
A Unified Method for Placing Problems

in Polylogarithmic Depth

Andreas Krebs1, Nutan Limaye2, and Michael Ludwig1
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Abstract. In this work we consider the term evaluation problem which
involves, given a term over some algebra and a valid input to the term,
computing the value of the term on that input. This is a classical problem
studied under many names such as formula evaluation problem, formula
value problem etc.. Many variants of the problems where the algebra
is well behaved have been studied. For example, the problem over the
Boolean semiring or over the semiring (Z,+,×). Here, we allow the algebra
to be completely general and obtain a bound for the term evaluation
problem. We consider the problem of deriving upper bounds in terms of
polylogarithmically deep circuits. To that end we present a generic term
evaluation algorithm that works in polylogarithmic depth.
This efficient term evaluation algorithm over a very general algebra then
serves as a tool for showing polylogarithmic time upper bounds for various
well-studied problems. To underline the utility of our result we show new
bounds and reprove known results using our approach and thereby present
a unified proof approach for problems of this nature. The spectrum of
problems for which we apply our term evaluation algorithm is wide: in
particular, the application of the algorithm we consider include (but are
not restricted to) arithmetic formula evaluation, word problems for tree
and visibly pushdown automata, and various problems related to bounded
tree-width and clique-width graphs.

1 Introduction

Circuits are a natural model of computation closely related to parallel
computation. Typically, algorithms which need less than linear time
on multiprocessor machines can be modeled by circuits. When a
circuit has, say, logarithmic depth and polynomial size, this can
be seen as a logarithmic time algorithm using polynomially many
parallel processors.

Starting point for our work is the observation that many parallel
algorithms (i.e. circuit constructions) have a similar core structure.
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Our main goal was to identify the similarities between these algo-
rithms and create a uniform framework which can be used to design
parallel algorithms.

The kind of problems that we study in this work are the ones which
instrisically have a tree-like structure. Often the tree-like structure
is not obvious from the statement of the problem, but needs to be
extracted out from the problem definition. We then use such a tree-
like structure of a given problem and remodel it as a slightly different
problem. In particular, we write it as a term over a universal algebra.
In other words, we reduce the original problem to the problem of
evaluation of terms, wherein the inputs to the term come from a
(possibly infinite) set and operators of the term are those used in the
algebra.

One of our primary contribution in this work is a structural
theorem that allows us to remodel the term evaluation problem as
an efficient parallel computation. Our main theorem (stated below)
gives the complexity of evaluating terms over an arbitrary algebra:

Main Theorem
Given a universal algebra A and domain D, the evaluation
of the term over the algebra A when the inputs of the term
are assigned values from the domain D can be performed in
DLOGTIME-uniform F(A)-NC1, where F(A) is a slight gen-
eralization of the algebra A and F(A)−NC1 is a logdepth NC1

circuit which over and above uses oracle gates from F(A).

Informally, the above theorem states the following: Given an
algebra, i.e., a set together with some operators over this set, for
evaluating terms over this algebra, logarithmic depth suffices. This
would be NC1 but here in particular we need NC1 together with
some oracle gates which perform the algebra functions. We note that
there is a tradeoff in the complexity of this: to obtain logarithmic
depth, the algebra is appended with a slightly more structure over
and above the original operators. So given an algebra A, we design a
slightly appended algebra F(A) and then prove that evaluating terms
over A is possible in NC1 using F(A) gates, that is F(A)−NC1.

Our main result is powerful in its own right because it gives a very
general framework for changing any sequential tree-like computation
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to an efficient parallel (circuit-like) computation. But beyond this,
our main result also has many applications. We discuss them below.

1.1 Applications

Over the last four decades there has been a lot of work related to
design of parallel algorithms for tree-like problems. Given below is
a notable (but not exhaustive) list of problems which have been
considered in this literature.

– Boolean and arithmetic term evaluation [8,10].

– Membership for language classes in NC1, SAC1 [26,25,16,1,23].

– Circuits of bounded tree width [21].

– Courcelle’s Theorem and counting [13,17].

– Maximal cuts in bounded clique-width graphs [35].

– Counting Hamiltonian paths in bounded clique-width graphs [35].

Using our main theorem, we reprove the above results. That is,
we give a unified way of proving all the above bounds. Moreover, we
also consider variants of the above applications and obtain parallel
(NC1, NC2, SAC1, SAC2) upper bounds. The variants we consider
here are not considered before our work to the best of our knowledge.

Note that each application is originally a significant result in its
own right. Using our approach, all of them become shorter and follow
that same proof structure. The proof structure we use consists of
three steps:

1. Reduce the problem to a term evaluation problem.

2. Embed the F(A) algebra in a way that we get a Boolean or
arithmetic circuit.

3. Analyze the complexity of the resulting circuit. Usually the overall
complexity is the complexity of the oracle gates multiplied by a
logarithmic factor for the depth.

We believe this framework is general enough to see many other
applications in the future.
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1.2 How does term evaluation work?

Our algorithm for the term evaluation problem fits in the long chain
of contributions dedicated to the evaluation problem. The origin of
which can be vaguely traced back to the investigation of upper bounds
for the Boolean formula value problem. In [27] Lynch studied it first
and achieved a log-space bound. Subsequently Cook conjectured that
this bound is tight [12] which, as we know today, is not (unless log
space equals log depth). A way to deal with formulas that are very
deep trees, was already investigated by Spira [32]: By a quadratic
increase in size, we can balance a Boolean formula. Brent built upon
this work [7]. The step from this balancing to obtaining an NC1

upper bound is not big. If the transformation can be done in NC1,
the evaluation is in NC1.

Cook and Gupta [19] as well as Ramachandran [30] were the next
in line and showed that O(log n log log n) deep circuits suffice for
evaluating. Based on [19], Buss showed an ALOGTIME bound [8]
which equals logarithmic depth [31]. His proof utilized a sophisticated
two-player-game. Buss’ bound is tight, so from there on research went
in the direction of broadening the result. This continued research is
always rooted in the work of [19] and [8]. This way Dymond showed
[16] that the visibly pushdown languages3 are in NC1. A different
generalization by Buss et al considered arithmetic formulas and
showed a #NC1-bound [10]. Meanwhile Buss published an alternative
presentation of his original proof for Boolean formulas [9]. After some
time has passed, in [24] Krebs et al built upon Dymonds approach to
show that counting the number of accepting computations in visibly
pushdown automata is in #NC1. The authors of the present paper
again showed upper bounds in a similar way [23] - this time for a
quantitative version for VPAs. Through these works, there emerged
a pattern which we have followed to exploit which is the topic of this
paper.

Our algorithm takes ideas from different steps in the chain of
research. Below we give an outline of how it works.

What we want for a log depth algorithm is a recursive approach.
Given some term T , if we could just split it in half and evaluate
the halves and combine the results, we would be done. However

3 a.k.a. input driven pushdown languages [28]
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if a formula is split, the two parts cannot be assigned any usable
semantic. The major part of the task of designing an evaluation
algorithm over a general algebra is to determine how to split terms
in a meaningful manner. The first tool we borrow is from [8]: We
transform the term in a certain kind of post-fix notation. That way
we get rid of parentheses. In case of a balanced term, we could find a
cutting point near the center and evaluate the halves. However if the
term is a degenerated tree, i.e. a list, the algorithm may get stuck. To
overcome this hurdle, we use the idea originating in [10], which is to
assign te split parts some meaning that may not be terms any more.
If we split a term that is a list in half, we get a term and something
which is a term with a hole. Assigning meaning to terms with holes
is what is needed here. For the third key idea consider what happens
if we actually want to implement a recursion in uniform log depth:
The recursion intervals have to be fixed apriori irrespective of the
specific input, but only based on the length of the input. This is in
some sense contrast to the larger complexity classes. So we cannot
look at the term and decide for a nice place to cut. We have to just
cut at predecided fixed places. The third idea is to assign meaning
to subintervals of a term. What we e.g. do is to evaluate the larges
subterm of some interval that contains the middle. By admitting
overlapping recursion interval patterns it is possible to achieve a
scheme where the whole term is seamlessly covered.

1.3 Contributions

We give a proof for a general upper bound for formula evaluation over
arbitrary algebras where previously only proofs for certain examples
of algebras existed; see Section 3. To get a clear formal framework we
needed to come up with a way to define circuits which use arbitrary
algebras as gates and values. Also we need a very general notion
of algebra, that is algebras of more than one domain, which are
called many-sorted algebra. These definitions are outlined in Section
2. Finally a large set of applications is provided in Section 4.
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2 Preliminaries: Many-sorted terms, circuits,
and universal algebras

First we fix some basic notation: The set {1, . . . , n} is abbreviated by
[n] and {i, . . . , j} by [i, j]. The set N stands for the natural numbers
containing 0, Z for the integers, and B for the Boolean values {⊥,>}.
Alphabets, which we often call Σ, are finite sets of letters. A word
w ∈ Σ∗ is a finite sequence of letters and hence Σ∗ is the set of all
words over Σ. The i’th letter of a word w we denote by w(i) and the
length of w is denoted by |w|. The word of length 0 is denoted by ε.
A language is a subset of Σ∗.

In this section we lay out the framework in which we formulate
our main result. Our main result is a meta theorem which can be
applied on different problems. In order to state it in a way so that
it can be easily used as a template, we need to carefully define
abstracted versions of familiar objects like circuits. What we want
is a definition of circuits that goes beyond Boolean and arithmetic
circuits. In fact we want to be able to plug in arbitrary fitting algebras
into it. For example if we have a DAG, then we could either plug in
(B,∧,∨,⊥,>) or (N,+,×, 0, 1). What does it mean that an algebra
fits a circuit? This is handled by signatures. Ordinary signatures
assign arities to operations. If we have e.g. ∧, we want that this can
only to be assigned to nodes in a circuit that have in-degree 2.

Our main theorem is independent of the algebra; it only depends
on the signature. However we need a more general notion of signature
as the ordinary one. All our definition framework here is lifted to
the many-sorted case. This means we have different data sorts. For
instance we can have a circuit which has Boolean gates but also gates
which add two natural numbers. Then wires transport either Boolean
values or natural numbers. Of course a natural number should not be
feeded into an ∧-gate. A many-sorted signature will not only assign
an arity to operations but also which kind of data.

Definition 1 (Sorts, many-sorted signature). Let S ∈ N be the
number of sorts. Given S sorts, a many-sorted signature σ of k
operations is an element of ([S]∗ × [S])k.

So, a many-sorted signature is a tuple of pairs of words and
letters σ = ((w1, a1), . . . , (wk, ak)). Each word codes the input sorts
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of operations. The length of a word |wi| then is the arity of the i’th
operation. We write Inσ(i) to address the word wi, Outσ(i) to address
the letter ai and σ(i) to address (wi, ai). Also, Inσ(i, j) is the j’th
letter of Inσ(i).

A (single-sorted) signature σ is one where |S| = 1. In this case
σ corresponds to the classical notion of signature assigning just an
arity to operations.

We will shortly say signature instead of many-sorted signature and
define some more many-sorted objects and then also omit mentioning
many-sorted in every occasion.

As outlined we want a very general version of circuits which
follows the many-sorted concept. It resembles much similarity to a
standard definition for Boolean circuit. The main difference is that
we use the signature to ensure that the wiring is valid (no natural
numbers as inputs for ∧-gates etc.) and that we not yet build the
underlying algebra in it.

Definition 2 (Many-sorted circuit). Given a signature σ, then
a many-sorted circuit over signature σ of S sorts, n inputs and m
outputs is a tuple C = (V,E,Order,Gatetype,Outputgates), where

– (V,E) is a directed acyclic graph,
– Order : E → N is an injective map giving an order on the edges,
– Gatetype : V → [|σ|] ∪ {x1, . . . , xn} assigns a position of the sig-

nature or makes it a input gate,
– Outputgates : {y1, . . . , ym} → V promotes gates to output gates,

such that:

– If some v ∈ V has in-degree 0 then Gatetype(v) ∈ {x1, . . . , xn} or
Inσ(Gatetype(v)) = ε, i.e. it is 0-ary.

– If some v ∈ V has in-degree k > 0 then |Inσ(Gatetype(v))| = k,
hence it is k-ary.

– For all i ∈ [n] there exists at most one v ∈ V such that
Gatetype(v) = xi

– All successors of an input gate can be assigned a unique sort which
is fixed by the successor gates and the signature. By InC ⊆ [S]n

we denote a word which holds the sorts of the input gates and
OutC ⊆ [S]m stores the sorts of the output gates.
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– For all v ∈ V , let v1, . . . v|Inσ(Gatetype(v))| be the input gates
for v such that Order(vi) ≤ Order(vj) iff i ≤ j. Then
Outσ(Gatetype(vi)) = Inσ(Gatetype(v), i). If vi is an input gate
then InC(j) = Inσ(Gatetype(v), i) where Gatetype(vi) = xj.

By Circσ,n,m we denote the set of circuits over σ of n inputs and m
outputs.

Terms and circuits are closely related. Generally speaking: A term
is a circuit which is a tree, however in out setting, we do not want a
term to have inputs. It rather only has constants. One can think of
it as if all variables have already been assigned a value. Also we only
want to consider terms with binary operations. Besides terms we also
need the notion of terms with an unknown. Such terms come into
play when we decompose terms inside our algorithm. Assume a term
is to be evaluated over a domain D then a term with an unknown
evaluates to a function D→ D.

Definition 3 (Many-sorted term, many-sorted term with an
unknown). Given a many-sorted circuit T over σ where m = 1 and
(V,E) is a tree with a degree bounded by two. If n = 0 then T is a
many-sorted term and if n = 1 then T is a many-sorted term with
an unknown. By Termσ we denote the set of terms over σ and by
Termσ[X] we denote the set of terms with an unknown over σ.

Note that in order to get terms over some signature, it has to
admit 0-ary operations since we need them for the leafs.We forbid
higher arities here which is no restriction as n-ary operations can be
simulated by binary operations.

The main topic of this paper is a term evaluation algorithm. An
algorithm receives strings as inputs, hence we have to represent terms
as strings. Note that such strings still do not possess any semantic.

Definition 4 (Linearization of many-sorted terms). Given a
many-sorted term T over a signature σ, the linearization of t is a
string w(T ) which is a word of {(, ),⊕1, . . . ,⊕|σ|}∗. First we define
it on the nodes inductively:

– If v ∈ V has in-degree 0 then w(v) = ⊕Gatetype(v).
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– If v ∈ V has in-degree 1 and v′ is the predecessor, then w(T ) =
(⊕Gatetype(v)w(T (v′))) where T (v′) is the maximal subtree of T
rooted in v′.

– If v ∈ V has in-degree 2 and v1, v2 are the predecessors, then
w(T (v)) = (w(T (v1)⊕Gatetype(v) w(T (v2))) where T (v) is the max-
imal subtree of T rooted for some v ∈ V .

Finally if v is the output gate, then w(T ) = w(v).

In the case of terms with an unknown we set w(v) = X if v is the
single input gate and where X is an additional letter.

From now on we will not strictly distinguish between terms and
linearizations of terms as a the linearization admits an isomorphism.

Up to now we have defined the objects syntacticly. Now we want
to define meanings for terms and circuits. The meaning of a circuit
is the realized function and of a term the value it evaluates to. Given
a term, which is just a string of parentheses and operation symbols
(constants are 0-ary operation symbols), we assign what the domain
of values is, on which we operate as well as which operations over the
domain are to be assigned the operation symbols. An algebra hence
has to conform a signature. Again we are in the many-sorted case.

Definition 5 (Many-sorted universal algebra). Given a many-
sorted signature σ with S sorts, a many-sorted universal algebra is
a tuple A = ({D1, . . . ,DS},~1, . . . ,~|σ|) where ~i : DInσ(i,1) × . . . ×
DInσ(i,α) → DOutσ(i) where α = |Inσ(i)|. We call the sets Di subdomains
and the union of all subdomains D, which is the domain.

From now on we will simply say algebra instead of many-sorted
universal algebra.

Given an algebra which has the same signature as a circuit, we
can evaluate the circuit under the given algebra. Note that this in
turn can be used to evaluate terms since terms are just circuits that
are trees without inputs.

Definition 6 (Evaluation of many-sorted circuits). Given a
universal algebra A over signature σ and a word w ∈ Dn then the
evaluation map ηA,w : Circσ,n,m → Dm is a map defined inductively
for all v ∈ V . Here, let T (v) be the maximal subcircuit of a circuit C
containing all nodes from which v is reachable.
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– If Gatetype(v) = xi then ηA,w(T (v)) = wi if wi ∈ Dj implies that
InC(i) = j.

– Let α be the arity |Inσ(Gatetype(v))| and v1, . . . vk be the pre-
decessors of v ordered by the their output wire order, then
ηA,w(T (v)) = ~Gatetype(v)(ηA,w(T (v1)), . . . , ηA,w(T (vα))).

Let v1, . . . vm be the output gates and C a circuit, then

ηA,w(C) = (ηA,w(T (v1)), . . . , ηA,w(T (vm)))

if for all Outputgates−1(yi) = vi holds that OutC(i) =
Outσ(Gatetype(vi)).

We covered how to evaluate terms and circuits. Terms with an
unknown however we want to treat differently. We do not give a value
to the unknown but we let this term evaluate to a function. If some
algebra is given, the set of functions we can get can be obtained from
this algebra. In fact we now get a many-sorted algebra since it needs
to contain the original algebra as well as the functions. There are
operations of mixed sorts. We can e.g. combine a function D → D
and a value D.

Definition 7 (Functional algebra). Given an algebra A =
(D,~1, . . . ,~k) over a single-sorted signature σ which only contains
operations that are at most binary. Then the functional algebra is
F(A) = ({D, D̃}, F ) where F is a placeholder for the operations

which we will define next and D̃ ⊆ DD is the smallest set containing
the identity function and is closed under the operations in F which
are the following:

– All operations of A: ~1, . . . ,~k.
– ◦ : D̃→ D̃ is the functional composition.
– An operation for functional evaluation � : D̃ × D → D, where
f � c = f(c).

– For each ~i : D×D→ D there are two variants:
←−
~ i : D̃×D→ D̃

and
−→
~ : D×D̃→ D̃, where (f

←−
~ ic)(x) = f(x)~ic and (c

−→
~ if)(x) =

c~i f(x).

– For each ~i : D → D there is ~̃i : D̃ → D̃, where (~̃if)(x) =
~if(x).

The signature of F(A) we denote by σ(F(A)).
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This definition can be lifted to arbitrary arities but we want to
keep it simple at this point.

Evaluation of terms with an unknown can now be done using the
previous definition. Again we use the linearization.

Definition 8 (Evaluation of terms with an unknown). Let
A = (D,~1, . . . ,~k) be an algebra over a single-sorted signature σ
with maximal operation arity of two and let F(A) be the functional
algebra of A. The evaluation map µA : Termσ[X] → DD is a map
defined inductively for all i ∈ [k]:

– µA(X) = id ∈ D̃
– µA(t) = ηA(t) ∈ D for t ∈ Termσ

– µA(⊕if) = ~̃iµA(f) for f ∈ Termσ[X]
– µA(f ⊕i t) = µA(f)

←−
~ iµA(t) where f ∈ Termσ[X] and t ∈ Termσ.

– µA(t⊕i f) = µA(t)
−→
~ iµA(f) where f ∈ Termσ[X] and t ∈ Termσ.

One circuit accepts words of a fixed length. If we want to handle
inputs of arbitrary length we need families of circuits, that is a list
(Cn)n∈N of circuits containing one circuit for each input length. Later
we will see cases where it is desirable to have algebras that match a
circuit Ci, hence we need also families of algebras.

Definition 9 (Family of algebras). A family of algebras (An)n∈N
is a sequence of algebras, where A1 = ({D1, . . . ,DS},~1

1, . . . ,~
1
k) and

Ai = ({D(i, 1), . . . , D(i, S)},~i1, . . . ,~ik)

where D(i, j) is either Dj or (Dj)
p(i), where p is some polynomial and

for i ≥ 2 it holds D(i, j) = Dj iff D(i+ 1, j) = Dj.

For now we focus on circuits having one output gate and where
all input gates have the same sort. Given an algebra A let DI and
DO address the two subdomains that correspond to the inputs resp.
output values. Then a circuit Cn of n inputs realizes a function
FA(Cn) : Dn

I → DO. Given a family of circuits C we then get a a
function FA(C) = D∗I → DO. In this case also a family of algebras
can be given such that a circuit Ci is interpreted over an algebra Ai.
Note that by considering families of circuits and algebras, we also
need families of signatures.
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In general, assuming a family of circuits is very powerful, so in
complexity it is natural to require that this family is computable in
some complexity bound. We then speak of uniformity. Our construc-
tions will be DLOGTIME-uniform. See e.g. [33] or [34] for basics in
circuit complexity.

We use our frame work to define the classical Boolean version of
NCi. Here B is the Boolean algebra (B,∧,∨,¬,⊥,>).

Definition 10 (NCi). The set NCi contains all functions FB(C),
where C is a family of circuits of signature same as B that contains
circuits of polynomial size and O(logi n) depth.

Note that the bounded fan-in of the gates is ensured through the
signature of B. For defining ACi we need a different algebra to handle
the unbounded fan-in gates. In fact we need a family of algebras
B∗ = (Bn)n∈N where Bi = (B,∧,∨,¬,⊥,>,∧i,∨i), ∧i : Bi → B and
∨i : Bi → B. Hence this is an example where the difference between
the members of the families only lies in the arity of operations.

Definition 11 (ACi). The set ACi contains all functions
F(Bn)n∈N(C), where C = (Cn)n∈N is a family of circuits that con-
tains circuits of polynomial size, O(logi n) depth and where Cn has
the same signature as Bn.

The classes SACi we also get in a similar way as ACi; we only
have to remove the unbounded AND gates ∧i from the algebras.

Next we want to enrich circuits of the previously defined classes
by some algebra A such that we get circuits that have Boolean
gates as well as A-gates. Boolean values and values of A interact via
multiplexer gates.

Definition 12 (Multiplexer operation). Given a domain D, the
ternary multiplexer operation is defined as mpD : B×D×D→ D with

(b, d0, d1) 7→

{
d0 if b = 0

d1 else
.

Now we can use multiplexer operations to compose algebras which
have as subalgebras the Boolean one B and some other algebra A
and they interact via multiplexer operations. We can then actually
add arbitrary many algebras to a composition:

12



Definition 13 (Composition of algebras). Given an algebra A =
({D1, . . . ,DS},~1, . . . ,~k), by (B,A) we denote the algebra

({B,D1, . . . ,DS},∧,∨,¬,~1, . . . ,~k, (mpDi)i∈[S]).

Given an algebra of the form (B,A) and an algebra A′ =
({D′1, . . . ,D′|S′|},~′1, . . . ,~′k′), by ((B,A),A′) we denote the algebra

({B,D1, . . . ,DS,D′1, . . . ,D′|S′|},
∧,∨,¬,~1, . . . ,~k,~

′
1, . . . ,~

′
k′ , (mpDi)i∈[S], (mpD′i

)i∈[S′]).

Hence we may write (B,A1, . . . ,Ak) = ((B,A1, . . . ,Ak−1),Ak) for
the composition of k algebras.

Note that the previous definition also naturally carries over to
families of algebras.

We can define classes similar to e.g. NCi that are enriched by some
algebra. Intuitively, the Boolean part is directing the non-Boolean
part via multiplexer gates.

Definition 14 (A-NCi, A-NCi
D). The set A-NCi

D contains all
functions F(B,A)(C), where C is a family of circuits having the same
family of signatures as (B,A) that contains circuits of polynomial
size, depth logi n, inputs of D and one output of a subdomain of A.
For the special case of Boolean inputs we set A-NCi = A-NCi

B.

For the class (N,+,×, 0, 1)-NC1 there is the shortcut #NC1

and (Z,+,×, 0, 1)-NC1 has the shortcut GapNC1. The A -NCi and
A-NCi

D definition naturally carries over to other classes than NCi.
The idea of A-NCi

D is that we allow not only Boolean inputs which
then allows to combine such circuits, i.e. the output of one circuit is
the input of another one.

The following notions we later need for applying the main theorem.
It helps to embed some class A-NC1 in e.g. a purely Boolean one.

Definition 15 (Codings of algebras). Given algebras A =
({D1, . . . ,DS}, F ) and A′ = ({D′1, . . . ,D′S′}, F ′), where F resp. F ′

contain the operations. We say A′ is a coding of A if there exists a
relation c ⊆ D× D′ on the domains of A and A′ such that:
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– For all X ⊆ D holds that c(c−1(c(X))) = c(X).

– For all ~ ∈ F there exists ~′ ∈ F ′ such that ~(x1, . . . , xn) ∈
c−1(c(y))⇔ ~′(x′1, . . . , x′n) ∈ c(y) iff (xi, x

′
i) ∈ c for all i ∈ [n].

– For all d, e ∈ D if d 6= e then c(d) ∩ c(e) = ∅.

If such a relation exists, we write A � A′.

Note that � is transitive. Also if we have two families (An)n∈N
and (A′n)n∈N, we write (An)n∈N � (An)n∈N if An � A′n for all n ∈ N.
An algebra can also be coded into a family of algebras by taking a
family of codings. Note that the third condition the the definition
ensures that codings preserve all the information. This property can
be thought of as injectivity for relations.

By taking A = ({D1, . . . ,DS},~1, . . . ,~k) and c one can actually
construct an algebra c(A) = ({c(D1), . . . , c(DS)},~c1, . . . ,~ck) such
that A � c(A). This is slight abuse of notation since an algebra c(A)
is not already defined by c and A. The operations ~ci can be defined
in different ways. However it will it will always be clear from the
context how we define the these; especially since most of the time we
assume c to be a function or a family of functions.

3 An algorithm for evaluating terms

Given some term and an algebra A of the same signature, what does
the term evaluate to over A? This problem is the term evaluation
problem. The purpose of this section is to prove our Main Theorem:

Theorem 16 (Main Theorem). Given a universal algebra A of
single-sorted signature σ and domain D, then the evaluation function
ηA : Termσ → D is in DLOGTIME-uniform F(A)-NC1.

Note that the theorem and its proof are independent of the actual
algebra A. Here we only need to consider its signature which is
single-sorted and can be assumed to have at most binary operations.
How to deal with the algebras in particular (e.g. how to get Boolean
circuits for the evaluation problem) is subject of the following section
which shows applications for the Main Theorem.
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3.1 Representing terms

Recall that we assume all operations used in terms to be binary. Terms
like (φ ~ ψ), where φ and ψ are also terms, are infix expressions.
Instead of infix expressions, we can also consider postfix expressions.
If φ′ and ψ′ are the equivalent postfix terms for φ and ψ as infix
expressions, then φ′ψ′~ is the postfix equivalent of (φ ~ ψ). Note
that conveniently we do not need parentheses any more.

Definition 17. A postfix term is in postfix normal form (PNF) if
for all subterms φψ~, φ, and ψ holds that |φ| ≥ |ψ|.

This normal-form is due to Buss and his algorithm [8] for evaluat-
ing Boolean formulas. Our algorithm has its roots in this and other
related work [10,19]. We are aware of a simplified version [9] of [8]
which directly operates on the infix notation, however we found the
normal-form to be more convenient.

Note that in order to convert any term into PNF we need to take
care of possible non-commutative operations. To that end we assume
all algebras to have symmetric variants of operations. E.g. for an
operation ~ there exists an operation ~′ in the algebra such that
x~ y = y ~′ x.

From now on focus on PNF terms without always explicitly calling
it PNF. For the algorithm we put emphasis on the fact that terms
are trees coded as strings. Also from now on we want to distinguish
between open and closed terms. The terms es defined so far a called
closed in opposition to open terms:

Definition 18. We call a string T an open term if there exists a
closed non-empty term T ′ such that T ′T is a closed term.

So open terms are suffixes of closed terms. If we think about the
tree a term represents then taking a suffix which is an open term
corresponds to copping off a left-most subtree; see figure 3.1. Also we
can concatenate open terms and get again an open term. An open
term concatenated with a closed term results again in a closed term.

Given a term T of length n then for 1 ≤ i ≤ j ≤ n we write
i <T j if in the tree j is an ancestor of i. By convenience by [i, j] we
ambiguously mean the interval {i, . . . , j} as well the subword Ti . . . Tj
and it will always be clear from the context what we mean. If i <T j
and [i, j] is a term, then we write i /T j.
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~

~

~

A

B
CD

Fig. 1. The figure shows a PNF term T with the first three most-left operation symbols
from the top pointed out. The term T is of the form DC ~ B ~ A~, where A, B, C,
and D are again terms. Note that |A| ≥ |DC ~B ~ |, |B| ≥ DC~, and |C| ≥ |D|. The
dashed lines indicate where we can split the term such that the left part corresponds to
a closed term. E.g. the middle line gives us the prefix DC~ which is again a valid term.
What is left on the right is an open term.

3.2 Dividing terms

For the following, T is closed PNF term. It ranges from 1 to n.
We want to evaluate subintervals [l, r]. The size of the interval is
s = r − l + 1. Such an interval also has a middle point. Depending
on whether s is even or odd we could define a middle by rounding
up or down but actually we need to be flexible there and take the
middle position as given from outside. So usually we are given not
only l and r but also a position m which is the middle position. It
can be bl+ s

2
c or dl+ s

2
e. Interval borders we will use for the recursion

intervals are l′ = bl + s
3
c and r′ = dl + 2s

3
e. This divides the interval

[l, r] in thirds. We not only consider the three thirds but also the first
two thirds and the second two thirds. These five intervals will be our
recursion intervals. Based on those static intervals we define some
dynamic intervals, i.e. intervals depending on the input:

– The largest closed or open subterm in [l, r] that contains m. This
interval is denoted as M(l,m, r) = [M1(l,m, r),M2(l,m, r)].

– The open subterm in [l, r] that begins with max{p | l ≤ p ≤
m∧ l−1 <T p−1∧ l−1 6<T p} and ends with the largest position
q ∈ [m, r] such that [p, q] is an open subterm. This interval is
denoted as N (l,m, r) = [N 1(l,m, r),N 2(l,m, r)].
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– The largest open subterm in [l, r] that precedes M(l,m, r). This
interval is denoted as L(l,m, r) = [L1(l,m, r),L2(l,m, r)]. It is
L2(l,m, r) + 1 =M1(l,m, r).

– The largest open subterm in [l, r] that follows
[M1(l,m, r),M2(l,m, r) + 1]. This interval is denoted as
R(l,m, r) = [R1(l,m, r),R2(l,m, r)]. It is R1(l,m, r) − 2 =
M2(l,m, r) and M2(l,m, r) + 1 is a binary operation symbol. If
this operation exists, we denote the set containing its position by
O(l,m, r) = {M2(l,m, r) + 1}.

If it is clear that the interval is given by (l,m, r), we drop it in
the notation and write M, N , L, R, and O.

Note that a M interval could correspond to an open or a closed
term. A N interval always corresponds by definition to an open term
since late we only need it the open ones. The L interval is also defined
to be open however even if we allowed it to be closed, it would still
be always open because it is shorter asM∪N and so cannot be the
complete second operand of O. In the case of R we again are only
interested in open terms due to the way how we use it. Figure 3.2
shows the considered intervals.

The intervals might be empty however importantly they are
unambiguous, which is immediately clear but for M. This can be
seen by maximality and the following lemma:

Lemma 19. Given intervals [p1, q1] ⊆ [l, r] and [p2, q2] ⊆ [l, r] which
address closed or open terms with [p1, q1] ∩ [p2, q2] 6= ∅ then [p1, q1] ∪
[p2, q2] is also a closed or open term.

Proof. Assume that p1 < p2 < q1 < q2 because otherwise the state-
ment is trivial. The interval [p2, q2] has to correspond to an open
term since otherwise p1 6<T q1. So as p2 <T q1 holds we have that
[p2, q1] corresponds to an open term and so [p1, p2 − 1] is also a term;
it could be open or closed. By combining all parts, we get that [p1, q2]
is a term and it is closed or open depending whether [p1, q1] is closed
or open. �

Lemma 20. It holds M2 = N 2 and M2(l, l′, r′ − 1) + 1 = N 1(l′ +
1, r′, r).
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Proof. For the first statement first note that N ⊆ M and hence
N 2 ≤ M2 which follows from the previous lemma. Now assume
that N 2 is strictly smaller than M2. Let p be the position such that
[p,N 2] is closed. If p ∈M then we find q ∈M and q ≥ N 2 such that
[p, q] is an open term. But then [N 2 + 1, q] is also an open term and
so is N ∪ [N 2 + 1, q]. Hence again the maximality of N 2 is violated.
If p 6∈ M then [M1,N 1− 1] is an open term and so is [M1,N 2]. But
then also [N 1,M2] is an open term and again maximality of N 2 is
violated.

For the second statement, first note that M(l, l′, r′ − 1) ∪N (l′ +
1, r′, r) is indeed an interval, i.e. [M2(l, l′, r′−1)+1,N 1(l′+1, r′, r)−1]
is empty. This we get though maximality of M2(l, l′, r′ − 1). Also
M(l, l′, r′−1)∪N (l′+1, r′, r) is a closed or open term, depending on
whetherM(l, l′, r′−1) is closed or open. If not empty, the intersection
M(l, l′, r′ − 1) ∪ N (l′ + 1, r′, r) has to be an open term and hence
N1(l′ + 1, r′, r) was not chosen maximal. �

The key lemmas which later constitute the recursive evaluation
algorithm are the following ones. They show how to actually compose
a term by subterms coming from static subintervals. Figure 3.2 shows
the involved subintervals for the next lemma.

. . . . . .l l′ m r′ r

M(l, l′, r′ − 1)

M(l′ + 1,m, r′ − 1)

M(l′ + 1, r′, r)

N (l′ + 1, r′, r)

L R

Fig. 2. The figure shows how an recursion interval is subdivided into smaller recursion
intervals. In this case the subdivision for computing M(l,m, r) is shown. The six
intervals yields recursively six values which may be used to be combined in order to get
the evaluation of the M(l,m, r) interval.

Lemma 21. Given a term T and subinterval [l, r] with middle m,
M equals one of the following intervals:

1. M(l, l′, r′ − 1)
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2. M(l′ + 1, r′, r)
3. M(l′ + 1,m, r′ − 1)
4. M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r)
5. L(l,m, r)∪M(l, l′, r′−1)∪N (l′+ 1, r′, r)∪O(l,m, r)∪R(l,m, r)

Further the sets involved in the unions of case 4 and 5 are disjoint
unions.

Proof. IfM is entirely contained in [l, r′−1], [l′+1, r] or [l′+1, r′−1]
then it coincides with one of the first three cases.

If the term stretches from the first third to the last third, it is
not entirely contained in one of those three. Let A be M(l, l′, r′ −
1) ∪N (l′ + 1, r′, r). By Lemma 20 we know this interval is a disjoint
union. Further A is a closed or open term contained in M which
contains m. If A =M we are done as case 4 holds.

The intervalM(l, l′, r′ − 1) is open iff A is open. But thenM1 =
M1(l, l′, r′ − 1) because of minimality of M1(l, l′, r′ − 1). Similarly
it holds that M2 = N 2(l′ + 1, r′, r). So we get A = M and case 4
holds.

Now suppose A is a closed term. The term A is part of a lager
possibly open term. It has either the form AB~ or BA~ where B is
a closed term. If AB~ is the case then ~ lies outside [l, r] and case
4 holds which we again get by a maximality argument. If BA~ is
the case, then O(l,m, r) addresses the operation ~. Let B′ be the
largest suffix of B which is an open term and a subset of [l, r]. Note
that B′ is a proper suffix because |B| ≥ |A| and |A| is more than one
third of r − l + 1. The interval L coincides with B′. The subterm
B′A~ = L(l,m, r) ∪M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪O(l,m, r) can
be followed by an open term and we get again an open term if we
unite those. The maximal one in [l, r] is addressed by R(l,m, r). Note
that L(l,m, r) and R(l,m, r) might be empty. This concludes the
fifth case. �

Figures 3.2 and 3.2 show how the interval is subdivided in case
five.

In a very similar way we can treat N :

Lemma 22. Given a term T and subinterval [l, r] with middle m,
N equals one of the following intervals:
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. . . . . .l l′ m r′ r

E D C B A

Fig. 3. In case five for M as shown in Lemma 21, the interval is subdivided into five
parts. We see that DC is a closed term where D =M(l, l′, r′−1) and C = N (l′+1, r′, r).
Further, B consists of a single position which is a operation symbol and A and E are
open terms.

B

ACDE

Fig. 4. A graphical representation of case five forM; see Lemma 21 and also figure 3.2.
Note that A, C, and E represent open terms and D a closed one. The term DCB then
is open again.
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1. N (l, l′, r′ − 1)
2. N (l′ + 1, r′, r)
3. N (l′ + 1,m, r′ − 1)
4. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r)
5. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪O(l,m, r) ∪R(l,m, r)

Further the sets involved in the unions of case 4 and 5 are disjoint.

Proof. This proof is similar to the previous one. Only case five slightly
differs. Again, either the interval is completely contained in one
of the three subintervals for which we fall back to N (l, l′, r′ − 1),
N (l′ + 1, r′, r), or N (l′ + 1,m, r′ − 1) respectively.

Otherwise let A = N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r), similar to the
previous proof. Note that by Lemma 20 we get that N (l, l′, r′ − 1) ∪
N (l′ + 1, r′, r) is a disjoint union and an interval. If we are in the
AB~ situation, then case 4 holds as ~ is outside of [l, r]. In case of
BA~, B is not part of N due to maximality of N 1. If A is closed
we can insert ~ by O(l,m, r) and obtain an open term. Open terms
following O(l,m, r) can be appended and are addressed by R(l,m, r).
This is possible since M2 = N 2, which we know from Lemma 20.�

The intervals M and N are built around the property of con-
taining a middle position m. The intervals L and R are different.
They can lie arbitrarily in [l, l′− 1] resp. [r′+ 1, r] and we initially do
know nothing about the location of the middle points. Our goal is to
reduce L and R to some M(l̄, m̄, r̄) where find l̄, m̄, and r̄ using a
binary search.

Lemma 23. Given a term T and subinterval [l, r] with middle m
then for L there is an interval [l̄, r̄] ⊆ [l, l′ − 1] with middle m̄ that
can be found by binary search from l,m, r such that L =M(l̄, m̄, r̄).

Proof. By definition the interval L lies left toM∪N . The setM∪N
is a closed term and M∪N ∪ O is an open one. We then want to
address the largest term in [l, l′ − 1] that comes before M. We can
use M(l̄, m̄, r̄) for this. The inclusion L ⊆ M(l̄, m̄, r̄) is clear from
maximality of M(l̄, m̄, r̄). On the other hand the converse direction
is also true since any position to the right of L is rooted after l′.

Now we can use the binary search inside [l, l′− 1]. Start with this
interval and then recursively do the following: If m̄ is the middle
position of the current interval then if:

21



– L is entirely left of m̄ then search in the left part.
– L is entirely right of m̄ then search in the right part.
– L contains m̄ and let l̄, r̄ be the borders of the current interval,

then L =M(l̄, m̄, r̄).

�

Lemma 24. Given a term T and subinterval [l, r] with middle m
then for R there is an interval [l̄, r̄] ⊆ [r′ + 1, r] with middle m̄ that
can be found by binary search from l,m, r such that R =M(l̄, m̄, r̄).

Proof. This proof is similar to the previous one. First note that R ⊆
M(l̄, m̄, r̄) and R2 =M2(l̄, m̄, r̄) because of maximality. Further R
is an open term. Now ifM(l̄, m̄, r̄) is a strict superset it must contain
the operation set O(l,m, r). Inside [r′ + 1, r] both descendants stay
open so there is no open term in [r′ + 1, r] that contains O(l,m, r).

The binary search is the same as in the previous proof. �

3.3 The evaluation algorithm

The algorithm we present is a recursive one which is given in terms of
circuits. Lemmas 21, 22, 23, and 24 directly suggest how the recursive
evaluation will work: To evaluate an interval we compute smaller
fixed subintervals and then use the results to obtain the overall result.

In particular we need the following parts:

– Conversion of the term into PNF.
– Decision procedures determining for given intervals which case

holds. By case we mean the ones from Lemma 21 and 22.
– The actual evaluation using the PNF and the computed cases.

The first step is the PNF conversion for which we refer to [8]. The
conversion is of complexity TC0. The resulting term is T .

For the evaluation we need to implement circuits which on a given
interval [l, r] evaluate the intervals M, N , L, and R. In the case of
M we need to distinguish whether the evaluation is a value or a
univariate function. In the other cases the result is always a function.

– Evalclosed(M(l,m, r))
– Eval(M(l,m, r))
– Eval(N (l,m, r))
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– Eval(L(l,m, r), l̄, m̄, r̄)
– Eval(R(l,m, r), l̄, m̄, r̄)

The variables l̄, m̄, r̄ exist to serve the binary search as mentioned
in Lemma 23 and 24.

Those circuits all work in a similar way: Depending on the struc-
ture of the term one of a number of cases holds which determines
how the output value is composed of the recursion results. So the
recursion results are combined according to the cases and then feed
into a multiplexer-gate which chooses the right output.

The circuits determining the cases are called:

– Case(M(l,m, r))
– Case(N (l,m, r))
– Case(L(l,m, r), l̄, m̄, r̄)
– Case(R(l,m, r), l̄, m̄, r̄)

In the end, Evalclosed(M(1, bn/2c, n)) is the circuit evaluating
the whole term. For all recursive definitions of circuits, assume some
look-up table construction if the interval becomes smaller than some
constant. Also if we evaluate an open interval and the intervals
happens to be empty, then we output the identity function.

3.4 The evaluation algorithm - Case(M(l,m, r)),
Eval(M(l,m, r)), and Evalclosed(M(l,m, r))

This part is based on Lemma 21. Consider its five cases:

1. M =M(l, l′, r′ − 1)
2. M =M(l′ + 1, r′, r)
3. M =M(l′ + 1,m, r′ − 1)
4. M =M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r)
5. M = L(l,m, r) ∪M(l, l′, r′ − 1) ∪ N (l′ + 1, r′, r) ∪ O(l,m, r) ∪
R(l,m, r)

The circuit Case(M(l,m, r)) determines which case holds for
given l, m and r. It actually has five output bits - one for each case.
The circuit for the i’th output bit is Casei(M(l,m, r)). Instead of
actually stating a circuit we specify MAJ[<] formulas for each output.
This is sufficient since MAJ[<] equals TC0 which is a subset of NC1.
Also note that /T is also expressible in MAJ[<] logic [8].
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Case1(M(l,m, r)) = ∃x m ≤ x < r′ ∧ (∃y l ≤ y < l′ ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y < m ∧ y /T x)

Case2(M(l,m, r)) = ∃x r′ ≤ x ≤ r ∧ (∃y l′ < y ≤ m ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y ≤ l′ ∧ y /T x)

Case3(M(l,m, r)) = ∃x m ≤ x < r′ ∧ (∃y l′ < y ≤ m ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y ≤ m ∧ y /T x)

∧ ∀x m ≤ x < r′ ⇒ ¬(∃y l ≤ y ≤ l′ ∧ y /T x)

Case4(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z l′ ≤ z < r′ ∧ y /T z ∧ z + 1 /T x

Case5(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

Now that we have the means of deciding the case of Lemma 21
for a given interval, we can actually evaluate the interval. Recursively
we get the results for the intervals M(l, l′, r′ − 1), M(l′ + 1, r′, r),
M(l′ + 1,m, r′ − 1), N (l′ + 1, r′, r), L(l,m, r), and R(l,m, r). By
combining those we can obtain the output value.

– In cases one to three the combination is trivial as we only pass a
recursively computed value.
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– In case four the output of Evalclosed(M(l,m, r)) we use a
functional application gate (�) which gets the results from
Evalclosed(M(l, l′, r′− 1)) and Eval(N (l′+ 1, r′, r)). For the out-
put of Eval(M(l,m, r)) we use a composition gate (◦) which gets
the outputs of Eval(M(l, l′, r′ − 1)) and Eval(N (l′ + 1, r′, r)).

– Case five is composed as L(l,m, r)∪M(l, l′, r′−1)∪N (l′+1, r′, r)∪
O(l,m, r) ∪ R(l,m, r). The subinterval M(l, l′, r′ − 1) ∪ N (l′ +
1, r′, r) is a term an can be obtained like in case four. For interval
M(l, l′, r′− 1)∪N (l′+ 1, r′, r)∪O(l,m, r) we use that result and
feed it together with a identity function into a

←−
~ -gate if O(l,m, r)

points to a symbol ~. Then we take this value and the result of
Eval(R(l,m, r)) and feed it into a composition gate which then
yields the value for M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪O(l,m, r) ∪
R(l,m, r). Finally we take this value and compose it with the
result of Eval(L(l,m, r)) to get the value for the whole interval;
see figure 3.4.

. . . . . .l l′ m r′ r

Eval(M(l, l′, r′ − 1))

Eval(N (l′ + 1, r′, r))

Eval(L) Eval(R)

�id

←−
~

◦

◦

output

E
v
a
l
(M

(l
,m

,r
))

,
ca

se
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v
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Fig. 5. The dashed box represents the subcircuit of Eval(M(l,m, r)) which performs
the combination in case fife. Note that the box ~ corresponds to the operation symbol
in position B in figures 3.2 and 3.2. This box actually is not a single gate but also a
construction which is shown in figure 3.4.
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In case five we need a multiplexer construction to select the right
operation ~, i.e. we do the construction for all possible operations
and then select the right one by the multiplexer which is directed by
the following:

Operation~(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

∧ Q~(u+ 1)

This is the same as the formula for Case5(M(l,m, r)) but it also
checks whether ~ is in the place of O(l,m, r); see figure 3.4.

id

←−
~ 1

←−
~ 2

←−
~k-1

←−
~k

multiplexer

. . . . . .

output

Operation(M(l,m, r)) �

O
p
.(
M

(l
,
m
,
r
))

Fig. 6. In case five of the computation of Eval(M(l,m, r), the operator has to be
computed and used. Figure 3.4 shows where the operator circuit shown here has to be
inserted.

Finally we have these five possible combinations, we use a multi-
plexer gate and the results of Casei(M(l,m, r)) to select the right
one as output; see figure 3.4.
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Eval(M(l, l′, r′ − 1))

Eval(M(. . .))

Eval(M(l′ + 1, r′, r))

Eval(N (l′ + 1, r′, r))

Eval(L) Eval(R)
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Fig. 7. Construction for the Eval(M(l,m, r)) circuit. It consists of 5 recursive calls, a
circuit for determining the case and a subcircuit performing the combination for case
five as shown in figure 3.4.
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3.5 The evaluation algorithm - Case(N (l,m, r)) and
Eval(N (l,m, r))

The evaluation of N intervals is very similar to the one previously
described for M. First, we only evaluate open terms in this case.
Then the difference is for one that we need to have adjusted circuits
Case(N (l,m, r)) computing the case:

Case1(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x m ≤ x < r′ ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case2(N (l,m, r)) = ∃y l′ < y ≤ m ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case3(N (l,m, r)) = ∃y l′ < y ≤ m ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x m ≤ x < r′ ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case4(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

∧ ∃w l′ ≤ w < r′ ∧ y /T w ∧ w + 1 /T x
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Case5(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

∧ ∃w∃z l′ ≤ w < r′ ∧ y /T w ∧ w + 1 /T z ∧ z + 2 /T x

Now by applying Lemma 22 we can build Eval(N (l,m, r)). Con-
sider the cases:

1. N = N (l, l′, r′ − 1)

2. N = N (l′ + 1, r′, r)

3. N = N (l′ + 1,m, r′ − 1)

4. N = N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r)

5. N = N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪O(l,m, r) ∪R(l,m, r)

The construction for Eval(N (l,m, r)) is similar to the one for
Eval(M(l,m, r)) with the exception that we use the appropriate
recursive calls and do not use the R interval. Also we of course use
Case(N (l,m, r)) instead of Case(M(l,m, r)).

3.6 The evaluation algorithm - Case(L(l,m, r), l̄, m̄, r̄)
and Eval(L(l,m, r), l̄, m̄, r̄)

I key idea of evaluating an interval in our algorithm is that we evaluate
e.g. the largest subterm in the interval that contains the middle. If
we want to evaluate a L interval we face the problem that is can
lie arbitrarily in the considered interval. So the idea is that we do a
binary search in order to find a interval whose middle is part of L;
see Lemma 23.

Our search interval will be [l̄, r̄] with middle m̄. We then distin-
guish three cases:

1. m̄ ∈ L
2. L ⊆ [l̄, m̄− 1]

3. L ⊆ [m̄+ 1, r̄]
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In the first case we can fall back to Eval(M(l̄, m̄, r̄)). In the
second we recurse using Eval(L(l,m, r), (l̄, l̄+ m̄− 1)/2, m̄− 1) and
in the third case we use Eval(L(l,m, r), (m̄+ 1, (r̄+ m̄+ 1)/2, r̄). So
we have three recursive calls which we feed into a multiplexer gate.
The multiplexer gate is directed by Case(L(l,m, r), l̄, m̄, r̄) which
decides which of the tree cases hold:

Case1(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ y ≤ m̄ ≤ v

=∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

∧ y ≤ m̄ ≤ v

Case2(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ y ≤ v < m̄

Case3(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ m̄ < y ≤ v

3.7 The evaluation algorithm - Case(R(l,m, r), l̄, m̄, r̄)
and Eval(R(l,m, r), l̄, m̄, r̄)

Evaluating an R interval is again very similar to L. For
Eval(R(l,m, r), l̄, m̄, r̄) we use the same multiplexer construction
for the binary search as in Eval(L(l,m, r), l̄, m̄, r̄) and only have to
adjust the case computation:

Case1(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ u+ 2 ≤ m̄ ≤ x

Case2(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ u+ 2 ≤ x ≤ m̄

Case3(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ m̄ ≤ u+ 2 ≤ x
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3.8 Complexity and correctness: Proof of Theorem 16

The correctness of our construction follows from the lemmas of
Subsection 3.2 as is only directly implements those lemmas.

Our circuit construction uses the kind of gates which we may use
for F(A)-NC1 circuits. We used multiplexer gates of three resp. five
instead of two inputs which can be easily implemented.

The construction also stays in logarithmic depth with regard to
the input length. The PNF conversion is doable in TC0. The same is
true for the case computations. Finally the evaluation circuits entail
the case circuits as well as recursive calls. As in every call the range
becomes smaller by at least a factor of 2/3, the depth is logarithmic.

Analyzing the size of our construction, we see that we use a
polynomial number of circuits which originate in MAJ[<] formulas
which result in polynomial size circuits. In particular that are circuits
computing the PNF term and those computing the cases. Further
each recursive evaluation circuit covers a certain subinterval and
since there is only a quadratic number of subintervals, we get the
polynomial bound for the whole construction.

Lastly we give the idea for DLOGTIME-uniformity. To that end
we have to show how to address states and then state FO[<,+,×]
formulas which take such addresses and tell what function some gate
is assigned as well as how the gates are wired. Consider a circuit
Eval(M(l,m, r)). It consists of several recursively defined subcircuits
and a fixed number of extra gates to combine the results of the sub-
circuits which we call combination gates of Eval(M(l,m, r)). An ad-
dressing scheme can look like this: We assign each Eval(M(l,m, r))
circuit a string w for the six subcircuits we assign strings w000, w001,
w010, w011, w100, and w101. The finitely many combination gates
which are left we address by w$x where x is unique string for each
occurring gate. It can be easily seen that this scheme can be applies
for all kinds of circuits we defined.

Now it is easy to come up with a FO[<,+,×] formula which
assigns each gate its type. On a input w$x it is only a look-up to
which kind of gate x corresponds. The wiring between gates can also
expressed: For a pair of combination gates of some Eval(M(l,m, r)),
where the task is again just a look-up. If we have a pair such that
one is the output of a recursion, we can also model that by looking at
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the last letter of w in the address w$x. In the case of small intervals
r − l, the computation Eval(M(l,m, r)) becomes a look-up table
which accesses input gates which we can also model. The output gate
is a gate with an address of the form $x for an appropriate x.

Note that we also have circuits like Case(M(l,m, r)) which are
given in terms of MAJ[<] formulas. By [5] we know that these are
also in DLOGTIME-uniform NC1.

4 Application

Our meta theorem can be used for many different applications. All
applications follow the same line of proof. This recipe we will illustrate
in detail. It consists of the following steps:

1. Find an algebra A. Given a problem P , which could be a
language or a function, find an algebra A = (D,~1, . . . ,~k), such
that P reduces to term evaluation over A.

2. Find a coding for F(A). Now we know by our main theorem
that P is in F(A)-NC1. However what we want is a “real” class
like NC1 or #SAC7. Hence we have to code F(A) in a way that
we end up with a Boolean or an arithmetic class. So find a code
c mapping into an algebra resp. a family of algebras, that have
domains based on B, N, or Z, depending on whether you want to
prove Boolean or arithmetic circuit upper bounds.

3. Analyze the complexity of the operations used in
c(F(A))-NC1. Now we know that P is in c(F(A))-NC1 since the
coding admits a reduction. If we have chosen c well, we can im-
plement the operations of c(F(A)) efficiently. Note that c(F(A))
could be a family. The members of the family all contain the
following coded operations:

– The operations of A: ~c1 . . .~
c
k.

– The functional versions for each binary operation ~i:
←−
~ c
i and−→

~ c
i . Recall that

←−
~ i : DD × D→ DD and

−→
~ i : D× DD → DD.

– The functional versions for each unary operation ~i which is
~̃
c

i : DD → DD.
– The functional composition of F(A): ◦c : DD × DD → DD.
– The function application operation of F(A): �c : DD×D→ D.
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An algebra usually also has 0-ary operators, but here there is no
complexity to analyze.
The following is not part of the algebra but comes into play in
the construction of the c(F(A))-NC1 circuits:
– Multiplexer operations for all subdomains D of c(F(A)): mpD.

These operations are used in the c(F(A))-NC1 circuit as black
boxes. In this third step we have to come up with a efficient
implementation of all these operations in order to derive a good
upper bound. If, say, all the operations are in #NC1

D, then
c(F(A)) ⊆ #NC2. Actually we can subsume all cases we come
across later in table 3:

Complexity of operations Overall complexity
NCi ACi SACi NCi+1 ACi+1 SACi+1

#NCi #ACi #SACi  #NCi+1 #ACi+1 #SACi+1

GapNCi GapACi GapSACi GapNCi+1 GapACi+1 GapSACi+1

Table 1. The depth increases by a logarithmic factor when comparing the complexity
of the operations and the overall circuit. Note that arithmetic circuits can simulate
Boolean gates.

All the applications we show follow this scheme. The first classical
ones are the easiest ones and so best fit to exemplify the recipe.

4.1 The Boolean formula value problem and finite
algebras

Problem description. The BFVP is the problem of evaluating
Boolean formulas. That is evaluating terms over the algebra B =
(B,∧∨,¬,⊥,>).

Theorem 25 ([8]). The Boolean formula value problem is in NC1.

Proof. 1. step. We do not need a reduction, since the problem
directly is a evaluation problem over the algebra B

2. step. Consider the algebra F(B) =
({B,BB},∧,∨,¬,⊥,←−∧ ,←−∨ ,−→∧ ,−→∨ , ¬̃, ◦,�). Here BB has four el-
ements. We choose some coding c with c(B) = B and c(BB) = B2.
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3. step. Consider the algebra c(F(B)). The operations of c(B) =
B can be implemented directly by single gates. The other operations
need constant size circuits, i.e. NC0. The same is true for multiplexer
gates. Hence c(F(B))-NC1 ⊆ NC1. �

In the previous proof we used that the algebra is finite. If it is
finite we only need constant size circuits to implement the operations.
Hence we can state a general theorem:

Theorem 26. If A is a finite algebra then evaluating terms over A
is in NC1.

4.2 Evaluating arithmetic terms and distributive algebras

Problem description. We consider evaluating terms over N =
(N,+,×, 0, 1) and Z = (Z,+,×, 0, 1).

Theorem 27 ([10]). Evaluating terms over N is in #NC1.

Proof. 1. step. The problem is directly a term evaluation problem,
hence no reduction is needed and we stick to N .

2. step. Consider the algebra

F(N ) = ({N, Ñ},+,×, 0, 1,←−+ ,
←−× ,−→+ ,

−→× , ◦,�).

Here Ñ ⊆ NN. We choose a coding c such that c(N) = N and

c(Ñ) = N2. The functions in Ñ are of the form x 7→ ax+ b for some
a, b ∈ N: We begin with the identity function x 7→ 1x + 0 which is
clearly of this form. Now we have to show that the operations of
F(N ) leave functions in this form.

– ◦c: Given some functions f(x) = afx + bf and g(x) = agx + bg,
then f ◦ g is of this form: x 7→ afagx + afbg + bf . So c(f ◦ g) =
c(f) ◦c c(g) = (af , bf ) ◦c (ag, bg) = (afag, afbg + bf ).

–
←−
+ c: Consider c(f + e) for f ∈ NN and e ∈ N. Now c(f) +c c(e) =
(a, b) +c e = (a, b + e) where f(x) = ax + b. The operation

−→
+ c

follows similarly.
–
←−× c: Consider c(f × e) for f ∈ NN and e ∈ N. Now c(f) +c c(e) =
(a, b) +c e = (a× e, b× e) where f(x) = ax+ b. The operation

−→× c

follows similarly.
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This shows that c is indeed a valid coding.
3. step. We now have an upper bound of c(F(B))-NC1. As all

operations use constantly many inputs of natural numbers, there exist
arithmetic circuit implementations for all operations. Further, all
Boolean gates and multiplexer gates can be simulated by arithmetic
circuit constructions, so all operations are in #NC0

N. Hence we get
c(F(B))-NC1 ⊆ #NC1. �

The same construction carries over to integers:

Theorem 28. Evaluating terms over Z is in GapNC1.

In the previous proof we used distributivity of + and × which
allows us to represent functions by two values. This we can do in
general, so we get the following:

Theorem 29. Given a distributive algebra A = (D,~1,~2), then
evaluating terms over A is in A-NC1.

4.3 Tree automata

Tree automata are finite state machines and the counter part to finite
automata for strings. We are interested in proving upper bounds for
membership problems known from [26].

For sake of a clear presentation, in this section we focus on binary
trees but all results can be generalized. The nodes of the trees are
labeled with a letter of the alphabet Σ. We use a linearization similar
to the one we used for terms: (t1at2) is a tree whose root is labeled a
and has t1 as a left and t2 as a right descendant.

Definition 30. A nondeterministic bottom-up tree automaton
(BUTA) is a tuple T = (Q,Σ,Q0, F, δ) where Q is a finite set of
states, Σ a finite alphabet, Q0 ⊆ Q a set of initial states, F ⊆ Q the
set of final states and δ : Q×Q×Σ → 2Q the transition function.

The deterministic version has only one initial state q0 and the
transition function is deterministic: δ : Q×Q×Σ → Q.

Given a BUTA and a tree t, a run is an assignment of states
to the edges of the tree in the following way: For each leaf we add
two new children which then become leafs and label them an initial
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state. Also we add a new root whose only child is the old root. If the
children of a node are labeled q1 and q2 and the node is labeled a,
then it must be labeled with a state of δ(q1, q2, a). If the label of the
root is labeled with a state of F , then we call the run accepting. If a
tree has an accepting run, the tree is accepted by the automaton.

Nondeterministic BUTA can be determinized by the classical
power-set construction. There is also the notion of top-down tree
automata. In the nondeterministic version they have the same power
as BUTA but the deterministic version is strictly weaker. Hence we
will focus on BUTA.

In the following we also want to consider counting problems.
A tree automaton accepts a word if there exists an accepting run.
Further, in reference to [26] we consider the uniform membership
problem where the automaton is not fixed but part of the input.
However we first show a more general result.

Theorem 31. Given a nondeterministic BUTA M and a tree t as
input, then computing the number of accepting runs of M on t is in
#SAC1

Proof. 1. step. Let Σ be a fixed alphabet. The input tree we interpret
as a term over a family of algebras (An)n∈N with

An = (N[n] ×Mn, (~a)a∈Σ, †),

where n is the length of the term and Mn the set of all BUTA having
n states; we assume it to have a state set [n]. Note that BUTA with
less than n states can be simulated by inserting unused states. The
operation family (~a)a∈Σ consists of binary operations and † is a
constant. Now an input tree w yields a term as follows: If (t1at2) is a
tree and T (t1), T (t2) are terms for t1 and t2, then (T (t1)~a T (t2)) is
the term for (t1at2). If t = a is a leaf, then T (t) = †~a †.

The idea of the algebra is that each element stores for each state
q, how many runs there are to end up in q in a certain subtree.
Also the automaton has to be part of the algebra. It is stored in
the second component of the domain and is constant for the whole
term evaluation. Now † should correspond to the initial states, hence
† = (f,M), where M is the automaton from the input and f(q) = 1 if
q is an initial state and f(q) = 0 else. Given a ∈ Σ, the operation~a is
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defined as (f,M)~a (g,M) = (h,M) where h(q) =
∑

q∈δ(q1,q2,a) f(q1)·
g(q2) and δ is the transition function of M .

Clearly if we evaluate the term we get from the input over the
algebra, we get the desired value. The evaluation is a pair where the
first component holds for each state how many runs there are to end
up in it. Now add all values which correspond to a final state; this is
the output.

2. step. We design a coding to later be able to show the upper
bound. We need to code

F(A) = ({D, D̃}, (~a)a∈Σ, †, (
←−
~a)a∈Σ, (

−→
~a)a∈Σ, ◦,�).

Note that for a given term, the automaton always stays the same, so
we just assume D to be N[n], so we omit explicitly coding the automa-
ton. We focus on coding the functions N[n] → N[n] and constants N[n].
The constants we can code as c(N[n]) = Nn, so the functions of N[n]

become an n-tuple. Further we code

c

((
N[n]

)N[n]
)

= Nn,n × Nn.

So each function f : N[n] → N[n] can be represented by a matrix M
and a vector b. Note that a matrix can be seen as a sequence of
numbers. A function then is a map of the form x 7→ xM + b for
x ∈ Nn. We show that all functions of the algebra confirm with this:

– The identity function is represented by x 7→ xI + 0 where I is the
identity matrix.

– Consider f ◦ g and let c(f) = (M, b) and c(g) = (M ′, b′), then
c(f ◦ g) = c(f)◦c c(g) is a map of the form x 7→ xMM ′+ bM ′+ b′,
so c(f ◦ g) = (MM ′, bM ′ + b′).

– For f ∈ Ñ[n], d ∈ N[n], and c(f) = (M, b) we get c(f) � c(d) =
c(f(d)) = c(f)�c c(d) = c(d)M + b.

– For a ∈ Σ consider f
←−
~ad where c(f) = (M, b), then c(f

←−
~ad) =

c(f)
←−
~ c
ac(d) = (MMa

d , bM
a
d ) where the matrix Ma

d is defined as
follows: For i, j ∈ [n], let S ⊆ [n] be the set of all states such
that i ∈ δ(j, S, a). Then in Ma

d the position (i, j) is
∑

s∈S ds. The

operation
−→
~a follows similarly.
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3. step. Multiplying matrices requires multiplication gates of fan-
in 2 and addition gates of fan-in n. The depth is constant. Hence the
gates used in the c(F(A))-NC1 circuits can be replaced by #SAC0

N
constructions which yields an overall complexity of #SAC1.

�

If we consider the previous proof, then it is immediate that we
end up with a Boolean circuit if we are not interested in counting
but only the existence of accepting runs. Hence we get:

Theorem 32 ([26]). The uniform membership problem for nonde-
terministic BUTA is in SAC1.

Also we can look at the proof and consider the situation for a
fixed automaton. The complexity we determined for the operations
is #SAC0, where the unbounded addition gates have a fan-in equal
to the number of states of the automaton. If now the automaton is
fixed, a constant depth construction with bounded fan-in suffices,
hence we get:

Theorem 33. For a fixed BUTA, counting the number of accepting
runs is in #NC1.

And again, if we are only interested in acceptance and not in
counting, the proof directly yields a Boolean upper bound:

Theorem 34 ([26]). For a fixed BUTA, the membership problem is
in NC1.

4.4 Visibly pushdown languages and quantitative
automata models

Visibly pushdown languages (VPL) are a class of context-free lan-
guages containing the regular ones. They were first covered under
the name of input-driven pushdown languages in [28] and later redis-
covered and popularized by Alur and Madhusudan in [3]. VPL is the
set of languages for which there is a visibly pushdown automaton
(VPA). A VPA is a pushdown automaton M which has the following
restriction: If Σ is the input alphabet then there is a partition of
Σ into subsets Σcall, Σret, and Σint such that M pushes one symbol
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onto the stack if a letter of Σcall is read. If a letter of Σret is read
then one symbol is popped of the stack. If a letter of Σint is read,
the stack is not accessed at all. This model yields many desirable
properties with regard to decidability and closure properties. Also
determinism equals nondeterminism in this model. VPA have their
applications in fields like XML or verification. The intuition is that a
word accepted by a VPA basically represents a unranked tree.

Definition 35 (Visibly pushdown automaton). Given a par-
titioned alphabet Σ = Σcall ∪ Σret ∪ Σint, a VPA is a tuple M =
(Q,Q0, F, Γ,⊥, δcall, δret, δint) where Q is a finite set of states, Q0 ⊆ Q
is a set of initial states, F ⊆ Q a set of final states, Γ the stack
alphabet, ⊥ ∈ Γ the bottom-of-stack symbol, δcall ⊆ Q×Σcall×Q×Γ
is the transition relation for call letters, δret ⊆ Q×Σret × Γ ×Q is
the transition relations for return letters and δint ⊆ Q×Σint ×Q is
the transition relation for internal letters.

We omit details for the semantic here. However note that we
impose that VPLs only contain well-matched words. A word is well-
matched if all positions of call or return letters have a matching
position. Two positions i < j in a word w match if wi ∈ Σcall,
wj ∈ Σret, the number of call letters equals the number of return
letters in wi . . . wj , and in all prefixes of wi . . . wj there are at least as
many call letters as return letters. That way well-matched words can
be seen as well-parenthesized expressions or as valid representations
of trees. If there is only one initial state and the transition relations
are functions, the automaton is called deterministic.

Using our evaluation algorithm we can derive upper bounds for
membership and counting problems.

Theorem 36. Given a nondeterministic VPA M and a well-matched
word w ∈ Σ∗ as input, then computing the number of accepting runs
of M on w is in #SAC1

Proof. 1. step A well-matched word can be considered to be a
linearization of a tree or a term. So what we will do is to interpret
the input word as a term and the input automaton can be found
again in the family of algebras (An)n∈N we will evaluate the term
over. We choose

An = (N[n]×[n] ×Mn,~, (⊗a,b)a∈Σcall,b∈Σret , (†e)e∈Σint∪{ε}).
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Now given as input a well-matched input word, we construct a term.
If the input w is either the empty word or a internal letter, then
the corresponding term is t(w) = †w. If w = w1w2 where w1, w2 are
well matched then t(w) = t(w1)~ t(w2). If w = aw′b where a ∈ Σcall,
b ∈ Σret, and w′ is well-matched, then t(w) = ⊗a,bt(w). The intuition
of the algebra is that the second part Mn of the domain stores the
automaton which is then constant for the whole term. We assume
it to have state set [n], where n is the input length which is no
restriction. Then the first component N[n]×[n] then assigns each pair
of states q1, q2 the number of runs from q1 to q2 there are by passing
through the corresponding well-matched word. Also note that in
the construction we did not take care building the automaton into
the term. We leave is out for readability. Just know that the same
automaton is accessible in every step of the evaluation. The definition
of the algebra operations in particular is as follows:

– †ε is a 0-ary operation, hence an element of the domain, which is
a function [n]× [n]→ N. We define it as (q, q′) 7→ 1 iff q = q′ and
(q, q′) 7→ 0 otherwise.

– †e for e ∈ Σint is defined as (q, q′) 7→ 1 if q′ ∈ δint(q, e) and
(q, q′) 7→ 0 otherwise.

– ~ is a binary operation and α~ β is defined as (α~ β)(q, q′) =∑
r∈Q α(x, r)β(r, y).

– ⊗a,b is unary and (⊗a,bα)(q, q′) is defined as the sum of all α(p, p′)
such that there exists γ ∈ Γ and (p, γ) ∈ δcall(q, a) and q′ ∈
δret(p

′, b, γ).

If we evaluate the term over this algebra we get the number of runs.
2. step The algebra F(An) has a subdomain which consists of

maps of the form N[n]×[n] → N[n]×[n]. Potentially the set of such maps
is too large, but actually they are made up in a regular manner.
The idea for a function [n]× [n]→ N was to store how many paths
there are between a pair of states for a given well-matched word.
For functions N[n]×[n] → N[n]×[n] there is a similar picture. Given a
well-matched word w1w2 where w1 and w2 not necessarily have to be
well-matched, then a function f can be considered to be storing for
given states q1, q2, q3, q4 how many ways there are to from q1 to q2
via w1 and from q3 to q4 via w2. We can now consider f(d), where d
is a function d : [n]× [n]→ N which fills in the transitions from q2 to
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q3. If d resulted from evaluating a well matched word w, f(d) is the
evaluation corresponding to w1ww2.

The idea for our coding c is that we we have to store natural
numbers for these four-tuples of states. We set c(N[n]×[n]) = Nn,n and

c((N[n]×[n])N
[n]×[n]

) = (Nn,n)n,n.

To assign a semantic to these matrices we we define �c first:

– �c: Given c(f) ∈ (Nn,n)n,n and d ∈ Nn,n we define the matrix
c(f(d)) = c(f � d) = c(f) �c c(d) = A as follows. For a matrix
like A we write A(q1, q2) to address the entry which corresponds
to the pair q1, q2. If we are given a matrix like c(f) we write
c(f)(q1, q2) to address the matrix corresponding to q1, q2 and
we set c(f)(q1, q2)(q3, q4) = c(f)(q1, q2, q3, q4). Now A(q1, q2) is
defined as

∑
q3,q4∈[n] c(f)(q1, q2, q3, q4)c(d)(q3, q4). This is the sum

of the entries of the point-wise matrix multiplication of c(f)(q1, q2)
and c(d). Note that the coding of the identity map is c(id) = In,n,
where I is the identity map of size n times n.

– ◦c: Given c(f) and c(g) of (Nn,n)n,n, then c(f) ◦c
c(g)(q1, q2, q3, q4) =

∑
q5,q6∈[n] c(f)(q1, q2, q5, q6)c(g)(q5, q6, q3, q4).

– ~c: This is just the normal matrix multiplication.
– ⊗ca,b: Consider the matrix Ma,b ∈ (Nn,n,)n,n, where
Ma,b(q1, q2, q3, q4) = 1 if there exists γ ∈ Γ such
that (q2, γ) ∈ δcall(q1, a) and q4 ∈ δret(q3, b, γ) and
Ma,b(q1, q2, q3, q4) = 0 else. Now we set ⊗ca,bc(d) = Ma,b �c c(d).

– ⊗̃ca,b: This is similar to the previous case and we set ⊗̃ca,bc(f) =
Ma,b ◦c c(f).

–
←−
~ c: We set c(f

←−
~d) = c(f)

←−
~ cc(d) as c(f

←−
~d)(q1, q2) =∑

q3∈[n] c(f)(q1, q3)c(d)(q3, q2) where the summation is a point-
wise matrix summation and the multiplication is a scalar multi-
plication. The operation

−→
~ c is defined similarly.

3. step Up to now we have reduced the problem such that we know
it is in c(F(A))-NC1. By considering the definition of the algebra
operations above, one can see that in all cases arithmetic circuits
of constant depth suffice. In particular we only use multiplication
between two elements. The fan-in of addition gates is n. Hence we
have a #SAC0

N bound for the the operations. This again yields the
bound #SAC1 bound for the actual problem. �
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Here the setting is very similar to the one for tree automata. By
fixing a automaton or restriction to the Boolean case, we get the
following theorems. Recall that the uniform membership problem is
the membership problem, where the automaton is part of the input.

Theorem 37. The uniform membership problem for nondeterminis-
tic VPA is in SAC1.

Theorem 38 ([25]). For a fixed nondeterministic VPA, counting
the number of accepting runs is in #NC1.

Theorem 39 ([16]). For a fixed VPA, the membership problem is
in NC1.

Weighted automata theory is a branch of theory which re-
ceived ample research. The original concept is based on finite au-
tomata however also generalizations to VPA have been investigated
[11]. We define a weighted VPA (WVPA) based on a nondeterministic
VPA and a semiring (D,⊕,⊗). Then each transition of the VPA is
assigned an element of D. In a run, all weights are added by ⊕. Then
the results for all the runs are multiplied by ⊗ which then is the
output. That way a WVPA implements a function Σ∗ → D. A typical
example for the semiring is (N,+,min).

Theorem 40. Functions of WVPA over a semiring A = (D,⊕,⊗)
are in A-NC1.

Proof. 1. step. In a WVPA for all computations the sum of weights
is obtained by ⊕ and then those weights are multiplied by ⊗. An
approach of doing the computation in that order is awkward since
there can exist exponentially many runs. But since we have a semiring
at hand we can use distributivity. We again consider the input word
basically as a term over an appropriate algebra. Then we can assign
each well-matched subword w a value which is a map Q × Q → D
where (q1, q2)→ d ∈ D says what the weight is which is accumulated
when going from q1 to q2 by reading w. Hence let

A′ = (DQ×Q,}, (~a,b)a∈Σcall,b∈Σret,(†e)e∈Σint∪{ε}

where (f } f)(q1, q2) =
⊗

q∈Q f(q1, q)⊕ g(q, q2) and †e is 0-ary. Fur-
ther ~a,b(f)(q1, q2) =

⊗
q′1,q
′
2∈Q,γ∈Γ

weight(q1, q
′
1, a, γ) ⊕ f(q′1, q

′
2) ⊕
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weight(q′2, q2, b, γ). Here, weight : Q×Q×Σcall ∪Σret× Γ → D maps
to each transition its weight; if a ∈ Σcall then γ ∈ Γ is the letter
which is pushed on stack and if b ∈ Σret it is the one popped of
stack. Now we build a term: The empty word has the identity map
as corresponding value: †ε. An internal letter e corresponds to a
map f where f(q1, q2) is the weight associated with the transition
δ(q1, q2, e): †e. If w1 and w2 are well matched words and f1, f2 are
the corresponding terms, then (f1 } f2) is the term for w1w2. If w
is well-matched and f is the term belonging to w then the term
for the word awb is ~a,b,(f). It can be seen by induction that the
constructed term evaluates to the function which tells is the weight
for each pair of states. By assuming that there exists one initial and
one final state, looking up at the pair of initial and final state we get
the final output.

Using the construction and regarding the pair of initial state and
final state one can obtain an A-term which evaluates to the final
output because the maps of A′ can be considered matrices and the
matrix operations can be made explicit.

2. and 3. step. By Theorem 29 it follows that those terms over
A can be evaluated in the bounds of A-NC1 �

Applied, we directly obtain:

Theorem 41. Functions of WVPA over (N,+,×) resp. (Z,+,×)
are in #NC1 resp. GapNC1.

A prime example for A in the context of weighted automata is
(N,+,min), hence:

Theorem 42. Functions of WVPA over (N,+,min) or (Z,+,min)
where the output is coded binary are in SAC1.

Proof. By Theorem 40 we know that this problem is in
(N,+,min)-NC1. The class SAC1 is an upper bound because ad-
dition and minimum can be computed in Boolean constant-depth
circuits. �

Cost register automata(CRA) [2] are a different generalization
of automata to capture quantitative properties. They are more power-
ful than weighted automata, however work somewhat differently. The
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idea is to let the states direct actions on registers. A register holds a
value of some algebra. Importantly registers do not have influence on
the states which results in a tame and analyzable model. In [1] the
complexity of CRA has been analyzed and in [23] a generalization to
visibly pushdown automata (CVPA) has been made where complex-
ity aspects also were considered. CVPA are based on deterministic
VPA. Say it has a state set Q then we have in addition an algebra
A, a finite set of registers X, an initial valuation v0 : X → D, and a
register update function ρ:

– ρ : Q×Σintermal ×X → E(A, Xprev)
– ρ : Q×Σcall ×X → E(A, Xprev)
– ρ : Q×Σreturn × Γ ×X → E(A, Xprev, Xmatch)

Here E(A, Xprev) is the set of expressions over the algebra A,
which may use variable names of Xprev which is a copy of X. In
E(A, Xprev, Xprev) there are two copies of the variable set X involved.
The final cost function µ : Q → E(A, X) completes the definition.
Now a CVPA implements a function Σ∗ → D. On some input word we
get the output value by updating the registers in each step according
to the state and the letter read beginning with the initial valuation
before the first letter is read. If a push letter is read, the register
values are pushed onto the stack and when the corresponding return
letter is read these values are made available again Xmatch-variables.
After the word is read, all values can be combined, depending on the
state, by µ. An equivalent and sometime beneficial interpretation is
that a CVPA generates an A-term which then is evaluated. However
there are algebras which may lead to exponentially large terms, like
(N,+), so splitting the computation in term generation and evaluation
is not feasible. Also note that there are algebras which lead to output
values which need exponentially many bits. The algebra (N,+×) is
an example for that. For details see [23].

Theorem 43 ([23]). Functions realized by CVPA over (Z,+) are
in GapNC1.

Proof. 1. step. We proceed as in the previous proofs by interpreting
the well-matched input word as a term over an algebra such that the
evaluation yields the desired value but here it is desirable to have
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the state information precomputed. Given a well-matched word w
we can compute a word r(w) ∈ (Σ ∪ {ε}×Q× (Γ ∪ {ε}))|w|+1 where
r(w)(i) = (w(i), q, γ) means that that automaton is in state q when
w(1) . . . w(i − 1) is already read. Also if w(i) ∈ Σret, then γ 6= ε is
the symbol which can be seen on the stack. For r(|w| + 1) we set
(ε, q, ε). Using Theorem 39, the word r(w) can be computed in NC1.

Let the algebra be

An = ((ZX)Z
X

,

}, (⊗a,qa,b,qb,γ)a∈Σcall,b∈Σret,qa,qb∈Q,γ∈Γ , (†e,q)q∈Q,e∈Σint
, †ε),

where X is the set of registers of the automaton and Q the set of
states. The domain can be understood as a function which takes a
valuation ZX and transforms is into another valuation. If we evaluate
the term which will correspond to a well-matched word, we get the
transformation of the register values. So we define } as α } β as
the usual functional composition. The operation ⊗a,qa,b,qb,γ takes a
valuation α and then⊗a,qa,b,qb,γα is defined as ρ(qa, a)}α}ρ1(qb, b, γ)+
ρ2(qb, b, γ), where ρ(qa, a) : ZX → ZX is the register transformation
map we naturally can derive of ρ. For return letters we distinguish
between ρ1(qb, b, γ) and ρ2(qb, b, γ). An assignment of ρ(qb, b, γ, x) has
the form v1x1 + . . .+ vmx

′
m + v1x1 + . . .+ vmx

′
m where variables xi

correspond to values computed in the previous step and variables x′i
correspond to values which have been stored onto the stack in the
matching position. Now ρ1(qb, b, γ) is the map we get by omitting all
variables x′i and ρ2(qb, b, γ) is the map we get by omitting all variables
xi. Finally †e,q = ρ(q, e) and †ε is the identity map.

From r(w) we can then build the term. Note that r(w) can also
be considered a well-matched word. Inductively if there is a well-
matched factor r in r(w) with r = r1r2 such that r1 and r2 are also
well-matched then let T (r1) and T (r2) be the terms of t1 and t2.
Now the term for r is T (r1)} T (r2). All factors of length one which
correspond to a internal letter e are assigned a term †e,q for q. If
there is a factor which corresponds to a word awb where w 6= ε is
well-matched, then the term for awb is ⊗a,qa,b,qb,γT (w) for appropriate
qa, qb, γ. A factor ab becomes ⊗a,qa,b,qb,γ†ε.

Now the term evaluation yields the mapping f the automaton
implements. If we then insert the initial valuation v0 and apply the
final update function, we have computed the output value µ(f(v0)).
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2. step. The algebra F(A) has the domains D = (ZX)Z
X

and

D̃ ⊆
(

(ZX)Z
X
)(ZX)Z

X

.

An element of D can be understood as a m-dimensional matrix of
integers, where m = |X|. Hence the other domain consists of matrix-
manipulating functions. As it turns out, these functions can be
captured by functions of the form x 7→ AxB +C where A and B are
matrices. So we choose c(D) = Zm,m and c(D̃) = Zm,m×Zm,m×Zm,m.
By checking all operations of F(A), we show that this is actually a
coding.

– �c: Given d ∈ D and f ∈ D̃, then f � d = f(d). Now c(f) is
a map x 7→ AxB + C and c(d) is a matrix. So c(f) �c c(d) =
c(f(d)) = Ac(d)B + C.

– ◦c: Given f, g ∈ D̃, then f is of the form x 7→ AfxBf + Cf and g
is of the form x 7→ AgxBg +Cg. Now c(f ◦ g) = c(f) ◦c c(g) is the
map x 7→ Af (AgxBg+Cg)Bf +Cf = AfAgxBgBf +AfCgBf +Cf ,
so c(f ◦ g) = (AfAg, BgBf , AfCgBf + Cf ).

– }c: When coded, }c takes two matrices and multiplies them.

– ⊗ca,qa,b,qb,γ: This operation translates also into matrix multipli-
cation. As by definition we have that ⊗a,qa,b,qb,γα translates
to ρ(qa, a) } α } ρ1(qb, b, γ) + ρ2(qb, b, γ). So we define a ma-
trix Mqa,a from ρ(qa, a) and matrices M1

qb,b,γ
and M2

qb,b,γ
from

ρ1(qb, b, γ) and ρ2(qb, b, γ). Now for d ∈ D we have c(⊗a,qa,b,qb,γd) =
⊗ca,qa,b,qb,γc(d) = Mqa,ac(d)M1

qb,b,γ
+M2

qb,b,γ
.

– †e,q)cq∈Q,e∈Σint
: The coded version †e,q)cq∈Q,e∈Σint

is a matrix Me,q

corresponding to ρ(q, e) and †cε is the identity matrix.

–
←−
} c: Given a function f ∈ D̃ and some d ∈ D, we have
c(f
←−
}d) = c(f)

←−
} cc(d) where

←−
} c is again a multiplication: If

c(f) is of the form x 7→ AxB + C then c(f)
←−
} cc(d) is of the form

x 7→ (AxB + C)c(D) = AxBc(D) + Cc(D). The operation
−→
} c is

defined analogously.

– ⊗̃ca,qa,b,qb,γ: Given f ∈ D̃, we have c(⊗a,qa,b,qb,γf) = ⊗ca,qa,b,qb,γc(f).
If c(f) is of the form x 7→ AxB + C then ⊗ca,qa,b,qb,γc(f) is of the
form x 7→ Mqa,a(AxB + C)M1

qb,b,γ
+M2

qb,b,γ
= Mqa,aAxBM

1
qb,b,γ

+
Mqa,aCM

1
qb,b,γ

+M2
qb,b,γ

.
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3. step. All operations of the algebra c(F(A)) are based on
matrix operations and the domains are based on matrices of fixed
dimensions. Because of that and since the matrices are of integer
values, all operations of c(F(A)) are in GapNC0

Z. This leads to the
upper bound of GapNC1 for the problem in question.

�

4.5 Definitions: Tree and clique width of graphs

The rest of the applications rely on width notions of graphs. In
this subsection we fix graph definitions and also the different width
concepts.

A graph is a tuple (V,E) where V is a set of vertices (or nodes)
and E ⊆

(
V
2

)
is the set of edges. Here,

(
S
n

)
⊆ 2S denotes the set of

all subsets of S of size n. A directed graph is a tuple (V,E) where
E ⊂ V × V . A path in a graph is a sequence of connected edges and
a cycle is a non-trivial path starting and ending in the same node.
Directed acyclic graphs are abbreviated DAG. For basics in graph
theory we refer e.g. to [15].

The Tree width [20] is a parameter which has been successfully
utilized to bound complexity, where Courcelle’s Theorem is a prime
example [13].

Definition 44. Given a graph G = (V,E) then (T, τ) is a tree
decomposition, where T = (V (T ), E(T )) is a tree and τ : V (T )→ 2V

is a map for which the following conditions hold:

– For each v ∈ V there exists b ∈ V (T ) such that v ∈ τ(b).
– For each (u, v) ∈ E there exists b ∈ V (T ) such that {u, v} ⊆ t(b).
– If there is a path from r ∈ V (T ) to s ∈ V (T ) then for all nodes
t ∈ V (T ) on the path holds that τ−1(r) ∩ t−1(s) ⊆ τ−1(t)

The elements of V (T ) are called bags. The size of the largest bag minus
one is the width of the decomposition width(T, τ ). The minimal width
of all decompositions of G is called the tree width of G which we
denote as width(G).

Besides tree decompositions we also consider a generalized notion
of decomposition: NLC decompositions resp. clique decompositions
[14,35]. Both notions are closely related. A set of graphs has bounded
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clique width iff it has bounded NLC-width [14]. We will be only
interested in the case of bounded width. Clique width has emerged
as the more popular notion, so we speak mostly of clique width, but
when it comes to decompositions we stick to the NLC variant as this
has been used in the work our proofs are based on. For the rest we
will only speak about clique width and decompositions even though
it technically is NLC.

Clique decompositions are yielding the property of clique width
in the following way. Given a graph G = (V,E) and k ∈ N, we can
assign a coloring l : V → [k]. A graph together with coloration using
k colors is called a k-colored graph: (V,E, l).

Definition 45 (Clique decomposition of width k). A clique
decomposition of width k of a graph G is a expression defined as
follows:

– All k-colored graphs of the form ({v}, ∅, l) have clique width k.
– Given a colored graph (V,E, l) of width k and a map l′ : [k]→ [k]

then (V,E, l′ ◦ l) is also a k-colored graph.
– Given k-colored disjoint graphs G1 = (V1, E1, l1) and G2 =

(V2, E2, l2) of width k and S ⊆ [k] × [k] then G1 ×S G2 has also
width k, where G1 ×S G2 is defined as (V1 ∪ V2, E1 ∪ E2 ∪ E ′, l′)
and E ′ = {{v1, v2} | ∃(i, j) ∈ S ∈ [k] : v1 ∈ l−11 (i) ∧ v2 ∈ l−12 (j)}
and l′(v) = l1(v) if v ∈ V1 and l′(v) = l2(v) if v ∈ V2.

If for a graph G a clique decomposition of width k exists, then G has
clique width k.

If we want to compute our bounded width tree decompositions,
we know from [17] that this is possible in log-space. For clique width
the complexity is poly-time [29].

4.6 Circuits of bounded tree width

We apply the term evaluation algorithm to a recent result concerning
circuits of bounded tree width [21]. It states that Boolean circuit
families of polynomial size can be balanced to obtain logarithmically
deep circuit families. We show a short and generalized proof using
term evaluation.
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Whenever we speak of tree decompositions and tree width of a
circuit we mean it in correspondence to the graph of the circuit. The
graph of a circuit satisfies some desirable properties, e.g. it is a DAG
which has input and output gates. We want to decompose the graphs
of circuits in a way to preserve these properties which leads to the
following lemma.

Lemma 46. For all w ∈ N there exists c ∈ N such that: Given a
graph G of a circuit C and its minimal decomposition (T, τ) of width
w then there exists a decomposition (T ′, τ ′) of C with c ·width(T, τ ) ≥
width(T ′, τ ′) which satisfies:

– The tree T ′ is binary.
– If u ∈ V (G) is a parent of v then let p, q ∈ V (T ′) be the bags

closest to the root satisfying u ∈ t′(p) and v ∈ t′(q). Then p is not
closer to the root than q.

– For each input node v ∈ V (G) there is a leaf l ∈ V (T ′) such that
v ∈ τ−1(l).

– The output node of the circuit can be found in τ−1(r), where r is
the root of the tree.

Proof. We can assume the tree T ′ to be binary without increasing
the width, because for minimal decompositions the maximal rank of
nodes is dependent on the width, hence bounded. Nodes with a rank
greater than 2 can be resolved by a constant size construction.

The second requirement can be achieved by labeling those nodes
by u which are labeled v and are closer to the root than all nodes
labeled u. Since there is some v ∈ V ′ such that u, v ∈ l−1(v), the
result is again a valid tree decomposition.

The third requirement can be met by picking a node u labeled
v and label the shortest path from u to some leaf with v. The last
requirement can be implemented by labeling a path from a node
labeled r to the root.

All operations at most need a constant factor in the width. �

By the lemma we get that assuming the stated properties preserves
boundedness of tree width.

The proof idea for the following theorem is to interpret the tree
decomposition as a term and evaluate it.
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Consider a circuit Cn over an algebra A = (D,~1, . . . ,~k) and let
G = (V,E) be the graph of Cn. Let the smallest tree decomposition
following the previous lemma have width w−1. We define the algebra

A(Cn, w) =

(
D′, (~A,B,C)

A,B,C∈
(
V
w

), (†s)s∈S2w

)
where D′ = (D ∪ {⊥})2w and ~A,B,C is an operation D′ × D′ → D′
and S consists of all 0-are operator values of A and ⊥.. To define the
operations assume V to be of the form {1, 2, . . .m}. Then A,B and C
are sets of numbers. Also let A = {ag1 , . . . , ag|A|}, B = {bh1 , . . . , bh|A|}
and C = {ci1 , . . . , ci|C|}. Consider α~A,B,Cβ where α, β ∈ (D∪{⊥})2w.
For a node agj ∈ A the elements αj and αw+j correspond to the left
and right parent of agj . The situation for B and β resp. C and γ is
similar. The following rules define the operation:

– If agj = cil then αj = γl.
– If bhj = cil then βj = γl.
– If cil has parents which appear in α or β with values v1 6= ⊥ and
v2 6= ⊥ and ~ is the operation of the gate cil , then γl = v1 ~ v2.

– In all other cases the result is ⊥.

As the sets A,B and C are finite and there are only finitely many
possibilities of ways how the gates can be wired we get that there is
only a finite number of operations - independently of the actual circuit.
Hence we write A(w) while dropping the circuit in the notation.

Theorem 47. Given a family of circuits C of bounded tree width
and polynomial size over an algebra A, then we can find an equivalent
F(A(w))-NC1 circuit family in the sense that inputs and outputs are
constant vectors which contain the input or output values respectively
in some position, where w − 1 is the width of the decomposition
satisfying the conditions of Lemma 46.

Proof. We take the decomposition of width w − 1 satisfying the
conditions of Lemma 46. We interpret it as a term over the algebra
A(w) where each node v is assigned the operation ~A,B,C where
C = τ(v) and B and C are the bags of the parents of v. To the left
and right of the leafs must be constants. Such a constant s is a vector
which is ⊥ in all positions but those corresponding to an input gate;
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here the right input value is present. This then ends up being the
operation †s.

This term can be evaluated by a F(A(w))-NC1 circuit. The
output will be a vector which has positions p and w + p which
corresponds to the inputs of the output gate. Applying the function
of the output gate to those two values yields the overall output. �

In summary, in the previous proof the word problem is solved in
F(A(w))-NC1 by constructing a term and then evaluating it. For
each circuit of the family we get one fixed term; only the constants
are input-dependent. That means that actually we could fall back
to a static version of our algorithm. In the algorithm in every step
decisions have to be made which determine how to split subterms.
Now since the structure of the term is fixed we could also fix those
decisions (recall the circuits computing the cases) and end up directly
with a logarithmic depth circuit without multiplexing.

Theorem 48 ([21]). Languages accepted by families of Boolean
circuits of polynomial size and bounded tree width are in NC1.

Proof. Since F(A(w)) is finite, F(A(w))-NC1 ⊆ NC1 follows from
Theorem 26 and 47. �

4.7 Courcelle’s Theorem

Courcelle’s Theorem [13] is a famous example of a so-called meta
theorem. It makes a claim concerning the complexity of the word
problem if a restriction in the input set is imposed. In particular,
given an MSO formula over graphs then Courcelle’s Theorem states
that it is decidable in linear time whether a graph is a model for the
formula if we only consider graphs of some bounded tree width. The
generality of the theorem stems from the fact that many relevant
problems are expressible in MSO.

The algorithm has two steps. First a tree decomposition has
to be computed and secondly the formula has to be fitted to tree
decompositions. Checking a MSO formula on trees is then NC1.
Elberfeld et al. [17] improved the overall complexity to log-space.
In a follow-up paper they looked at the second step more closely
and analyzed the complexity under the assumption that the tree
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decomposition is already given [18]. Besides confirming the NC1

bound in the Boolean case they considered an arithmetic version:
Given an MSO formula and a free second-order variable X, how
many valuations are there for X which satisfy the formula. The
upper bound they achieved is #NC1. We will re-prove this, however
note that [18] has a bit more general setting of finite model theory.
For simplicity of presentation we restrict ourselves to ordinary graphs
and trees.

Here we consider finite graphs (V,E) with a labeling V → Σ.
A MSO formula is made of Boolean combinations, first and second
order vertex quantification and predicates which are Qa(x), where
a ∈ Σ and x is a first order variable and tells whether position x is
labeled a. Also X(x) and X ⊆ Y are predicates, where x is a first
order variable and X and Y are second order variables. Lastly there
is a predicate E(x, y) for two first order variables which codes the
edge relation E of the input graph.

Our proof of the theorem requires some preliminaries on forest
algebras. Regular tree languages are accepted by finite forest algebras
[6]. A forest algebra (H,V ) consists of two (finite) monoids, the
horizontal and the vertical monoid. The setting is very similar to the
word case. There is also the concept of a syntactic forest algebra and
recognition. Each tree corresponds to an element of H and depending
whether this element is in the accepting set or not, the tree is accepted
or rejected. We can turn the input tree into a term. If there is a
node v labeled with a1 ∈ Σ and children v1 and v2 labeled with a2
and a3 and f1 and f2 are terms for v1 and v2 which are inductively
given then the formula for v is �Va (f1 �H f2). The algebra then
is (H,�H , (�Va )a∈Σ), where �H is the monoid operation of H and
�Va : H → H is a unary operation which maps t 7→ c(a)�V t where
�V is the monoid operation of V and c(a) is the context consisting
of an node labeled a and one child which is a hole. Note that this
is isomorphic to the algebra we used to show that visibly pushdown
languages are in NC1.

Now we consider a counting problem. If we are given a formula
with a free second-order variable, how many valuations for this
variable exist satisfying the formula. This can be used to formulate
counting versions of MSO-expressible problems.
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Theorem 49 ([18]). Given w ∈ N, a graph G of tree width w, and
its tree decomposition T as well as a MSO formula φ(X) with one
free second-order variable X then the problem of counting how many
valuations for X there are such that G satisfies φ(X) is in #NC1.

Proof. 1. step
Consider the proof for Courcelle’s Theorem. Proving it takes the

following steps:

– Compute the tree decomposition of the input graph.
– Compile the MSO formula into a new one which fits to tree

decomposition.
– Check if the tree decomposition is a model for the new MSO

formula.

The first one we do not care about since in our case the input
already is a decomposition. So at this point we are interested in the
second step. The standard construction [13] results in the following:
If ψ(X) is an MSO formula over G with free second order variable
X then the corresponding new formula ψ′(X1, . . . , Xw+1) over the
tree decomposition T has w + 1 free second order variables. For each
S ⊆ V (G) there exists exactly one corresponding S ′ ⊆ V (T )w+1, i.e.
G |= ψ(S) iff T |= ψ′(S ′). Note that subsets of V (T )w+1 must have a
certain form which is imposed by the constriction of ψ′. Valuations
that are not well-formed are dismissed. By the reasoning above it
follows that the number of valuations for X which satisfy G |= ψ(X)
is equal to the number of valuations for X1, . . . , Xw+1 which satisfy
T |= ψ′(X). Hence we only have to show that we can count the number
of fulfilling valuations in the formula over the tree decomposition.

In the following we assign formulas with free variables the seman-
tics of accepting V-structures [33]. In this case a V-structure is a
tree which is not only labeled with Σ but also with a bit which tells
whether a position is in X or not; hence the alphabet then is Σ×{0, 1}
or Σ × {0, 1}w+1 if we have several free variables respectively.

The idea then is that a formula with a free variable models a set
of V-structures. And each V-structure belongs to a tree which we
get by stripping it of the variable information. In the following we
consider the language of V-structures. Given a formula with a free
variable and an input tree, we count how many V-structures based
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on this tree fulfill the formula. This we will do using forest algebras
to build an algebra.

Let φ′(X1, . . . , Xw+1) be the MSO formula we get from φ(X) by
the standard construction of [13]. Let (H,V ) be the syntactic forest
algebra of the tree language defined by φ′(X1, . . . , Xw+1) interpreted
over V -structures and consider the algebra

A = (NH ,⊕H , (⊕Va )a∈Σ).

The idea is that an element f : H → N of this algebra keeps track of
how many possibilities there are to end up with some element of H.
The different possibilities are generated by the ways we can choose
X1, . . . , Xw+1. So A can be used to count the number of assignments
for X1, . . . , Xw+1. The operation ⊕H is defined as f1 ⊕H f2 = f
where f(h) =

∑
h1�Hh2=h f1(h1)f1(h2). The operation ⊕Va is defined

as ⊕Va (f)(h) =
∑
�Va (h′)=h f(h′). From T we can construct a term

inductively ψ over the algebra A. For a node t labeled a and its
descendants t1, . . . , td the formula is ⊕Va (f1 ⊕H . . .⊕H fd), where fi
is the formula for ti.

If we evaluate ψ we get a map which tells us for each element of
H how many ways there are to obtain it. If we sum all values which
correspond to elements of the accepting subset of H we have the final
output.

2. step

The algebra F(A) has the domains NH and D̃ ⊆ (NH)N
H

. We
code c(NH) = Nn where n = |H| which is straight forward. As we only
use addition and multiplication the result is that we can represent
the elements of D̃ as functions of the form x 7→ xA + b where A is
a matrix and b is a vector. Hence c(D̃) = Nn,n × Nn. This conforms
with the operations of the algebra:

– ⊕H,c and ⊕V,ca : Those two operations stay basically the same as
⊕H and ⊕Va .

– ◦c: Given f, g ∈ D̃ with c(f) : x 7→ xA1+b1 and c(g) : x 7→ xA2+b2
we have that c(f◦g) = c(f)◦cc(g) is a map x 7→ (xA2+b2)A1+b1 =
xA2A1 + b2A1 + b1, so c(f) ◦c c(g) = (A2A1, b2A1 + b1).

– �c: Given a function f ∈ D̃ with c(f) : xA + b and a vector
c(d) ∈ Nn we have c(f�d) = c(f(d)) = c(f)�c c(d) = x 7→ dA+b.
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–
←−⊕H,c: Given a function f ∈ D̃ with c(f) : xA + b and a vector
d ∈ Nn we have that c(f

←−⊕Hd) = c(f)
←−⊕H,cc(d) is of the form

x 7→ xAMd + bMd where Md is a matrix where position (i, j) has
value

∑
hi=hjh

dh where hi, hj ∈ H are the elements corresponding
to vector positions i and j and dh is the value of d representing h.
The operation

−→⊕H,c is done by a similar construction.

– ⊕̃V,ca : Given a function f ∈ D̃ with c(f) : xA + b we have that
c(⊕Va f) = ⊕V,ca c(f) is the map x 7→ xAMa + bMa where Ma is a
matrix where position (i, j) is 1 iff �Va (hi) = hj hi, hj ∈ H are the
elements corresponding to vector positions i and j. In all other
positions Ma is 0.

3. step
All operations operate on matrices and vectors of a fixed size with

natural values. Hence we can implement them in #NC0
N which yields

the overall complexity of #NC1.
�

Since #NC1 is a subset of log-space, we get that counting MSO
problems on bounded tree-width graphs are also log-space.

4.8 Maximal cuts in graphs of bounded clique width

We consider the problems of finding maximal cuts in graphs which
belongs to Karp’s classical 21 NP-complete problems [22]. In [35] it
was shown that it becomes tractable if we impose a restriction on
the input graph. This restriction is that the clique-width is bounded.
This notion is related to NLC-width [35]: A graph has bounded
clique width if and only if it has bounded NLC-width. We show an
improvement of the upper bound from P to parallel complexity.

The maximum cut problem for width k is the following problem:
Given a clique decomposition of an undirected graph G = (V,E) of
clique width k. Now let V1∪V2 be a partition of V such that its value
|{{e1, e2} ∈ E | e1 ∈ V1 ∧ e2 ∈ V2}| is maximal. The output is the
value of the maximal partition. A partition is also called a cut.

In the following we revisit the proof form [35] and show a smaller
upper bound.

Theorem 50. The maximum cut problem for width k is in SAC1.
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Proof. 1. step. We are given a clique decomposition. This is a tree
and this tree we can interpret as a term over some algebra that, if
evaluated, results in the actual graph. We now assign a new family of
algebras (An)n∈N to that term. If evaluated we get the desired value.
So let

An =
(
P
(
[n]2k+1

)
, (⊗l)l : [k]→[k], (~S)S⊆[k]×[k], (†i)i∈[k]

)
.

We choose n to be |V |. This is formally not a family of algebras
but it can be made into one. The way as it is, is however easier to
understand.

So each element is a set of vectors of the form
(a1, . . . , ak, b1, . . . , bk, c). The intuition behind this is that each ai
counts how many elements of V1 are labeled i and each bi counts
how many elements of V2 are labeled i. The number c then stores
the value of the corresponding cut [35].

The operations are defined as follows.

– There are 0-ary operations †i for i ∈ [k] is a set containing one
tuple corresponding to the graph of one vertex colored i.

– For each total map l : [k] → [k] there is a unary oper-
ations ⊗′l : N2k+1 → N2k+1 with (a1, . . . , ak, b1, . . . , bk, c) 7→
(a′1, . . . , a

′
k, b
′
1, . . . , b

′
k, c) where a′i =

∑
j∈l−1(i) aj and b′i =∑

j∈l−1(i) bj. Then for D being the domain, ⊗l : D → D
is derived from ⊗′ by the following map: {x1, . . . , xm} 7→
{⊗′l(x1), . . . ,⊗′l(xm)}. These unary operations directly correspond
the the unary relabeling operations from the clique width defini-
tion.

– For each S ⊆ [k] × [k] there is an operation of the form
~S : D × D → D. It maps X ~S Y 7→

⋃
x∈X,y∈Y {~′S(x, y)}.

Let x = (a′1, . . . a
′
k, b
′
1, . . . b

′
k, c), y = (a′′1, . . . a

′′
k, b
′′
1, . . . b

′′
k, c) and

~′S(x, y) = (a1, . . . ak, b1, . . . bk, c). Then ai = a′i + a′′i and bi =
b′i + b′′i . Further c = c′ + c′′ +

∑
(i,j∈S) a

′
i · b′′j + b′i · a′′j .

The evaluation of this term yields the desired value [35].
2. step. We first give a coding for An and then extend it to

F(An). Consider the domain of An which is P
(
[n]2k+1

)
. The set

[n]2k+1 has polynomial size. Hence we can represent each element of
the domain by a word of {0, 1}n2k+1

, where each position holds the
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information whether the corresponding tuple is part of the set. Let
φ : [n]2k+1 → [n2k+1] be a bijection and let

c : P
(
[n]2k+1

)
→ {0, 1}n2k+1

be a code with c(X) being a string of length n2k+1 which is 1 in
position i if and only if there is an x ∈ X such that φ(x) = i and 0
otherwise.

Now, in F(An) we also have the subdomain D̃ which contains
functions of the form f : P

(
[n]2k+1

)
→ P

(
[n]2k+1

)
. We will use

the property f(X) =
⋃
x∈X f({x}) of these functions which we call

singleton property. The functions have indeed singleton property:
First the identity function clearly has it. Further if we are given
two functions f, g which have singleton property, then f ◦ g has
also: (f ◦ g)(X) = f(g(X)) = f(

⋃
x∈X g({x})) =

⋃
x∈X f(g({x})).

For ⊗̃lf we get ⊗̃lf(X) = ⊗̃l
⋃
x∈X f({x}) =

⋃
x∈X ⊗̃lf({x}) since

⊗̃lf(X) ⊆ ⊗̃lf(Y ) iff X ⊆ Y . Lastly for
←−
~S and

−→
~S we see that the

singleton property holds since ~S is already defined as a union over
singletons.

The consequence of the singleton property is that each map can
be represented by only considering the image of singleton inputs. So
a coding of f becomes a table:

c :

(
P
(
[n]2k+1

)P([n]2k+1)
)
→
(
{0, 1}n2k+1

)n2k+1

.

An element is table where the i’th line holds c(f(φ−1(i))), hence
c(f) = c(f(φ−1(1))) . . . c(f(φ−1(n2k+1))). The definition of the coded
functions of F(A) follow immediately.

3. step. We now are interested in the complexity of the operations
of

c(F(An)) = ({c(D), c(D̃)}, (⊗cl )l : [k]→[k], (~
c
S)S⊆[k]×[k], ◦c,�c,

(⊗̃cl )l : [k]→[k], (
←−
~ c
S)S⊆[k]×[k], (

−→
~ c
S)S⊆[k]×[k]),

as well as the complexity of the multiplexer operations for the two
subdomains. The multiplexer operations can be implemented by
constant size Boolean circuits with regard to one output bit.
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– ⊗cl : Consider a string c(d) ∈ c(D) and the result ⊗cl c(d). For each
x ∈ c−1(⊗cl c(d)) there exists a set Y containing all y such that
x ∈ ⊗L({y}). Now to compute ⊗cl c(d), if a bit corresponds to x
then it is the result of a disjunction of all positions in c(d) that
correspond to an element of Y . This is a SAC0-construction.

– ~cS: Consider X~S Y 7→
⋃
x∈X,y∈Y {~′S(x, y)}. So for each element

in z ∈ (X ~S Y ) there exists a number of pairs xi, yi such that
{xi} ~S {yi} = {z}. Now in the coded version where we have
strings instead of sets, each position in the output string becomes
a disjunction over all these pairs and each pair is a conjunction
of two. Hence this operation can also be implemented in SAC0.

– ◦c: To compute c(f) ◦c c(g) we have to build a table which repre-
sents the function. To that end, define a table t(di), where di is
the i’th row of c(g). Then the j’th row of t(di) is the j′th row of
the pointwise conjunction of c(f) with dj(i). Now k’th letter of
the i’th row of c(f) ◦c c(g) is the disjunction of the k’th column
of t(dj). This construction needs fan-in two conjunctions and
unbounded fan-in disjunctions, hence it it SAC0.

– �c: The computation of c(f)�c c(d) can be reduced to c(f)◦c c(d′)
where d′ is a constant function with d′(x) = d. The table c(d′) we
get by filling all rows with c(d). Then in c(f) ◦c c(d′) also each
row is identical since it codes a constant function. Take one of
the rows as output for c(f)�c c(d).

– ⊗̃cl : This case is similar to ⊗cl with the difference that the input
is a coded function, hence a table. We apply ⊗cl to all rows of the
table.

–
←−
~ c
S: To compute the table c(f)

←−
~ c
Sc(d), we can use ~c. Let ri be

the i’th row of c(f). Then the i’th row of c(f)
←−
~ c
Sc(d) is ri~c c(d).

–
−→
~ c
S: This case is similar to

←−
~ c
S.

Since all operations are in SAC0, the whole problem is in SAC1.
�

4.9 Counting Hamiltonian paths and Euler tours in
graphs of bounded clique width

Besides computing maximal cuts in [35] also computing Hamiltonian
circuits in graphs was considered. They showed a poly-time upper-
bound for this problem for bounded tree width graph inputs. It is
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also possible to count the number of Hamiltonian circuits. In [4] a
#SAC1 upper bound has been shown for the case of bounded tree
width. We will generalize this to bounded clique width.

A path is a sequence of vertices p = p1 . . . pm such that no vertex
appears more than once and {pi, pi+1} ∈ E for 1 ≤ i < m. The
Hamiltonian circuit problem for width k is the following: Given a
clique decomposition if an undirected graph G = (V,E) of width k.
A Hamiltonian circuit is a path of length |V | where there exists an
edge from the first to the last edge.

Theorem 51. Given a natural k, computing the number of Hamilto-
nian circuits in clique width k graphs where the clique decomposition
is given in the input is in #SAC1.

Proof. 1. step As in the case of the maximum cut problem, we are
given a tree decomposition as a term and we assign an algebra to it
such that the evaluation yields the desired result. Actually we assign
a family of algebras (An)n∈N:

An =
(
N([n]k(k+1)/2), (⊗l)l : [k]→[k], (~S)S⊆[k]×[k], (†i)i∈[k]

)
The variable n can be chosen as |V |, as in the case of the maximum cut
problem. This algebra is rooted in the construction for the Boolean
version in [35] where they used P([n]k(k+1)/2) as domain. Instead of
holding the information whether a tuple is in a set, we count how
often is has been occurring. Now an element of [n]k(k+1)/2 corresponds
to a subset of the edges covering the vertices. We can understand
this as a path coverage of V . We have many paths and each vertex
is present in exactly one. Now the information the tuple actually
holds is how many such paths go between two colors. See [35] for
further details. The domain we chose now counts how many such
path coverings result in a certain tuple.

The operations of the algebra are defined as follows.

– The 0-ary operation †i is the characteristic function of the set
containing the single tuple corresponding to a graph with a single
node colored i.

– For each total map l : [k]→ [k] there is a unary operation

⊗l : N([n]k(k+1)/2) → N([n]k(k+1)/2)
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which is defined using a unary operation ⊗′ : [n]k(k+1)/2 →
[n]k(k+1)/2 with

⊗′l(v)i,j =
∑

i′∈l−1(i),j′∈l−1(j)

vi′,j′

as defined in [35]. Now

⊗l(f)(v) =
∑

v′∈⊗′−1
l (v)

f(v′).

– For each S ⊆ [k]→ [k] there is an operation

~S : N([n]k(k+1)/2) × N([n]k(k+1)/2) → N([n]k(k+1)/2).

This operation is a counting version of the corresponding opera-
tion described in [35]. There it is defined by a procedure which
generates new elements based on present elements. In our case we
also have to keep track of the count of paths generating a certain
element. Given two vectors v1, v2 ∈ [n]k(k+1)/2 a new set of vectors
is generated. This is done by defining tuples (A,B,C) the initial
tuple being (v1, 0, v2). See [35] for the detailed procedure.
We want to define (f ~S g)(v) for all v ∈ [n]k(k+1)/2 and define a
procedure which yields the value. First assume the values (f ~S
g)(v) to be 0 for all v. Then for all v1, v2 ∈ [n]k(k+1)/2 do the steps
of [35] for generating a new set of tuples. In each step one new edge
is drawn. That way we get a DAG which originates in (v1, 0, v2).
Actually we are only interested in a spanning tree which we get by
imposing an order of the elements of S we process. We assign each
triple (A,B,C) a number #(A,B,C). The initial triple (v1, 0, v2)
is assigned f(v1)g(v2). Now assume we get from triple (A,B,C)
to (A′, B′, C ′) in one step. Then #(A′, B′, C ′) = p · #(A,B,C)
where p is the number of possibilities to draw an edge; p is fixed by
(A,B,C). Each triple can be made into an element v ∈ [n]k(k+1)/2

as seen in [35]. Let #(v, v1, v2) = #(A,B,C) where v1 and v2 are
the origins of (A,B,C) and v is the vector we get from (A,B,C).
Now

(f ~S g)(v) =
∑

v1,v2∈[n]k(k+1)/2

#(v, v1, v2).
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In this sum, every summand has the factor f(v1)g(v2) as we can
combine every path covering in f which leads to the tuple v1 with
everyone of g which leads to v2. Then this is multiplied with the
number of ways we can draw edges between the two graphs.

For obtaining the Hamilton paths we have to treat the last ~S
operation (the root of the term tree) differently. We generate the
triples and then, as described in [35], if the situation occurs that a
triple (A,B,C) has A and B to only consist of 0 and B has exactly
one value which is non-zero then, if S indicates that we can close the
loop, we have found a path. That means this would then result in
a triple all zero. Now in our counting setting we sum over all those
zero-triples generated in that way and that way we get the final
result.

2. step We proceed similarly to how we did in the case of max-
imal cuts. We want to code F(An). The algebra An has the do-

main N([n]k(k+1)/2). We show how to code it and extend the code
to F(An). So let φ : [n]k(k+1)/2 → [nk(k+1)/2] be a bijection and set

c(N([n]k(k+1)/2)) = Nnk(k+1)/2
where c(f) is a sequence of natural num-

bers where c(f)i = f(φ−1(i)).

For F(An) we have to consider the second subdomain which

consists of operations F of the form F : N([n]k(k+1)/2) → N([n]k(k+1)/2).
In the case of maximal cuts we mentioned the singleton property
these functions possess. A similar singleton property we can find for
the present case: The union becomes a sum. So we observe that

F (f) =
∑

v∈[n]k(k+1)/2

F (f(v)χ{v}) =
∑

v∈[n]k(k+1)/2

f(v)F (χ{v})

where the sum is a sum over functions and χ{v} is the characteristic
function of {v}

To verify the presence of the singleton property we begin with
the identity function which has it. Further we have to consider the
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operations of F(An). For The functional composition we get

(F ◦G)(f) = F (G(f)) =F (
∑

v∈[n]k(k+1)/2

G(f(v)χ{v}))

=
∑

v∈[n]k(k+1)/2

F (G(f(v)χ{v}))

=
∑

v∈[n]k(k+1)/2

f(v)F (G(χ{v})).

For ⊗̃lF we get

⊗̃lF (f) =⊗̃l
∑

v∈[n]k(k+1)/2

F (f(v)χ{v})

=
∑

v∈[n]k(k+1)/2

⊗̃lF (f(v)χ{v})

=
∑

v∈[n]k(k+1)/2

f(v)⊗̃lF (χ{v})

by a similar argument as in the corresponding case for the maximal
cuts result. Also similarly ~S is already defined in a way which is a
sum in the desired form.

Now by using this property when coding an operation F , we only
need to store all maps of the form χ{v}. Hence:

c :

N([n]k(k+1)/2)N
([n]k(k+1)/2)

→ (
Nnk(k+1)/2

)nk(k+1)/2

.

The elements of this can be understood as a table where the
i’th line is c(F (χ{φ−1(i)})). The definition of the operations of F(An)
follows.

3. step We analyze the complexity of the operations of

c(F(An)) = ({c(D), c(D̃)}, (⊗cl )l : [k]→[k], (~
c
S)S⊆[k]×[k], ◦c,�c,

(⊗̃cl )l : [k]→[k], (
←−
~ c
S)S⊆[k]×[k], (

−→
~ c
S)S⊆[k]×[k]),
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and the complexity of multiplexers as well. Multiplexing elements
of c(D), resp. c(D̃) which are just sequences of naturals can be done
in #NC0. For the rest many ideas are very similar to the proof for
maximal cuts, so we keep similar constructions short.

– ⊗cl : We want to compute ⊗cl c(F ) which is a table. For convenience
assume a continuation of l to l : [n]k(k+1)/2 → [n]k(k+1)/2 defined as
l(vi,j) =

∑
i′∈l−1(i),j′∈l−1(j) vi′,j′ . The i’th row of the table consists of

⊗cl c(F (χ{φ−1(i)})) which we can compute from the c(F (χ{φ−1(i)}))
which again is a row of a table for c(F ). Now we get the row
as ⊗cl c(F (χ{φ−1(i)})) = c(F (χl−1({φ−1(i)}))). In terms of complexity
this translates into the need for unbounded fan-in summation
gates and yields a #SAC0-bound for ⊗cl .

– ~cS: We want to compute c(f) ~cS c(f) = c(f ~S g) for
f, g : [nk(k+1)/2] → N. This is a sequence of naturals and the
i’th position is (f ~S g)(φ−1(i)) =

∑
v1,v2∈[n]k(k+1)/2 #(v, v1, v2)

where v = φ−1(i). So given v, v1, v2 we basically have to compute
#(v, v1, v2). Keep in mind how we defined #(v, v1, v2) by con-
structing a tree of triples (A,B,C). This tree has at most depth
nk2. By adjusting the construction we can get a tree of depth k2

by choosing the number edges for a certain pair of S in parallel.
Instead of investing one step in depth for every singe edge. All
edges which correspond to one pair of S are inserted at once.
The corresponding number #(A,B,C) consists of factors f(v1),
g(v2) and factors we get for each edge in the tree. These factors
can be hard-coded. By then picking the right number we obtain
#(v, v1, v2) and can do the summation

∑
v1,v2∈[n]k(k+1)/2 #(v, v1, v2).

As the depth of the trees we construct is constant in n we need
only bounded fan-in multiplication gates. Further we need an
unbounded addition gate. This gives us a #SAC0 bound for ~cS.

– ◦c: We want to compute c(F ◦ G) which is a table and c((F ◦
G)(χφ1(i))) is the i’th row of the table. We are given the tables for
c(F ) and c(G). To compute the i’th row of c(F ◦G) = c(F )◦cc(G),
take the i’th row of c(G); let ri denote this row. Now multiply
the j’th row of c(F ) by the j’th element in ri, that is ri,j; let
the resulting row be r′i,j. Now the i’th row of c(F ) ◦c c(G) is the
point-wise sum of r′i,j for all j. In the construction we had to
multiply pairs of numbers. Further, addition gates with fan-in of
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at most nk(k+1)/2 were needed which gives us an #SAC0 bound
for computing the composition.

– �c: Computing c(F )�c c(d) can be reduced by using ◦c: c(F )�c
c(d) = c(F ) ◦c c(d′) where d′ is a constant function of value d.

– ⊗̃cl : By invoking ⊗cl and applying it on all rows of the argument
we get the result.

–
←−
~ c
S: If we want to compute c(F )

←−
~ c
Sc(d) we apply c(d) on each

row by
←−
~ c
S and by that have a reduction.

–
−→
~ c
S: This case is similar to

←−
~ c
S.

All operations are in the bounds of #SAC0
N, so the original

problem is in #SAC1.
�

If we are only interested in whether a Hamiltonian circuit exists
then we see that the previous construction can be easily made Boolean
to yield the following result:

Theorem 52. The Hamiltonian circuit problem for width k is in
SAC1.

5 Discussion

We have seen that many problems that are tree-like structured can
be solved in parallel using our term evaluation algorithm. The list
of problem we covered here should indicate the potential of the
framework. We expect that there are much more applications we do
not yet know of. In particular for a variety of theorems we give new
unified proofs. Further we show several new results:

– For tree automata we gave an upper bound for counting accepting
computations. This applies for the uniform membership problem
where the automaton is part of the input as well as for the classical
membership problem where the automaton is fixed.

– The same we showed for visibly pushdown automata. Here only
the bound for the classical membership problem was known.

– For weighted automata we showed an upper bounds for arbitrary
algebras.

– We showed for circuits of bounded tree-width and polynomial size
how to balance them for arbitrary algebras.
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– We showed an upper bound for counting Hamiltonian cycles in
a graph of bounded clique width. Before this was known for the
case of bounded tree width and in the clique width case only the
Boolean version of the problem was known.

We did not exhaust every single result which is nearby the ones we
covered. For example a bound on counting the number of maximal
cuts in bounded clique width graphs is certainly achievable.

We would be also interested in examples where we end up with
circuits of O(logi n) depth for i > 1 or in the reason why it is hard
to find such examples.
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editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM, 2004.

4. Nikhil Balaji, Samir Datta, and Venkatesh Ganesan. Counting euler tours in
undirected bounded treewidth graphs. In Prahladh Harsha and G. Ramalingam,
editors, 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore,
India, volume 45 of LIPIcs, pages 246–260. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

5. Christoph Behle and Klaus-Jörn Lange. Fo[<]-uniformity. In 21st Annual IEEE
Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,
Czech Republic, pages 183–189. IEEE Computer Society, 2006.
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