
Simple doubly-efficient interactive proof systems

for locally-characterizable sets

Oded Goldreich∗ Guy N. Rothblum†

March 2, 2017

Abstract

A proof system is called doubly-efficient if the prescribed prover strategy can be implemented
in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time.

We present direct constructions of doubly-efficient interactive proof systems for problems
in P that are believed to have relatively high complexity. Specifically, such constructions are
presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof
systems for a natural class that contains both problems and is in NC (and also in SC). The
proof systems presented by us are significantly simpler than the proof systems presented by
Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth-
blum, and Rothblum (STOC, 2016).

Contents
1 Introduction 1

1.1 The current work . 1
1.2 Relation to prior work . 2
1.3 Organization and conventions . 3

2 Preliminaries: The sum-check protocol 4

3 The case of t-CLIQUE 4

4 The case of t-SUM 6

5 The general result 8
5.1 A natural class: locally-characterizable sets . 8
5.2 Proof of Theorem 1 . 9
5.3 Generalization: round versus computation trade-off . 10
5.4 Extension to a wider class . 10

References 14

Appendix: An MA proof system for locally-chracterizable sets 16

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. rothblum@alum.mit.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 18 (2017)

1 Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Rackoff [13], and
the demonstration of their power by Lund, Fortnow, Karloff, and Nisan [15] and Shamir [20] are
among the most celebrated achievements of complexity theory. Recall that an interactive proof
system for a set S is associated with an interactive verification procedure, V , that can be made
to accept any input in S but no input outside of S. That is, there exists an interactive strategy
for the prover that makes V accepts any input in S, but no strategy can make V accept an input
outside of S, except with negligible probability. (See [10, Chap. 9] for a formal definition as well
as a wider perspective.)

The original definition does not restrict the complexity of the strategy of the prescribed prover
and the constructions of [15, 20] use prover strategies of high complexity. This fact limits the
applicability of these proof systems in practice. (Nevertheless, such proof systems may be actually
applied when the prover knows something that the verifier does not know, such as an NP-witness
to an NP-claim, and when the proof system offers an advantage such as zero-knowledge [13, 11].)

Seeking to make interactive proof systems available for a wider range of applications, Gold-
wasser, Kalai and Rothblum put forward a notion of doubly-efficient interactive proof systems (also
called interactive proofs for muggles [12] and interactive proofs for delegating computation [19]). In
these proof systems the prescribed prover strategy can be implemented in polynomial-time and the
verifier’s strategy can be implemented in almost-linear-time. (We stress that unlike in argument
systems, the soundness condition holds for all possible cheating strategies (not only for feasible
ones).) Restricting the prescribed prover to run in polynomial-time implies that such systems
may exist only for sets in BPP, whereas a polynomial-time verifier can check membership in such
sets by itself. However, restricting the verifier to run in almost-linear-time implies that something
can be gained by interacting with a more powerful prover, even though the latter is restricted to
polynomial-time.

The potential applicability of doubly-efficient interactive proof systems was demonstrated by
Goldwasser, Kalai and Rothblum [12], who constructed such proof systems for any set that has
log-space uniform circuits of small depth (e.g., log-space uniform NC). A recent work of Reingold,
Rothblum, and Rothblum [19] provided such (constant-round) proof systems for any set that can
be decided in polynomial-time and small amount of space (e.g., for all sets in SC).

1.1 The current work

We present far simpler constructions of proof systems for a natural sub-class of NC ∩ SC, which
is believed not to be in Dtime(p) for any fixed polynomial p. The aforementioned class consists of
all sets that can be locally-characterized by the conjunction of polynomially many local conditions
that can be expressed by Boolean formulae of polylogarithmic size (see definition in Section 5.1).

Theorem 1 (main result, loosely stated): Every locally-characterizable set has a simple doubly-
efficient interactive proof system. Specifically, on input of length n, the verifier runs in Õ(n)-time
and the strategy of the prescribed prover can be implemented in Õ(nc+1)-time, where nc denotes the
number of local conditions in the characterization. Furthermore, the interactive proof system uses
public coins, has logarithmic round-complexity, and uses polylogarithmic communication.

We mention that that using different settings of parameters yields a general trade-off between the
computational complexity and the number of communication rounds (see Theorem 5). The class of

1

“locally-characterizable” sets contains two t-parameterized problems that are widely believed not
to be in, say, Dtime(nt/5):1

t-no-CLIQUE: The set of n-vertex graphs that do not contain a clique of size t.

t-no-SUM: The set of n-long sequences of integers that contain no t elements that sum-up to zero.2

(Indeed, the aforementioned sets are the complements of the NP-sets called t-CLIQUE and t-SUM.)
We also present direct constructions of proof systems for these two sets. The corresponding prover
strategies can be implemented in time Õ(nt) and Õ(nt+1), resp.

Although the generic construction for the class of “locally-characterizable” sets, which is pre-
sented in Section 5.2, almost meets the parameters of constructions tailored for t-no-CLIQUE and
t-no-SUM, we present the latter constructions first (in Sections 3 and 4, resp.). This is done since
the construction tailored for t-no-CLIQUE is simpler and actually more efficient, whereas the con-
struction tailored for t-no-SUM makes use of technical ideas that may be of independent interest
(see digest at the end of Section 4). We also mention that Theorem 1 can be extended to a wider
class of sets, as detailed in Section 5.4.

1.2 Relation to prior work

We first compare our results to the interactive proofs obtained by [12, 19], as well as an interactive
proof system of Thaler [22] for counting the number of t-cliques in a graph. We then discuss the
relationship to the non-interactive proofs presented in [6, 25, 5].

Complexity comparison to [12, 19]. On top of yielding simpler proof systems, the round
complexity of our system is smaller than those of [12, 19]. This is most striking in the case of [12],
which uses a protocol of O(log2 n) rounds (whereas Theorem 1 uses O(log n) rounds). As for [19], its
constant round-complexity is exponential in the degree of the polynomial bounding the complexity
of the set, whereas the constant round-complexity in Theorem 5 is linear in the latter constant.

Comparison to [22]. The recent work [22] gives an interactive proof system for counting the
number of t-cliques in a graph.3 His system uses a constant number of rounds, with Õ(n) commu-
nication, O(|E|+ n) verification time, and O(|E| · nt−2) proving time. The system that we present
for the t-no-CLIQUE problem can also be used to verify the number of t-cliques (see Remark 4). The
verification time is Õ(n2), the number of rounds is logarithmic, the communication is polylogarith-
mic, and the prover work is Õ(nt). As remarked above, we can also trade off the communication
complexity and the number of rounds (see Section 5.3, where this is done for the generic protocol for
“locally-characterizable” sets). That would result in parameters similar to those obtained in [22],
except that the prover complexity is Õ(nt) rather than O(|E| · nt−2) and the verification time is
Õ(n2) rather than O(|E|+ n).

1Currently, t-CLIQUE is conjectured to require time nc′·t, where c′ is any constant smaller than one third of the
Boolean matrix multiplication exponent (see, e.g., [1]). Recall that t-CLIQUE is W[1]-complete [8] and that solving
it in time no(t) refutes the ETH [7]. The 3-SUM conjecture was popularized in [17], and lower bounds for t-SUM were
shown to follow from lower bounds for t-CLIQUE (see [2]).

2Alternatively, we may consider sequences of positive integers and ask if they contain a t-subset that sums-up to
target integer, which is also given as part of the input.

3We remark that the protocol of [22] operates in a more challenging streaming setting, which we do not consider
or elaborate on in this work.

2

Comparison to [6, 25, 5]. Several recent works [6, 25, 5] constructed non-interactive proof
systems for problems in P. The main distinction with our work is that we focus on interactive
proofs, and obtain proof systems with faster verification (and smaller amounts of communication).
Similarly to our work, the proofs in the systems of [6, 25] can be produced in polynomial-time.

Carmosino et al. [6] construct NP certificates for 3-no-SUM. The certificates are of length Õ(n1.5)
and can be verified in deterministic Õ(n1.5)-time. Our proof systems for this problem are inter-
active, and the verification is probabilistic, but the communication is only polylogarithmic, and
the verifier’s work is almost-linear (indeed, this remains true for the t-no-SUM problem, for any
constant t).

Williams [25] constructs MA proof systems for problems in P. An MA proof system is one
in which the prover sends a single message to the verifier, who runs a probabilistic verification
procedure. Focusing on problems that have been at the center of a recent theory of “hardness within
P” [24], he constructs MA proof systems for counting the number of orthogonal vectors within a
collection of n input vectors and for counting the number of t-cliques in a given graph. The MA
proof for counting the number of t-cliques has length and verification time Õ(nbt/2c+2). Björklund
and Kaski [5] construct an MA proof with length and verification time Õ(n(ω+ε)t/6), where ω is
the exponent of square matrix multiplication over the integers and ε > 0 is an arbitrarily small
constant. The time to construct their proof is Õ(n(ω+ε)t/3), matching the best sequential algorithm
known for solving the problem. Comparing these works with our interactive proof for t-no-CLIQUE
(which can also be used to verify the number of cliques), the interactive proof has poly-logarithmic
communication, the verifier’s work is almost-linear, and the prover’s work is Õ(nt).

Inspired by Williams [25] and using one of his results, we also present an MA proof system of
verification complexity Õ(n(c+1)/2) for every locally-characterizable set (i.e., the class considered
in Theorem 1). This proof system is presented in the appendix. For a more restricted subclass of
locally-characterizable sets, which includes the c-no-CLIQUE problem, we construct an MA proof
with improved length and verification time Õ(nc/2).

1.3 Organization and conventions

Section 3 presents our simplest proof system, which is for t-no-CLIQUE. In Section 4 we present
our proof system for t-no-SUM, which is not significantly simpler than the generic construction
but uses an idea that may be of independent interest. Our generic construction for any locally-
characterizable set is presented in Section 5: The corresponding class is defined in Section 5.1, the
basic construction appear in Section 5.2, and ramifications appear Sections 5.3 and 5.4.

Sections 3–5 can be read independently of one another, and without reading Section 2 in which
we merely review the celebrated sum-check protocol. (We assume that the reader is familiar with
the definition of an interactive proof system.)

Conventions: We assume that the verifier (resp., prover) has direct access to the common input;
that is, each bit in the input can be read in unit cost. Unless stated explicitly differently, all
logarithms are to base 2.

3

2 Preliminaries: The sum-check protocol

Fixing a finite field F and a set H ⊂ F (e.g., H may consist of the 0 and 1 elements of F),
we consider an m-variate polynomial P : Fm → F of individual degree d. Given a value v, the
sum-check protocol is used to prove that∑

σ1,...,σm∈H
P (σ1, ..., σm) = v. (1)

The sum-check protocol (of [15]) proceeds in m iterations, starting with v0 = v, such that in the
ith iteration the parties act as follows.

Prover’s move: The prove computes a univariate polynomial of degree d

Pi(z)
def
=

∑
σi+1,...,σm∈H

P (r1, ..., ri−1, z, σi+1, ..., σm) (2)

where r1, ..., ri−1 are as determined in prior iterations, and sends Pi to the verifier.

Verifier’s move: The verifier checks that
∑

σ∈H Pi(σ) = vi−1 and rejects if inequality holds.
Otherwise, it selects ri uniformly in F , and sends it to the prover, while setting vi ← Pi(ri).

If all iteration are completed, the verifier conducts a final check. It computes the value of P (r1, ..., rm)
and accepts if and only if this value equals vm.

Clearly, if Eq. (1) holds (and the prover acts according to the protocol), then the verifier accepts
with probability 1. Otherwise, no matter what the prover does, the verifier accepts with probability
at most m · d/|F|. The complexity of verification is dominated by the complexity of evaluating P
(on a single point). As for the prescribed prover, it may compute the relevant Pi’s by interpolation,
which is based on computing the value of P at (d+ 1) · 2m−i points, for i ∈ [m].

3 The case of t-CLIQUE

For a parameter t ∈ N, given a graph G = ([n], E), the task is determining whether there exist
t vertices such that the subgraph induced by them is a clique; that is, does there exist distinct
v1, ..., vt ∈ [n] such that

∧
j,k∈[t]:j<k χvj ,vk , where χu,v = 1 if and only if {u, v} ∈ E. (Our focus is

on simple graphs, and so we assume that χv,v = 0 for every v ∈ [n].)
The set of yes-instances (i.e., having a t-clique) has an NP-proof system that uses proofs of

length t log n. We shall present a doubly-efficient interactive proof for the set of no-instances.
Letting ` = log n, consider a finite field F of prime size greater than nt, and identify {0, 1}

with the set H containing the zero and one elements of F . Using this identification, we define a
polynomial P : (F `)t → F such that

P (z(1), ..., z(t)) =
∏

j,k∈[t]:j<k

∑
α,β∈H`

EQ(αβ, z(j)z(k)) · χα,β (3)

where EQ(γ, z) =
∏
i∈[2`](ziγi + (1− zi)(1− γi)). (4)

(There is some abuse of notation in Eq. (3): In the first two occurrences, α and β are viewed as an
elements of Ht ⊂ F `, whereas in the last occurrence they viewed as elements of [n] ≡ {0, 1}`.)

4

Note that P has individual degree O(t2), and that it is straightforward to evaluate it in time
O(t2 · 22` · `) = Õ(t2 · n2). Also, for γ, z ∈ H2`, it holds that EQ(γ, z) = 1 if γ = z and EQ(γ, z) = 0
otherwise. Hence, for z ∈ Ht`, it holds that P (z) =

∏
j,k∈[t]:j<k χz(j),z(k) .

The key observation is that the graph G is a no-instances if and only if for all z ∈ (H`)t it holds
that P (z) = 0. (This holds since, for distinct v(1), ..., v(t) ∈ H`, it holds that P (v(1), ..., v(t)) = 1
if the subgraph induced by v(1), ..., v(t) is a clique, and P (v(1), ..., v(t)) = 0 otherwise.)4 Hence, we
obtain an interactive proof system (for the set of no-instances) by applying the sum-check protocol
to the claim

∑
z∈(H`)t P (z) = 0.

The complexity of the verifier’s strategy is dominated by the evaluation of P (as defined in
Eq. (3)), which reduces to

(
t
2

)
computations of sums having the form∑

α,β∈H`

EQ(αβ, r(j)r(k)) · χα,β (5)

where j < k ∈ [t] and r(1) · · · r(t) ∈ (F `)t are determined in the execution of the sum-check protocol.
Writing Eq. (5) as

∑
(α,β)∈H2`∩E EQ(αβ, r(j)r(k)), we can evaluate this sum in time O(|E| · `) =

Õ(|E|+ n).
Turning our attention to the complexity of proving, we observe that the prover has to compute

the polynomials that arise in each of the iterations of the sum-check protocol. The prover can do
so by computing partial sums with at most |H|t` = nt terms, where computing each such term
amounts to poly(t) evaluations of P . Hence, the prover’s complexity is definitely bounded by
Õ(nt · |E|). A closer inspection reveals that we can do better. Specifically, in the ith iteration of
the sum-check, the prover has to provide the univariate polynomial (in z)∑

s∈Ht`−i

P (r, z, s) (6)

where r ∈ F i−1 was determined in the previous iteration. This univariate polynomial can be found
by interpolation, and so the complexity of finding it is poly(t) · 2t`−i ·O(|E| · `), which is Õ(nt) for
i ≥ 2`. Thus, we focus on the case of i ∈ [2` − 1]. In that case, the complexity is nt/2i times the
complexity of evaluating P on rus, where (r, u) ∈ F i−1 × F and s ∈ Ht`−i (for O(t2) values of
u ∈ F). So the question is what is the complexity of evaluating P on such a t`-element argument
(which has a (t`− i)-long suffix in Ht`−i).

Focusing on evaluating each of the inner sums (captured by Eq. (5)), we consider evaluating
the sum

∑
α,β∈H` EQ(αβ, v) · χα,β, when given v = uw ∈ F2` such that w ∈ H2`−p, where p is

determined by i and j, k (indeed, p = i ∈ [2`] if (j, k) = (1, 2), but p < i otherwise). Letting
χγ = χα,β, where γ = αβ such that |α| = |γ|/2, we have∑

γ∈H2`

EQ(γ, uw) · χγ =
∑

(γ′,γ′′)∈Hp×H2`−p

EQ(γ′, u) · EQ(γ′′, w) · χγ′γ′′

=
∑
γ′∈Hp

EQ(γ′, u) · χγ′w

where the second equality holds because for γ′′, w ∈ H2`−p it holds that EQ(γ′′, w) = 1 if γ′′ = w
and EQ(γ′′, w) = 0 otherwise. Hence, evaluating this sum takes time O(2p · `). The final observation

4If v(j) = v(k) for some j < k, then P (v(1), ..., v(t)) = 0, since χv(j),v(k) = 0.

5

is that, in our application, it holds that p ≤ i, since the p values in F \H can only arise from the
values determined in the previous i− 1 iterations and the single value used for interpolation in the
current iteration. It follows that the complexity of implementing the prover’s strategy in the ith

iteration is poly(t) · 2t`−i ·O(2p · `) = Õ(nt).

4 The case of t-SUM

For a parameter t ∈ N, given (a1, ..., an, b) ∈ [m]n+1, the problem is determining whether there
exists t indices i1, ..., it ∈ [n] such that

∑
j∈[t] aij = b. We shall assume, without loss of generality,

that m = poly(n) and that if
∑

j∈[t] aij = b then |{ij : j ∈ [t]}| = t. These assumptions are justified
as follows.

• Given an arbitrary instance (a1, ..., an, b), we consider the instance (a′1,1, ..., a
′
n,t, b

′) such that

a′i,j = (t+ 1)t ·ai+ (t+ 1)j−1 and b′ = (t+ 1)t · b+
∑

j∈[t](t+ 1)j−1. Hence, if
∑

(i,j)∈T a
′
i,j = b′

for some |T | ≤ t, then for every j ∈ [t] there exists a unique i ∈ [n] such that (i, j) ∈ T .

• Starting with the case of m = exp(poly(n)), we reduce to the case of m = poly(n) as follows.

We pick uniformly at random a prime p in S
def
= [O(nt · logm)] and reduces all integers

modulo p.

Observe that if
∑

j∈[t] aij 6= b, then equality modulo pmay hold for at most log tm
log log tm primes p >

logm, whereas the number of primes in S is nt times larger.

To get back to a problem over the integers (rather than over Zp), we reduce the modular
problem to t instances of the integral problem. Specifically, we use the fact that

∑
j∈[t] aij ≡ b

(mod p) if and only if for some i ∈ [t] it holds that
∑

j∈[t] aij = b+ (i− 1) · p.

Our goal is to present an interactive proof for proving that for every i1, ..., it ∈ [n] it holds that∑
j∈[t] aij 6= b.
Letting χ : Z → {0, 1} denote the predicate that returns 0 only on 0, we wish to prove that

for all i1, ..., it ∈ [n] it holds that χ(b −
∑

j∈[t] aij) = 1. Letting B denote the set of primes

in [m′], where m′
def
= log(tm), we may prove instead that for all i1, ..., it ∈ [n] it holds that∏

p∈B

(
1−χ

(
b−

∑
j∈[t] aij mod p

))
= 0, since |b −

∑
j∈[t] aij | < tm and

∏
p∈B p > tm. Let-

ting [a]p denote the value of a mod p, we can rewrite the above as

∏
p∈B

1−χ

[b]p −
∑
j∈[t]

[aij]p mod p

 = 0. (7)

Observing that a
def
= [b]p −

∑
j∈[t][aij]p resides in [−tp+ t, p− 1], it follows that

∑t−1
i=0χ(a+ i · p) =

t− (1−χ(a mod p)). Hence, we replace 1−χ(a mod p) by t−
∑t−1

i=0χ(a+ i ·p), and rewrite Eq. (7)
as ∏

p∈B

t−
 t−1∑
i=0

χ

[b]p + ip−
∑
j∈[t]

[aij]p

 = 0. (8)

Since the arguments to χ resides in [−tp+ t, tp− 1] ⊂ [−tm′ + 1, tm′ − 1], reducing it modulo any
prime q > tm′ does not change the outcome. We shall do so next, while replacing the condition that

6

all (0-1) terms (which correspond to the various (i1, ..., it) ∈ [n]t) evaluate to 1 by the condition
that for a random prime q ∈ [O(log n)] it holds that

∑
i1,...,it∈[n]

∏
p∈B

t−
 t−1∑
i=0

χ

[b]p + ip−
∑
j∈[t]

[aij]p mod q

 ≡ 0 (mod q). (9)

(Recall that if each of the terms equals 0 then Eq. (9) holds, whereas otherwise with high probability
over the choice of q (say q ∈ [2 log(ntm), 3 log(ntm)]) Eq. (9) does not holds.) At this point we can
implement χarithmetically (by just raising the argument to power q−1). This yields the condition

∑
i1,...,it∈[n]

∏
p∈B

t−
 t−1∑
i=0

[b]p + ip−
∑
j∈[t]

[aij]p mod q

q−1 ≡ 0 (mod q). (10)

Towards applying the sum-check protocol, using ` = log n and F = GF(q), we define P : (F `)t → F
such that

P (z(1), ..., z(t)) =
∏
p∈B

t−
 t−1∑
i=0

b′p,i −∑
j∈[t]

∑
α∈H`

EQ(α, z(j)) · a′α,p

q−1 (11)

where {0, 1} ≡ H ⊂ F , EQ : F `×F ` → {0, 1} is the indentity indicator (i.e., EQ(γ, z) =
∏
i∈[`](ziγi+

(1− zi)(1− γi))), and b′p,i = [b]p + ip and a′α,p = [aα]p.
We wish to use the sum-check protocol in order to verify that

∑
z∈(H`)t P (z) equals 0 mod q,

but the problem is that P is a (t`-variate) polynomial over F = GF(q) with individual degree
|B| · (q − 1). This is a problem because, when running the sum-check protocol, the field size must
be larger than the product of the individual degree of the polynomial and the number of variables in
the polynomial. The solution is to run the sum-check protocol over an extension field. Specifically,
it suffices to use the extension field K = F3, since in this case we have t` · (q − 1)|B| < q3/4,
provided that q ≥ log(ntm) (whereas |B| < log(tm) and ` = log n). We thus consider Eq. (11) as
an expression over K, while noting that its value is in the base field F , and that this value indicates
whether the original instance is a yes-instance or a no-instance (provided that we were not unlucky
in our choice of the random prime q ∈ [O(log n)]).

To wrap-up. The interactive proof starts with the verifier selecting uniformly a random prime
q ∈ [2 log(ntm), 3 log(ntm)], and expecting the prover to prove that

∑
z∈(H`)t P (z) = 0, where

this expression as well as the definition of P (in Eq. (11)) are considered over the extension field
K = GF(q)3 = GF(q3). The parties then run the sum-check protocol for t · ` rounds. At the end
of the interaction, the verifier evaluates the residual condition (i.e., evaluates P on a single point).
Hence, the verifier’s computation is dominated by the evaluation of the multi-linear polynomial EQ
on t · 2` = tn points, which means that its complexity is Õ(tn). The prover’s complexity is 2t` = nt

times larger.

Digest: One interesting aspect of the foregoing proof system is that it applies to asserting the
value of

∑
z∈Ht` P (z), where P : F t` → F is a polynomial over F . But since we had no good upper

bound on the degree of P , the sum-check was invoked over an extension field of F , denoted K.
That is, we actually considered a polynomial over K that agrees with P on inputs that reside in
F t`. We note that a similar idea was used by Gur and Raz [14] in their Arthur-Merlin streaming
algorithm.

7

5 The general result

In this section we prove Theorem 1; that is, we present a simple doubly-efficient interactive proof
system for any locally-characterizable set. The latter class is defined next.

5.1 A natural class: locally-characterizable sets

The following definition is related but different from the definition of “local characterization” that
is often used in the property testing literature (see, Sudan’s survey [21]). Most importantly, the
latter definitions do not specify the complexity of the functions φn and πn,j , and typically take p
to be a constant.5

Definition 2 (locally-characterizable sets): A set S is locally-characterizable if there exist a con-
stant c, a polynomial p and a polynomial-time algorithm that on input n outputs poly(log n)-sized
formulae φn : [n]p(logn) × {0, 1}p(logn) → {0, 1} and πn,1, ..., πn,p(logn) : {0, 1}c logn → [n] such that,

for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all w ∈ {0, 1}c logn

Φx(w)
def
= φn(πn,1(w), ..., πn,p(logn)(w), xπn,1(w), ..., xπn,p(logn)(w)) (12)

equals 0.6

That is, each value of w ∈ {0, 1}c logn yields a local condition that refers to polylogarithmically
many locations in the input (i.e., the locations πn,1(w), ..., πn,p(logn)(w) ∈ [n]). This local condition
is captured by φn, and in its general form it depends both on the selected locations and on the value
on the input in these locations. A simplified form, which suffices in many case, uses a local condition
that only depends on the values of the input in these locations (i.e., φn : [n]p(logn)×{0, 1}p(logn) →
{0, 1} only depends on the p(log n)-bit suffix).

The simplified form (in which φn : {0, 1}p(logn) → {0, 1}) suffices for capturing the specific
problems studied in the previous two sections. Specifically, for fixed t ∈ N, when representing n-
vertex graphs by their adjacency matrix, denoted x = (xr,c)r,c∈[n], the t-CLIQUE problem is captured

by Φx(i1, ..., it) = ∧j<kxij ,ik ; that is, we use φn2 : {0, 1}t2 → {0, 1} and πn2,(j,k) : {0, 1}t logn → [n2]
(for j, k ∈ [t]) such that φn2(σ1,1, ..., σt,t) = ∧j<kσj,k and πn2,(j,k)(i1, ..., it) = (ij , ik). Likewise,
with some abuse of notation, the t-SUM problem over [m], where x = (a1, ..., an, b) ∈ [m] (and
m = poly(n)), is captured by Φx(i1, ..., it) = 1 if and only if

∑
j∈[t] xij = xn+1; that is, we use

φn : [m]t+1 → {0, 1} such that φn(z1, ..., zt, zt+1) = TruthValue(
∑

j∈[t] zj 6= zt+1) and πn,j :

{0, 1}t logn → [n+ 1] such that πn,j(i1, ..., it) = ij if j ∈ [t] and πn,t+1(i1, ..., it) = n+ 1.
Note that the complement of every locally-characterizable set has a doubly-efficient interactive

proof system. In this proof system, on input x ∈ {0, 1}n, letting `′ = c` = c log n, the prover
finds an adequate w ∈ {0, 1}`′ , sends it to the verifier, who retrieves the bits xπn,1(w), ..., xπn,p(`)(w)

and evaluates φn on them. Indeed, in this NP-proof system, the prover runs in time 2`
′ · Õ(|x|) =

poly(|x|), whereas the verifier runs in poly(log |x|)-time (given direct access to the input). On the
other hand, the set of yes-instances of this set has a doubly-efficient interactive proof systems

5In addition, the notion used in property testing does not restrict the domain of Φx to have size poly(|x|), although
this can be assumed without loss of generality.

6To simplify our exposition, we require that in case of inputs in S, the predicate φn evaluates to 0 (rather than
to 1).

8

(since computing the function
∑

w∈{0,1}`′ Φx(w), where Φx is as in Eq. (12), is in NC, and so the

proof system of [12] can be used).7 Here we present a direct construction.

5.2 Proof of Theorem 1

Letting ` = log n, we associated [n] with {0, 1}`, and derive from each πn,j : {0, 1}c` → [n] Boolean
formulae πn,j,1, ..., πn,j,` : {0, 1}c` → {0, 1} such that πn,j,k(w) is the kth bit of πn,j(w). We may
assume, without loss of generality, that the depth of each of the formulae (i.e., φn and the πn,j,k’s)
is logarithmic in their size (which is poly(`)).8 Next, for a finite field F of size poly(n), we construct
arithmetic formula φ̂n : F (`+1)·p(`) → F and π̂n,j,k : Fc` → F such that φ̂n (resp., π̂n,j,k) agrees with
φn on H`·p(`)+p(`) (resp., with πn,j,k on Hc`). The crucial point is that these arithmetic formulae
preserve the depth of the Boolean counterparts, and so the degrees of the functions that they
compute is upper bounded by D = poly(log n) � |F|. (Note: F is chosen so that the latter
inequality holds.) Now, letting π̂n,j : Fc` → F ` such that π̂n,j(z) = (π̂n,j,1(z), ..., π̂n,j,`(z)), we

consider the function Φ̂x : Fc` → F (i.e., an extension of Φx) such that

Φ̂x(z)
def
= φ̂n(π̂n,1(z), ..., π̂n,p(`)(z), X1, ..., Xp(`)) (13)

where Xi =
∑

α∈{0,1}` EQ(π̂n,i(z), α) · xα (14)

and, as in Eq. (4), EQ(y, α) =
∏
i∈[`](yiαi+(1−yi)(1−αi)). That is, the value of Φ̂x(z) is obtained by

feeding to φ̂n : F (`+1)·p(`) → F the (p(`) ·`+p(`))-sequence consisting of (π̂n,1(z), ..., π̂n,p(logn)(z)) ∈
(F `)p(`) and the p(`)-long sequence whose jth location contains the field element

∑
α∈{0,1}` EQ(π̂n,j(z), α)·

xα.
We invoke the sum-check protocol on the claim that the sum

∑
w∈{0,1}c` Φ̂x(w) equals 0, relying

on the fact that F is larger than 2c`. This protocol performs c` iterations (i.e., it is applied only
to the outer sum), and the verifier evaluates the residual expression, which amounts to evaluating
the π̂n,j ’s and φ̂n as well as computing poly(`) sums of 2` terms each. The prover’s computation
is dominated by computing a sum of 2c` terms, where each term requires a computation of the
type conducted by the verifier. Recalling that 2` = n, it follows that the verifier runs in almost-
linear-time (i.e., it runs in Õ(n)-time), whereas the prover runs in polynomial-time (i.e., it runs in
Õ(nc+1)-time).

Comment: Applied to the t-no-SUM problem, the foregoing generic construction yields a proof
system of complexity that is comparable to that of the tailored proof system presented in Section 4.
In case of t-no-CLIQUE, the generic construction yields a verifier that runs in time that is almost
linear in the size of the adjacency matrix, whereas the tailored proof system (presented in Section 3)
yields a verifier that runs in time that is almost linear in the number of edges. Furthermore, the
prover’s complexity in this generic construction is n times slower than that of the tailored proof
system.

Remark 3 (a relaxation of Definition 2): Theorem 1 holds also when relaxing the notion of locally-
characterizable sets such that the poly(log n)-sized formulae are required to be generated in Õ(n)-

7Alternatively, one observes that this computation is in SC and use the proof system of [19].
8Note that the transformation to this form can be performed in polynomial time, whereas the relevant formulae

are of poly(logn)-size.

9

time, rather than in poly(log n)-time. Actually, the foregoing proof remains intact even if the said
formulae may depend on x itself, but we consider the class as defined in Definition 2 more natural.

Remark 4 (counting the number of violated condition): The interactive proof system presented
above is applicable also to the task of verifying the number of violated conditions. The same applies
also to the problem-tailored proof systems presented in Sections 3 and 4. Note that the number of
violated conditions in t-no-CLIQUE is the number of t-cliques in the graph. Similarly, the number
of violated conditions for t-no-SUM is the number of t-tuples that sum to the target.

5.3 Generalization: round versus computation trade-off

By using a set H of arbitrary size (rather than H ≡ {0, 1}), we obtain a general trade-off between
the computational complexity and the number of communication rounds. Specifically, the compu-
tational complexity increases by a factor of Õ(|H|), whereas the number of rounds is decaresed by
a factor of log |H|.

Theorem 5 (main result, restated): Every locally-characterizable set has a simple doubly-efficient
interactive proof system. Specifically, on input of length n and using a parameter h ≤ n, we get
public-coin interactive proof systems of round-complexity O(logh n), verification time Õ(h · n), and
proving time Õ(h · nc+1).

In particular, setting h = nε for any constant ε > 0, yields a constant-round interactive proof
of verification time Õ(n1+ε). On the other hand, using h = log n maintains the computational
complexity bounds of Theorem 1 (i.e., Õ(n)-time verification and Õ(nc+1)-time prover strategy)
while using o(log n) rounds of communication.

Proof: We use H = [h] but maintain ` = log n. Defining the πn,j,k’s as above and letting d = log h,
we associate {0, 1}c` with Hc`/d and consider πn,j,k : Hc`/d → {0, 1}. Now, we let π̂n,j,k : Fc`/d → F
be the low degree extension of πn,j,k, and define π̂n,j : Fc`/d → F ` as before. The definition of

Φ̂x : Fc`/d → F is analogous to Eq. (13) except that Eq. (14) is replaced by

Xi =
∑

α∈H`/d

 ∏
i∈[`/d]

∏
β∈H\{αi}

β − zi
β − αi

 · xα (15)

Invoking the sum-check protocol (w.r.t the non-binaryH) on the claim that the sum
∑

w∈Hc`/d Φ̂x(w)
equals 0, yields a protocol that performs c`/d iterations. Again, the verifier evaluates the residual
expression, which amounts to evaluating the π̂n,j ’s and φ̂n as well as computing poly(`) sums of
h`/d = 2` terms each, but here each term calls for evaluating a polynomial that has an arithmetic
formula of size O(`·h/d). The prover’s computation is dominated by computing a sum of hc`/d = 2c`

terms, where each term requires a computation of the type conducted by the verifier.

5.4 Extension to a wider class

As a motivation towards the following extension, we mention the problem of finding a dominating
set of constant size t. This problem does not seem to be locally charcaterizable in the sense of
Definition 2 (cf. [18]), but it definitely reside in the following class.

10

Definition 6 (locally ∀∃-characterizable sets): A set S is locally ∀∃-characterizable if there ex-
ist constants c, c′, a polynomial p and an almost-linear time algorithm that on input 1n out-
puts poly(log n)-sized formulae φn : [n]p(logn) × {0, 1}p(logn) → {0, 1} and πn,1, ..., πn,p(logn) :

{0, 1}(c+c′) logn → [n] such that, for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all
w ∈ {0, 1}c logn there exists w′ ∈ {0, 1}c′ logn such that

Φx(w,w′)
def
= φn(πn,1(w,w′), ..., πn,p(logn)(w,w

′), xπn,1(w,w′), ..., xπn,p(logn)(w,w
′)) (16)

equals 0.

Like in Definition 2, sometimes one may use a simplified form in which φn only depends on its
p(log n)-bit long suffix. This simplification suffices for the charcaterizing the set of graphs not
having a dominating set of size t = O(1). Specifically, when representing n-vertex graphs by their
adjacency matrix x (augmented with 1’s on the diagonal), the t-dominating set problem is captured
by Φx(i1, ..., it, it+1) = ∨j∈[t]xij ,it+1 (i.e., x has no t-dominating set iff for every w = (i1, ..., it) ∈ [n]t

there exists w′ = it+1 ∈ [n] such that Φx(w,w′) = 0); that is, we used φn2 : {0, 1}t → {0, 1} and
πn2,j : {0, 1}(t+1) logn → [n2] such that φn2(σ1, ..., σt) = ∨jσj and πn2,j(i1, ..., it, it+1) = (ij , it+1) for
j ∈ [t].

Every locally ∀∃-characterizable set is in NC (resp., in SC) and so the existence of a doubly-
efficient interactive proof system for it (and its complement) is guaranteed by [12] (resp., [19]).
Here we present a direct construction.

Theorem 7 (main result, extended): Every locally ∀∃-characterizable set has a simple doubly-
efficient interactive proof system. Specifically, on input of length n, the verifier runs in Õ(n)-time
and the strategy of the prescribed prover can be implemented in Õ(nc+c

′+1)-time, where nc+c
′

denotes
the number of local conditions in the characterization. Furthermore, the interactive proof system
uses public coins and has logarithmic round complexity.

Note that the complement of every locally ∀∃-characterizable set also has a doubly-efficient inter-
active proof system. In this proof system, on input x ∈ {0, 1}n, letting ` = log n, the prover finds
an adequate w ∈ {0, 1}c`, sends it to the verifier, and the parties engage in a doubly-efficient inter-

active proof of the residual claim that for every w ∈ {0, 1}c′` it holds that Φx,w(w′)
def
= Φx(w,w′)

evaluates to 0. (Such a proof system is provided by Theorem 1.)

Proof Sketch: We extend the proof of Theorem 1, as presented in Section 5.2. Specifically, letting
` = log n, we derive a low degree extension, Φ̂x : F (c+c′)` → F , of Φx by following the same steps as
in the former proof.9 Here we have to provide a proof system for establishing that for every w there
exists a w′ such that Φ̂x(w,w′) equals 0, and the problem is converting this claim to one that can
be handled by the sum-check protocol. We do so by mimicking the proof of Toda’s Theorem [23].
Specifically, for `′ = O(`) and H ≡ {0, 1}, we consider the following arithmetic expression

∑
w∈Hc`

rw ·
∏
i∈[`′]

1−
∑

w′∈Hc′`

r
(i)
w′ · (1− Φ̂x(w,w′))

 (17)

9We stress that we use H ≡ {0, 1} and the corresponding function EQ as in Section 5.2 (rather than the settings
used in Section 5.3).

11

where the rw’s and r
(i)
w′ ’s are selected at random by the verifier at the very beginning of the inter-

action. Actually, the verifier will select the sequence (rw)w∈Hc` from a small biased sample space

(over GF(2))10, and ditto for the sequences (r
(i)
w′)w′∈Hc′` (which are selected independently for each

i ∈ [`′]). In particular, we shall use F that is an extension field of GF(2), and view the rw’s (resp.,

r
(i)
w′ ’s) as elements of the base field GF(2).

Note that if x does not belong to the set (i.e., ∃w∀w′ Φx(w,w′) = 1), then there exists a w such

that for every i ∈ [`′] and for every choice of the r
(i)
w′ ’s it holds that Ψ

(i)
x (w) = 1, where

Ψ(i)
x (z)

def
= 1−

∑
w′∈Hc′`

r
(i)
w′ · (1− Φ̂x(z, w′)). (18)

Hence, when the rw’s are selected from a small bias set, it holds that

Pr

 ∑
w∈Hc`

rw ·
∏
i∈[`′]

Ψ(i)
x (w) = 0

 ≈ 1/2.

On the other hand, if x belongs to the set (i.e., ∀w∃w′ s.t. Φx(w,w′) = 0), then for every w and

i it holds that Pr[Ψ
(i)
x (w) = 1] < 0.51, where the probability is taken over the choice of the r

(i)
w′ ’s

(since (1 − Φ̂x(w,w′)) = 1 for some w′ and it follows that Pr[
∑

w′∈Hc′` r
(i)
w′ · (1 − Φ̂x(w,w′))) = 0]

is approximately 1/2). Hence, Pr[
∏
i∈[`′] Ψ

(i)
x (w) = 0] < 0.51`

′
and so, for every choice of rw’s, it

holds that

Pr

 ∑
w∈Hc`

rw ·
∏
i∈[`′]

Ψ(i)
x (w) = 0

 > 1− 2c` · 0.51`
′ ≈ 1,

where the probability is taken over the choice of the r
(i)
w′ ’s (and the approximation assumes `′ �

c log ` (e.g., `′ = 2c` will do)).
In order to prepare for an application of the sum-check, we need to replace the sequences

(rw)w∈Hc` and (r
(i)
w′)w′∈Hc′` (for each i ∈ [`′]) by the evaluation of low degree polynomials in w (resp.,

w′) (which are defined over Fc` (resp., over Fc′`) and agree with the said sequences on Hc` (resp.,
on Hc′`)). (That is, for exach fixing of the seed for a small bias generator, we consider the function
that maps a location in the output sequence to a value of the corresponding bit.) Fortunately,
the LFSR construction of [3] is suitable for that purpose, since the jth bit in the corresponding
sequence is produced by raising a matrix R to the power j and multiplying the first row of the
resulting matrix by a vector s, where R and s are determined by the seed of this pseudorandom
generator.11 Specifically, the jth bit is the top element of the vector Rjs, where matrix R and the
vector s have dimension that is linear in the seed length (which in turn is logarithmic in the length
of the produced sequence). Hence, we may replace rw, where w ≡ (w1, ..., wc`), by a polynomial

that computes the top bit of the vector R
∑

j∈[c`] wj2j−1

s, by precomputing Rj = R2j−1
and using

R
∑

j∈[c`] wj2j−1

=
∏
j∈[c`]

R
wj

j =
∏
j∈[c`]

(wjRj + (1− wj)I),

10See [16] or [10, Sec. 8.5.2]. A seed length of O(`) will do.
11Alternatively, we can use the “powering” (in finite field) construction of [3].

12

where I = R0 is the identity matrix. Thus, rw will be replaced by r̂(w), where r̂ : Fc` → F is such

that r̂(z) equals the top element of (
∏
j∈[c`](zjRj + (1− zj)I))s, and ditto for each (r

(i)
w′)w′∈Hc′` (via

the corresponding r̂(i) : Fc′` → F). We stress that r̂ (resp., r̂(i)) is a polynomial of degree c` (resp.,
c′`) and it can be evaluated in time poly(`). Hence, the claim that Eq. (17) evaluates to 0 can be
replaced by the claim

∑
w∈Hc`

r̂(w) ·
∏
i∈[`′]

1−
∑

w′∈Hc′`

r̂(i)(w′) · (1− Φ̂x(w,w′))

 = 0 (19)

We outline two ways of handling this claim. The first way consists of invoking the generalized
sum-check protocol, which can also handle products, on Eq. (19). Pursuing this approach requires
identifying [`′] with H log `′ and introducing a low degree polynomial r̂′ : F (log `′)+c′` → F such that
for every i ∈ [`′] it holds that r̂′(i, z′) = r̂(i)(z′).

Alternatively, we can apply the sum-check protocol to the claim
∑

w∈Hc` r̂(w)·Ψx(w) = 0, where

Ψx(w)
def
=
∏
i∈[`′] Ψ

(i)
x (w). This involves c` rounds of interactions, and leaves us with verifying a

claim of the form Ψx(r) = v, where r ∈ Fc` and v ∈ F are determined by the said execution. At

this point, the prover is asked to present the values of Ψ
(i)
x (r) for each i ∈ [`′], the verifier checks

that their products equals v, and the parties involve the sum-check protocol to each of the claimed
values. That is, in the ith execution, the prover proves that 1 −

∑
w′∈Hc′` r̂(i)(w′) · (1 − Φ̂x(r, w′))

equals vi, where vi is the value provided for Ψ
(i)
x (r). (Note that these `′ executions can be performed

in parallel.)12

This protocol performs c` + c′` iterations, and the verifier evaluates the residual expression,
which (as in the proof of Theorem 1) amounts to evaluating the π̂n,j ’s and φ̂n as well as computing
poly(`) sums of 2` terms each. The prover’s computation is dominated by computing a sum of
2c`+c

′` terms, where each term requires a computation of the type conducted by the verifier.

Digest: The interactive proof presented in the proof of Theorem 7 uses a randomized reduction
of evaluating Eq. (16) to evaluating Eq. (17). In a straightforward implementation, this reduction
calls upon the verifier to toss poly(n) coins and send the outcome to the prover, whereas we aim
at verifiers that run in time Õ(n). Hence, we use an adequate pseudorandom generator, and let
the verifier select a (much shorter) random seed and send it to the prover. For this to work, we
need the function that describes the pseudorandom sequence that corresponds to a fixed seed to
have low complexity (in an adequate sense). That is, the relevant complexity measure here refers
to the function that maps possible locations in a fixed sequence to the value of the corresponding
bits, whereas the standard complexity measures refer to the mapping of possible seeds to the value
of a fixed location in the corresponding output sequence.

Remark 8 (beyond ∀∃-characterization): The notion of a locally ∀∃-characterizable set can be
further extended to allow a constant number of (alternating) quantifiers; for example, a ∀∃∀-
characterization corresponds to the case that for all w ∈ {0, 1}c logn there exists w′ ∈ {0, 1}c′ logn

12Alternatively, the verifier can select at random r′1, .., r
′
`′ ∈ F , and ask the prover to prove that

∑
i∈[`′] r

′
i ·Ψ

(i)
x (r)

equals
∑

i∈[`′] r
′
i · vi. Note that

∑
i∈[`′] r

′
i ·Ψ

(i)
x (r) =

∑
i∈[`′] r

′
i −

∑
w′∈Hc′`

∑
i∈[`′] r

′
i · r̂(i)(w′) · (1− Φ̂x(r, w′)), so we

can apply the sum-check to the outer sum (of w′ ∈ Hc′`) and let the verifier evaluate the residual expression (which
has `′ terms) by itself.

13

such that for all w′′ ∈ {0, 1}c′′ logn it holds that Φx(w,w′, w′′) = 0. The proof of Theorem 7 extends
naturally to that case (cf. the proof of Toda’s Theorem [23]).

Lastly, we note the correspondence between the foregoing local characterizations and the levels of
a known hierarchy of parameterized complexity classes [9]. In particular, Definition 2 corresponds
to a class denoted W[1], and Definition 6 corresponds to W[2]. (In terms of the W-hierarchy, our
definitions are restricted in requiring that the “defining circuits” be more uniform.)

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique
Algorithms are Optimal, So is Valiant’s Parser. In 46th IEEE Symposium on Foundations of
Computer Science, pages 98–117, 2015.

[2] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing Weight by Gaining Edges. In 22nd
ESA, pages 1–12, 2014

[3] Noga Alon, Oded Goldreich, Joahn H̊astad, and Rene Peralta. Simple Constructions of Almost
k-wise Independent Random Variables. Journal of Random Structures and Algorithms, Vol. 3,
No. 3, pages 289–304, 1992. Preliminary version in 31st FOCS, 1990.

[4] Laszlo Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory
of Computing, pages 421–429, 1985.

[5] Andreas Björklund and Petteri Kaski. How Proofs are Prepared at Camelot. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, pages 391–400, 2016.

[6] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic Extensions of the Strong Exponential Time Hypothesis
and Consequences for Non-reducibility. In 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 261–270, 2016.

[7] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
Vol. 201 (2), pages 216–231, 2005.

[8] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science A, Vol. 141 (12), pages 109–131,
1995.

[9] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag
Monographs in Computer Science, 1999.

[10] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[11] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing but their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38,
No. 3, pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

14

[12] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating Computation: In-
teractive Proofs for Muggles. Journal of the ACM, Vol. 62(4), Art. 27:1-27:64, 2015. Extended
abstract in 40th STOC, pages 113–122, 2008.

[13] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985. Earlier versions date to 1982.

[14] Tom Gur and Ran Raz. Arthur-Merlin streaming complexity. Information and Computation,
Vol. 243, pages 145–165, 2015.

[15] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992. Extended
abstract in 31st FOCS, 1990.

[16] Joseph Naor and Moni Naor. Small-bias Probability Spaces: Efficient Constructions and
Applications. SIAM Journal on Computing, Vol 22, pages 838–856, 1993. Preliminary version
in 22nd STOC, 1990.

[17] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In 42nd ACM
Symposium on the Theory of Computing, pages 603–610, 2010.

[18] Mihai Patrascu and Ryan Williams. On the Possibility of Faster SAT Algorithms. In 21st
SODA, pages 1065–1075, 2010.

[19] Omer Reingold, Guy N. Rothblum, Ron D. Rothblum. Constant-round interactive proofs for
delegating computation. In 48th ACM Symposium on the Theory of Computing, pages 49–62,
2016.

[20] Adi Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992.
Preliminary version in 31st FOCS, 1990.

[21] Madhu Sudan. Invariances in Property Testing. In Property Testing: Current Research and
Surveys. Springer, Lecture Notes in Computer Science (Vol. 6390), pages 211–227, 2010.

[22] Justin Thaler. Semi-Streaming Algorithms for Annotated Graph Streams. In 43rd Interna-
tional Colloquium on Automata, Languages, and Programming, pages 59:1–59:14, 2016.

[23] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
Vol. 20 (5), pages 865–877, 1991.

[24] Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on Popular
Conjectures such as the Strong Exponential Time Hypothesis. In 10th International Symposium
on Parameterized and Exact Computation, pages 17–29, 2015.

[25] Ryan Williams. Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs
of Batch Evaluation. In 31st Conference on Computational Complexity, pages 2:1–2:17, 2016.

15

Appendix: An MA proof system for locally-chracterizable sets

We present first an MA proof system of verification complexity Õ(n(c+1)/2) for every locally-
characterizable set, where n denotes the input length and the constant c ≥ 1 is as in Definition 2.
Recall that in the case of t-no-CLIQUE, the input length (for n-vertex graphs) is n2 and c = t/2.

Our starting point is the claim
∑

w∈{0,1}c` Φ̂x(w) = 0, where Φ̂x is as in the proof of Theo-

rem 1. Letting `′ = (c + 1)`/2 and `′′ = (c − 1)`/2, we write the claim
∑

w∈{0,1}c` Φ̂x(w) = 0 as∑
w′∈{0,1}`′ P (w′) = 0, where

P (z′) =
∑

w′′∈{0,1}`′′
Φ̂x(z′w′′) (20)

The key observation is that P is a multi-variate polynomial of degree poly(`) that can be computed
by an arithmetic circuit of size Õ(2`

′′+`) = Õ(2`
′
). The size bound is due to summing over 2`

′′

summands in Eq. (20), where the summands are given by Eq. (13)-(14), and each summand is
computed using a circuit of size Õ(2`) (the dominant part in computing each summand is computing
the terms Xi). Thus, our MA proof system proceeds as follows.

1. The prover provides the verifier with vw′ ← P (w′), for every w′ ∈ {0, 1}`′ .

2. Using theMA system for “batch evaluation” of Williams [25], the prover proves to the verifier
that P (w′) = vw′ for every w′ ∈ {0, 1}`′ .
Recall that this MA-proof can be verified in time that is almost linear in the sum of the
number of evaluation points and the size of the circuit, where in our case each of these
quantities is Õ(2`

′
). (The complexity is also linear in the degree of the computed polynomial,

which is our case adds another poly(`) factor, and requires that the field is large enough
(which holds too).)

3. Finally, the verifier checks that
∑

w′∈{0,1}`′ vw′ = 0.

Indeed, the non-obvious part is the MA system for “batch evaluation” of Williams [25], which is
employed in Step 2.

Improvement for the case of πn,i’s that are projections. We say that π : {0, 1}c` → [n] is
a projection if there exists an `-subset I ⊆ [c`] such that π(w) = wI (where, as usual, {0, 1}` is
associated with [n]). For c ≥ 2, in the special case that the πn,i’s in Definition 2 are projections,
we improve the verification time by a

√
n factor (and the claim regarding t-no-CLIQUE follows).

Letting `′ = `′′ = c`/2, observe that the polynomial P of Eq. (20) can be written as

P (z′) =
∑

w′′∈{0,1}`′′
Q(z′w′′, A1(z′w′′), ..., Ap(`)(z

′w′′)), (21)

where Q : Fc`+p(`)·` → F and A1, ..., Ap(`) : Fc` → F are defined as

Q(z, a) = φ̂n(π̂n,1(z), ..., π̂n,p(`)(z), a) (22)

Ai(z) =
∑

α∈{0,1}`
EQ(π̂n,i(z), α) · xα. (23)

16

Observe that Q is a multi-variate polynomial of degree poly(`) that can be computed by an arith-
metic of size poly(`), whereas the Ai’s are multi-linear polynomials that can be computed by
circuits of size Õ(2`). Combining these circuits and summing over all w′′ ∈ {0, 1}`′′ , as done above,
yields a circuit of size Õ(2`

′′+`), whereas we aim at a circuit of size Õ(2`
′′

+ 2`). Towards this
end, we use the hypothesis that the πn,i’s are projections. Specifically, denoting the correspond-
ing projections by Ii’s, we observe that Ai(z) actually depends only on zIi . Furthermore, letting
I ′′i = {j − `′ : j ∈ Ii \ [`′]} and I ′i = Ii ∩ [`′], we can replace Ai(z

′w′′) by Cw′′
I′′
i
,i(z
′), where

Cs,i(z
′) =

∑
α∈{0,1}`

EQ(z′I′i
s, α) · xα. (24)

Hence, we obtain the circuit

P (z′) =
∑

w′′∈{0,1}`′′
Q(z′w′′, Cw′′

I′′1
,1(z′), ..., Cw′′

I′′
p(`)

,p(`)(z
′)), (25)

which has size Õ(2`
′
+ 22`), where the size bound is due to the number of different circuits C ′s,i: for

each i ∈ [p(`)], there are 2|I
′′
i | ≤ 2` possible values for s, and each circuit Cs,i has size Õ(2`). The

key observation here is that the 2`
′′

terms in the main sum can reuse the values computed by the
Õ(2`) smaller circuits such that each term is fed by p(`) small circuits (which are determined by
its identity).

A closer inspection of these smaller circuits allows to upper bound their total size by Õ(2`),
instead of by Õ(22`). Specifically, for each i ∈ [p(`)], we have 2|I

′′
i | different circuits but each of

these circuits is a multilinear circuit in |I ′i| bits (i.e., the bits z′I′i
(see Eq. (24))), and so has size

Õ(2|I
′
i|). Hence, the circuit captured by Eq. (25) has size Õ(2`

′
) + Õ(2`) = Õ(nc/2 + n). Applying

the foregoing MA proof system to the circuit captured by Eq. (25) (rather than to the circuit
captured by Eq. (20) and Eq. (13)-(14)), yields a system with verification time Õ(nc/2 + n).

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

