i=0

xq
ki
ζr

i
)qk

=

r−1∑
i=0

xq
k ·(i+1)

ζr
i = ζr

−1 · Lf ,r .
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Using the above equation,

(Lf ,r )
qd −1

r = (Lf ,r )
(
qd −1

qk −1

) ·(
qk −1

r )

= (Lf ,r )
(1+qk+q2k ...+q (r−1)k ) ·(

qk −1

r )

= (Lf ,r · ζ
−1

r Lf ,r · ζ
−2

r Lf ,r · · · ζ
−(r−1)
r Lf ,r )

(
qk −1

r )

=

(
(Lf ,r )

r (ζ −1

r ) (
r
2
)
) ( qk −1

r )
.

When r is an odd prime, (ζ −1

r ) (
r
2
)

is 1. If r is 2 then we have 4|(q−1), thus the factor of −1 can be ignored. Simplifying,

(Lf ,r )
qd −1

r =

(
(Lf ,r )

r
) ( qk −1

r )

= (Lf ,r )
(qk−1) = ζ −1

r .

By de�nition of r -th nonresidue, this implies that Lf ,r is an r -th nonresidue in Fqd . Applying Lem. 2.2, we get that

NFqd /Fq
(Lf ,r ) is an r -th nonresidue in Fq . �

�m. 3.1 gives the Cor.1.3.

Proof of Cor.1.3. Since Fpm is speci�ed by an irreducible polynomial of degree m (and we know r | gcd(m,p − 1)),

we get an r -th nonresidue by �m.3.1 if we can �nd ζr in Fp . �e la�er can be done using Pila’s algorithm based on

arithmetic algebraic-geometry [19, �m.D]. Once we have an r -th nonresidue one gets an r -th root �nding algorithm

[21, 29]. �

�m. 3.1 also gives us a way to construct r -th nonresidue, in Fpn for any n, using an irreducible polynomial of degree

divisible by r .

Corollary 3.2 (Any field). Suppose we have an irreducible f ∈ Fq [x] with degree d = rk and ζr ∈ Fq , where Fq has

characteristic p. �en, we can �nd r -th nonresidue in any �nite �eld Fq′ of characteristic p (assuming r |(q′ − 1)).

Proof. Let Fpm be the smallest sub�eld of Fq , with r |(pm − 1). Using �m. 3.1 & Lem. 2.2 on f , we can �nd an r -th

nonresidue in Fpm .

Now consider the given �eld Fq′ with, say, pm`
elements (since r |q′ − 1, ` ∈ N). It has a sub�eld F′ of size pm , and

so by [15, �m.1.2], we also get an r -th nonresidue in F′, say a. We intend to li� this nonresidue to the bigger �eld Fq′ ;

to do that we consider two cases.

• Case 1: If r - ` then a is an r -th nonresidue in Fq′ . Because,

a
q′−1

r = (a
pm−1

r )
q′−1

pm−1 = (ζ −1

r )
q′−1

pm−1 , 1 .

Last inequality holds because
q′−1

pm−1
=

pm`−1

pm−1
is not divisible by r .

• Case 2: If r | ` then we have an irreducible polynomial that de�nes Fpm` and on that we can apply �m.3.1 to

get an r -th nonresidue in Fq′ .

�
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�e following lemma relates NFqd /Fq
(д) to the resultant R ( f ,д) when f is irreducible.

Lemma 3.3 (Resultant as a norm). If f is an irreducible polynomial of degree d in Fq [x], then

R ( f ,д) = NFqd /Fq
(д).

Proof. We know that the roots of polynomial f areZ ( f ) = {α ,αq , · · · ,αq
d−1

}. Using the de�nition of resultant,

R ( f ,д) =
∏

α ∈Z (f )

д(α )

=

d−1∏
i=0

д(αq
i
)

=

d−1∏
i=0

д(α )q
i

= д(α )
∑d−1

i=0
qi

= NFqd /Fq
(д) .

�

Using �m. 3.1 and Lem. 3.3, we immediately get the following information about the quadratic character of the

resultant of the Lagrange resolvent,

Corollary 3.4 (Resultant of resolvent). In the notation of �m.3.1, R (Lf ,r , f ) is an r -th nonresidue in Fq .

In particular, χr (R (Lf ,r , f )) = ζ −1

r .

3.2 From a reducible polynomial f – Proof of Thm.1.2

We will look at the case of reducible polynomials now. �e �m.1.2 shows that a reducible polynomial satisfying

Property 1.1 will give us an r -th nonresidue. Note that an irreducible polynomial of a degree divisible by r will trivially

satisfy Property 1.1.

Proof of Thm.1.2. By distinct degree factorization [6, �m.7.5.3], the polynomial f can be decomposed as f =

h1h2 · · ·hn , s.t.,

• For all i , hi has irreducible factors of same degree.

• For all i , j, irreducible factors of hi and hj have di�erent degree.

We know that f satis�es Property 1.1. So, the distinct degree factorization guarantees a factor hi = f1 f2 · · · fr ′ of f

such that,

• fi ’s are irreducible of degree d = rk .

• r - r ′.

For convenience we shall denote f1 f2 · · · fr ′ as f from now on. De�ne д(x ) to be the Lagrange resolvent inspired

polynomial,

д(x ) :=

r−1∑
i=0

xq
ki
ζr

i .
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8 Bhargava, Ivanyos, Mi�al, Saxena

We will show that R ( f ,д mod f ) is an r -th nonresidue in Fq . Here д mod f refers to some representative in Fqd [x].

We will now show that the resultant is independent of the representative chosen.

Claim 1. Let f ,д be two polynomials over any �eld. �en,

R ( f ,д mod f ) = R ( f ,д) .

Proof. Let д′ := д mod f be a representative. Using the de�nition of resultant,

R ( f ,д′) =
∏

α ∈Z (f )

д′(α )

=
∏

α ∈Z (f )

д(α ) [∵ д′(α ) = д(α )]

= R ( f ,д) .

�

Clm.1 implies that,

R ( f ,д mod f ) = R ( f ,д) =
r ′∏
i=1

R ( fi ,д) =
r ′∏
i=1

R ( fi ,д mod fi ).

Since χr is multiplicative, we have,

χr (R ( f ,д mod f )) =
r ′∏
i=1

χr (R ( fi ,д mod fi )) = (ζ −1

r )r
′

.

�e last step follows from Cor. 3.4 and the fact that fi are irreducible. Since r - r ′, we get χr (R ( f ,д mod f )) , 1 and

hence R ( f ,д mod f ) is an r -th nonresidue in Fq .

�e last statement of the theorem (about �elds of characteristic p) follows in the same way as in the proof of Cor. 3.2.

�e time complexity is straightforward and further discussed in Sec.4.

�

3.3 Constructing fields – Proof of Thm.1.4

�e result in the previous subsection required the existence and knowledge of ζr . Now we would like to eliminate those

assumptions, hence we will remove the assumption r |q − 1. First, we will show that if we have a reducible polynomial f

satisfying Property 1.1 then we can construct Fqr (equivalently, we can construct an irreducible polynomial of degree

r ). �e concepts that we will use are inspired from the proof of [15, �m.5.2].

�e starting idea is to work with a “virtual” ζr , i.e. de�ne the ring Fq[ζ ] := Fq[Y ]/〈φr (Y )〉, where φr (Y ) :=∑
0≤i≤r−1

Y i , and let ζ be the residue-class of Y mod φr (Y ) in that ring. Let e be the smallest positive integer such that

r |qe − 1, in other words, the multiplicative order of q modulo r . �en φr (Y ) completely splits over Fqe as

φr (Y ) =
∏
i ∈F∗r

(Y − ηi ) ,

where η ∈ Fqe is a primitive r -th root of unity, but we may not have access to η and in general not even to Fqe . So we

will do computations over the ring Fq [ζ ] and try to construct the �eld Fqr .

Clearly, ζ has order r in the unit group Fq[ζ ]
∗
. For each integer a ∈ F∗r there is a unique ring automorphism ρa

of Fq[ζ ] that �xes Fq and maps ζ 7→ ζ a . �e set {ρa | a ∈ F
∗
r } =: ∆ forms a group (under map composition) that
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is isomorphic to F∗r . If we consider the elements of the ring �xed under ∆ then we get back Fq , i.e. Fq[ζ ]
∆ = Fq [15,

Prop.4.1].

Like Sec.3.2, suppose we have an f = f1 f2 · · · fr ′ ∈ Fq[x] with fi ’s being irreducibles of degree d = rk and r - r ′.

When we move to Fqe , fi factors into ` := gcd(k, e ) = gcd(d, e ) many irreducibles each of degree d/` = kr/ gcd(k, e ) =:

k ′r . Since r - e , we have that r - `.

Our ring Fq [ζ ] is a semisimple algebra that decomposes as:

Fq [ζ ] �
�

i ∈ F∗r /〈q〉

Fqe [Y ]/〈Y − ηi 〉 ,

and the proof given in Sec.3.2 holds simultaneously over each of the component �elds (� Fqe ) of Fq [ζ ]. Hence, simply

by Chinese remaindering, we get the equality:

R ( f ,д mod f )
qe −1

r = ζ −r
′` , (2)

where, as expected, д(x ) is the following Lagrange resolvent over Fq [ζ ],

д(x ) :=

r−1∑
i=0

xq
ek′i

ζ i .

(Also, note that we are now computing mod and resultant over the base ring Fq [ζ ].)

Teichmüller subgroup. Let r ′′ be an integer representative for (r ′`)−1
mod r . Let qe − 1 = ur t such that r - u and

t ≥ 1. De�ne δ := R ( f ,д mod f )ur
′′

. �en, by Eqn.2, we have δ r
t−1

= ζ −1
. In particular, δ has order r t in Fq [ζ ]

∗
. De�ne

a function ω that maps any integer a to ar
t−1

mod r t . Note that, by binomial expansion, (a + r )r
t−1

≡ ar
t−1

mod r t . In

other words, value of ω (a) only depends on a mod r . Now we come to the key de�nition, inspired from [15],

c :=
*.
,

∏
a∈[r−1]

ρ−1

a
(
δω (a)

)+/
-
.

�e following properties can be easily veri�ed:

• cr
t−1

= ζ ,

• c has order r t in Fq [ζ ]
∗
, and

• for all ρb ∈ ∆, ρb (c ) = c
ω (b )

.

At this point recall the de�nition of Teichmüller subgroup w.r.t. Fq :

TFq :=
{
ϵ ∈ Fq [ζ ]

∗ | ϵ has r -power order, and

∀ρa ∈ ∆, ρa (ϵ ) = ϵ
ω (a)

}
.

By the properties above and invoking [15, �m.5.1], we can deduce that c is a generator of TFq .

Consider the extension ring Fq[ζ ][c1/r
] := Fq[ζ ][X ]/〈X r − c〉, where c1/r

is the residue class of X mod X r − c in

the ring. By [15, Prop.4.3] we have: ∀b ∈ F∗r , ρb extends uniquely to a ring automorphism of Fq[ζ ][c1/r
] such that

c1/r 7→ (c1/r )ω (b )
. �us, ∆ can now be seen as a group of ring automorphisms of Fq [ζ ][c1/r

].

Now we have the following nice way to construct a �eld extension.

Theorem 3.5 (Field extension). �e �xed subring Fq [ζ ][c1/r
]
∆ is isomorphic to Fqr . Moreover, given f , Fqr can be

constructed in deterministic poly(deg( f ), r logq)-time.
Manuscript submi�ed to ACM
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Proof. It directly follows from [15, �m.5.1] that Fq [ζ ][c1/r
]
∆ � Fqr .

From the above discussion it can be seen that, given f , we can compute c . Hence, we have a representation of the

ring Fq[ζ ][c1/r
] in terms of a linear basis B over Fq (& their multiplication relations). Because of the properties of

ρb (ζ ) and ρb (c
1/r ) we also have a description of the action of ∆ on Fq [ζ ][c1/r

] in terms of B. �us, we can compute

the �xed subring Fq [ζ ][c1/r
]
∆

e�ciently. It is straightforward to get the time complexity estimate. �

Proof of Thm.1.4. From f , by �m.3.5, we can get an irreducible polynomial д over Fq of degree r . Letm be any

r -power. �en, by [15, �m.1.1], we can construct Fqm using д e�ciently. �

4 ALGORITHM

For concreteness, we state our algorithm (Algo.1) for constructing r -th nonresidue in this section. �e proof of

correctness for this algorithm follows directly from �m.1.2.

�e input to this algorithm is a polynomial f (x ) ∈ Fp [x] satisfying Property 1.1, ζr ∈ Fp , and the �nite �eld Fq′ of

characteristic p where we want to construct r -th nonresidue. �e algorithm outputs an r -th nonresidue in Fq′ .

Note that, since f (x ) satis�es Property 1.1, wlog (by the distinct degree factorization) f = f1 f2 · · · fr ′ such that,

• fi ’s are irreducible of degree d = rk , and

• r - r ′.

Algorithm 1 BIMS

Input : f (x ), ζr ∈ Fp , Fq′ , where q′ = pn .

Output : r -th nonresidue in Fq′ .
1: if (r |n) then
2: De�ne д(x ) =

∑r−1

i=0
xv

i
ζr

i
mod h(x ) . where v := pn/r and h(x ) is the minimal polynomial of Fq′ over Fp .

3: Output д(x ).
4: else
5: De�ne д(x ) =

∑r−1

i=0
xv

i
ζr

i
mod f (x ) . where v := pk .

6: Output R (д(x ), f (x )).
7: end if

Time complexity analysis-

One can refer to [25] for basic arithmetic operations. Polynomial computation in Step 2, takes time Õ (rn logp logq′)

using repeated squaring. Similarly, Step 5 can be done in Õ (r2k logp deg( f )). �e most expensive part of the algorithm

is the resultant computation in Step 6. �e same can be done in time Õ (deg( f )ω0
logp), where ω0 < 2.373.

5 SOME SPECIAL CASE APPLICATIONS

5.1 The special case of r = 2

Notice that for r = 2, we have ζ2 = −1 available in any �nite �eld with odd characteristic. �us, using �m.1.2 and an f

(Property 1.1), we can construct a quadratic nonresidue. �e same can also be calculated using Stickelberger lemma

directly.

A striking di�erence, in the case of r = 2, is that using Stickelberger lemma (Eqn.1) discriminant is the quadratic

nonresidue. �is implies that over even degree �nite �eld extensions, the derivative of the minimal polynomial of the

extension is a quadratic nonresidue. We formally state this property below.
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Lemma 5.1 (Derivative). Given a �nite �eld Fqd = Fq [x]/〈f 〉 with even d = deg( f ) and 4|(q − 1), f ′ is a quadratic

nonresidue in Fq [x]/〈f 〉.

Proof. Using Stickelberger lemma (Eqn.1) we know that the discriminant is a quadratic nonresidue in Fq . Since,

∆( f ) = (−1)d (d−1)/2a−1

d · R ( f , f
′) ,

where ad = 1 is the leading coe�cient of f (x ), we can deduce that R ( f , f ′) is a quadratic nonresidue in Fq .

Using Lem.3.3 we get that NFqd /Fq
( f ′) is a quadratic nonresidue in Fq , and using Lem.2.2 we get that f ′(x ) is a

quadratic nonresidue in Fq [x]/〈f 〉. �

5.2 Cases for which ζr is known

Since our �rst main theorem, �m.1.2, requires ζr , in this section we state some known methods to construct the same.

One of the most signi�cant results on this is by Pila [19]. He generalized Schoof’s [20] elliptic curve point-counting

algorithm to Fermat curves, and as an application gave an algorithm for factoring the r -th cyclotomic polynomial over

Fp . �e algorithm is deterministic and runs in time polynomial in logp for a �xed r . If r |p − 1 then the factorization of

the r -th cyclotomic will give us ζr ∈ Fp .

A limitation of Pila’s algorithm is that it can give us ζr only in prime �elds. Below we state few results that can give

ζr in extensions of prime �elds.

�e following theorem by Bach, von zur Gathen and Lenstra [7] gives an elegant way to construct ζr ∈ Fq using

“special” irreducible polynomials.

Theorem 5.2. [7, �m.2] Given two prime numbers p and r , the h = ordr (p), the explicit data for Fph ; and given

for each prime ` |(r − 1) but not dividing h, an irreducible polynomial д` of degree ` in Fp [X ], there is a deterministic

poly(rh log(p))-time algorithm to construct a primitive r -th root of unity in Fph .

We immediately get the following.

Corollary 5.3 (Inspired by BGL [7]). Let prime r |q − 1. If for each prime ` | (r − 1) we are given an irreducible

polynomial h` ∈ Fq [x] of degree divisible by `, then we can construct ζr ∈ Fq .

Proof. Using h` we can construct an irreducible polynomial of degree ` [15, �m.1.1]. Using �m.5.2 on these, we

can construct ζr ∈ Fq . �

�ere are also some other methods for �nding ζr ∈ Fq that are based on the factorization pa�ern of q − 1. We present

one such result and its proof.

Theorem 5.4 (Tsz-Wo Sze [28]). We can �nd ζr ∈ Fq if q − 1 = re t , where r + t = poly(logq).

Proof. �e number of elements whose order is not a multiple of r is t . So if we take t + 1 elements in Fq , this will

give us an element a that has order a multiple of r . �en, at is an element with an r -power order. Let ord(at ) =: r s ,

where s ≥ 1. Finally, at ·r
s−1

is an element of order r in Fq . �

5.3 Necessary condition for the irreducibility of a polynomial

Our analysis provides a necessary condition for checking irreducibility of a polynomial.

Manuscript submi�ed to ACM



12 Bhargava, Ivanyos, Mi�al, Saxena

Lemma 5.5. If f ∈ Fq[x] is irreducible and prime r | deg( f ) with gcd(2, r ) · r | (q − 1), then R (Lf ,r , f (x )) is an r -th

nonresidue in Fq .

Proof. �is follows directly from �m.3.1. �

Lem.5.5 for r = 2 is used by von zur Gathen in his paper to prove properties about irreducible trinomials [30, Cor.3].

We hope that this generalized lemma gives conditions that can help construct additional polynomial families.

6 SOME CONJECTURES

6.1 Finding polynomials satisfying Property 1.1

A natural question that arises from our analysis is: How can one construct a polynomial satisfying Property 1.1? An

approach can be to come up with a polynomial family F such that at least one of the polynomial in F satis�es Property

1.1. We leave the construction of such a polynomial family as an open question.

�is question for r = 2 will also be very interesting. For r = 2, if we can construct a polynomial satisfying Property

1.1 then its discriminant will be a quadratic nonresidue by Stickelberger’s lemma.

A well studied polynomial family for such properties are trinomials. Trinomials are univariate polynomials with

sparsity three:

T(n,k,a,b ) = {x
n + axk + b | n > k > 0;a,b ∈ Z∗} .

An elegant property of trinomials is the closed form expression for their discriminant and, thus, it can be computed

e�ciently. (Even if the degree of the trinomial is exponential.)

Theorem 6.1 (Swan [27]). Let n > k > 0. Let d = gcd(n,k ) and n = n1d,k = k1d . �en,

∆(xn + axk + b) = (−1)n (n−1)/2bk−1Ed ,

where E = nn1bn1−k1 + (−1)n1+1 (n − k )n1−k1kk1an1 .

Trinomials are used to construct irreducible polynomials in [27, 30]. Based on our experiments we give the following

conjecture.

Conjecture 6.2. �e following polynomial family has at least one polynomial that satisfy property 1.1 for r = 2,

F = {T(2i,k,a,b ) | 1 ≤ i,k,a,b ≤ log
2 p } .

We leave the proof, or a refutation, of this conjecture as an open question.

6.2 Weaker Generalized Riemann Hypothesis

In 1952, Ankeny [3] proved that if the Generalized Riemann Hypothesis is true then the least quadratic nonresidue in Fp

is O (log
2 p).�e Generalized Riemann hypothesis(GRH) says that all the non-trivial roots ρ of the Dirichlet L function

are on real line z = 1

2
, but what if we consider a weaker form of it? Instead of saying that all the nontrivial roots lie on

Re(ρ) = 1

2
, we “merely” conjecture that all the nontrivial roots lie in a wider strip [

1

2
− ϵ, 1

2
+ ϵ], for a constant ϵ .

Conjecture 6.3 (Weak GRH). Let χ be a Dirichlet character, i.e. χ : F∗p −→ C
∗. �ere exists a constant 1

2
> ϵ ≥ 0

such that the Dirichlet L function L(s, χ ) =
∑ χ (n)

ns have all its nontrivial roots in the interval 1

2
− ϵ < Re(s ) < 1

2
+ ϵ .
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We will now use some known facts from Analytic number theory, for detailed proofs of these facts see [17, Chap.7].

Let Λ be the Mangoldt function and ζ (s ) be the Riemann zeta function.

Lemma 6.4 (Bounds forψ (x , χ )). Letψ (x , χ ) =
∑
i≤x Λ(i )χ (i ) and χ be a primitive Dirichlet character of F∗p , then

ψ (x , χ ) = −
∑
|γ |<

√
x

xρ

ρ
+ O

(
log

2 px
)
,

where ρ = σ + iγ are the nontrivial roots of the Dirichlet L function L(s, χ ). Also,
∑
|γ |<

√
x

1

|ρ | = O (log
2 px ).

Lemma 6.5 (Bounds forψ (x )). Letψ (x ) =
∑
i≤x Λ(i ), then

ψ (x ) = x −
∑
|γ |<

√
x

xρ

ρ
+ O

(√
x log

2 x
)
,

where ρ = σ + iγ are the nontrivial roots of the Riemann zeta function ζ (s ). Also,
∑
|γ |<

√
x

1

|ρ | = O (log
2 x ).

We will now prove bounds onψ (x ) andψ (x , χ ) assuming Weak GRH.

Lemma 6.6 (New bounds). Assuming Weak GRH,

(1) ψ (x , χ ) = O (x
1

2
+ϵ

log
2 px ), and

(2) ψ (x ) = x +O (x
1

2
+ϵ

log
2)).

Proof. (1) Using the notation in Lem.6.4,

����
∑
γ <
√
x

xρ

ρ

���� ≤ (max

ρ
|xρ |) ·

����
∑
ρ

1

ρ

����

≤ x
1

2
+ϵ ·

����
∑
γ <
√
x

1

|ρ |

����

= O (x
1

2
+ϵ

log
2 px ) .

Since,ψ (x , χ ) = −
∑
|γ |<

√
x
x ρ
ρ +O

(
log

2 px
)
, we get thatψ (x , χ ) = O (x

1

2
+ϵ

log
2 px ).

(2) Using the notation in Lem.6.5,

����
∑
γ <
√
x

xρ

ρ

���� ≤ (max

ρ
|xρ |) ·

����
∑
ρ

1

ρ

����

≤ x
1

2
+ϵ ·

����
∑
γ <
√
x

1

|ρ |

����

= O (x
1

2
+ϵ

log
2 x ) .

Since,ψ (x ) = x −
∑
|γ |<

√
x
x ρ
ρ +O

(√
x log

2 x
)
, we get thatψ (x ) = x +O (x

1

2
+ϵ

log
2 x ).

�

Using this lemma we will bound the least r -th nonresidue in Fp .

Theorem 6.7. Let n(p,r) denote the least r -th nonresidue in F∗p . �en, assuming the Weak GRH,

n(p, r ) = O (log

4

1−2ϵ p) .
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Proof. Let χr (a) := a
p−1

r mod p, and χo be the trivial character i.e., χ0 (a) = 1,∀a ∈ F∗p . Consider

S (M ) :=
∑

1≤a≤M
χo (a)Λ(a) −

∑
1≤a≤M

χr (a)Λ(a) .

Note that, S(M) is zero i� there is no r -th nonresidue in the initial interval [M].

We have,

S (M ) = ψ (M, χo ) −ψ (M, χr )

= M +O (M0.5+ϵ
log

2 pM ) [ Using Lem.6.6 ]

We are interested in �nding the maximum M0 such that S (M0) = 0. �e above estimate implies that M0 =

O (M0.5+ϵ
0

log
2 pM0).

�erefore, n(p, r ) = O (log

4

1−2ϵ p). �

�is elementary analysis, assuming Weak GRH, has remarkable consequences. Ankeny’s result has been used in

derandomizing many computational problems under the assumption of GRH. Some of them are primality testing

[6, Chap.9], r -th root �nding [2], constructing irreducible polynomials over �nite �elds [1] and cases of polynomial

factoring over �nite �elds [1, 7]. (Also, see [4, 14] and the references therein.) Our result implies that, for derandomizing

these problems, proving the Weak GRH su�ces.

7 CONCLUSION

We give a signi�cant generalization of Stickelberger Lemma (Eqn.1); we can construct an r -th nonresidue in Fq given

ζr ∈ Fq and a polynomial f satisfying Stickelberger property 1.1. Using this, we also gave an algorithm to �nd r -th roots

in Fqm if r = O (1) and r | gcd(m,p − 1). An interesting open question here is whether one can weaken the Stickelberger

property (eg. remove the nondivisibility by r condition?).

Our result along with some known results on �nding ζr ∈ Fq gives us some interesting applications. It seems that

�nding ζr ∈ Fq is an inherent requirement in our analysis. We leave removing the requirement of ζr from our algorithm

as an open question. �is we have been able to achieve, if the goal is only to construct a degree r irreducible (given f )

instead of an r -th nonresidue.

We also leave the concrete conjectures Conj.6.2 & 6.3 open.
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