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Abstract

One can learn any hypothesis classH with O(log |H|) labeled examples. Alas, learn-
ing with so few examples requires saving the examples in memory, and this requires

|X |O(log|H|)
memory states, where X is the set of all labeled examples. A question

that arises is how many labeled examples are needed in case the memory is bounded.
Previous work showed, using techniques such as linear algebra and Fourier analysis,

that parities cannot be learned with bounded memory and less than |H|Ω(1)
examples.

One might wonder whether a general combinatorial condition exists for unlearnabil-
ity with bounded memory, as we have with the condition V Cdim(H) = ∞ for PAC
unlearnability.

In this paper we give such a condition. We show that if an hypothesis class H,
when viewed as a bipartite graph between hypotheses H and labeled examples X ,

is mixing, then learning it requires |H|Ω(1)
examples under a certain bound on the

memory. Note that the class of parities is mixing. As an immediate corollary, we
get that most hypothesis classes are unlearnable with bounded memory. Our proof
technique is combinatorial in nature and very different from previous analyses.
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1 Introduction

1.1 Space Bounded Learning

In learning theory one wishes to learn an hypothesis drawn from a class H of hypotheses
by receiving random labeled examples [10]. For simplicity, we focus on finite classes of
Boolean hypotheses. For instance, H can be the family of parities ⊕i∈Sxi for different
S ⊆ {1, . . . , n}, and random labeled examples are pairs (〈x1, . . . , xn〉,⊕i∈Sxi) for random
〈x1, . . . , xn〉 ∈ {0, 1}n. We denote by X the family of labeled examples, so |H| = 2n and
|X | = 2n+1.

The fundamental theorem of statistical learning implies that learning is possible after
seeing O(log |H|) labeled examples, since most labeled examples would cut the number of
feasible hypotheses by a factor of about two. Alas, learning with so few examples requires
saving the examples in memory, and this requires |X |O(log|H|) memory states. A recent
line of work asks how the number of required labeled examples changes if we restrict the
memory of the learner (see [7, 8]).

To understand the quantitative aspects of space bounded learning, we’ll need two ob-
servations:

• Memory states: At least |H| memory states are needed in order to exactly distinguish
|H| possible hypotheses. The focus is on bounds on the number of memory states
that are significantly larger than |H|.

• Examples: At most O(|H| log |H|) examples always suffice for learning, even if the
number of memory states is only |H|, since the learner can enumerate the hypotheses
one by one, ruling out the current hypothesis if an inconsistent labeled example comes
up. The question is whether one can prove a lower bound on the number of examples
that comes close to ≈ |H|.

We refer to hypothesis classes that require |H|Ω(1) examples for learning with bounded
space as unlearnable under the space constraint. Note that |H| is exponentially worse than
the number of examples O(log |H|) sufficient without memory constraints. Raz [5] was
the first to prove lower bounds on space-bounded learning. He considered the class of
parities mentioned above, as suggested in [8]. Raz showed that either |X |Ω(log|H|) = 2Ω(n2)

memory states or |H|Ω(1) = 2Ω(n) examples are needed for learning this class. In other
words, he showed that parities are unlearnable with 2o(n

2) memory states. His work was
then generalized [3] to parities on l ≤ n/2 variables, and this in turn gives lower bounds
for classes that contain such parities. Raz’s work and its generalization were inherently
constrained to learning parities and used techniques such as linear algebra and Fourier
analysis. This begs the question of proving lower bounds for more general hypothesis
classes.
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1.2 This Work

We give a simple, combinatorial, sufficient condition for a Boolean hypothesis class to be
unlearnable with sufficiently bounded memory. The condition includes parity classes and is
about the “mixing” properties of the hypothesis class when viewed as a graph, as explained
next.

An hypothesis class can be described by a bipartite graph whose vertices are the hy-
potheses H and the labeled examples X , and whose edges connect every hypothesis h ∈ H
to the labeled examples (x, y) ∈ X that are consistent with it, i.e., h(x) = y. Mixing is
defined as follows.

Definition 1 (Mixing). We say that a bipartite graph (A,B,E) with average left degree
d̄A is d-mixing if for any A′ ⊆ A,B′ ⊆ B it holds that∣∣∣∣E(A′, B′)− |A

′||B′|
|B|/d̄A

∣∣∣∣ ≤ d
√
|A′||B′|

For example, for parties d =
√
|H| and |H| = 2|X |. In general we say that an hypothesis

class is mixing if the corresponding bipartite graph is O(
√
|X |)-mixing. Mixing classes are

such that, even if one knows that the underlying hypothesis h was taken from a (sufficiently
large) subset A′ of the hypotheses, knowing that h is consistent with at least one example
of a (sufficiently large) set B′ of labeled examples reveals very little further information on
h besides its membership in A′. Additionally, for mixing classes, even an approximation
of the underlying hypothesis typically uniquely determines the hypothesis, since (for the
most part) different hypotheses differ on a substantial number of labeled examples (see the
paper for a formal statement and proof). Hence, PAC-learning implies exact learning for
mixing classes.

A learning algorithm that has Λ memory states and uses T labeled examples is a
branching program of length T and width Λ, given by a directed multi-graph with vertices
in T + 1 layers containing Λ vertices each. The algorithm starts with an arbitrary vertex
in the first layer. Each vertex, except those in the last layer, has out degree exactly |X |
and is marked with a unique labeled example. The algorithm transitions from one memory
state to another according to the labeled example it received. When the learning algorithm
reaches the last layer it outputs an hypothesis that depends on the memory state it ended
up with.

We prove that mixing hypothesis classes are unlearnable when the memory is bounded
by roughly |H|1.25 memory states.

Theorem 2 (Main theorem). For any constant s1 ∈ (0, 1), there are constants s2, s3 > 0
such that if the hypotheses graph is d-mixing, |H| ≥ s2, and the number of memory states
is bounded by (

|H||X |
d2

)1.25

· 1(
1 + 16d2

|X |

)1.25
|H|s1

,
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then any learning algorithm that returns the underlying hypothesis with probability at least
1/3 must observe at least |H|s3 labeled examples.

One immediate consequence of this theorem, that uses the fact that random graphs
are mixing (see e.g.,[4]), is that almost all hypothesis classes are unlearnable with bounded
memory. Note that unlike for circuits, such a result does not follow from counting argu-
ments1. Another consequence of the main theorem is that any hypothesis class that forms
an “error correcting code” (i.e., any two hypotheses in H do not agree on many examples)
cannot be learned with bounded memory.

Our work provides a general framework for proving lower bounds on space bounded
learning. The framework is combinatorial and fundamentally different from Raz’s analysis.
In the next subsection we compare our results to previous work. We end the introduction
with an outline of the proof.

1.3 Previous Work

Shamir (in a private communication) and later, and independently, Steinhardt, Valiant,
and Wager [8] asked if one can show a lower bound on the number of examples needed, given
an upper bound on the number of memory states. Specifically, [8] focused on the class of
parities and conjectured that |H|Ω(1) examples are needed if the number of memory states is
sufficiently smaller than |X |log |H|. Raz [5] proved the conjecture of [8], thus showing a tight
lower bound for parities. Later this work was generalized [3], using similar techniques, to
parities on l ≤ n/2 variables. Unlike those previous works that were inherently limited to
parities, we provide a general framework to prove lower bounds on space bounded learning
that works for all mixing classes. Parities are mixing, as are random hypothesis classes.
For the latter previous techniques did not apply. Moreover, our proof is combinatorial
and fundamentally different from those in [5, 3]. Our method suggests a combinatorial
sufficient condition for unlearnability with bounded memory, as we have with the condition
V Cdim(H) =∞ for PAC unlearnability. The downside of the result in the main theorem
is that the bound on the number of memory states is only roughly |H|1.25 as opposed to
|H|Ω(log |X |) of Raz [5]. We hope that by building on the new framework we present it will
be possible to prove optimal lower bounds for wide classes of hypotheses, and, in particular,
for parities.

1.4 Proof Outline

We define a measure for the progress that the learner makes during the execution of the
algorithm, which we call certainty. Certainty measures how well the learner managed to

1The number of possible hypotheses classes is
(

2|X|/2

|H|

)
≤ 2|X||H|, whereas the number of learners with Λ

memory states and T labeled examples is about ΛΛT |X|. For parameters of interest, like Λ = |H|Θ(1) and

T = |H|Θ(1), the number of learners is much larger than the number of hypotheses classes.
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narrow down the candidates for the underlying hypothesis. The certainty is low when the
algorithm starts, and should be high when the algorithm ends. Our analysis argues that
when the memory is bounded the certainty cannot increase much after seeing a new labeled
example. It thereby implies that the number of labeled examples that the learner sees must
be large.

Assume a probability distribution over hypotheses in H. For a memory state m at
time t, let Pr(m) be the probability that the algorithm lands in m when the underlying
hypothesis is drawn from the distribution and the examples are chosen at random. Let
Pr(h|m) be the probability that h is the underlying hypothesis conditioned on the algorithm
being in state m. We define the certainty of a memory m by∑

h

Pr(h|m)2.

Note that a memory with low certainty is one for which many different hypotheses are
possible. We define the average certainty of a set of memories M at time t by taking the
weighted sum of the individual certainties

cert(M) =
∑
m∈M

Pr(m)
∑
h

Pr(h|m)2.

When we refer to the certainty of the algorithm we typically refer to the certainty of the
full set of memory states, or to the certainty of this set after the removal of a few memories
(we’ll explain the reason for removing memories shortly).

If the underlying hypothesis is picked uniformly from a set of Θ(|H|) hypotheses, then
at the start time the certainty is O(1/ |H|). In contrast, an algorithm that identifies the
underlying hypothesis with high probability must have large certainty in its final time step.
We prove that assuming the memory is bounded, at each time step t – ignoring some low
probability sequences of examples – there exists a high probability set of memories Mt, a
large set of hypotheses Ht such that for h picked uniformly from Ht,

cert+1(Mt+1) ≤ cert(Mt)(1 + |H|−ε),

for some small constant ε > 0. This implies that Ω(|H|ε) labeled examples are needed.
As an example, consider the enumerator algorithm that goes through the hypotheses

in order. The algorithm maintains a current hypothesis at each time step. If the labeled
example is inconsistent with the current hypothesis, the algorithm moves on to the next
hypothesis. If the underlying hypothesis is one of the first few hypotheses the algorithm
considers, the algorithm is likely to identify that. Moreover, the certainty of the first
memory states (the ones associated with the first hypotheses) is high after sufficiently
many time steps. However, if one omits the first hypotheses and memory states, the
certainty is low.
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In order to bound the certainty we analyze the knowledge graph associated with the
algorithm at every time step t. The knowledge graph is a bipartite graph on memory states
and hypotheses, defined as follows.

Definition 3 (knowledge graph). The knowledge graph at time t of a learning algorithm
with memory statesM for an hypothesis class H is a bipartite multigraph Gt = (H,M, Et)
where an edge (h,m) ∈ Et corresponds to a series of t labeled examples (x1, y1), . . . , (xt, yt)
with h(xi) = yi for every 1 ≤ i ≤ t and the algorithm ends up in memory state m after
receiving these t examples.

At the start time the knowledge graph always has one memory state that is connected
to all hypotheses. We think of such a knowledge graph as “expanding”. Formally, we define
a non-standard expansion property that we name “K-expander” (“K” is for “knowledge
graph”) that applies to this knowledge graph.

Definition 4. We say that a distribution p over the memories is β-enlarging if for every
memory m it holds that p(m) ≤ Pr(m)

β .

Definition 5 (K-expander). A knowledge graph Gt = (H,M, Et) is an (α, β, ε)-K-expander
if for any S ⊆ H, |S| ≥ α |H|, and any β-enlarging distribution T over the memories

Pr(S|T ) ≤ |S|
|H|

+ ε.

At the first time step, there is just one enlarging distribution over memories: the one
that picks the starting memory state with probability 1. We show that the knowledge
graph of any algorithm for a mixing hypothesis class H at any early enough time step is K-
expanding with small ε. In contrast, the knowledge graph of an algorithm that successfully
identified the underlying hypothesis is not K-expanding.

We use an inductive argument to analyze for every time t:

1. The K-expansion of the knowledge graph.

2. The certainty of the algorithm.

Towards 1 we show that a K-expanding knowledge graph of a learner with low certainty
cert(Mt) remains K-expanding after the (t + 1)’th step. Towards 2 we show that K-
expansion at time t + 1 prevents the learner from increasing the certainty at time t + 1.
We discuss these proofs next.

Preservation of K-expansion: Fix a large set of possible hypotheses S ⊆ H, |S| ≥ α |H|,
and a β-enlarging distribution T over the memories at time t + 1. Note that T induces
a distribution T ′ over the memories at time t that is β-enlarging as well. Moreover, the
probability of the labeled examples leading from T ′ to T has to be large. From the K-
expansion at time t, we know that Pr(S|T ′) ≤ |S| / |H| + ε. The challenge is to argue
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that the example seen after time t does not reveal much information about the underlying
hypothesis and its membership in S. Concretely, we’d like to show that Pr(S|T ) is not
much larger than Pr(S|T ′). Since the certainty at time t is low, we can focus only on
time-t memory states m for which there are many possible underlying hypotheses. For
such memory states, because of the mixing property of the hypothesis class, there can be
only a small fraction of “bad” labeled examples that reveal much information about the
underlying hypothesis. Since the probability of labeled examples leading from T ′ to T has
to be large, the probability of “bad” examples is low even within those.

Certainty remains low: Since the memory size is bounded, a typical memory state at
time t + 1 has many sources, i.e., large in-degree in the branching program. We consider
two extreme cases:

Heavy source: There is a large set of possible labeled examples S ⊆ X such that
the algorithm progresses from one memory m′ at time t to a memory m at time t + 1 if
it is given any labeled example taken from S. For instance, the enumerator algorithm we
discussed above has heavy sources: each time t + 1 memory m has two memories at time
t that lead to it, the one associated with the same hypothesis, m′1 and the one associated
with the previous hypothesis, m′2. For example, m′1 is connected to m with |X | /2 labeled
examples.

The case of heavy sources is the simplest to handle, and does not require any assump-
tions about the K-expansion of the knowledge graph, only the assumption of low certainty
at time t. The idea is to focus on time-t memory states with low certainty, i.e., those that
have many possible hypotheses. For such memory states that transition to a time-(t + 1)
memory state via any one of many labeled examples, the mixing property of the hypoth-
esis class implies that most possible time-t hypotheses are still viable for the time-(t + 1)
memory state. In other words, the time-(t+ 1) memory state has low certainty as well.

Many source: Here there is a large number of time t memories M that lead to one
memory m at time t+ 1. For instance, the memory states of an algorithm that stores only
the last labeled example have many sources.

The K-expansion of the knowledge graph ensures that the time-(t + 1) memory state
m receives no substantial information about the underlying hypothesis h from the time-t
memories leading to it. The challenge is to account for the information that is received
from the example seen after time t. Roughly speaking, a full bit of information about h
may be deduced from the example, and

Pr(h|m) ≤ 2.2 Pr(h|M).

We use the low certainty at time t and the K-expansion to argue that the “confusion”
due to the many different sources M compensates for the information received from the
example.

Every time t + 1 memory can have both heavy and many sources. We show how to
decompose almost all of the sources to either heavy or many, combining both analyses to
argue that the certainty does not increase substantially.
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2 Preliminaries

2.1 Probability

Claim 6. Let p be a probability distribution over a set A with
∑

i∈A p(i)
2 ≤ r. Then, for

every A′ ⊆ A it holds that
∑

i∈A′ p(i) ≤
√
|A′|r.

Proof. Using Jensen’s inequality:(
1

|A′|
∑
i∈A′

p(i)

)2

≤ 1

|A′|
∑
i∈A′

p(i)2

≤ r

|A′|
.

Or equivalently, ∑
i∈A′

p(i) ≤ |A′|
√

r

|A′|
=
√
|A′|r.

Claim 7 (generalized law of total probability). For any events A,B and a partition of the
sample space C1, . . . , Cn,

Pr(A|B) =
∑
i

Pr(A|B,Ci) Pr(Ci|B).

Proof. ∑
i

Pr(A|B,Ci) Pr(Ci|B) =
∑
i

Pr(A,B,Ci)

Pr(B,Ci)

Pr(Ci, B)

Pr(B)

=
1

Pr(B)

∑
i

Pr(A,B,Ci)

=
Pr(A,B)

Pr(B)
= Pr(A|B)

Claim 8 (generalized Bayes’ theorem). For any three events A,B,C,

Pr(A|B,C) = Pr(B|A,C)
Pr(A|C)

Pr(B|C)
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Proof.

Pr(B|A,C)
Pr(A|C)

Pr(B|C)
=

Pr(B,A,C)

Pr(A,C)

Pr(A,C) Pr(C)

Pr(C) Pr(B,C)

=
Pr(B,A,C)

Pr(B,C)

= Pr(A|B,C)

Let us prove a simple claim that states that the probability of event conditioning on a
set of disjoint events is actually a weighted sum.

Claim 9. Suppose B1, . . . , Bn are some disjoint events. Then,

Pr(A|B1 ∪ . . . ∪Bn) =
n∑
i=1

Pr(A|Bi)
Pr(Bi)

Pr(B1 ∪ . . . ∪Bn)
.

Proof.

Pr(A|B1 ∪ . . . ∪Bn) =
Pr(A ∩ (B1 ∪ . . . ∪Bn))

Pr(B1 ∪ . . . ∪Bn)

=
Pr((A ∩B1) ∪ . . . ∪ (A ∩Bn))

Pr(B1 ∪ . . . ∪Bn)

=

∑n
i=1 Pr(A ∩Bi)

Pr(B1 ∪ . . . ∪Bn)

=
n∑
i=1

Pr(A|Bi)
Pr(Bi)

Pr(B1 ∪ . . . ∪Bn)

2.2 Mixing

For a bipartite graph (A,B,E), A are the left vertices and B are the right vertices. For
sets S ⊆ A, T ⊆ B let

E(S, T ) = {(a, b) ∈ E|a ∈ S, b ∈ T}.

For a ∈ A (and similarly for b ∈ B) the neighborhood of a is Γ(a) = {b ∈ B|(a, b) ∈ E},
and the degree of a is da = |Γ(a)|. If all da are equal, we say that the graph is da-left
regular or just left regular. We similarly define right regularity.
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Definition 10 (mixing). We say that a bipartite graph (A,B,E) with average left degree
d̄A is d-mixing if for any S ⊆ A, T ⊆ B it holds that∣∣∣∣|E(S, T )| − |S||T |

|B|/d̄A

∣∣∣∣ ≤ d
√
|S||T |

Claim 11 (Union of mixing graphs is mixing). If (A,B1, E1) is d-mixing with average
left degree d1 and (A,B2, E2) is d-mixing with average left degree d2 and |B1| = |B2| then

(A,B1 ∪B2, E1 ∪ E2) is 2d +
√

|A|
|B1∪B2| |d1 − d2|-mixing.

Proof. Fix S ⊆ A, T ⊆ B1 ∪ B2, and denote T1 = B1 ∩ T and T2 = B2 ∩ T . Notice that
the average left degree in the new graph is d1 + d2 and |B1 ∪B2| = 2|B1| = 2|B2|.∣∣∣∣|E(S, T )| − |S||T |

|B1 ∪B2|/(d1 + d2)

∣∣∣∣ =

∣∣∣∣|E(S, T1)|+ |E(S, T2)| − |S||T1|
2|B1|/(d1 + d2)

− |S||T2|
2|B2|/(d1 + d2)

∣∣∣∣
≤

∣∣∣∣|E(S, T1)| − |S||T1|
|B1|/d1

∣∣∣∣+

∣∣∣∣|E(S, T1)| − |S||T2|
|B2|/d2

∣∣∣∣+∣∣∣∣ |S||T1|
|B1|/d1

− |S||T1|
2|B1|/(d1 + d2)

∣∣∣∣+

∣∣∣∣ |S||T2|
|B2|/d2

− |S||T2|
2|B2|/(d1 + d2)

∣∣∣∣
≤ d

√
|S||T1|+ d

√
|S||T2|+

|S||T1|
|B1|

· (|d1 − (d1 + d2)/2|+ |S||T2|
|B2|

|d2 − (d1 + d2)/2|)

≤ 2d
√
|S||T |+ |S||T |

|B1|
|d1 − d2|

2

≤

(
2d +

√
|A|

2|B1|
|d1 − d2|

)√
|S||T |

Definition 12 (sampler). A bipartite graph (A,B,E) is an (ε, ε′)-sampler if for every
T ⊆ B it holds that

Pr
a∈A

(∣∣∣∣ |Γ(a) ∩ T |
da

− |T |
|B|

∣∣∣∣ > ε

)
< ε′,

where a is sampled uniformly.

We say that a vertex a ∈ A samples T correctly if

∣∣∣∣ ∣∣Γ(a)∩T
∣∣

da
− |T ||B|

∣∣∣∣ ≤ ε. The sampler

property implies that there are only a few vertices S ⊆ A that do not sample T correctly.

Claim 13 (Mixing implies sampler). If a bipartite graph (A,B,E) is d-mixing and dA-left

regular then it is also an (ε, 2d2|B|
d2
Aε

2|A|)-sampler for any ε > 0.
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Proof. Fix T ⊆ B. Define S1 = {a ∈ A| |Γ(a)∩T |
dA

− |T ||B| > ε}, S2 = {a ∈ A| |T ||B| −
|Γ(a)∩T |

dA
> ε}.

Let us bound the size of each of these sets:

|S1|dA
(
|T |
|B|

+ ε

)
< |E(S1, T )| ≤ |S1||T |

|B|/dA
+ d
√
|S1||T |,

where the right inequality follows from the mixing property and the left inequality follows
from the definition of S1. This means that

|S1|dAε < d
√
|S1||T |

|S1| <
d2|T |
d2
Aε

2
⇒ |S1|
|A|
≤ d2|B|
d2
Aε

2|A|
Similarly for S2,

|S2||T |
|B|/dA

− d
√
|S2||T | ≤ |E(S2, T )| < |S2|dA

(
|T |
|B|
− ε
)
⇒ |S2|
|A|

<
d2|B|
d2
Aε

2|A|

We will use the previous claim with dA = |B|/2 and thus we will know that the bipartite

graph is an (ε, 8d2

|B||A|ε2 )-sampler for any ε > 0.

3 Hypotheses Graph

The hypotheses graph associated with an hypothesis class H and labeled examples X is
a bipartite graph whose vertices are hypotheses in H and labeled examples in X , and
whose edges connect every hypothesis h ∈ H to the labeled examples (x, y) ∈ X that are
consistent with h, i.e., h(x) = y.

Let us explore a few examples of hypothesis class with mixing property.
parity. The hypotheses in PARITY (n) are all the vectors in {0, 1}n, except the zero

vector and the labeled examples are {0, 1} × {0, 1}n (i.e., |H| = 2n and |X | = 2 · 2n).

Lemma 14 (Lindsey’s Lemma). Let H be a n× n matrix whose entries are 1 or −1 and
every two rows are orthogonal. Then, for any S, T ⊆ [n],∣∣∣∣∣∣

∑
i∈S,j∈T

Hi,j

∣∣∣∣∣∣ ≤√|S||T |n.
Lindsey’s Lemma and Claim 11 imply that the hypotheses graph of PARITY (n) is√
|H|-mixing.
random class. For each hypothesis h and an example x, then h(x) = 1 with proba-

bility 1/2. This hypothesis class translates to a random bipartite graph (which represents
hypotheses versus examples graph). It is well known that this graph is mixing (see [4]).

We can rephrase Claim 13 for the hypotheses graph and get
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Proposition 15. If a graph (H,X , E) is d-mixing then it is also (ε, 8d2

|H||X |ε2 )-sampler for
any ε > 0.

3.1 H-expander

The main notion of expansion we will use for the hypotheses graph is H-expander, as we
define next (H stands for Hypotheses graph). This notion follows from mixing (Defini-
tion 10).

Definition 16 (H-expander). A left regular bipartite graph (A,B,E) with left degree dA
is an (α, β, ε)-H-expander if for every T ⊆ B,S ⊆ A, with |S| ≥ α|A|, |T | ≥ β|B| it holds
that ∣∣∣∣|E(S, T )| − |S||T |

|B|/dA

∣∣∣∣ ≤ ε|S||T |.
For example, the hypotheses graph (H,X , E) is left regular with left degree |X |/2, so

in this case the denominator |B|/dA will be equal to 2.
Note the following simple observation that relates mixing and H-expander.

Proposition 17. If a graph (H,X , E) is d-mixing then it is also (α, β, 2d√
α|H|β|X |

) −
H-expander, for any α, β ∈ (0, 1).

In the next claim we will prove that the the degree of each vertex is similar (∼ |A|dA|B| ).

Claim 18 (near regularity). Suppose that a bipartite graph (A,B,E) is an (α, β, ε)-H-expander,
then except for 2β|B| vertices in B, the degree of the vertex is in [|A|(dA/|B|−ε), |A|(dA/|B|+
ε)].

Proof. Define the two sets

T1 = {b ∈ B||E(A, b)| < |A|(dA/|B| − ε)}, T2 = {b ∈ B||E(A, b)| > |A|(dA/|B|+ ε)}.

We will prove that the size of each of these sets is at most β|B|. By the definition of T1 we
know that

|E(A, T1)| < |A|(dA/|B| − ε)|T1|.

By the H-expander property, if |T1| ≥ β|B| then

|A||T1|
(
dA
|B|
− ε
)
≤ |E(A, T1)|,

and we get a contradiction. Similar argument also holds for T2.

11



4 The Correct Hypothesis Must be Returned

A PAC learner needs only to find an approximation of the underlying hypothesis h∗. In
other words, if D is the underlying distribution over the labeled examples X , then the
learning algorithm should return an hypothesis h that agree with h∗ with high probability
over D. A PAC learner should return such an hypothesis for any D, specifically when D is
the uniform distribution. In this case h should agree with h∗ on most of the examples. In
this section we prove that a PAC learner for a mixing hypothesis class must in fact identify
the underlying hypothesis exactly (with high probability).

To show this, we point to a large number of hypotheses that are all far from one another.
We do so in two steps. First, we show in the next claim that for each hypothesis, number
of hypotheses that agree with it on at least 3/4 of the examples is small. Then we use
Turán’s theorem to prove that in such a case there must be a large subset of hypotheses
that are all far from each other.

Claim 19. If a bipartite (A,B,E) with average left degree d̄A is d-mixing then for every

set T ⊆ B, the number of vertices a ∈ A with |E(a, T )| ≥ 1.5|T |
|B|/dA is at most

d2

|T |
·
(

2|B|
d̄A

)2

Proof. Denote S = {a ∈ A||E(a, T )| ≥ 1.5|T |
|B|/dA }. This implies that |E(S, T )| ≥ 1.5|S||T |

|B|/d̄A
.

From the definition of d-mixing we know that

|E(S, T )| ≤ |S||T |
|B|/d̄A

+ d
√
|S||T |.

Combining these two inequalities,

1.5|S||T |
|B|/d̄A

≤ |S||T |
|B|/d̄A

+ d
√
|S||T |

This means
|S||T |

2|B|/d̄A
≤ d

√
|S||T |

Or, in other words,

|S| ≤ d2

|T |
·
(

2|B|
d̄A

)2

Lemma 20 (Turán’s theorem). Let G be any graph with n vertices without a r+ 1-clique,
then the number of edges in G is at most(

1− 1

r

)
· n

2

2

12



See [1] for more details.

Claim 21. If the hypotheses graph (H,X , E) is d-mixing, then there is a subset of hypothe-

ses H ⊆ H, with |H| ≥ |H|
1+ 16d2

|X|
, such that every two hypotheses h1, h2 ∈ H have agreement

less than 3/4, i.e., |{x|h1(x) = h2(x)}| ≤ 3
4 ·
|X |
2 .

Proof. For any hypothesis h, use the previous claim with T equal to all the neighbors of
h (there are |X |/2 such neighbors). Thus, only 32d2

|X | of the hypotheses agree with h on at

least 3
4 of the examples. For the sake of the proof, create a graph with vertices H that are

connected if they agree on less than 3/4 fraction of the examples. To prove the claim, we
need to find a large clique in the new graph.

The number of edges in the graph is at least
(|H|

2

)
− 32d2. Using Turán’s theorem, if

there is no clique of size r + 1, then(
1− 1

r

)
· |H|

2

2
≥
(
|H|
2

)
− 32d2 |H|

|X |
.

(
1− 1

r

)
≥
|H|(|H| − 1)− 16d2 |H|

|X |

|H|2(
1− 1

r

)
≥
|H| − 1− 16d2

|X |

|H|

1 + 16d2

|X |

|H|
≥ 1

r

r ≥ |H|
1 + 16d2

|X |

5 Knowledge Graph

Definition 22 (knowledge graph). The knowledge graph at time t of a learning algorithm
with memory statesM for an hypothesis class H is a bipartite multigraph Gt = (H,M, Et)
where an edge (h,m) ∈ Et corresponds to a series of t labeled examples (x1, y1), . . . , (xt, yt)
with h(xi) = yi for every 1 ≤ i ≤ t and the algorithm ends up in memory state m after
receiving these t examples.

At each step we will remove a tiny fraction of the edges from the knowledge graph and
we focus only on the memories Mt — denote this graph by G′t. We can read of from this
graph the probability qt(h,m) which indicates the probability that the algorithm reached

13



memory m after t steps and all examples are labeled by h, and it is proportional to the
number of edges E′t(m,h) between a memory m and an hypothesis h (in the graph G′t).
We can also observe the conditional probability qt(m|h) which mean that given that all the
examples observed after t steps are consistent with hypothesis h, it is the probability that
the algorithm reached memory state m. We can deduce the probability of a memory m:
qt(m) =

∑
t qt(m|h)qt(h). We can also find the probability of a set of memories M ⊆ M,

qt(M) =
∑

m∈M qt(m). If the algorithm, after t steps, is in memory state m, we can deduce

the probability that the true hypothesis is h, qt(h|m) = qt(m|h)qt(h)
qt(m) .

5.1 K-expander

In a later section we will prove that the knowledge graph preserves a pseudo-random
property. To this proof a stronger notion than sampler is needed. Specifically, not only
sets should sample well a set of hypotheses but also a large set of distributions. Notice that
the knowledge graph can be highly irregular, e.g., there can be few memories connected to
most hypotheses, whereas other memories may not be connected to any hypothesis. Our
definitions are tailored to irregular graphs.

Definition 23 (β-enlarging). Let 0 < β ≤ 1. We say that a distribution p over memories
is β-enlarging with respect to a probability distribution q over memories if for every memory
m, p(m) ≤ q(m)

β .

Any distribution is β-enlarging for sufficiently small β. Only q is 1−enlarging. When
q is uniform the definition merges with the definition of min-entropy.

For any β-enlarging distribution p with respect to a distribution q,

1 =
∑

m|p(m)6=0

p(m) ≤
∑

m|p(m)6=0

q(m)/β ⇒
∑

m|p(m)6=0

q(m) ≥ β,

this means that the support of a β-enlarging distribution defines a set of memories with
q-weight at least β.

Definition 24 (K-expander). The knowledge graph (H,X , E) is an (α, β, ε)−K-expander
if for any S ⊆ H with |S| ≥ α|H| and a β-enlarging distribution T it holds that

Pr(S|T ) ≤ |S|
|H|

+ ε.

(K in K-expander stands for Knowledge graph).
In the rest of the section we prove that the knowledge graph at time t = 1 is a

K-expander. We can assume without loss of generality that the knowledge graph af-
ter the first example is the hypotheses graph (since the algorithm can save in mem-
ory the first example). From Proposition 17 we know that the hypotheses graph is a
(α1, β1, ε1)−H-expander, for any α1, β1 ∈ (0, 1) and ε1 = 2d√

α1|H|β1|X |
. Later (in Section 11)

we will choose α1, β1.

14



Definition 25. Define M1 to be all memories m (i.e., examples) with degree

|H|(1/2− ε1) ≤ dm ≤ |H|(1/2 + ε1).

We remark that using Claim 18, M1 must be large.

Claim 26. If the hypotheses graph is d-mixing and ε1 ≤ 1/4, then G′1 is an

(α1, β1, 8ε1 + α1)−K-expander.

Proof. To show that the hypotheses graph is a K-expander, fix H ⊆ H and a β-enlarging
distribution p. Denote

Err(H) = {x|Pr(H|x) >
|H|
|H|

+ ε}

(we pick ε later). From the definition of M1 and Err(H) we know that

|E(H,Err(H))| >
(
|H|
|H|

+ ε

)
|H|(1/2− ε1)|Err(H)|

The right term is equal to

|H||Err(H)|
2

− |H||Err(H)|ε1 + ε|H|(1/2− ε1)|Err(H)|

From the mixing property (Definition 10) we know that

|Err(H)||H|
2

+ d
√
|Err(H)||H| ≥ |E(H,Err(H))|.

Combining the last two inequalities we get

|Err(H)||H|
2

+ d
√
|Err(H)||H| > |H||Err(H)|

2
−|H||Err(H)|ε1 + ε|H|(1/2− ε1)|Err(H)|

d
√
|Err(H)||H| > (ε|H|(1/2− ε1)− |H|ε1)|Err(H)|

d
√
|H|

(ε|H|(1/2− ε1)− |H|ε1)
>
√
|Err(H)|

d2|H|
(ε|H|(1/2− ε1)− |H|ε1)2

> |Err(H)|

The maximal value of the left term is, using ε1 ≤ 1/4,

d2

|H|(ε/4− ε1)2

15



We need to bound∑
x∈X

Pr(H|x)p(x) =
∑

x/∈Err(H)

Pr(H|x)p(x) +
∑

x∈Err(H)

Pr(H|x)p(x)

≤
∑

x/∈Err(H)

(
|H|
|H|

+ ε

)
p(x) +

∑
x∈Err(H)

1 · p(x)

≤ |H|
|H|

+ ε+
∑

x∈Err(H)

q1(x)

β

(definition of q1) ≤ |H|
|H|

+ ε+
∑

x∈Err(H)

|H|(1/2 + ε1)

|H|(1/2− ε1)|X |β

≤ |H|
|H|

+ ε+
d2

|H|(ε/4− ε1)2
· (1/2 + ε1)

(1/2− ε1)|X |β

(ε1 ≤ 1/4) ≤ |H|
|H|

+ ε+
d2

|H||X |(ε/4− ε1)2
· (1 + 8ε1)

β

Take ε = 8ε1 and notice that by the definition of ε1,

d2

|H||X |ε21
=

d2

|H||X |
(

2d√
α1|H|β1|X |

)2 =
α1β1

4

Thus, the term we would like to bound is at most 8ε1 + α1β1

4 · 3
β1

< 8ε1 + α1.

6 Certainty

Throughout the analysis we will maintain a substantial set of memories Mt ⊆ M and a
set of hypotheses Ht ⊆ H. At time t we pick the underlying hypothesis uniformly from Ht

and only consider memories in Mt. Initially, H1 = H and M1 is as defined in Definition 25.
At later times, Ht and Mt will exclude certain bad hypotheses and memories.

In this section we define the key notion of certainty. The certainty of a memory captures
the information it has on the underlying hypothesis, whereas the certainty of an hypothesis
captures the information it has on the memory state to be reached assuming the hypothesis
was picked. We further define the average certainty over all memories or hypotheses. We
will consider memories or hypotheses that are “certain above average” as bad. An algorithm
that successfully learns H will transform from having low average certainty at the initial
stage to having high average certainty by its termination. Our argument will show that
this increase in average certainty must take a long time.

First, we define the certainty of memories.

16



Definition 27 (certainty). The certainty of a memory m at time t is defined as∑
h

qt(h|m)2.

The average certainty of the set of memories M at time t is defined as

cert(M) :=
∑
m∈M

qt(m)
∑
h

qt(h|m)2.

If, for example, all the hypotheses could have caused the algorithm to reach m with
the same probability, then its certainty is

∑
h qt(h|m)2 = 1

|H| (e.g., this holds for the initial

memory). If, on the other hand, given a memory m there is only one hypothesis h∗ that
caused the algorithm to reach this memory m then its certainty is

∑
h qt(h|m)2 = 1.

To simplify the notation we write cert(m) when we mean cert({m}) = qt(m)
∑

h qt(h|m)2,
i.e., the average certainty with the set {m} of memories.

At each time t we will focus only on memories that are not too certain, i.e., whose
certainty is not much more then the average certainty. Using Markov’s inequality we will
prove that with high probability the algorithm only reaches these not-too-certain memories.
Let us define this set more formally,

BadcM =

{
m ∈M

∣∣∣∣∑
h

q2
t (m|h) > c · cert(Mt)

}
,

for some c > 0, that is of the order |H|ε, for some small constant ε. Oftentimes, we will
omit c when it is clear from the context. For all t ≥ 1 we will make sure that Mt will not
include BadcM (and additional memories, as will be defined in later sections). The next
claim proves that removing bad memories does not reduce too much the weight.

Claim 28. For any c > 0 and time t, qt(Bad
c
M ) ≤ 1/c

Proof. We can define a probability distribution over M using qt in the following way. For
each m ∈M its probability is defined by qt(m)

qt(M) . The assumption in the claim states that

Emt∈M [
∑
h

qt(h|mt)2] =
∑
mt∈M

qt(m
t)

qt(M)

∑
h

qt(h|mt)2

= cert(M)/qt(M).

Using Markov’s inequality we know that the probability of

BadcM =

{
mt ∈M

∣∣∣∑
h

qt(h|mt)2 > (c · qt(M)) · cer
t(M)

qt(M)

}
,
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is at most 1/(c · qt(M)), i.e.,∑
mt∈BadM

qt(m
t)

qt(M)
≤ 1

qt(M)c
⇒ qt(BadM )

qt(M)
≤ 1

qt(M)c
⇒ qt(BadM ) ≤ 1/c.

There is an equivalent definition of certainty in terms of the certainty of the hypothesis,
rather than the memory.

Claim 29. For each memory m, hypothesis h and time t

qt(m)qt(h|m)2 = qt(h)qt(h|m)qt(m|h)

Proof.

qt(m)qt(h|m)2 = qt(m)qt(h|m)qt(h|m)

(by Bayes’ theorem) = qt(m)qt(h|m)
qt(m|h)qt(h)

qt(m)

= qt(h)qt(h|m)qt(m|h)

In particular we can prove

Claim 30. The average certainty is also equal to

cert(M) =
∑
h∈H

qt(h)
∑
m∈M

qt(h|m)qt(m|h).

Proof.

cert(M) =
∑
m∈M

qt(m)

(∑
h∈H

qt(h|m)2

)
=

∑
m∈M,h∈H

qt(m)qt(h|m)qt(h|m)

(by Bayes’ theorem) =
∑

m∈M,h∈H
qt(m)qt(h|m)

qt(m|h)qt(h)

qt(m)

=
∑

m∈M,h∈H
qt(h|m)qt(m|h)qt(h)

=
∑
h∈H

qt(h)
∑
m∈M

qt(h|m)qt(m|h)
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We can therefore define the certainty of an hypothesis h, when focusing on a set of
memories M as ∑

m∈M
qt(h|m)qt(m|h)

Given the last claim in mind we define

BadcH = {h ∈ H
∣∣ ∑
m∈Mt

qt(m|h)qt(h|m) > c · cert(Mt)}.

Oftentimes, we will omit c when it is clear from the context.
Define H1 = H and for t > 1, Ht+1 = Ht \ BadH . We will define the distribution over

the hypotheses at time t by qt(h) = 1
|Ht| if h ∈ Ht, else qt(h) = 0. Next claim proves that

Ht is large.

Claim 31. For any c > 0, |Ht+1| ≥ (1− 1/c)|Ht|.

Proof. From Claim 30 and from Markov’s inequality, we know that

Pr
h∼qt

(h ∈ BadH) ≤ 1/c

Since Prh∼qt(h ∈ BadH) = |BadH |
|Ht| we get that

|BadH | ≤ |Ht|/c.

Thus,
|Ht+1| ≥ |Ht| − |BadH | ≥ (1− 1/c)|Ht|.

In the rest of the paper we will prove that the average certainty of Mt, even for a large
t ∼ |H|Ω(1), will be at most 3

|H| .
In the next claim we will show that small certainty, small fraction of edges removed

and qt(Mt) ≈ 1 imply that learning fails after t steps.

Claim 32. Suppose that the learning algorithm ends after t steps, |Ht| ≥ 3 and at most γ
fraction of the edges were removed from the knowledge graph. Then, there is an hypothesis
h such that the probability to correctly return it is at most

3
√
c · cert(Mt) + 3(1− qt(Mt)) + γ

Proof. By definition, for any m ∈Mt it holds that
∑

h qt(h|m)2 ≤ c ·cert(Mt). This implies
that for any h, qt(h|m) ≤

√
c · cert(Mt).
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Each memory m is associated with some hypothesis h(m) that the algorithm returns
as its answer when reaching m. The probability that the algorithm returns the correct
hypothesis, assuming the true hypothesis is h, is at most∑

m|h(m)=h

qt(m|h) + γ.

Let us explore the first term∑
m|h(m)=h

qt(m|h) =
∑

m∈Mt|h(m)=h

qt(m|h) +
∑

m/∈Mt|h(m)=h

qt(m|h).

Let us focus on the first term, by Bayes’ theorem, it is equal to∑
m∈Mt|h(m)=h

qt(h|m)qt(m)

qt(h)
≤
√
c · cert(Mt)

∑
m∈Mt|h(m)=h

qt(m)

qt(h)
.

We will use Markov’s inequality to bound this term. Let us first calculate the following
expectation

∑
h∈Ht

 ∑
m∈Mt|h(m)=h

qt(m)

 ≤ 1⇒ Eh∼qt

 ∑
m∈Mt|h(m)=h

qt(m)

 ≤ 1

|Ht|

Thus, for at most 1/3 fraction of the hypotheses h,∑
m∈Mt|h(m)=h

qt(m) ≥ 3

|Ht|
.

In other words, for at least 2/3 fraction of the hypotheses the first term is bounded by
3
√
c · cert(Mt). As for the second term, it is bounded by∑

m/∈Mt

qt(m|h).

Averaging over all h ∈ Ht we get

1

|Ht|
∑
h

∑
m/∈Mt

qt(m|h) =
∑
m/∈Mt

∑
h

qt(m|h)qt(h) =
∑
m/∈Mt

qt(m) = 1− qt(Mt).

Thus, by Markov inequality, for at most 1/3 fraction of the hypotheses
∑

m/∈Mt
qt(m|h) ≥

3(1 − qt(Mt)). To sum up, there is an hypothesis for which the sum of the first and the
second term is at most 3

√
c · cert(Mt) + 3(1− qt(Mt)).

We also define a weighted certainty using a weight vector w of length |M| and each
coordinate in w is some value in [0, 1] by

certw(M) =
∑
m∈M

qt(m)wm · q2
t (h|m).

Note that if w is the all 1 vector then certw(M) = cert(M).
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7 Representative Labeled Examples

In this section we define the set of non-representative labeled examples. We then prove
that this set is small and thus can be removed.

For each memory at time t, a representative labeled example is one with qt(x|m) equal
roughly to 1

|X | for every m ∈ Mt. We define the set of labeled examples that are not
representative of a memory m as

NRep(m) :=

{
x ∈ X |qt(x|m) <

1

1.1|X |

}
∪
{
x ∈ X |qt(x|m) >

1.1

|X |

}
.

In other words, no memory in Mt can “guess” well the label of examples not in NRep.
The next claim will imply an equivalent definition for this set.

Claim 33. For any set of labeled examples S ⊆ X and a memory m it holds that

qt(S|m) =
∑
h

Pr(S|h)qt(h|m).

Proof. Using Claim 7 we know that

qt(S|m) =
∑
h

qt(S|m,h)qt(h|m)

=
∑
h

Pr(S|h)qt(h|m)

Using Claim 33, we know that the not-representative set is also equal to

NRep(m) =

{
x ∈ X |

∑
h∈H

Pr(x|h)qt(h|m) <
1

1.1|X |

}
∪

{
x ∈ X |

∑
h∈H

Pr(x|h)qt(h|m) >
1.1

|X |

}
.

We would like to prove that NRep(m) is small for any memory with small certainty.
Note that

qt(h|m,x) ∝ qt(h|m)I(x,h)∈E ,

where I(x,h)∈E means that x and h are connected in the hypotheses graph (this follows from

Claim 8 with A = {h}, B = {x}, C = {m} and qt(x|h,m) = qt(x|h) = 2
|X |I(x,h)∈E). This

probability distribution can be imagined as if it were constructed by taking the hypotheses
graph and adding weight qt(h|m) to every hypothesis h. Keeping this observation in mind
we need some new notation.

Suppose there is a weight wi for each hypothesis in the hypotheses graph (H,X , E).
Then, define the weights between sets S ⊆ H and T ⊆ X by w(S, T ) :=

∑
s∈S,t∈T w(s)I(s,t)∈E

and w(S) :=
∑

s∈S w(s). We would like to prove that even if there are weights on the hy-
potheses the hypotheses graph is still pseudo-random. More formally, we will use the
following definition.
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Definition 34. We say that a left regular bipartite graph (A,B,E) is (β, ε)−weighted-expander
with weights w1, . . . , w|A|,

∑
iwi = 1, ∀i, wi ≥ 0, and left degree dA if for every S ⊆ A and

T ⊆ B, |T | ≥ β|B| it holds that∣∣∣∣w(S, T )− w(S)

|B|/dA
|T |
∣∣∣∣ ≤ ε|T |

The next claim proves that any H-expander is a also a weighted-expander assuming low
`22 weights.

Claim 35. If the hypotheses graph (H,X , E) is an (α, β, ε)− H-expander and
∑|H|

i=1w
2
i ≤

r then the hypotheses graph is a (β, 2ε + 2
√
α|H|r) − weighted-expander with weights

w1, . . . , w|H|.

Proof. Fix S ⊆ H, T ⊆ X , |T | ≥ β|X |. Denote by Bad(T ) ⊆ H all the hypotheses that
do not sample T correctly, i.e., Bad(T ) = {h ∈ H|

∑
t∈T I(t,h)∈E > |T |

(
1
2 + ε

)
}. Then

|Bad(T )| < α|H| (because |E(T,Bad(T ))| > |Bad(T )||T |
2 + ε|Bad(T )||T | and if |Bad(T )| ≥

α|H| then this is a contradiction to the H-expander property).
Let us start with upper bounding w(S, T ).

w(S, T ) =
∑

s∈S\Bad(T )

w(s)
∑
t∈T

I(s,t)∈E +
∑

s∈S∩Bad(T )

w(s)
∑
t∈T

I(s,t)∈E

≤
∑

s∈S\Bad(T )

w(s)

(
|T |
2

+ ε|T |
)

+
∑

s∈S∩Bad(T )

w(s)|T |

≤
(
|T |
2

+ ε|T |
)∑
s∈S

w(s) + |T |
∑

s∈Bad(T )

w(s)

(Claim 6) <
w(S)|T |

2
+ (ε+

√
α|H|r)|T |,

We can lower bound w(S, T ) similarly. Define the setBad2(T ) = {h ∈ H|
∑

t∈T I(t,h)∈E <
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|T |
(

1
2 − ε

)
} and deduce that |Bad2(T )| < α|H| and that

w(S, T ) =
∑

s∈S\Bad2(T )

w(s)
∑
t∈T

I(s,t)∈E +
∑

s∈S∩Bad2(T )

w(s)
∑
t∈T

I(s,t)∈E

≥
∑

s∈S\Bad2(T )

w(s)

(
|T |
2
− ε|T |

)
+ 0

(Claim 6) >
(
w(S)−

√
α|H|r

)( |T |
2
− ε|T |

)
= w(S)

|T |
2
−
√
α|H|r(1/2− ε)|T | − εw(S)|T |

≥ w(S)
|T |
2
−
√
α|H|r|T | − ε|T |

= w(S)
|T |
2
− (
√
α|H|r + ε)|T |

Next we will prove our main claim in this section.

Claim 36. Let m be a memory in the knowledge graph at time t with certainty bounded by
r, i.e.,

∑
h qt(h|m)2 ≤ r, assuming the hypotheses graph is an (α, β, ε) − H-expander, and√

α|H|r + ε < 1/44 then |NRep(m)| ≤ 2β.

Proof. Denote ε∗ = 4
√
α|H|r + 4ε. Define T1 = {x|

∑
h∈H Pr(x|h)qt(h|m) < 1−ε∗

|X | } and

define weights to hypotheses w(h) = qt(h|m). From the definition of T1 we know that∑
h∈H,x∈T1

Pr(x|h)qt(h|m) <
|T1|(1− ε∗)
|X |

.

The left term is equal to ∑
h∈H,x∈T1

2

|X |
I(x,h)∈Eqt(h|m) = w(H, T1)

2

|X |

Assume by a way of contradiction that |T1| ≥ β|X |, then Claim 35 implies that

w(H, T1)
2

|X |
≥

(
w(H)

2
|T1| − 2(

√
α|H|r + ε)|T1|

)
2

|X |

=
|T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε

2|T1|
|X |

,

where the equality follows from the fact that w(H) = 1.
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Thus
|T1|(1− ε∗)
|X |

>
|T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε

2|T1|
|X |

,

⇒ 4
√
α|H|r + 4ε > ε∗.

But the latter contradicts the definition of ε∗. Hence we can deduce that |T1| < β|X |.
Similarly, define T2 = {x|

∑
h∈H Pr(x|h)qt(h|m) > 1+ε∗

|X | }. Assume by a way of contra-

diction that |T2| ≥ β|X | then

(1 + ε∗)|T2|
|X |

<
∑
h∈H

Pr(T2|h)qt(h|m) ≤ |T2|
|X |

+ 2
√
α|H|r2|T2|

|X |
+ 2ε

2|T2|
|X |

,

where the left inequality follows from the definition of T2 and the right inequality follows
from Claim 35. So again we conclude that |T2| < β|X |.

8 Knowledge Graph Remains K-expander

Let us prove that a K-expander remains a K-expander even in the face of a new example,
provided that the certainty is low and the hypotheses graph is mixing.

Denote by Sm
t,mt+1 ⊆ X the examples that cause the memory to change from mt to

mt+1.

Claim 37. If the hypotheses graph is an (α, β, ε) − H-expander and the graph G′t is an
(α′, β′, ε′) − K-expander, then the graph G′t+1 is an (α′, β′, 16ε + 16

√
α|H|c · cert(Mt) +

2β
β′ + ε′)−K-expander.

Proof. Define ε∗ := 2ε + 2
√
α|H|c · cert(Mt). Notice that we can assume without loss of

generality that ε∗ ≤ 1/4 (i.e., ε +
√
α|H|c · cert(Mt) ≤ 1/8), otherwise the statement in

the claim is trivial.
The distribution qt+1 over memories m at time t + 1 also defines a distribution over

(mt, S) where mt is a memory at time t and S ⊆ X is a set labeled examples, in the
following way

qt+1(mt, S) = qt(m
t) Pr(S|mt)

For ease of notation, if S = {x} (i.e., S includes only one labeled example), we simply
write qt+1(mt, x).

Fix a β′-enlarging distribution p (with respect to qt+1) over memories at time t+ 1 and

denote its support by M . For each m ∈ M , denote p(m) = qt+1(m)
β′m

, for some β′m ≥ β′.

This induces a distribution over (mt, S), where mt is a memory at time t and S is a set of

labeled examples p(mt, S) = qt(mt) Pr(S|mt)
β′m

.

Fix a set of hypotheses H ⊆ H with |H| ≥ α|H|.
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We will start by proving that for any mt, memory at time t, and for any S ⊆ X , |S| ≥
β|X |, the probability qt+1(H|mt, S) is not much more than qt(H|mt). Fix mt, a memory
at time t.

qt+1(H|mt, S) =
∑
h∈H

qt+1(h|mt, S)

(Claim 8) =
∑
h∈H

qt(h|mt)
qt+1(S|h,mt)

qt+1(S|mt)

(Claim 7) =
∑
h∈H

qt(h|mt)
qt+1(S|h,mt)∑

h′ qt+1(S|h′,mt)qt(h′|mt)

=
∑
h∈H

qt(h|mt)
Pr(S|h)∑

h′ Pr(S|h′)qt(h′|mt)

=
∑
h∈H

qt(h|mt)

∑
x∈S Pr(x|h)∑

x∈S,h′ Pr(x|h′)qt(h′|mt)

(see below) =
∑
h∈H

qt(h|mt)
∑

x∈S
2
|X |I(x,h)∈E∑

h′∈H qt(h
′|mt)

∑
x∈S

2
|X |I(x,h′)∈E

.

The last equality is true since if (x, h) ∈ E then Pr(x|h) = 2
|X | , else Pr(x|h) = 0.

To further simplify this expression we define the weights w(h) = qt(h|mt) for each
hypothesis h ∈ H. Using the weight notation from Section 7 we have that

qt+1(H|mt, S) =

∑
h∈H,x∈S qt(h|mt)I(x,h)∈E∑
h′∈H,x∈S qt(h

′|mt)I(x,h′)∈E
=
w(H,S)

w(H, S)

Since
∑

h∈Hw(h)2 ≤ c · cert(Mt), we know from Claim 35 with ε∗ (recall that ε∗ = 2ε +

2
√
α|H|c · cert(Mt) that

qt+1(H|mt, S) ≤
qt(H|mt)

2 |S|+ ε∗|S|
qt(H|mt)

2 |S| − ε∗|S|

(using qt(H|mt) = 1) ≤
qt(H|mt)

2 |S|+ ε∗|S|
1
2 |S| − ε∗|S|

(divide and multiply by |S|/2) =
qt(H|mt) + 2ε∗

1− 2ε∗

=
qt(H|mt)

1− 2ε∗
+

2ε∗

1− 2ε∗

(for ε∗ ≤ 1/4) ≤ qt(H|mt)(1 + 4ε∗) + 4ε∗

≤ qt(H|mt) + 8ε∗.
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For each memory mt at time t, denote by

Err(mt) = {x ∈ X |qt+1(H|mt, x) > qt(H|mt) + 8ε∗}.

Using Claim 9, we have that

qt+1(H|mt, Err(mt)) =
∑

x∈Err(mt)

qt+1(H|mt, x)
qt+1(mt, x)

qt+1(mt, Err(mt))

> (qt(H|mt) + 8ε∗)
∑

x∈Err(mt)

qt+1(mt, x)

qt+1(mt, Err(mt))

= qt(H|mt) + 8ε∗

Then for allmt ∈Mt, since for each S ≥ β|X | we know that qt+1(H|mt, S) ≤ qt(H|mt)+
8ε∗ and from what we have just proved, |Err(mt)| < β|X |. We will show that this implies
a bound on qt+1(Err(mt)|mt).

Using Claim 7, we know that for any labeled example x,

qt+1(x|m) =
∑
h

qt+1(x|h,m)qt(h|m)

=
∑
h

Pr(x|h)qt(h|m)

≤
∑
h

2

|X |
qt(h|m) =

2

|X |
,

Hence,

qt+1(Err(mt)|mt) =
∑

x∈Err(m)

qt+1(x|m) < β|X | 2

|X |
= 2β
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Let us rewrite the desired expression∑
m∈M

qt+1(H|m)p(m) =
∑
m∈M

qt+1(H| ∨mt (mt, Sm
t,m))p(m)

(Claim 9) =
∑

m∈M,mt

qt+1(H|mt, Sm
t,m)

qt+1(mt, Sm
t,m)

qt+1(m)

qt+1(m)

β′m

=
∑

m∈M,mt

qt+1(H|mt, Sm
t,m)p(mt, Sm

t,m)

=
∑

m∈M,mt

qt+1(H|mt,∨x∈Smt,mx)p(mt, Sm
t,m)

(Claim 9) =
∑

m∈M,mt

qt+1(H|mt, x)
qt+1(mt, x)

qt+1(mt, Smt,m)

qt+1(mt, Sm
t,m)

β′m

=
∑

m∈M,mt

x∈Smt,m

qt+1(H|mt, x)p(mt, x)

=
∑

mt,x∈X

qt+1(H|mt, x)p(mt, x)

To bound this desired expression we divide all the pairs of (mt, x) depending on whether
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x ∈ Err(mt) or not. Hence, it is equal to∑
mt,

x/∈Err(mt)

qt+1(H|mt, x)p(mt, x) +
∑
mt,

x∈Err(mt)

qt+1(H|mt, x)p(mt, x)

≤
∑
mt,

x/∈Err(mt)

(qt(H|mt) + 8ε∗)p(mt, x) +
∑
mt,

x∈Err(mt)

p(mt, x)

≤

∑
mt,x

qt(H|mt)p(mt, x)

+ 8ε∗ +
∑
mt

qt+1(mt, Err(mt))

β′

=

∑
mt,x

qt(H|mt)p(mt, x)

+ 8ε∗ +
∑
mt

qt+1(Err(mt)|mt)qt(m
t)

β′

≤

∑
mt,x

qt(H|mt)p(mt, x)

+ 8ε∗ +
∑
mt

2βqt(m
t)

β′

≤

∑
mt,x

qt(H|mt)p(mt, x)

+ 8ε∗ +
2β

β′

≤ |H|
|H|

+ ε′ + 8ε∗ +
2β

β′
,

where the last inequality follows from the assumption in the claim that the knowledge
graph at time t is an (α, β′, ε′)−K-expander.

9 Heavy Sourced Memories

We start by examining one possible step of the algorithm: when there is an abundance of
examples S ⊆ X that lead from a memory mt at time t to a memory mt+1 at time t + 1.
The algorithm can apply such a step, for example, to examine consistency with a specific
hypothesis h. All the labeled examples that are consistent with h (there are |X |/2 such
labeled examples) will lead the algorithm to change the memory state from mt to mt+1.

Definition 38. The set of heavy-sourced memories at time t+ 1 is defined as

Mheavy>b
t+1 = {mt+1|∃mt ∈Mt with at least b|X| labeled examples that lead to mt+1}.

We will assume, without loss of generality, that mt+1 cannot be reached through other
memories (otherwise, make a few copies of mt+1; we will make this argument formal in
Section 11). Under this assumption it makes sense to identify – as we will do later – a
memory mt+1 with a pair (mt, S) that lead to it.
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We would like to show that the certainty does not increase much as a result of heavy
steps. The intuition is that if there is low certainty at mt, then the mixing of the hypotheses
graph ensures that S reveals very little information on which of the possible hypotheses
is the underlying one. The bound on the certainty at time t + 1 as a function of the
certainty at time t is shown in Claim 39 and in Claim 40. Claim 39 gives an expression for
cert+1(Mheavy>b

t+1 ). To understand this expression, notice that a small variant of Claim 30
is the following equality

certw(M) =
∑

m∈M,h∈H
qt(h)qt(h|m)qt(m|h)w(m).

Claim 39. If |Ht+1| ≥ |Ht|(1 − 1/c), and c ≥ 2 then for any set M of memories at time

t+ 1 and any weighted vector w (i.e., ∀i, wi ∈ [0, 1]) it holds that cert+1
w (Mheavy>b

t+1 ∩M) is
at most(

1 +
2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)

Proof. Let us start with rewriting qt+1(h|mt+1), for some mt+1 ∈ Mheavy>b
t+1 that corre-

sponds to the pair (mt, S)

(?) qt+1(h|mt+1) = qt+1(h|S,mt)

(using Claim 8) = qt(S|h,mt)
qt(h|mt)

Pr(S|mt)

(using Pr(S|h,mt) = Pr(S|h), =
Pr(S|h)qt(h|mt)∑

h′ Pr(S|mt, h′)qt(h′|mt)

and Claim 7)

=
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

Note that
(??) qt+1(mt+1|h) = qt(m

t|h) Pr(S|h).
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Use Claim 30 and equations (?), (?, ?) to rewrite cert+1
w (Mheavy>b

t+1 ∩M)∑
h∈H

qt+1(h)
∑

mt+1∈Mheavy>b
t+1 ∩M

wmt+1qt+1(h|mt+1)qt+1(mt+1|h)

=
∑
h∈H

qt+1(h)
∑

(mt,S)∈Mheavy>b
t+1 ∩M

w(mt,S)
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

qt(m
t|h) Pr(S|h)

(see below) ≤
(

1 +
2

c

)∑
h∈H

qt(h)
∑

(mt,S)∈Mheavy>b
t+1 ∩M

w(mt,S)
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

qt(m
t|h) Pr(S|h)

=

(
1 +

2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ Pr(S|h′)qt(h′|mt)

,

to understand why the inequality is true, notice that we have a sum of the form
∑

h∈H qt+1(h)ah
for some value ah ≥ 0, which is equal (by the definition of qt(h)) to

1

|Ht+1|
∑

h∈Ht+1

ah ≤ 1

|Ht|(1− 1/c)

∑
h∈Ht+1

ah

(for c ≥ 2) ≤
(

1 +
2

c

)
1

|Ht|
∑

h∈Ht+1

ah

(Ht+1 ⊆ Ht) ≤
(

1 +
2

c

)
1

|Ht|
∑
h∈Ht

ah

=

(
1 +

2

c

)∑
h∈H

qt(h)ah

The next claim shows that certainty does not increase much in the case of heavy sourced
memories.

Claim 40. If the hypotheses graph is an (ε, ε′)-sampler, c ≥ 4, |Ht| ≥ |H|/3, |Ht+1| ≥
|Ht|(1 − 1/c), cert(Mt) ≤ 3

|H| , and for each m ∈ Mt, h ∈ Ht, it holds that qt(h|m) ≤
a · cert(Mt), and

b ≥ max(5εc+ 2c
√

3ε′c, 12a2ε′c+ ε),

then for any set of memories M at time t+ 1 and any weight w it holds that

cert+1
w (Mheavy>b

t+1 ∩M) ≤

(1 +
4

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M

cert(mt)
|S|
|X |

w(mt,S)

+

[
2

c
· cert(Mt)

]
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Proof. For each subset of labeled examples S ⊆ X define Err(S) ⊆ H as the set of all

hypotheses that do not sample S correctly, i.e., if h ∈ Err(S), then
∣∣∣Pr(S|h)− |S||X |

∣∣∣ > ε.

From the sampler property of the hypotheses graph (see Definition 12) we know that for
every S ⊆ X , |Err(S)| ≤ ε′|H|.

According to Claim 39, cert+1
w (Mheavy>b

t+1 ∩M) is at most (?)(
1 +

2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)

The denominator can be lower bounded using the sampler property of the hypotheses graph
as follows ∑

h′

qt(h
′|mt) Pr(S|h′) ≥

∑
h′ /∈Err(S)

qt(h
′|mt) Pr(S|h′)

≥
(
|S|
|X |
− ε
) ∑
h′ /∈Err(S)

qt(h
′|mt)

(see below) ≥
(
|S|
|X |
− ε
)

(1− ε′′),

where in the last inequality we used Claim 6 with ε′′ :=
√
ε′|H|c · cert(Mt) and the distri-

bution qt(·|mt) we also used the fact that since mt /∈ BadMt we know that
∑

h q(h|mt)2 ≤
c · cert(Mt). From the assumption in the claim we know that cert(Mt) ≤ 3

|H| , this implies

that ε′′ ≤
√

3ε′c.
Consider two cases:
Case 1: If h /∈ Err(S), then Pr(S|h) ≤ |S|

|X | + ε. Thus,

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)
≤

|S|
|X | + ε(

|S|
|X | − ε

)
(1− ε′′)

≤ 1 +
2ε+ ε′′(

|S|
|X | − ε

)
(1− ε′′)

(using |S|/|X | ≥ b) ≤ 1 +
2ε+ ε′′

(b− ε) (1− ε′′)

Case 2: If h ∈ Err(S), then we use Pr(S|h) ≤ 1 to bound

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)
≤ 1

(b− ε) (1− ε′′)
.
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We will show that∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈Err(S)

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h) ≤ 6a2ε′ · cert(Mt)

The left hand side is at most

(see below) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(h)qt(h|mt)qt(m
t|h)2

|S|
|X |

(Claim 29) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(m
t)qt(h|mt)2 · 2 |S|

|X |

(assumption in the claim) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(m
t)(a · cert(Mt))

2 · 2 |S|
|X |

(cert(Mt) ≤
3

|H|
) ≤

∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈Err(S)

qt(m
t)

3a2

|H|
· cert(Mt) · 2

|S|
|X |

(|Err(S)| ≤ ε′|H|) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

qt(m
t)

3a2

|H|
· cert(Mt) · 2

|S|
|X |
· ε′|H|

≤ 6a2ε′ · cert(Mt) ·
∑

mt∈Mt

qt(m
t)

≤ 6a2ε′ · cert(Mt)

The first inequality is true from the following reasons: 1. wi ≤ 1, for each i 2. for each
x ∈ X , Pr(x|h) is either 0 or 2/|X | 3. if h /∈ Ht then qt(h) = 0.

To sum up the two cases, Equation (?) is at most(
1 +

2

c

)[[ ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S)

(
|S|
|X |

+ ε

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)]

+ 6a2ε′ · cert(Mt)
1

(b− ε) (1− ε′′)

]
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Using Claim 30, (i.e., cert(mt) =
∑

h∈H qt(h)qt(h|mt)qt(m
t|h)), Equation (?) is at most(

1 +
2

c

)[[ ∑
(mt,S)∈Mheavy>b

t+1 ∩M

cert(mt)w(mt,S)
|S|
|X |

(
1 +

ε

|S|/|X |

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)]

+ 6a2ε′ · cert(Mt)
1

(b− ε) (1− ε′′)

]

The rest of the proof uses simple algebraic manipulations.(
1 +

2

c

)(
1 +

ε

|S|/|X |

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)
≤

(
1 +

2

c

)(
1 +

ε

b

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)
(see Items (1), (2) below) ≤

(
1 +

2

c

)(
1 +

1

5c

)(
1 +

1

c

)
(see Item (3) below) ≤ 1 +

4

c

1. 5εc ≤ b⇒ ε
b ≤

1
5c

2. We would like to bound 2ε+ε′′

(b−ε)(1−ε′′) by 1
c . Recall ε′′ ≤

√
3ε′c. We have 5εc+2c

√
3ε′c ≤

b ≤ 1 ⇒ ε′′ ≤
√

3ε′c ≤ 0.5 ⇒ 1
1−ε′′ ≤ 2. Thus, we would like to show the bound

4εc + 2ε′′c ≤ b − ε, so it is enough that 5εc + 2c
√

3ε′c ≤ b, which is true by the
assumption in the claim.

3. The expression
(
1 + 2

c

) (
1 + 1

5c

) (
1 + 1

c

)
is equal to(

1 +
1

5c
+

2

c
+

2

5c2

)(
1 +

1

c

)
= 1 +

1

5c
+

2

c
+

2

5c2
+

1

c
+

1

5c2
+

2

c2
+

2

5c3

= 1 +
16

5c
+

13

5c2
+

2

5c3

= 1 +
16

5c
+

4

c
· 1

20c

(
13 +

2

c

)
(c ≥ 4) ≤ 1 +

4

c
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Let us move on to the second expression we would like to bound(
1 +

2

c

)
6a2ε′

1

(b− ε) (1− ε′′)

(see Item 1 below) ≤
(

1 +
2

c

)
1

c

(see Item 2 below) ≤ 2

c

1. It suffices to show that 12a2ε′

b−ε ≤ 1/c⇔ 12a2ε′c+ ε ≤ b

2. (1 + 2/c)1/c = 1/c+ 2/c2 and also 2/c2 ≤ 1/c for 2 ≤ c.

10 Many Sourced Memories

We would like to show that the certainty remains low in the case that a new memory
mt+1 is reached by sufficiently large qt-weight memories ψ(mt+1) = {mt

1,m
t
2, . . .} at time t

and each such memory mt
i is reached using exactly one representative labeled example xi.

Recall that representative examples were defined in Section 7.
We will assume, without loss of generality, that mt+1 cannot be reached from mt using

more than one example (otherwise, make a few copies of mt+1; we will make this argument
formal in Section 11). Under this assumption it makes sense to identify – as we will do
later – a memory mt+1 with set of memory-(labeled-)example pairs {(mt

i, xi)} that lead to
it.

Definition 41. The set of many-sourced memories at time t+ 1 is defined as

Mmany>β
t+1 = {mt+1|∃ memories mt

i ∈Mt with
∑
i

qt(m
t
i) ≥ β

and labeled examples xi /∈ NRep(mt
i) that lead to mt+1}.

We will prove that the certainty remains low for many-sourced memories for β that will
be chosen later. Here is an outline of the proof (the exact values of the constants are not
important):

1. Recall from the K-expander property (that its preservation we proved in Claim 37)
that for any large enough H ⊆ H it holds that

qt(H|ψ(mt+1)) ≤ |H|
|H|

+ ε′

(also recall that ψ(mt+1) are the memories at time t that lead to mt+1.)
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2. We will prove that for any h ∈ H,

qt+1(h|mt+1) ≤ 2.2qt(h|ψ(mt+1))

The intuition is that one labeled example gives about one bit of information on h
and this changes the probability by about a factor of 2.

3. Putting together the first two steps we have that except for a small size set T ⊂ H,
for any other h ∈ H,

qt+1(h|mt+1) ≤ 2.3

|H|
.

Importantly, the bound does not not depend on t.

4. Then we will show that certainty remains low.

In step 2 we want to upper bound qt+1(h|mt+1). Let us start with investigating this
term and writing it as a function of memories from time t.

Claim 42. For any hypothesis h and a memory mt+1 that can be reached by the pairs
{(mt

i, Si)} it holds that

qt+1(h|mt+1) =

∑
i Pr(Si|h)qt(h|mt

i)qt(m
t
i)∑

i qt(Si|mt
i)qt(m

t
i)

Proof.

qt+1(h|mt+1) = qt(h| ∨i (mt
i, Si))

(Conditional probability dfn.) =
qt
(
h ∧ (∨i(mt

i, Si))
)

qt(∨i(mt
i, Si))

(De Morgan’s law) =
qt
(
∨i (h ∧ (mt

i, Si))
)

qt(∨i(mt
i, Si))

(Disjoint events) =

∑
i qt
(
h ∧ (mt

i, Si)
)∑

i qt(m
t
i, Si)

(Conditional probability dfn.) =

∑
i qt(h|mt

i, Si) Pr(mt
i, Si)∑

i qt(Si|mt
i) Pr(mt

i)

(Claim 8 & qt(Si|h,mt
i) = Pr(Si|h)) =

∑
i Pr(Si|h)

qt(h|mti)
qt(Si|mti)

qt(Si|mt
i)qt(m

t
i)∑

i qt(Si|mt
i) Pr(mt

i)

=

∑
i Pr(Si|h)qt(h|mt

i)qt(m
t
i)∑

i qt(Si|mt
i)qt(m

t
i)
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Now we are ready to prove step 2.

Claim 43. If mt+1 ∈Mmany>β
t+1 then for any h ∈ H it holds that

qt+1(h|mt+1) ≤ 2.2 · qt(h|ψ(mt+1)).

Proof. We will use the fact that if mt+1 ∈Mmany>β
t+1 , then it can be reached exactly by the

memory-(labeled-)example pairs {(mt
i, xi)} where all memories mt

i are different and for all
i, xi /∈ NRep(mi).

From Claim 42 with Si = {xi} for all i we know that

qt+1(h|mt+1) =

∑
i Pr(xi|h)qt(h|mt

i)qt(m
t
i)∑

i qt(xi|mt
i)qt(m

t
i)

(see below) ≤
∑

i
2
|X |qt(h|m

t
i)qt(m

t
i)∑

i qt(xi|mt
i)qt(m

t
i)

(definition of NRep(mt
i)) ≤

∑
i

2
|X |qt(h|m

t
i)qt(m

t
i)∑

i
1

1.1|X |qt(m
t
i)

= 2.2 ·
∑

i qt(h|mt
i)qt(m

t
i)∑

i qt(m
t
i)

= 2.2 ·
∑
i

qt(h|mt
i)

qt(m
t
i)

qt(ψ(mt+1
i ))

(by Claim 9) = 2.2 · qt(h|ψ(mt+1))

the first inequality is true since if xi and h are consistent then Pr(xi|h) = 2
|X | , else

Pr(xi|h) = 0.

Let us move to step 3.

Claim 44. If the graph G′t is an (α′, β′, ε′) − K-expander, and 22ε′ ≤ α′, then for every

memory mt+1 ∈ Mmany>β′

t+1 there is a set T ⊂ H, |T | ≤ α′|H|, such that for any h /∈ T it
holds that

qt+1(h|mt+1) ≤ 2.3

|H|
.

Proof. Define T = {h| 2.3|H| < qt+1(h|mt+1)}, then

2.3
|T |
|H|

< qt+1(T |mt+1),

From Claim 43 we know that for every h ∈ H it holds that

qt+1(h|mt+1) ≤ 2.2 · qt(h|ψ(mt+1)).
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The last two inequalities imply that

2.3
|T |
|H|

< 2.2 · qt(T |ψ(mt+1)).

Assume by contradiction that |T | ≥ α′|H|, then from the K-expander property we know

that qt(T |ψ(mt+1)) ≤ |T ||H| + ε′. Putting the last two inequalities together we have

2.3
|T |
|H|

< 2.2
|T |
|H|

+ 2.2ε′,

or in other words
1

22

|T |
|H|

< ε′,

which is a contradiction since by the assumption in the claim we know that 22ε′ ≤ α′.

Let us move on and prove the 4 step in the outline. To this end, we first prove that
vertex contraction can only reduce certainty, where contracting a few memories m1, . . . ,ml

in the knowledge graph into one means that all these l vertices are replaced by one vertex
m and all the edges of the form (mi, h) are now of the form (m,h). Notice that the number
of edges remains the same. The reason we care about vertex contraction is that from the
point of view of the memory mt+1 the vertices ψ(mt+1) were contracted.

Claim 45. If memories m1, . . . ,ml have been contracted to a vertex m, then

qt(m)qt(h|m)2 ≤
∑
i

qt(mi)qt(h|mi)
2

Proof.

qt(m)qt(h|m)2 = qt(m)qt(h|m1 ∨ . . . ∨ml)
2

(using Claim 9) = qt(m)

(∑
i

qt(h|mi)
qt(mi)

qt(m)

)2

(by Jensen’s inequality) ≤ qt(m)
∑
i

(
qt(h|mi)

2 qt(mi)

qt(m)

)
=

∑
i

qt(mi)qt(h|mi)
2

Using Claim 29, the last claim imply the following
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Corollary 46. If memories m1, . . . ,ml have been contracted to a vertex m, then

qt(h)qt(h|m)qt(m|h) ≤
∑
i

qt(h)qt(h|mi)qt(mi|h)

Claim 47. If the hypotheses graph is an (α, β, ε)−H-expander, the graph G′t is an (α′, β′, ε′)−
K-expander, 22ε′ ≤ α′, c ≥ 45, cert(Mt) ≤ 3

|H| , |Ht+1| ≥ (1 − 1/c)|Ht|, 3|Ht| ≥ |H|, and

for each m ∈Mt, h ∈ Ht, it holds that qt(h|m) ≤ a · cert(Mt), then for any set of memories
M at time t+ 1 and any weighted vector w (i.e., ∀i, wi ∈ [0, 1]) it holds that

cert+1
w (Mmany>β′

t+1 ∩M) ≤

 2.3

|H|
·

∑
m∈Mmany>β′

t+1 ∩M

qt+1(m)wm

+ 13.5α′a2cert(Mt)

Proof. Using Claim 44 for every memory mt+1 ∈ Mmany>β′

t+1 there is a set Tmt+1 ⊂
H, |Tmt+1 | ≤ α′|H|, such that for any h /∈ Tmt+1 it holds that

qt+1(h|mt+1) ≤ 2.3

|H|
.

Using Claim 30,

cert+1
w (Mmany>β′

t+1 ∩M) =
∑

mt+1∈Mmany>β′
t+1 ∩M
h∈H

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1

=
∑

mt+1∈Mmany>β′
t+1 ∩M

h/∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1 +

∑
mt+1∈Mmany>β′

t+1 ∩M
h∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1

The sum over h /∈ Tmt+1 is at most∑
mt+1∈Mmany>β′

t+1 ∩M
h/∈Tmt+1

qt+1(h) · 2.3

|H|
· qt+1(mt+1|h)wmt+1

≤ 2.3

|H|
·

∑
mt+1∈Mmany>β′

t+1 ∩M

wmt+1

∑
h∈H

qt+1(h)qt+1(mt+1|h)

=
2.3

|H|
·

∑
mt+1∈Mmany>β′

t+1 ∩M

qt+1(mt+1)wmt+1
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Let us focus on the sum over h ∈ Tmt+1 . From Claim 43 we know that

qt+1(h|mt+1) ≤ 2.2qt(h|ψ(mt+1)) (?)

We can also upper bound the term

qt+1(mt+1|h) = qt+1(∨i(mt
i, xi)|h)

=
∑
i

qt+1(mt
i, xi|h)

=
∑
i

qt(m
t
i|h) Pr(xi|h)

(see below) ≤
∑
i

qt(m
t
i|h)

2

|X |

=
2

|X |
qt(ψ(mt+1)|h) (??)

where the inequality is true since if I(x,h)∈E then Pr(x|h) = 2/|X |, else Pr(x|h) = 0. Thus,
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from Equation (?), (??) (and using ∀iwi ∈ [0, 1])∑
mt+1∈Mmany>β′

t+1 ∩M
h∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)

≤ 4.4

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

h∈Tmt+1

qt+1(h)qt(h|ψ(mt+1))qt(ψ(mt+1)|h)

(see below) ≤ 4.5

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

h∈Tmt+1∩Ht

qt(h)qt(h|ψ(mt+1))qt(ψ(mt+1)|h)

(using Claim 46) ≤ 4.5

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

h∈Tmt+1∩Ht
mt∈ψ(mt+1)

qt(h)qt(h|mt)qt(m
t|h)

(using Claim 29) ≤ 4.5

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

h∈Tmt+1

mt∈ψ(mt+1)

qt(m
t)qt(h|mt)2

(assumption in the claim) ≤ 4.5

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

h∈Tmt+1

mt∈ψ(mt+1)

qt(m
t)(a · cert(Mt))

2

(|Tmt+1 | ≤ α′|H|) ≤
4.5

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

mt∈ψ(mt+1)

qt(m
t)(a · cert(Mt))

2 · α′|H|

(cert(Mt) ≤
3

|H|
) ≤ 13.5α′a2cert(Mt) ·

1

|X |
∑

mt+1∈Mmany>β′
t+1 ∩M

mt∈ψ(mt+1)

qt(m
t)

(see below) ≤ 13.5α′a2cert(Mt)

to understand why the second inequality is true, notice that we have a sum of the form
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4.4
∑

h∈T qt+1(h)ah for some value ah ≥ 0, which is equal (by the definition of qt) to

4.4

|Ht+1|
∑

h∈Ht+1∩T
ah ≤ 4.4

|Ht|(1− 1/c)

∑
h∈Ht+1∩T

ah

(for c ≥ 45) ≤ 4.5

|Ht|
∑

h∈Ht+1∩T
ah

(Ht+1 ⊆ Ht) ≤
4.5

|Ht|
∑

h∈Ht∩T
ah

= 4.5
∑
h∈T

qt(h)ah

The last inequality is true since every m ∈ M is in ψ(mt+1) for at most |X | memories
mt+1.

11 Combining Many Sourced and Heavy Sourced Memories

In this section we sum up all the claims proven so far and show that for an hypotheses
graph that is d-mixing, if the memory is bounded, then the number of labeled examples

used till learning must be large. To do so, we will notice that cer1(M1) = O
(

1
|H|

)
, and

then prove that
cert+1(Mt+1) ≤ cert(Mt)(1 + |H|−ν),

for some small constant ν > 0. This will imply that even after many steps (about Ω(|H|ν))
the certainty will be at most O(1/|H|) at each step.

To bound the certainty at each step, we show how to decompose the edges of the
knowledge graph, so that each edge leads either to a heavy-sourced memory or to a many-
sourced memory (recall Definitions 38, 41), or is part of a small error set. To achieve this
we duplicate some of the memories.

Claim 48 (Decomposition lemma). Suppose that the hypotheses graph is an (α, β, ε) −
H-expander, the number of memory states is at most Λ,

√
α|H|c · cert(Mt)+ε < 1/44, and

fraction of edges removed from the knowledge graph Gt, i.e., γ = 1 − |E
′
t|

|Et| , is at most 0.5,

then for any time t and γ1, γ2 ∈ (0, 1) by

• removing at most
2

c
+ 4β + 4cγ1γ2Λ

fraction of the edges from Gt+1 (recall that c > 1 was used to define BadM )

• creating for each memory m in Gt+1 copies (m, i) so each edge (m,h) now corresponds
to an edge ((m, i), h) for some single i
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we can make sure that memories in the new graph G′t+1 are only in Mmany>γ1
t+1 ∪Mheavy>γ2

t+1 .

Recall the connection between qt and G′t mentioned in Section 5 — the probability
qt(m) is the fraction of edges connected to m in G′t.

Notice that in order for this claim to be meaningful, the term 4cγ1γ2Λ must be smaller
than 1.

Proof. For each hypothesis there are exactly |X |2 labeled examples that are consistent with

it. Thus there are
(
|X |
2

)t
sequences of length t that are consistent with each hypothesis.

Thus, there are

Lt :=

(
|X |
2

)t
|H|

edges in the knowledge graph at time t. Put it in other words, at each time step the number
of edges is multiplied by |X |2 , i.e.,

Lt+1 =
|X |
2
· Lt.

This implies that there are at least (1− γ)Lt+1 = (1− γ) |X |2 · Lt edges in G′t+1.
We start by removing a small number of edges:

• Remove edges in Gt+1 connected to memories m at time t with
∑

h qt(h|m)2 >
c · cert(Mt)

– As was discussed in Section 6, thus are BadM and Markov’s inequality implies
that at most 1/c of the weight over memories are of this type. I.e., we remove
at most 1/c fraction of the edges.

• Remove edges in Gt+1 that the t+ 1 labeled example is a non-representative labeled
example (see Section 7) in Gt (i.e., labeled examples x such that qt+1(x|m) ≤ 1

1.1|X |
or qt+1(x|m) ≥ 1.1

|X |)

– Using Claim 36 for any memory m at time t, |NRep(m)| ≤ 2β|X |. Thus, the
fraction of edges in Gt+1 of this type is at most 4β (because for each memory

m at least |X |2 of the possible X labeled examples will make a new edge in Gt+1

and at most 4β |X |2 of these edges are non-representative labeled examples).

• Remove edges in Gt+1 connected to memories mt+1 at time t + 1 with less than
(1−γ)Lt+1/(cΛ) edges (i.e., much less than the average number of edges to a memory)

– A simple calculation proves that we removed at most 1/c of the edges.

• Using the remaining edges, for each other memory mt+1 create a few copies in the
following way (note that we will not add new edges in the process):
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many-source Do until impossible: if mt+1 is connected to memories {mt
i} with total qt-weight

more than γ1 using labeled examples {Si}, then create a copy (mt+1, j) and
connect all memories mt

i to (mt+1, j) with one labeled example xi ∈ Si. Retain
all other labeled examples Si \ {xi}.

heavy-source Do until impossible: if mt+1 is connected to a memory mt with more than γ2|X |
labeled examples S, then create a copy (mt+1, j) and connect memory mt to
(mt+1, j) with all labeled examples S.

– If some edges are still connected to mt+1 after the last two steps are over, then
remove those remaining edges.

– Let us explore how many edges were removed in this step. For that, first re-
call what γ1 and γ2 represent (see Definitions 38, 41). If there are more than
γ1|X |γ2Lt edges connected to a memory mt+1 in graph G′t+1, then we know that
the there is i such hat memory (mt+1, i) is heavy-sourced or many-sourced.

What is the fraction of edges we might remove out of all edges entering a memory
at time t + 1? (recall that memories left have at least than (1 − γ)Lt+1/(cΛ)
edges entering them)

γ1|X |γ2Lt
(1− γ)Lt+1/(cΛ)

=
γ1|X |γ2Lt

(1− γ)Lt|X |/(2cΛ)
= 2cγ1γ2Λ · 1

1− γ
≤ 4cγ1γ2Λ,

where in the last inequality we used 1
1−γ ≤ 2, which is true since γ ≤ 0.5.

Thus, the total fraction of edges removed in the entire process is at most

1

c
+ 4β +

1

c
+ 4cγ1γ2Λ.

Recall that we defined M1 in Definition 25 and before that we defined ε1. For all t ≥ 1,
we will construct Mt+1 formally in the proof of Claim 49. Recall also that Ht+1 and c were
defined in Section 6.

It might be helpful to think of d in the following claim as roughly
√
|H|, c = |H|s, for

a very small constant s > 0, and |H| ≈ |X |.

Claim 49. If the hypotheses graph is d-mixing, β = c100d2

|H||X | , Λ is the number of memory

states with Λ ≤ (cβ)−1.25, and c > 108, then for any time step t ≤ 10−8 · c, the following
hold

• |Ht| ≥ (1− 1/c)t−1|H|

• the graph G′t is an ( 1
c10 , 2βc

16, t+1
c14 )−K-expander
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• for any weight vector w (i.e., ∀i, wi ∈ [0, 1]) on the memories at time t and for any
subset of memories at time t, M ⊆Mt

certw(M) ≤

[
2.3

|H|

(∑
m∈M

qt(m)wm

)
+

8

c
·
t−1∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t−1

• qt(Mt) ≥ 1− t
c

• for each h ∈ Ht,m ∈Mt it holds that qt(h|m) ≤ 2c2 · cert(Mt)

• we remove at most 4t
c fraction of the edges of the knowledge graph at time t

Before we prove the claim let us prove (in Claim 50) that the last item in the claim’s
list implies that cert(Mt) ≤ 3

|H| .

Claim 50. If cer1(M1) ≤ 2.4
|H| and for any t ≤ 10−8 · c,

cert(Mt) ≤

[
2.3

|H|
+

8

c
·
t−1∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t−1

then cert(Mt) ≤ 3
|H| .

Proof. First recall a well known inequality, for any x, 1 +x ≤ ex ⇒ ∀n > 0, (1 +x)n ≤ exn.

Thus, (1 + 6
c )
t ≤ e6t/c. Since t ≤ 0.001 · c ≤ (ln(2.4/2.3)/6) · c, we have that

(
1 + 6

c

)t ≤ 2.4
2.3 .

Thus,

cert(Mt) ≤
2.4

|H|
+

8.5

c
·
t−1∑
t′=1

cert
′
(Mt′).

Let us focus on the following recursively defined series: a1 = 2.4
|H| and

at+1 =
2.4

|H|
+

8.5

c
·

t∑
t′=1

at′ .

Then at ≥ cert(Mt). Since this series is monotonically increasing, we have the following
upper bound

at+1 ≤ a1 +
8.5t

c
at

(t ≤ 10−8 · c) ≤ a1 +
1

100
at

≤ a1 +
1

100
(a1 +

1

100
at−1)

(geometric series) ≤ . . . ≤ 1.02a1 ≤
3

|H|
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Proof. (of Claim 49) From Proposition 15 we know that the hypotheses graph is an

(εsam, ε
′
sam = 8d2

|H||X |ε2sam
)-sampler for any εsam > 0. From Proposition 17, it is also

(α, β, ε1) − H-expander with ε1 = 2d√
α|H|β|X |

for any α. We pick α = 1/c34. By the choice

of α, β and for c ≥ 2 we have that

ε1 =
2d√

α|H| · c100d2

|H||X | · |X |
=

2√
αc100

≤ 1

c17
.

Those values of α, β will be our choice for α1 and β1 that appear before Definition 25.
We prove the claim by induction on t.
Induction Basis. At the beginning H1 = H. From Claim 26, we know that G′1 is an

(α, β, ε = 8ε1 + α)−K-expander. Note that ε ≤ 1/c16 for c ≥ 10.
Denote by E is the set of edges in the hypotheses graph.
Take memory m in M1, and denote its degree by dm, then m’s certainty is equal to∑

h

q1(h|m)2 =
∑
h

(
I(h,m)∈E

dm

)2

= dm

(
1

dm

)2

=
1

dm
,

where the second equality follows from the fact that for each (h,m) /∈ E the value in the
sum is equal to 0 and for each (h,m) ∈ E, the value in the sum is equal to 1/d2

m, and there
are exactly dm hypotheses h with (h,m) ∈ E. From the definition of M1 (see Definition
25), using ε1 ≤ 0.04 we know that

dm ≥ |H|(1/2− ε1) ≥ |H|/2.2,

hence

cer1(M1) ≤ 2.2

|H|
We remove all edges touching a memory not in M1. From Claim 18 there are at most 2β|X |
memories not in M1. The number of edges connected to each memory is at most |H|. I.e.,
we remove at most 2β|X ||H| edges out of the |X ||H|/2. In other words, we remove at most
4β fraction of the edges.

Induction Step. We use the known inequality 1− x ≥ e−2x for x ∈ (0, 1/2)⇒ ∀n >
0, (1− x)n ≥ e−2xn, x ∈ (0, 1/2), and Claim 31 to deduce that (recall c ≥ 2)

|Ht| ≥ (1− 1/c)t−1|H| ≥ e−2(t−1)/c|H| ≥ eln 1/3|H| = |H|
3
,

where the third inequality holds since t− 1 ≤ 0.5 · c ≤ c ln 3
2 .

We will use Claim 37 to prove the K-expander property of G′t+1. Note that for c ≥ 48,

16ε+ 16
√

3αc+
2β

2βc16
≤ 1

c15
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Thus, using Claim 37 and the inductive hypothesis, the graph G′t+1 is a ( 1
c10 , 2βc

16, t+2
c14 )−

K-expander.
From the the inductive hypothesis we have that at most a fraction of 4t

c ≤ 0.5 edges

were removed from G′t. Note also that for c ≥ 2 it holds that
√

3αc+ ε < 1/44.
We use Claim 48 with

• Let γ1 define the many-source set Mmany>γ1
t+1 (see Definition 41). To later apply

Claim 47, we choose γ1 = 2βc16.

• Let γ2 define the heavy-source set Mheavy>γ2
t+1 (see Definition 38). To later apply

Claim 40 we choose

γ2 = 5εsamc+ 50c5

√
8d2

|H||X |ε2sam
We choose εsam such that γ2 will be minimized. To do so, we equate the two

terms that comprise γ2 by choosing ε2sam = 10c4 2

√
8d2

|H||X | , which means that γ2 <

100c3 4

√
d2

|H||X | .

For later use, notice that

γ1γ2 ≤ 200βc19 4

√
d2

|H||X |
= 200βc19 4

√
β

c100
=

200

c6
β1.25

From Claim 48 we know that by removing at most

2

c
+ 4β +

800

c5
β1.25Λ ≤ 2

c
+ 4β +

β1.25

c
Λ

fraction of the edges, the graph only has heavy-sourced or many-sourced memories.
Fix M a set of memories in G′t+1 and a weight vector w (i.e., for each memory at time

t+ 1, w assigns a weight in [0, 1])
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Heavy-sourced memories. We can use Claim 40 to deduce that

cert+1
w (Mheavy>γ2

t+1 ∩M) ≤

(1 +
4

c

) ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M

cert(mt)
|S|
|X |

w(mt,S)

+

[
2

c
· cert(Mt)

]

≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

cert(mt)
|S|
|X |

w(mt,S)

+

[
6

c
· cert(Mt)

]

(see below) ≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

qt(m
t)q2

t (h|mt)

(
1 +

1

c

)
qt+1(S|mt)w(mt,S)

+

[
6

c
· cert(Mt)

]

≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

qt(m
t)q2

t (h|mt)qt+1(S|mt)w(mt,S)

+

[
7

c
· cert(Mt)

]
(?)

To prove the third inequality we will show that for |S| ≥ γ2|X | it holds that

|S|
|X |
≤
(

1 +
1

c

)
qt+1(S|mt).

From the sampler property (see Definition 12) we know that for each subset of examples
S ⊆ X there is a set Err(S) ⊆ H with |Err(S)| ≤ ε′sam|H| such that for each h /∈ Err(S),

Pr(S|h) ≥ |S|
|X |
− εsam
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From Claim 33

qt+1(S|mt) =
∑
h

Pr(S|h)qt(h|mt)

≥
∑

h/∈Err(S)

Pr(S|h)qt(h|mt)

≥
∑

h/∈Err(S)

(
|S|
|X |
− εsam

)
qt(h|mt)

=
|S|
|X |

(
1− εsam
|S|/|X |

) ∑
h/∈Err(S)

qt(h|mt)

(definition of γ2) ≥ |S|
|X |

(
1− εsam

5εsamc

) ∑
h/∈Err(S)

qt(h|mt)

(Claim 6 &cert(Mt) ≤
3

|H|
) ≥ |S|

|X |

(
1− 1

5c

)
(1−

√
3cε′sam)

This means that
|S|
|X |
≤ qt+1(S|mt)(

1− 1
5c

)
(1−

√
3cε′sam)

.

So we just need to show that

1(
1− 1

5c

)
(1−

√
3cε′sam)

≤ 1 +
1

c

First let us simplify
√

3cε′sam

√
3cε′sam =

√
3c

8d2

|H||X |ε2sam(
β

c100
=

d2

|H||X |

)
=

√√√√3c
8β

c10010c4
√

8d2

|H||X |

=

√√√√3c
8β

c10010c4
√

8β
c100

(β ≤ 1) =
1

c26.5

√
3
√

8

10

≤ 1

4c
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Note that

1(
1− 1

5c

) (
1− 1

4c

) − 1 =
1− (1− 1/(4c)− 1/(5c) + 1/(20c2))(

1− 1
5c

) (
1− 1

4c

)(
1

(1− 1
5c)(1−

1
4c)
≤ 2

)
≤ 2(1/(4c) + 1/(5c))

≤ 1

c

Many-sourced memories. We can use Claim 47 since 1
c10 ≥ 22 · t+1

c14 and we get
that

cert+1(Mmany>γ1
t+1 ∩M) ≤ 2.3

|H|
·

∑
m∈Mmany>γ1

t+1 ∩M

qt+1(m)wm +
1

c
· cert(Mt)

=

 2.3

|H|
·

∑
m={(mti,xi)}∈M

many>γ1
t+1 ∩M

qt(m
t
i)qt+1(xi|mt

i)wm

+
1

c
· cert(Mt) (??)

Combining heavy-sourced and many-sourced memories. For each mt, memory
at time t, we define the weight of mt due to heavy-sourced memories

wheavymt :=
∑

S|(mt,S)∈Mheavy>γ2
t+1 ∩M

qt+1(S|mt)w(mt,S).

Similarly, we define the weight of mt due to many-sourced memories

wmanymt :=
∑

xi|m={(mt,xi)}∈M
many>γ1
t+1 ∩M

qt+1(xi|mt)wm.

The total weight of mt is denoted by wmt = wheavymt +wmanymt . Combining (?), (??) we have
that

certw(M) ≤
∑
mt

qt(m
t)

(∑
h

q2
t (h|mt) · wheavymt +

2.3

|H|
· wmanymt

)
+

8

c
· cert(Mt)

≤
∑
mt

qt(m
t) max

{∑
h

q2
t (h|mt),

2.3

|H|

}
· wmt +

8

c
· cert(Mt)

Define Ma = {mt|
∑

h q
2
t (h|mt) > 2.3/|H|} and Mb = {mt|

∑
h q

2
t (h|mt) ≤ 2.3/|H|} and

the last term is equal to ∑
mt∈Ma

qt(m
t)wmt ·

∑
h

q2
t (h|mt)

+

 ∑
mt∈Mb

qt(m
t)wmt ·

2.3

|H|

+

[
8

c
· cert(Mt)

]
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using the induction hypothesis on Ma, the last expression is at most 2.3

|H|

 ∑
mt∈Ma

qt(m
t)wmt

+
8

c
·
t−1∑
t′=1

cert
′
(Mt′)

(1 +
6

c

)t−1

+

 ∑
mt∈Mb

qt(m
t)wmt ·

2.3

|H|

+

[
8

c
· cert(Mt)

]

which is at most 2.3

|H|

 ∑
mt∈Mt

qt(m
t)wmt

+
8

c
·

t∑
t′=1

cert
′
(Mt′)

(1 +
6

c

)t−1

and we get the bound we wanted to show using the following equalities∑
m∈M

qt+1(m)wm =
∑

(mt,S)∈Mheavy>γ2
t+1 ∩M

qt(m
t)qt+1(S|mt)w(mt,S) +

∑
m={(mti,xi)}∈M

many>γ1
t+1 ∩M

qt(m
t
i)qt+1(xi|mt

i)wm

=
∑
mt

qt(m
t)

∑
S|(mt,S)∈Mheavy>γ2

t+1 ∩M

qt+1(S|mt)w(mt,S) +

∑
mt

qt(m
t)

∑
xi|m={(mti,xi)}∈M

many>γ1
t+1 ∩M

qt+1(xi|mt)wm

=
∑

mt∈Mt

qt(m
t)wheavymt +

∑
mt∈Mt

qt(m
t)wmanymt

=
∑

mt∈Mt

qt(m
t)wmt

Removing edges. Denote by M ′ all memories at time t + 1 that are heavy-sourced
or many-sourced. So far we bounded the average certainty cert+1(M ′). Notice that this
average certainty is equal to

cert+1(M ′) =
∑

m∈M ′,h∈H
qt+1(m,h)qt+1(h|m).

Applying Markov’s inequality, we have that

Pr
h,m

[qt+1(h|m) ≥ c2 · cert+1(M ′)] ≤ 1

c2
.

We will remove all edges with qt+1(h|m) ≥ c2 · cert+1(M ′). We will show that this removal
does not increase the certainty by much for most memories.
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Denote by Err all pairs (m,h) such that qt+1(h|m) ≥ c2 ·cert+1(M). Putting in different
words the last equation, we have that

∑
m

qt+1(m)

 ∑
h|(m,h)∈Err

qt+1(h|m)

 ≤ 1

c2
.

Applying Markov’s inequality again, we have that for most memories we do not delete too
many edges:

Pr
m

 ∑
h|(m,h)∈Err

qt+1(h|m) >
1

c

 ≤ 1

c

As was promised in Section 6, we maintain a substantial set of memories Mt+1 ⊆M that
we focus on, and we are ready to define it

Mt+1 :=

m ∈M ′
∣∣∣∣ ∑
h|(m,h)∈Err

qt+1(h|m) ≤ 1

c

 ,

recall that M ′ contains all the memories that are heavy-sourced or many-sourced. Thus,

qt+1(Mt+1) ≥ qt(Mt)−
1

c
≥ 1− t+ 1

c
.

Note that for all m ∈Mt+1, the removal of edges with qt+1(h|m) ≥ c2 · cert+1(M ′) can
only increase by at most a factor of 1

1−1/c ≤ 1 + 1.1
c the probability qt+1(h|m) (because we

have removed at most 1/c fraction of the edges from m ∈Mt+1). Thus, for each m ∈Mt+1

qt+1(h|m) ≤
(
1 + 1.1

c

)
c2cert+1(Mt+1) ≤ 2c2cert+1(Mt+1).

Let us now also remove the edges from Claim 48. Thus (using the bound we showed
earlier on γ1γ2), in time t+ 1 we removed a total fraction of(

1

c
+

1

c2

)
+

(
2

c
+ 4β +

β1.25

c
Λ

)
edges. We will prove that this term is at most 4

c . From the assumption in the claim we
know that Λ ≤ (cβ)−1.25, this means that Λβ1.25 ≤ 1

c1.25 ≤ 1
2c . Also, for the claim to be

nontrivial, Λ ≥ |H|, thus, the term (cβ)1.25 must be smaller than 1/|H|. In particular,
16βc ≤ 1. Hence, the total fraction of edges removed at time t+ 1 is at most

1

c
+

1

16c
+

2

c
+

1

4c
+

1

2c
≤ 4

c
.

The last removal increases the average certainty cert+1
w (M) by at most (1 + 4/c). So,

in total, the removals cause the average certainty cert+1
w (M) to increase by a factor of at
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most (1 + 4/c) · (1 + 1.1/c) ≤ 1 + 6
c . To sum up,

cert+1
w (M) ≤

[
2.3

|H|

(∑
m∈M

qt(m)wm

)
+

8

c
·

t∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t

11.1 Choosing Parameters

For a mixing hypothesis class H, i.e., when d2 ≈ |X |, we show a lower bound that is
roughly |H|1.25 on the number of memory states needed for learning H using less than
|H|Θ(1) labeled examples.

Theorem 51. For any constant s ∈ (0, 1), if the hypotheses graph is d-mixing, |H| is at
least some constant, and the number of memory states is bounded by(

|H||X |
d2

)1.25

· 1(
1 + 16d2

|X |

)1.25
|H|s

then any learning algorithm that outputs the underlying hypothesis (or an approximation
of it) with probability at least 1/3 must use at least 10−8|H|s/130 examples.

Proof. From Claim 21, we know that there is an hypothesis classH′ ⊆ H with |H′| ≥ |H|
1+ 16d2

|X|

such that every two hypotheses in H′ has agreement less than 3/4.
To apply Claim 49 to H′ we will prove that the number of memory states Λ ≤ (cβ)−1.25

with

β =
c100d2

|H′||X |
≤

(
1 + 16d2

|X |

)
c100d2

|H||X |
.

Thus,
1

(βc)1.25
≥
(
|H||X |

d2

)1.25

· 1

c130
(

1 + 16d2

|X |

)1.25

Hence, using the assumption in the claim with c130 = |H|s, we have that Λ ≤ (cβ)−1.25.
From Claim 49 we can deduce that even after 10−8 · c examples given, the certainty is at
most 3/|H′|, the total number of edges removed is at most 4t

c , and 1− qt(Mt) ≤ t
c .

Using Claim 32 there is an hypothesis h ∈ H′ such that the probability to correctly
return it is at most

3

√
c · 3

|H′|
+ 3 · t

c
+

4t

c

52



we will prove that this expression is at most 1/3. Since the claim is nontrivial

(
|H||X |

d2

)1.25

>

|H|. This implies that H′ is much bigger than c. Hence, the first term that comprise this
expression is much smaller than 1/3. The sum of the last two terms that comprise this
expression is much smaller than 1/3 since they are equal to 7 · 10−8.

Thus, H′ is unlearnable with bounded memory (since all hypotheses inH′ are far apart).
Note that the learner is even unable to improper learn H′ (which means that the learner
can return hypothesis not in H′) — because the learner does not have any computational
limitations, it can compute an hypothesis in H′ exactly (since all hypotheses in H′ are far
apart). This implies that also H is unlearnable with bounded memory.

12 Applications

12.1 Random Hypothesis Class

One immediate consequence of Theorem 51, that uses the fact that random graphs are
mixing (see e.g.,[4]), is that almost all hypothesis classes are unlearnable with bounded
memory. Note that unlike for circuits, such a result does not follow from counting argu-

ments because the number of possible hypotheses classes is
(

2|X|/2

|H|
)
≤ 2|X ||H|, whereas the

number of learners with Λ memory states and T labeled examples is about ΛΛT |X |. For
parameters of interest, like Λ = |H|Θ(1) and T = |H|Θ(1), the number of learners is much
larger than the number of hypotheses classes.

Theorem 52. A random hypothesis class with n hypotheses and n labeled examples (for
sufficiently large n) almost surely cannot be learned with bounded memory, i.e., for any
constant 0 ≤ s ≤ 1 if the number of memory states is bounded by

n1.25−s

then any learning algorithm that outputs the underlying hypothesis (or an approximation
of it) with probability at least 1/3 must use at least |H|s/129 examples.

Proof. A random class can be viewed as a random bipartite graph in the following way:
the vertices are examples and hypotheses and there is an edge (h, x) between hypothesis
h and example x if and only if h(x) = 1. We know that this graph with |H| = |X | = n is
almost surely O(

√
n)-mixing and has degree (1+o(1))n/2 (see [4]). From Claim 11 we also

know that the hypotheses graph is also O(
√
n)-mixing. Now we can apply Theorem 51 to

deduce the unlearnability of a random hypothesis class.

12.2 Error Correcting Codes

The next claim is helpful in proving that an hypothesis class is mixing:
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Theorem 53 (see [9]). Let (A,B,E) be a bipartite graph with |A| = |B| = n. Let each
vertex in A have degree at least pn, where 1/2 ≤ p < 1, and let µ ≥ 0 be such that no two
vertices of A have more than p2n+µ common neighbors. Then, (A,B,E) is

√
(p+ µ) · n-

mixing.

We consider one use of this theorem, by proving that any hypothesis class that is also an
error correcting code (will be defined formally) cannot be learned with bounded memory.

Definition 54 (Code). A binary code is a subset C ⊆ {0, 1}n. The elements of C are
called the codewords in C.

Definition 55 (Distance). An error correcting code C ⊆ {0, 1}n has (relative) distance δ
if for any c1 6= c2 ∈ C, the fraction of coordinates that c1 and c2 differ is at least δ.

A code C ⊆ {0, 1}n can be viewed as an hypothesis classHC : the hypotheses correspond
to the codewords, the examples correspond to the n coordinates, and an hypothesis hc ∈ HC
is defined by hc(i) which is equal to the i-th coordinate of c. So the number of labeled
examples X , is |X | = 2n.

If a code C has distance at least δ ≥ 1
2 − ε, then the number of common neighbors of

any two hypotheses is at most

(1− δ)n = (1− δ) |X |
2
≤
(

1

2
+ ε

)
|X |
2

=

(
1

2

)2

|X |+ ε
|X |
2

Denote µ = ε |X |2 . To use Theorem 53 we need to make sure that |C| ≥ 2n (and take only
2n codewords from C as hypotheses) and then we can bound the mixing parameter by√(

1

2
+ µ

)
|X |
2

=
√
|X | ·

√
1

4
+
ε|X |

4

Summing up the discussion so far, using Theorem 51 with the mixing parameter d2 =
|X |
4 (1 + ε|X |) and |H| = |X | = 2n, we have the following theorem.

Theorem 56. For any code C ⊆ {0, 1}n with |C| = 2n and relative distance at least 1
2 − ε

and any constant s ∈ (0, 1), if the number of memory states is bounded by(
4|C|

1 + 2εn

)1.25

· 1

(5 + 8εn)1.25 |C|s
,

then any learning algorithm for HC that outputs the underlying hypothesis (or an approx-
imation of it) with probability at least 1/3 must use at least |C|s/130 examples.

Note that the theorem is useful for codes that have very small rate but very high
distance (for reference, see, e.g., [2]).
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