
A Unified Method for Placing Problems in Polylogarithmic
Depth∗

Andreas Krebs, Tübingen University, Germany, Nutan Limaye, IIT Bombay, India,
Michael Ludwig, Tübingen University, Germany.

October 27, 2017

Abstract

In this work we consider the term evaluation problem which is, given a term over some algebra
and a valid input to the term, computing the value of the term on that input. In contrast to previous
methods we allow the algebra to be completely general and consider the problem of obtaining an
efficient upper bound for this problem. Many variants of the problems where the algebra is well
behaved have been studied. For example, the problem over the Boolean semiring or over the semiring
(N,+,×). We extend this line of work.

Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic depth
upper bounds for various well-studied problems. To demonstrate the utility of our result we show new
bounds and reprove known results for a large spectrum of problems. In particular, the applications
of the algorithm we consider include (but are not restricted to) arithmetic formula evaluation, word
problems for tree and visibly pushdown automata, and various problems related to bounded tree-width
and clique-width graphs.

1 Introduction

Background and motivation. Classically the notion of efficiently solvable problems is defined to be
the class of problems for which there are polynomial time algorithms, namely the set of problems in the
complexity class P. Over the last many decades a fine grained study of classically efficient computation
has lead to many interesting subclasses of problems in P. One such class is a set of problems solvable
using polynomially many processors which run in parallel for at most polylogarithmic time. This class of
problems is known to be NC.

There are many interesting and fundamental computational problems for which the classical algo-
rithms designed were inherently sequential in nature. Owing to a series of theoretically intriguing and
practically relevant discoveries we know NC algorithms for some of these problems. That is, a fairly
diverse set of problems from the class P is known to be in NC. This raises a natural question: is P the
same as NC? That is, can any sequential algorithm be turned into an efficient parallel one? In fact, this
is one of the very central open questions in computer science. The question has implications to many
different practical aspects of computer science such as distributed computing and parallel algorithms for
large scale data (see for instance [35, 40, 49]).

A lot of effort has gone into understanding the relative strengths and weaknesses of P and NC. The
study of Boolean and arithmetic circuits and many interesting results proved therein show that some
specific subclasses of NC are strictly less powerful than P. (See for instance [21, 26, 27].) This rich body
of work could be thought of as attempts to separate NC from P. On the other hand, over the last many

∗The work was funded by DST-DAAD project no. INT/FRG/DAAD/P-252/2015.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 19 (2017)

years, surprising NC upper bounds have been proved for problems which were previously believed to be
hard to parallelize. (See for instance [28, 38, 1, 24, 20].)

Our contributions. All these algorithmic advances raise a natural question: what makes a problem
in P to have an NC algorithm? The main goal of this work is to build a theory which attempts to answer
this question. Our main contributions are given below:

• We identify similarities between a large number of parallel algorithms. We observe that if a problem
has a core tree-like structure, then it is amenable to have an NC algorithm. We formally define
the notion of the tree-like structure and demonstrate the presence of such a structure in a large
collection of problems.

• Our second important contribution is to mechanise the process of coming up with a parallel
algorithm for any problem that has this tree-like structure. This can be thought of as an algorithmic
contribution stemming from our work. We demonstrate the strength of this algorithmic technique
by rediscovering many known NC upper bounds.

This is also a technically challenging part of our work. The difficulty arises because we need an
algorithm which is independent of the problem and only dependent on the underlying tree-like
structure. The structure itself is dependent on the problem: for two seemingly unrelated problem
these structures could be different. Therefore, the algorithm has to be general, which makes as few
assumptions about the structure as possible.

One caveat worth mentioning is that in some cases the tree-like structure is clear from the problem
definition and in some cases it requires some work to notice this structure. We assume that an
expert working on a specific problem may be able to notice this structure easily for the problem of
her interest and then choose to use our approach mechanically to obtain an NC algorithm for the
problem.

Significance. Over the last four decades there has been a lot of work related to design of parallel
algorithms for tree-like problems. Given below is a notable and diverse (but not exhaustive) list of
problems which have been considered in this literature.

• Boolean and arithmetic term evaluation [9, 11].

• Membership for language classes [36, 34, 17, 2, 31].

• Evaluation of circuits with bounded tree-width [29].

• Courcelle’s Theorem and counting [14, 18].

• Computation of maximal cuts in bounded clique-width graphs [48].

• Counting Hamiltonian paths in bounded clique-width graphs [5, 48].

Using our techniques, we reprove the above results. That is, we give a unified way of proving all the
above bounds. Moreover, we also consider variants of the above applications and obtain parallel (NC1,
NC2, SAC1, SAC2) upper bounds.

Techniques. Our approach uses algebra as a tool for obtaining the desired abstraction. An algebra A
consists of a set D and a finite set of operations {⊕1,⊕2, . . . ,⊕k}, where k is fixed. As mentioned earlier,
we focus on coming up with an efficient parallel algorithm for problems with a tree-like structure. For
this, we consider the term evaluation problem. A term is simply a tree in which the leaves are labelled by
the elements of D and the internal nodes are labelled by the operations. The term evaluation problem
deals with evaluating the value of the term for a given assignment of the leaves from the domain D. The
main algorithmic and technical contribution of our work is to rewrite the term T as an equivalent term

2

T ′ whose inputs are labelled by the elements of D and the internal nodes (gates) are labelled by the
operations of an algebra F (A), which is an extended algebra derived from A . Moreover, if T has size s
then T ′ has size poly(s) and depth O(logs)1.

This result is our primary algorithmic contribution. It may be thought of as a meta theorem for the
general term evaluation problem. Using this result we obtain NC upper bounds as follows: say Π is
a problem for which we need to design an NC algorithm. For a given Π, we show that solving Π is
equivalent to evaluating a term TΠ over an appropriately defined algebra AΠ. Now, using the above result,
we get a log-depth term over the operations of F (AΠ). We then observe that each operation in F (AΠ)
is easy to evaluate. Note that for a given problem Π, there may be many AΠ one could design. It is not
necessary for every choice of AΠ, the corresponding F (AΠ) has operations which are easy to evaluate.
This part is sensitive to the choice of AΠ. However, the main result stated above is independent of Π.

The known NC algorithms can be thought of as algorithms which transform TΠ to T ′
Π

for a particular
Π. What we manage to do here is to obtain a transformation from T to T ′, irrespective of any specific
Π (and hence a specific AΠ). This approach allows us to unify many known results by noticing that
each had to its core a term evaluation problem over an algebra. The following are the main technical
contributions in this result: (i) the algebraic notions defined and used for the abstraction, and (ii) the
definition of the extended algebra F (A). The notion of an extended algebra is intricate and crucial in
the algorithm design.

Related work. Our algorithm for the term evaluation problem fits in the long chain of contributions
dedicated to the term evaluation problem. The origin of which can be vaguely traced back to the
investigation of upper bounds for the Boolean formula value problem. In [37] Lynch studied it first and
achieved a log-space upper bound. Subsequently Cook conjectured that this bound is tight [13] which,
as we know today, is not (unless log space equals log depth). Earlier, a way to deal with formulas that
are very deep trees was investigated by Spira [44]: by a quadratic increase in size, we can balance a
Boolean formula. Brent built upon this work [8]. Going from balancing to obtaining an NC (in fact NC1,
i.e. log-depth) upper bound is not tough. It is known that if the transformation can be done in NC1, the
evaluation is in NC1.

Cook and Gupta [23] as well as Ramachandran [42] were the next in line who showed that
O(logn log logn) deep circuits suffice for evaluating formulas. Based on [23], Buss showed an ALOG-
TIME bound [9] which equals logarithmic depth [43] and is known to be tight. His proof utilized
a sophisticated two-player pebbling game. From there on the research proceeded in the direction of
broadening the scope of the result. This continued research is always rooted in the work of [23] and
[9]. Many other interesting works have contributed to this rich line of research, each solving the term
evaluation problem over a specific algebra [39], [17], [33], [31].

Subsequent work. Closely related to our work is a very recent work of Ganardi and Lohrey [22]
which uses the notion of algebras, terms and extended algebras (i.e. A ,T,F (A)) and shows optimal
upper bounds on the size of the NC circuits obtained for some of the problems considered here. This
is an interesting piece of follow up work, which improves on the size of the circuits (to O(n/ logn)) for
some of the problems and uses some of the machinery developed here.

Organization. We give the details regarding the term evaluation problem in Section 3. We present the
relevant preliminaries and some definitions in Section 2. Finally the discussion regarding the applications
of the term evaluation algorithm is provided in Section 4.

1Please refer to [47] for definitions of circuits, size and depth notions for terms and circuits and circuits with gates coming
from an algebra. Also, the size can in fact be bounded by O(s), but that is not crucial here.

3

2 Preliminaries: notations and definitions

As mentioned before, the term evaluation problem that we deal with here is over a very general algebraic
structure. In the literature, the term evaluation problem has been studied with respect to specific algebras.
However, as our main goal here is to give a unified approach to solve the general term evaluation problem,
we define algebraic structures which are as general as possible. We also define circuits (and terms) which
operate over these algebraic structures and we formalize the notation of semantics for such circuits (and
resp. terms).

To the best of our knowledge, the definitions appearing here have not been stated in this form in any
other literature in the series of works related to the term evaluation problem. In that sense, they are new.
However, some of the definitions are in fact generalizations/abstractions of well-known classical notions.

2.1 Notation

The set {1, . . . ,n} is denoted by [n] and {i, . . . , j} by [i, j]. The set N stands for the natural numbers
containing 0, Z for the integers, and B for the Boolean values {⊥,>}. An alphabet, denoted as Σ, is a
finite sets of letters. A word w ∈ Σ∗ is a finite sequence of letters and hence Σ∗ is the set of all words
over Σ. The ith letter of w is denoted by w(i). The length of w is denoted by |w|. The word of length 0 is
denoted by ε . A language is a subset of Σ∗.

2.2 Many-sorted signatures, circuits and terms

Operations and sorts. Below we will deal with operations which get inputs from different domains.
The distinct domains which any operation uses are called sorts. For example, consider an operation
f which has four inputs, say x1,x2,x3,x4, the first two are Boolean, i.e. x1,x2 ∈ B and x3,x4 ∈ N. The
operation f (x1,x2,x3,x4) outputs x3× x4 if x1 AND x2 is 1 and outputs x3

x4+1 otherwise (i.e. if x1 AND x2
is 0). Unlike a usual Boolean or arithmetic operation, f is more complicated. The inputs of f come from
different sorts of domains, i.e. B and N. The output is over yet another domain, namely Q. Here, B,N,Q
are the three different sorts.

We define, circuits, terms and algebras which use such generalized operations and also define the
semantics for them. Towards this, we first define a many-sorted signature, which is a generalization of the
notion of arity of a Boolean or arithmetic operation.

Definition 1 (Many-sorted signature). Given S ∈ N different sorts, a many-sorted signature σσσ of an
operation is an element of [S]∗× [S].

A many-sorted signature σσσ is a pair of a word and a letter (w,a). The word codes the input sorts of
the operation. The length of a word |w| is the arity of the operation. E.g. the operation f defined above
has the signature (1122,3), where the three sorts are B,N,Q (numbered in that order). For a operation f
with signature σσσ , we write Inσσσ (f) to denote w and Outσσσ (f) to denote a. If we have a set of operations
f1, . . . , f`, with signatures σ1σ1σ1, . . . ,σ`σ`σ` respectively, we use σ to denote the tuple (σ1σ1σ1, . . . ,σ`σ`σ`) and σ(i) to
address (wi,ai). Also, Inσ (i, j) is the jth letter of Inσ (fi). If we have an ordering on the operations
f1, . . . , f` then we simply use Inσ (i) instead of Inσ (fi). We use |σ | to denote the number of different
operations, i.e. `.

A single-sorted signature σσσ is one where |S|= 1. In this case σσσ corresponds to the classical notion of
signature assigning just an arity to the operation. For the sake of brevity, henceforth we will simply say
signature instead of many-sorted signature.

We now define a circuit which uses these operations. Suppose a gate F in the circuit is assigned the
operation f defined above. Then in such a circuit, one needs to ensure that the first two inputs to F are
Boolean, while the last two are from N. That is, only valid gate types feed into one another. We ensure
this using the notion of a signature defined above. Formally, we define many-sorted circuits as follows.

4

Definition 2 (Many-sorted circuit). For a signature σ , a many-sorted circuit over signature σ of S sorts,
n inputs and m outputs is a tuple C = (V,E,Order,Gatetype,Outputgates), where (V,E) is a directed
acyclic graph, Order : E→ N is an injective map giving an order on the edges, Gatetype : V → [|σ |]∪
{x1, . . . ,xn} assigns a position of the signature or makes it an input gate, Outputgates : {y1, . . . ,ym}→V
makes gates output gates, such that:

• If some v ∈V has in-degree 0 then Gatetype(v) ∈ {x1, . . . ,xn} or Inσ (Gatetype(v)) = ε , i.e. it is
0-ary.

• If some v ∈V has in-degree k > 0 then |Inσ (Gatetype(v))|= k, hence it is k-ary.

• For all i ∈ [n] there exists at most one v ∈V such that Gatetype(v) = xi

• All successors of an input gate can be assigned a unique sort which is fixed by the successor gates
and the signature. Also, InC ⊆ [S]n denotes the sorts of the n input gates and OutC ⊆ [S]m denotes
the sorts of the m output gates.

• For all v ∈ V , let v1, . . .v|Inσ (Gatetype(v))| be the input gates for v such that Order(vi) ≤ Order(v j)
iff i ≤ j. Then Outσ (Gatetype(vi)) = Inσ (Gatetype(v), i). If vi is an input gate then InC(j) =
Inσ (Gatetype(v), i) where Gatetype(vi) = x j.

By Circσ ,n,m we denote the set of circuits over σ of n inputs and m outputs.

Terms and circuits are closely related. In general, a term is a circuit which is a tree. However in our
setting additionally, a term has no input variables. Instead, the inputs are constants from the domain given
as 0-ary operations. One can think of it as the case when all variables have already been assigned a value.
Also our terms have only binary operations2.

We also consider the notion of terms with an unknown. Such terms come into play when we
decompose a given term in the term evaluation algorithm. Assume a term is to be evaluated over a domain
D (e.g. D could be B,N or Q) then a term with an unknown evaluates to a map D→ D. Formally,

Definition 3 (Many-sorted term, many-sorted term with an unknown). Given a many-sorted circuit T
over σ where m = 1 and (V,E) is a tree with a degree bounded by two. If n = 0 then T is a many-sorted
term and if n = 1 then T is a many-sorted term with an unknown. By Termσ we denote the set of terms
over the signature3 σ and by Termσ [X] we denote the set of terms with an unknown over σ .

We assume that the term (with or without an unknown) is encoded as a string over a fixed alphabet4.
We call this a linearization of a term. We now define linearization of terms, which is essentially a way of
writing a term as a string over a fixed alphabet5.

Definition 4 (Linearization of many-sorted terms). Given a many-sorted term T over a signature σ , the
linearization of t is a string w(T) which is a word of {(,),⊕1, . . . ,⊕|σ |}∗. First we define it on the nodes
inductively:

• If v ∈V has in-degree 0 then w(v) =⊕Gatetype(v).

• If v ∈V has in-degree 1 and v′ is the predecessor, then w(T) = (⊕Gatetype(v)w(T (v′))) where T (v′)
is the maximal subtree of T rooted in v′.

• If v ∈ V has in-degree 2 and v1,v2 are the predecessors, then w(T (v)) = (w(T (v1)⊕Gatetype(v)
w(T (v2))) where T (v) is the maximal subtree of T rooted for some v ∈V .

2This is no restriction as an n-ary operations can be simulated by a small set of binary operations.
3Note that for a term to be over some signature, the signature has to admit 0-ary operations since we need them for the leafs.
4It is the usual way of encoding machines as strings.
5It is the usual way of encoding machines as strings.

5

Finally if v is the output gate, then w(T) = w(v).

In the terms with an unknown we set w(v) = X if v is the single input gate, where X is an additional
letter. From now on we will not distinguish between terms and their linearizations.

From now on we will not distinguish between terms and their linearizations.

2.3 Semantics: evaluation of circuits and terms without unknown

So far we have defined circuits and terms (with and without unknowns) syntactically. Now we will give
semantics for circuits and terms. Informally, the semantics of a circuit is the tuple of functions its outputs
compute and that of a term is the value which its output evaluates to. We make this notion formal by
introducing the notion of a many-sorted algebra, which helps us assign semantics to the operations in the
circuits/terms.

Definition 5 (Many-sorted universal algebra). Given a many-sorted signature σ with S sorts, a
many-sorted universal algebra is a tuple A = ({D1, . . . ,DS},~1, . . . ,~|σ |) where ~i : DInσ (i,1)× . . .×
DInσ (i,αi)→DOutσ (i) where αi = |Inσ (i)|. We call the sets Di subdomains and the union of all subdomains
D, which is the domain.

From now on we will simply say algebra instead of many-sorted universal algebra. Given an algebra
which has the same signature as a circuit and valuations for the input gates, we can evaluate the circuit
under the given algebra. Note that this in turn can be used to evaluate terms since terms are just circuits
that are trees without inputs.

Definition 6 (Evaluation of many-sorted circuits). Given an algebra A over signature σ and a word
w ∈ Dn, the evaluation map ηA ,w : Circσ ,n,m→ Dm is a map defined inductively for all v ∈V . Here, let
T (v) be the maximal subcircuit of a circuit C containing all nodes from which v is reachable.

• If Gatetype(v) = xi then ηA ,w(T (v)) = wi provided wi ∈ D j implies that InC(i) = j.

• Let α be the arity |Inσ (Gatetype(v))| and v1, . . .vk be the predecessors of v ordered by their output
wire order, then ηA,w(T (v)) =~Gatetype(v)(ηA ,w(T (v1)), . . . ,ηA ,w(T (vα))).

Let v1, . . .vm be the output gates and C a circuit, then ηA ,w(C) = (ηA ,w(T (v1)), . . . ,ηA ,w(T (vm))) if for
all Outputgates−1(yi) = vi the following holds: OutC(i) = Outσ (Gatetype(vi)).

2.4 Semantics: evaluation of terms with an unknown

We have now described how to evaluate terms and circuits. However, we would like to treat terms with
an unknown slightly differently. We do not give a value to the unknown but we let this term evaluate to
a function. If some algebra is given, the set of functions we can get can be obtained from this algebra.
In fact we now get a many-sorted algebra since it needs to contain the original algebra as well as these
functions. There are operations of mixed sorts. We can e.g. combine a function D→ D and a value D.

Definition 7 (Functional algebra). Given an algebra A = (D,~1, . . . ,~k) over a single-sorted signature
σ which only contains operations that are at most binary, the functional algebra is defined to be
F (A) = ({D, D̃},F), where F is a placeholder for the operations which we will define next and D̃⊆DD

is the smallest set containing the identity function and is closed under the operations in F which are the
following:

• All operations of A : ~1, . . . ,~k.

• ◦ : D̃→ D̃ which is the functional composition.

6

• An operation for functional evaluation � : D̃×D→ D, where f � c = f (c).

• For each ~i : D×D→ D there are two variants: ←−~ i : D̃×D→ D̃ and −→~ : D× D̃→ D̃, where
(f←−~ ic)(x) = f (x)~i c and (c−→~ i f)(x) = c~i f (x).

• For each ~i : D→ D there is ~̃i : D̃→ D̃, where (~̃i f)(x) =~i f (x).

The signature of F (A) is denoted by σ(F (A)).

This definition can be lifted to arbitrary arities. The evaluation of terms with an unknown can now be
done using the previous definition. Again we use the linearization.

Definition 8 (Evaluation of terms with an unknown). Let A = (D,~1, . . . ,~k) be an algebra over a
single-sorted signature σ with maximal operation arity of two and let F (A) be the functional algebra
of A . The evaluation map µA : Termσ [X]→ D̃ is a map defined inductively for all i ∈ [k]:

• µA (X) = id ∈ D̃,

• µA (⊕i f) = ~̃iµA (f) for f ∈ Termσ [X],

• µA (f ⊕i t) = µA (f)←−~ iηA (t) where f ∈ Termσ [X] and t ∈ Termσ ,

• µA (t⊕i f) = ηA (t)−→~ iµA (f) where f ∈ Termσ [X] and t ∈ Termσ .

2.5 Interpreting classical circuit classes in this framework

In order to view the classical circuit complexity classes in this framework, we will first start with the
definitions of family of algebras and family of many-sorted circuits.

Definition 9 (Family of algebras). A family of algebras (An)n∈N is a sequence of algebras, where
Ai = ({Dp1(i)

1 , . . . ,DpS(i)
S },~i

1, . . . ,~
i
k) for i ∈ N and p j being polynomials for j ∈ [S]6.

Here, let us assume that the circuits have one output gate and all input gates have the same sort7.
Given an algebra A let DI and DO be the two subdomains that correspond to the input and output values,
respectively. Then a circuit Cn of n inputs realizes a function FA (Cn) : Dn

I → DO. Given a family of
circuits C we then get a function FA (C) = D∗I → DO.

In general, assuming a family of circuits is very powerful, so in complexity it is natural to require that
this family is computable in some complexity bound. We then speak of uniformity. Our constructions will
be DLOGTIME-uniform. (See e.g. [45] or [46] for basics in circuit complexity.) We use our framework
to define the classical Boolean version of NCi. Here B is the Boolean algebra (B,∧,∨,¬,⊥,>).

Definition 10 (NCi). The set NCi contains all functions FB(C), where C is a family of circuits of
signature same as B that contains circuits of polynomial size and O(logi n) depth.

Note that the bounded fan-in of the gates is ensured through the signature of B. For defining ACi

we need a different algebra to handle the unbounded fan-in gates. In fact we need a family of algebras
B∗ = (Bn)n∈N where Bi = (B,∧,∨,¬,⊥,>,∧i,∨i), ∧i : Bi → B and ∨i : Bi → B. Hence this is an
example where the difference between the members of the families only lies in the arity of operations.

Definition 11 (ACi). The set ACi contains all functions F(Bn)n∈N(C), where C = (Cn)n∈N is a family of
circuits that contains circuits of polynomial size, O(logi n) depth and where Cn has the same signature as
Bn.

The classes SACi we also get in a similar way as ACi; we only have to replace the unbounded AND
gates ∧i from the algebras with the bounded fan-in AND gates.

6Note that we are assuming a family of signatures here, rather than a single signature.
7This is usually the case in the classical circuit complexity models and hence the assumption.

7

2.6 Composition of algebras and extended circuit classes

We will now define circuit classes which are variants of the previously defined classes obtained using
some algebra A . These are circuits that have Boolean gates as well as A -gates. In our context, such
circuits arise in the algorithm design stage. Therefore, we ensure by design that in these circuits Boolean
values and values of A interact via multiplexer gates defined below.

Definition 12 (Multiplexer operation). Given a domain D, the ternary multiplexer operation is defined
as mpD : B×D×D→ D with

(b,d0,d1) 7→

{
d0 if b = 0
d1 else

.

Now we can use multiplexer operations to compose algebras which have as subalgebras the Boolean
one B and some other algebra A and they interact via multiplexer operations.

Definition 13 (Composition of algebras). Given an algebra A = ({D1, . . . ,DS},~1, . . . ,~k), by (B,A)
we denote the algebra ({B,D1, . . . ,DS},∧,∨,¬,~1, . . . ,~k,(mpDi

)i∈[S]). Given an algebra of the form
(B,A) and an algebra A ′ = ({D′1, . . . ,D′|S′|},~

′
1, . . . ,~

′
k′), by ((B,A),A ′) we denote the algebra

({B,D1, . . . ,DS,D′1, . . . ,D′|S′|},∧,∨,¬,~1, . . . ,~k,~
′
1, . . . ,~

′
k′ ,(mpDi

)i∈[S],(mpD′i)i∈[S′]).

Hence we write (B,A1, . . . ,Ak) = ((B,A1, . . . ,Ak−1),Ak) for the composition of k algebras.

Note that the previous definition also naturally carries over to families of algebras. We can define
classes similar to e.g. NCi that are enriched by some algebra. Intuitively, the Boolean part is directing the
non-Boolean part via multiplexer gates.

Definition 14 (A -NCi, A -NCi
D). The set A -NCi

D contains all functions F(B,A)(C), where C is a family
of circuits having the same family of signatures as (B,A) that contains circuits of polynomial size, depth
logi n, inputs of D and one output of a subdomain of A . For the special case of Boolean inputs we set
A -NCi = A -NCi

B.

The class (N,+,×,0,1)-NC1 is in fact #NC1 and (Z,+,×,0,1)-NC1 is the well-studied GapNC1.
The A -NCi and A -NCi

D definitions naturally carry over to classes other than NCi. The idea of A -NCi
D

is that we allow Boolean and non-Boolean inputs which then help in composing such circuits, i.e. the
output of one circuit is the input of another one.

3 Term evaluation algorithm

Given some term and an algebra A of the same signature, what does the term evaluate to over A ?
This problem is the term evaluation problem. The purpose of this section is to prove our main theorem
regarding the parallel algorithm for the term evaluation problem.

Theorem 15 (Main Theorem). Given an algebra A of single-sorted signature σ and domain D, the
evaluation function ηA : Termσ → D can be computed in F (A)-NC1. Moreover, the construction
ensures that the we get a DLOGTIME-uniform F (A)-NC1 circuit family.

Note that the theorem and its proof are independent of the actual algebra A . The algebra can be
arbitrary, with no restrictions such as commutativity or associativity on the operations.

The rest of the section is devoted to proving the above theorem.

8

~

~

~

A

B
CD

Figure 1: The figure shows a PNF term T with the first three most-left operation symbols from the top
pointed out. The term T is of the form DC~B~A~, where A, B, C, and D are again terms. Note that
|A| ≥ |DC~B~ |, |B| ≥DC~, and |C| ≥ |D|. The dashed lines indicate where we can split the term such
that the left part corresponds to a closed term. E.g. the middle line gives us the prefix DC~ which is
again a valid term. What is left on the right is an open term.

3.1 Representing terms in a normal form

Recall that we assume without loss of generality that all the operations used in the terms are binary. A
term (φ ~ψ), where φ and ψ are also terms, is in infix notation. If φ ′ and ψ ′ are the equivalent postfix
notations for terms φ and ψ , then φ ′ψ ′~ is the postfix equivalent of (φ ~ψ). Note that parentheses are
not needed in the postfix notation.

A postfix term is in postfix normal form (PNF) if for subterms φ and ψ of φψ~, |φ | ≥ |ψ|. This
normal-form was defined by Buss to design an NC algorithm [9] for evaluating Boolean formulas. Our
algorithm has its roots in this and other related works [11, 23]. We are aware of a simplified version [10]
of [9] which directly operates on the infix notation, however we use PNF as that is more convenient here.
We now present the details of how the given term is converted into the PNF form.

In order to convert any term into PNF we need to take care of possible non-commutative operations.
For that, we assume that all algebras have symmetric variants of operations. That is, for an operation ~
there exists an operation ~′ in the algebra such that x~ y = y~′ x.

For the algorithm we always assume that the terms are trees given as strings in the PNF notation.
We refer to the terms seen so far as the closed terms. We define a variant called an open term which is
informally a suffix of a closed term. Formally, we call a string T an open term if there exists a closed
non-empty term T ′ such that T ′T is a closed term. A closed term corresponds to a tree, while an open
term, which is a sufix of a closed term, corresponds to the subtree obtained by chopping off the left-most
subtree. (See Figure 1.) The concatenation of two open terms gives an open term and an open term
concatenated with a closed term gives a closed term.

Given a term T (coded as a string in PNF form) of length n, for 1≤ i≤ j≤ n, we use i <T j to denote
that in the tree T , j is an ancestor of i. We use [i, j] to denote the interval {i, . . . , j} and the subword
Ti . . .Tj interchangeably (will be clear from the context). If i <T j and [i, j] is a term, then we write i/T j.

A crucial property of a term in PNF is that it always has suffixes that are open terms, which correspond
to terms with an unknown.

3.2 Dividing terms: some structural lemmas regarding terms

Let T be a term given as a string of length n in PNF. Let [l,r] be a subinterval. The size of the interval
is s = r− l + 1. Typically, an interval is specified by l and r and additionally a position m which is
approximately the middle position. It is either can be bl + s

2c or dl + s
2e. Its exact position is not decided

9

.l l′ m r′ r

M (l, l′,r′−1)
M (l′+1,m,r′−1)

M (l′+1,r′,r)
N (l′+1,r′,r)

L R

Figure 2: The figure shows how a recursion interval is subdivided into smaller recursion intervals. In this
case the subdivision for computing M (l,m,r) is shown. The six intervals yield recursively six values
which may be used to be combined in order to get the evaluation of the M (l,m,r) interval.

a priori, but comes through a recursive evaluation of subintervals of [l,r]. We also use interval borders
l′ = bl+ s

3c and r′ = dl+ 2s
3 e. This divides the interval [l,r] in approximately thirds. We not only consider

the three intervals but also the intervals obtained by concatenating first two thirds and the second two
thirds. These five intervals will be our recursion intervals. Based on those static intervals we define some
dynamic intervals, i.e. intervals depending on the specific input:

• The largest closed or open subterm in [l,r] that contains m. This interval is denoted as M (l,m,r) =
[M 1(l,m,r),M 2(l,m,r)].

• The open subterm in [l,r] that begins with max{p | l ≤ p≤ m∧ l−1 <T p−1∧ l−1 6<T p} and
ends with the largest position q ∈ [m,r] such that [p,q] is an open subterm. This interval is denoted
as N (l,m,r) = [N 1(l,m,r),N 2(l,m,r)].

• The largest open subterm in [l,r] that precedes M (l,m,r). This interval is denoted as L (l,m,r) =
[L 1(l,m,r),L 2(l,m,r)]. It is L 2(l,m,r)+1 = M 1(l,m,r).

• The largest open subterm in [l,r] that follows [M 1(l,m,r),M 2(l,m,r)+1]. This interval is denoted
as R(l,m,r) = [R1(l,m,r),R2(l,m,r)]. It is R1(l,m,r)−2 = M 2(l,m,r) and M 2(l,m,r)+1 is
a binary operation symbol. If this operation exists, we denote the set containing its position by
O(l,m,r) = {M 2(l,m,r)+1}.

If values of (l,m,r) are clear from the context, we drop them. Note that an M interval could
correspond to an open or a closed term. The N ,R intervals always correspond, by definition, to open
terms. (That is the only way we use them in the algorithm.) The L interval is also defined to be open
however even if we allowed it to be closed, it can only be an open term. This is because it is strictly shorter
than M ∪N and does not contain the complete second operand of O. Figure 2 shows the considered
intervals. The intervals might be empty. Note that the intervals are well-defined. We now state some
properties regarding these intervals. The proofs of these properties are presented in Section A of the
appendix.

Lemma 16. Given intervals [p1,q1]⊆ [l,r] and [p2,q2]⊆ [l,r] which address closed or open terms with
[p1,q1]∩ [p2,q2] 6= /0 then [p1,q1]∪ [p2,q2] is also a closed or open term.

Lemma 17. It holds M 2 = N 2 and M 2(l, l′,r′−1)+1 = N 1(l′+1,r′,r).

The key lemmas which later constitute the recursive evaluation algorithm are given below. They show
how the algorithm actually composes a term by subterms coming from static subintervals. For instance,
Figure 2 shows the subintervals relevant for the next lemma.

10

Lemma 18. Given a term T and subinterval [l,r] with middle m, M equals one of the following intervals:
1. M (l, l′,r′−1), 2. M (l′+1,r′,r), 3. M (l′+1,m,r′−1),
4. M (l, l′,r′−1)∪N (l′+1,r′,r),
5. L (l,m,r)∪M (l, l′,r′−1)∪N (l′+1,r′,r)∪O(l,m,r)∪R(l,m,r). Further the sets involved in the
unions of case 4 and 5 are disjoint unions.

In a very similar way we can treat N as well.

Lemma 19. Given a term T and subinterval [l,r] with middle m, N equals one of the following intervals:
1. N (l, l′,r′−1), 2. N (l′+1,r′,r), 3. N (l′+1,m,r′−1),
4. N (l, l′,r′−1)∪N (l′+1,r′,r),
5. N (l, l′,r′− 1)∪N (l′+ 1,r′,r)∪O(l,m,r)∪R(l,m,r). Further the sets involved in the unions of
case 4 and 5 are disjoint.

The intervals M and N are built around the property of containing a middle position m. The intervals
L and R are different. They can lie arbitrarily in [l, l′−1] resp. [r′+1,r] and we initially do not know
anything about the location of the middle points. Our goal is to reduce L and R to some M (l̄, m̄, r̄)
where find l̄, m̄, and r̄ using a binary search.

Lemma 20. Given a term T and subinterval [l,r] with middle m, there is an interval [l̄, r̄]⊆ [l, l′−1] with
middle m̄ such that L =M (l̄, m̄, r̄) and this m̄ can be computed by a binary search inside an appropriate
range defined by l,m,r.

Lemma 21. Given a term T and subinterval [l,r] with middle m there is an interval [l̄, r̄]⊆ [r′+1,r] with
middle m̄ such that R = M (l̄, m̄, r̄) and m̄ can be computed by a binary search inside an appropriate
range defined by l,m,r.

3.3 The evaluation algorithm

The algorithm we present is a recursive one which is given in terms of circuits. Lemmas 18, 19, 20, and
21 directly suggest how the recursive evaluation will work: to evaluate an interval compute smaller fixed
subintervals and use their evaluations to obtain the overall evaluation.

In particular, we proceed as follows: we wish to compute M (1,bn/2c,n). In order to do that, we
design a procedure called EVAL, which at any given stage of recursion receives as input an M ,N ,L or
an R interval along with the current values of l,m,r.

If it is an M or an N interval then the procedure first determines which among the five cases applies
for the subsequent recursion call. By cases, we mean the five possibilities listed in Lemmas 18, 19.
Moreover, if it is an M interval then it also determines whether the term defined by it is an open term or
a closed term and keeps that information in a local flag. (Say the flag is by default set to 0 and then it is
toggled to 1 if the term is closed.)

If it is an L or an R interval then it first computes the appropriate l̄, r̄ and m̄ values and makes
recursive calls for the appropriate M interval defined using these l̄, r̄, m̄ values.

Finally, once the recurive calls return the values, the EVAL procedure combines these values. If the
flag is set to 1 then we know that the current call is dealing with a closed term and therefore, the procedure
outputs an evaluated value. On the other hand, if the flag is false, the procedure outputs a function from
D→ D.

For the evaluation we need to implement circuits which on a given interval [l,r] evaluate the intervals
M , N , L , and R. In the case of M we need to distinguish whether the evaluation is a value of D or a
function of D̃. In the other cases the result is always a function. Correspondingly, the following circuits
may arise: EVAL(M (l,m,r)), EVAL(N (l,m,r)), EVAL(L (l,m,r), l̄, m̄, r̄), EVAL(R(l,m,r), l̄, m̄, r̄).

The variables l̄, m̄, r̄ exist to serve the binary search as mentioned in Lemma 20 and 21.

11

Those circuits all work in a similar way: Depending on the structure of the term one of a number
of cases holds which determines how the output value is composed of the recursion results. So the
recursion results are combined according to the cases and then fed into a multiplexer-gate which chooses
the correct output. The circuits determining the cases are called CASE(M (l,m,r)), CASE(N (l,m,r)),
CASE(L (l,m,r), l̄, m̄, r̄), CASE(R(l,m,r), l̄, m̄, r̄).

Here we have already assumed that the term is given in the PNF form. To ensure this, as the first step
we perform this conversion to the PNF form as done in [9]. The conversion is of complexity TC0. The
resulting term is T as above. We now present the details regarding recursive calls made in our algorithm.

3.4 The details of term evaluation algorithm

The details of the working of various recursive calls are presented below. In the description below we use
two variants of the EVAL procedure. One to deal with closed terms, called EVALclosed, which occur only
for M intervals and the other used for all the open terms, denoted as EVAL.

3.4.1 The evaluation algorithm - CASE(M (l,m,r)), EVAL(M (l,m,r)), and
EVALclosed(M (l,m,r))

This part is based on Lemma 18. Consider its five cases:

1. M = M (l, l′,r′−1)

2. M = M (l′+1,r′,r)

3. M = M (l′+1,m,r′−1)

4. M = M (l, l′,r′−1)∪N (l′+1,r′,r)

5. M = L (l,m,r)∪M (l, l′,r′−1)∪N (l′+1,r′,r)∪O(l,m,r)∪R(l,m,r)

The circuit CASE(M (l,m,r)) determines which case holds for given l, m and r. It actually has five
output bits - one for each case. The circuit for the i’th output bit is CASEi(M (l,m,r)). Instead of actually
stating a circuit we specify MAJ[<] formulas for each output. This is sufficient since MAJ[<] equals
TC0 which is a subset of NC1. Also note that /T is also expressible in MAJ[<] logic [9].

CASE1(M (l,m,r)) = ∃x m≤ x < r′∧ (∃y l ≤ y < l′∧ y/T x)

∧ ∀x r′ ≤ x≤ r⇒¬(∃y l ≤ y < m∧ y/T x)

CASE2(M (l,m,r)) = ∃x r′ ≤ x≤ r∧ (∃y l′ < y≤ m∧ y/T x)

∧ ∀x r′ ≤ x≤ r⇒¬(∃y l ≤ y≤ l′∧ y/T x)

CASE3(M (l,m,r)) = ∃x m≤ x < r′∧ (∃y l′ < y≤ m∧ y/T x)

∧ ∀x r′ ≤ x≤ r⇒¬(∃y l ≤ y≤ m∧ y/T x)

∧ ∀x m≤ x < r′⇒¬(∃y l ≤ y≤ l′∧ y/T x)

12

CASE4(M (l,m,r)) = ∃x r′ < x≤ r∧∃y l ≤ y < l′∧ y/T x

∧ ∀u∀v x≤ u∧ (x < u∨ v < y)⇒¬(v/T u)

∧ ∃z l′ ≤ z < r′∧ y/T z∧ z+1/T x

CASE5(M (l,m,r)) = ∃x r′ < x≤ r∧∃y l ≤ y < l′∧ y/T x

∧ ∀u∀v x≤ u∧ (x < u∨ v < y)⇒¬(v/T u)

∧ ∃z∃u∃v y/T v∧ v+1/T z

∧ z+1/T u∧u+2/T x

∧ v+1/T u+1

Now that we have the means of deciding the case of Lemma 18 for a given interval, we can actually
evaluate the interval. Recursively we get the results for the intervals M (l, l′,r′− 1), M (l′+ 1,r′,r),
M (l′+1,m,r′−1), N (l′+1,r′,r), L (l,m,r), and R(l,m,r). By combining those we can obtain the
output value.

• In cases one to three the combination is trivial as we only pass a recursively computed value.

• In case four the output of EVALclosed(M (l,m,r)) we use a functional application gate (�) which
gets the results from EVALclosed(M (l, l′,r′− 1)) and EVAL(N (l′+ 1,r′,r)). For the output of
EVAL(M (l,m,r)) we use a composition gate (◦) which gets the outputs of EVAL(M (l, l′,r′−1))
and EVAL(N (l′+1,r′,r)).

• Case five is composed as L (l,m,r)∪M (l, l′,r′− 1)∪N (l′+ 1,r′,r)∪O(l,m,r)∪R(l,m,r).
The subinterval M (l, l′,r′−1)∪N (l′+1,r′,r) is a term an can be obtained like in case four. For
interval M (l, l′,r′− 1)∪N (l′+ 1,r′,r)∪O(l,m,r) we use that result and feed it together with
an identity function into a←−~ -gate if O(l,m,r) points to a symbol ~. Then we take this value and
the result of EVAL(R(l,m,r)) and feed it into a composition gate which then yields the value for
M (l, l′,r′−1)∪N (l′+1,r′,r)∪O(l,m,r)∪R(l,m,r). Finally we take this value and compose
it with the result of EVAL(L (l,m,r)) to get the value for the whole interval; see figure 3.

In case five we need a multiplexer construction to select the right operation ~, i.e. we do the
construction for all possible operations and then select the right one by the multiplexer which is directed
by the following:

OPERATION~(M (l,m,r)) = ∃x r′ < x≤ r∧∃y l ≤ y < l′∧ y/T x

∧ ∀u∀v x≤ u∧ (x < u∨ v < y)⇒¬(v/T u)

∧ ∃z∃u∃v y/T v∧ v+1/T z

∧ z+1/T u∧u+2/T x

∧ v+1/T u+1

∧ Q~(u+1)

This is the same as the formula for CASE5(M (l,m,r)) but it also checks whether ~ is in the place of
O(l,m,r); see figure 4.

Finally we have these five possible combinations, we use a multiplexer gate and the results of
CASEi(M (l,m,r)) to select the right one as output; see figure 5.

13

.l l′ m r′ r
EVAL(M (l, l′,r′−1))

EVAL(N (l′+1,r′,r))

EVAL(L) EVAL(R)

�id

←−
~

◦

◦

output

E
V

A
L
(M

(l
,m

,r
))

,c
as

e
fiv

e

Figure 3: The dashed box represents the subcircuit of EVAL(M (l,m,r)) which performs the combination
in case five. Note that the box ~ corresponds to the operation symbol in position B in figures 6 and 7.
This box actually is not a single gate but also a construction which is shown in figure 4.

id

←−
~ 1

←−
~ 2

←−
~ k-1

←−
~ k

multiplexer

.

output

OPERATION(M (l,m,r)) �

O
p.
(M

(l
,m

,r
))

Figure 4: In case five of the computation of EVAL(M (l,m,r), the operation has to be computed and used.
Figure 3 shows where the operation circuit shown here has to be inserted.

14

.l l′ m r′ r

EVAL(M (l, l′,r′−1))
EVAL(M (. . .))

EVAL(M (l′+1,r′,r))
EVAL(N (l′+1,r′,r))

EVAL(L) EVAL(R)

◦ case five

multiplexer

E
V

A
L
(M

(l
,m

,r
))

C
as

e(
M

(l
,m

,r
))

output

Figure 5: Construction for the EVAL(M (l,m,r)) circuit. It consists of 5 recursive calls, a circuit for
determining the case and a subcircuit performing the combination for case five as shown in figure 3.

3.4.2 The evaluation algorithm - CASE(N (l,m,r)) and EVAL(N (l,m,r))

The evaluation of N intervals is very similar to the one previously described for M . First, we only
evaluate open terms in this case. Then the difference is for one that we need to have adjusted circuits
CASE(N (l,m,r)) computing the case:

CASE1(N (l,m,r)) = ∃y l ≤ y≤ l′∧ l−1 <T y−1∧¬(l−1≤T y)

∧ ∀u (l ≤ u≤ m∧ l−1 <T u−1∧¬(l−1≤T u))⇒ u≤ y

∧ ∃x m≤ x < r′∧ y/T x

∧ ∀v x < v≤ r⇒¬(y/T v)

CASE2(N (l,m,r)) = ∃y l′ < y≤ m∧ l−1 <T y−1∧¬(l−1≤T y)

∧ ∀u (l ≤ u≤ m∧ l−1 <T u−1∧¬(l−1≤T u))⇒ u≤ y

∧ ∃x r′ ≤ x < r∧ y/T x

∧ ∀v x < v≤ r⇒¬(y/T v)

CASE3(N (l,m,r)) = ∃y l′ < y≤ m∧ l−1 <T y−1∧¬(l−1≤T y)

∧ ∀u (l ≤ u≤ m∧ l−1 <T u−1∧¬(l−1≤T u))⇒ u≤ y

∧ ∃x m≤ x < r′∧ y/T x

∧ ∀v x < v≤ r⇒¬(y/T v)

15

CASE4(N (l,m,r)) = ∃y l ≤ y≤ l′∧ l−1 <T y−1∧¬(l−1≤T y)

∧ ∀u (l ≤ u≤ m∧ l−1 <T u−1∧¬(l−1≤T u))⇒ u≤ y

∧ ∃x r′ ≤ x < r∧ y/T x

∧ ∀v x < v≤ r⇒¬(y/T v)

∧ ∃w l′ ≤ w < r′∧ y/T w∧w+1/T x

CASE5(N (l,m,r)) = ∃y l ≤ y≤ l′∧ l−1 <T y−1∧¬(l−1≤T y)

∧ ∀u (l ≤ u≤ m∧ l−1 <T u−1∧¬(l−1≤T u))⇒ u≤ y

∧ ∃x r′ ≤ x < r∧ y/T x

∧ ∀v x < v≤ r⇒¬(y/T v)

∧ ∃w∃z l′ ≤ w < r′∧ y/T w∧w+1/T z∧ z+2/T x

Now by applying Lemma 19 we can build EVAL(N (l,m,r)). Consider the cases:

1. N = N (l, l′,r′−1)

2. N = N (l′+1,r′,r)

3. N = N (l′+1,m,r′−1)

4. N = N (l, l′,r′−1)∪N (l′+1,r′,r)

5. N = N (l, l′,r′−1)∪N (l′+1,r′,r)∪O(l,m,r)∪R(l,m,r)

The construction for EVAL(N (l,m,r)) is similar to the one for EVAL(M (l,m,r)) with the exception
that we use the appropriate recursive calls and do not use the R interval. Also we of course use
CASE(N (l,m,r)) instead of CASE(M (l,m,r)).

3.4.3 The evaluation algorithm - CASE(L (l,m,r), l̄, m̄, r̄) and EVAL(L (l,m,r), l̄, m̄, r̄)

The key idea of evaluating an interval in our algorithm is that we evaluate e.g. the largest subterm in the
interval that contains the middle. If we want to evaluate a L interval we face the problem that it can lie
arbitrarily in the considered interval. So the idea is that we do a binary search in order to find an interval
whose middle is part of L ; see Lemma 20.

Our search interval will be [l̄, r̄] with middle m̄. We then distinguish three cases:

1. m̄ ∈L

2. L ⊆ [l̄, m̄−1]

3. L ⊆ [m̄+1, r̄]

In the first case we can fall back to EVAL(M (l̄, m̄, r̄)). In the second we recurse using
EVAL(L (l,m,r),(l̄, l̄ + m̄− 1)/2, m̄− 1) and in the third case we use EVAL(L (l,m,r),(m̄+ 1,(r̄ +
m̄+1)/2, r̄). So we have three recursive calls which we feed into a multiplexer gate. The multiplexer
gate is directed by CASE(L (l,m,r), l̄, m̄, r̄) which decides which of the tree cases hold:

16

CASE1(L (l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧ y≤ m̄≤ v

=∃x r′ < x≤ r∧∃y l ≤ y < l′∧ y/T x

∧ ∀u∀v x≤ u∧ (x < u∨ v < y)⇒¬(v/T u)

∧ ∃z∃u∃v y/T v∧ v+1/T z

∧ z+1/T u∧u+2/T x

∧ v+1/T u+1

∧ y≤ m̄≤ v

CASE2(L (l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧ y≤ v < m̄

CASE3(L (l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧ m̄ < y≤ v

3.4.4 The evaluation algorithm - CASE(R(l,m,r), l̄, m̄, r̄) and EVAL(R(l,m,r), l̄, m̄, r̄)

Evaluating an R interval is again very similar to L . For EVAL(R(l,m,r), l̄, m̄, r̄) we use the same
multiplexer construction for the binary search as in EVAL(L (l,m,r), l̄, m̄, r̄) and only have to adjust the
case computation:

CASE1(R(l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧u+2≤ m̄≤ x

CASE2(R(l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧u+2≤ x≤ m̄

CASE3(R(l,m,r), l̄, m̄, r̄) = CASE5(M (l,m,r))∧ m̄≤ u+2≤ x

3.5 Complexity and correctness

In this section we present the claimed complexity bounds.
The correctness of our construction follows from the lemmas of Section 3.2 as is only directly

implements those lemmas.
Our circuit construction uses the kind of gates which we may use for F (A)-NC1 circuits. We used

multiplexer gates of three resp. five instead of two inputs which can be easily implemented.
We now observe that the construction can be done in logarithmic depth with regard to the input length.

The PNF conversion is doable in TC0. The same is true for the case computations. Finally the evaluation
circuits entail the case circuits as well as recursive calls. As in every call the range becomes smaller by at
least a factor of 2/3, the depth is logarithmic.

Analyzing the size of our construction, we see that we use a polynomial number of circuits which
originate in MAJ[<] formulas which result in polynomial size circuits. In particular that are circuits
computing the PNF term and those computing the cases. Further each recursive evaluation circuit covers
a certain subinterval and since there is only a quadratic number of subintervals, we get the polynomial
bound for the whole construction.

17

Lastly we give the idea for DLOGTIME-uniformity. To that end we have to show how to address
states and then state FO[<,+,×] formulas which take such addresses and tell what function some gate is
assigned as well as how the gates are wired. Consider a circuit EVAL(M (l,m,r)). It consists of several
recursively defined subcircuits and a fixed number of extra gates to combine the results of the subcircuits
which we call combination gates of EVAL(M (l,m,r)). More concretely, an addressing scheme can look
like this: we assign each EVAL(M (l,m,r)) circuit a string w for the six subcircuits we assign strings
w000, w001, w010, w011, w100, and w101. The finitely many combination gates which are left we
address by w$x where x is unique string for each occurring gate. It can be easily seen that this scheme
can be applied for all kinds of circuits we defined.

Now it is easy to come up with a FO[<,+,×] formula which assigns each gate its type. On an
input w$x it is only a look-up to which kind of gate x corresponds. The wiring between gates can also
expressed as follows: for a pair of combination gates of some EVAL(M (l,m,r)), where the task is again
just a look-up. If we have a pair such that one is the output of a recursion, we can also model that by
looking at the last letter of w in the address w$x. In the case of small intervals r− l, the computation
EVAL(M (l,m,r)) becomes a look-up table which accesses input gates which we can also model. The
output gate is a gate with an address of the form $x for an appropriate x.

Note that we also have circuits like CASE(M (l,m,r)) which are given in terms of MAJ[<] formulas.
By [6] we know that these are also in DLOGTIME-uniform NC1.

4 Application

Our main theorem can be used for many different applications. We first present a template or recipe used
for deriving these applications. It consists of the following steps:

1. Find an algebra A . Given a problem Π, which could be a language or a function, find an algebra
AΠ = (D,~1, . . . ,~k), such that Π reduces to term evaluation over AΠ.

2. Find a coding for F (AΠ). Now we know by our main theorem that Π is in F (AΠ)-NC1.
However what we want is a “real” class like NC1 or #SAC7. Hence we encode F (AΠ) in a
way that we end up with a Boolean or an arithmetic class. So find a code c mapping (details
in Section B.1) into a family of algebras, that have domains based on B, N, or Z, depending on
whether we wish to prove Boolean or arithmetic circuit upper bounds.

3. Analyze the complexity of the operations used in c(F (AΠ))-NC1. Now we know that Π is in
c(F (AΠ))-NC1 since the coding admits a reduction. If we have chosen c well, we can implement
the operations of c(F (AΠ)) efficiently. Note that c(F (AΠ)) could be a family. The members of
the family all contain the following coded operations:

• The operations of AΠ: ~c
1 . . .~

c
k.

• The functional versions for each binary operation~i:
←−
~ c

i and−→~ c
i . Recall that←−~ i : DD×D→

DD and −→~ i : D×DD→ DD.

• The functional versions for each unary operation ~i which is ~̃c
i : DD→ DD.

• The functional composition of F (AΠ): ◦c : DD×DD→ DD.

• The function application operation of F (AΠ): �c : DD×D→ D.

An algebra usually also has 0-ary operations, but here there is no complexity to analyze.

The following is not a part of the algebra but comes into play in the construction of the
c(F (AΠ))-NC1 circuits: Multiplexer operations for all subdomains D of c(F (AΠ)): mpD. These
operations are used in the c(F (AΠ))-NC1 circuit as black boxes. In this third step we have to come

18

up with a efficient implementation of all these operations in order to derive a good upper bound. In
general, the depth increases by a logarithmic factor when comparing the complexity of the functions
and the overall circuit. So, if, say, all the functions are in #NC1

D, then c(F (AΠ))-NC1 ⊆ #NC2.

All the applications we show follow this template.

4.1 Evaluating arithmetic terms and distributive algebras

We consider evaluating terms over N = (N,+,×,0,1) and Z = (Z,+,×,0,1).

Theorem 22 ([11]). Evaluating terms over N (Z) is in #NC1 (GapNC1 resp.).

Proof. We give the proof for N . The case of Z is handled similarly.
step 1. The problem is directly a term evaluation problem, hence no reduction is needed.
step 2. Consider the algebra F (N) = ({N, Ñ},+,×,0,1,←−+ ,

←−× ,
−→
+ ,
−→× ,◦,�), where Ñ ⊆ NN. We

choose a coding c such that c(N) = N and c(Ñ) = N2. The functions in Ñ are of the form x 7→ ax+b for
some a,b ∈ N: We begin with the identity function x 7→ 1x+0 which is clearly of this form. Now we
show that the operations of F (N) keep functions in this form.

• ◦c: Given some functions f (x) = a f x+ b f and g(x) = agx+ bg, then f ◦ g is of this form: x 7→
a f agx+a f bg +b f . So c(f ◦g) = c(f)◦c c(g) = (a f ,b f)◦c (ag,bg) = (a f ag,a f bg +b f).

• ←−+ c: Consider c(f + e) for f ∈ NN and e ∈ N. Now c(f)+c c(e) = (a,b)+c e = (a,b+ e) where
f (x) = ax+b. The operation −→+ c follows similarly.

• ←−× c: Consider c(f × e) for f ∈ NN and e ∈ N. Now c(f)+c c(e) = (a,b)+c e = (a× e,b× e)
where f (x) = ax+b. The operation −→× c follows similarly.

This shows that c is indeed a valid coding.
step 3. We now have an upper bound of c(F (B))-NC1. As all operations use constantly many inputs of
natural numbers, there exist arithmetic circuit implementations for all operations. Further, all Boolean
gates and multiplexer gates can be simulated by arithmetic circuit constructions, so all operations are in
#NC0

N. Hence we get c(F (B))-NC1 ⊆ #NC1.

In the previous proof we used distributivity of + and × which allows us to represent functions by two
values. This we can do in general, so we get the following:

Theorem 23. Given a distributive algebra A = (D,~1,~2), then evaluating terms over A is in A -NC1.

4.2 The Boolean formula value problem and finite algebras

Problem description.

The BFVP is the problem of evaluating Boolean formulas. That is evaluating terms over the algebra
B = (B,∧∨,¬,⊥,>).

Theorem 24 ([9]). The Boolean formula value problem is in NC1.

Proof. step 1. We do not need a reduction, since the problem directly is a term evaluation problem over
the algebra B

step 2. Consider the algebra F (B) = ({B,BB},∧,∨,¬,⊥,←−∧ ,←−∨ ,−→∧ ,−→∨ , ¬̃,◦,�). Here BB has four
elements. We choose some coding c with c(B) = B and c(BB) = B2.

step 3. Consider the algebra c(F (B)). The operations of c(B) =B can be implemented directly by
single gates. The other operations need constant size circuits, i.e. NC0. The same is true for multiplexer
gates. Hence c(F (B))-NC1 ⊆ NC1. �

19

In the previous proof we used that the algebra is finite. If it is finite we only need constant size circuits
to implement the operations. Hence we can state a general theorem:

Theorem 25. If A is a finite algebra then evaluating terms over A is in NC1.

4.3 Tree automata

Tree automata are finite state machines operating on tree; a counter-part of finite automata over strings.
We are interested in proving upper bounds for the membership problems known from [36].

For the sake of a clear presentation, in this section we focus on binary trees but all results can be
generalized for arbitrary trees. The nodes of the trees are labeled with a letter of the alphabet Σ. We use a
linearization similar to the one we used for terms: (t1at2) is a tree whose root is labeled a and has t1 as a
left and t2 as a right descendant.

Definition 26. A nondeterministic bottom-up tree automaton (BUTA) is a tuple T = (Q,Σ,Q0,F,δ)
where Q is a finite set of states, Σ a finite alphabet, Q0 ⊆ Q a set of initial states, F ⊆ Q the set of final
states and δ : Q×Q×Σ→ 2Q the transition function.

The deterministic version has only one initial state q0 and the transition function is deterministic:
δ : Q×Q×Σ→ Q.

Given a BUTA and a tree t, a run is an assignment of states to the edges of the tree in the following
way: for each leaf we add two new children which then become leaves and label them an initial state.
Also we add a new root whose only child is the old root. If the children of a node are labeled q1 and q2
and the node is labeled a, then it must be labeled with a state of δ (q1,q2,a). If the label of the root is
labeled with a state of F , then we call the run accepting. If a tree has an accepting run, the tree is accepted
by the automaton.

Nondeterministic BUTA can be determinized by the classical power-set construction. There is also
the notion of top-down tree automata. In the nondeterministic version they have the same power as BUTA
but the deterministic version is strictly weaker. Hence we will focus on BUTA.

Further, in reference to [36] we consider the uniform membership problem where the automaton is
not fixed but part of the input. In fact, we consider a slightly general counting problem, which can be
stated as follows: given a BUTA M as an input and a tree t, what is the number of accepting runs in the
BUTA on the tree t?

Theorem 27. Given a nondeterministic BUTA M and a tree t as input, then computing the number of
accepting runs of M on t is in #SAC1

Proof. step 1. Let Σ be a fixed alphabet. The input tree we interpret as a term over a family of algebras
(An)n∈N with

An = (N[n]×Mn,(~a)a∈Σ,†),

where n is the length of the term and Mn the set of all BUTA having n states; we assume it to have a state
set [n]. Note that BUTA with less than n states can be simulated by inserting unused states. The operation
family (~a)a∈Σ consists of binary operations and † is a constant. Now an input tree w yields a term as
follows: If (t1at2) is a tree and T (t1), T (t2) are terms for t1 and t2, then (T (t1)~a T (t2)) is the term for
(t1at2). If t = a is a leaf, then T (t) = †~a †.

The idea of the algebra is that each element stores for each state q, how many runs there are to end
up in q in a certain subtree. Also the automaton has to be part of the algebra. It is stored in the second
component of the domain and is constant for the whole term evaluation. Now † should correspond to the
initial states, hence † = (f ,M), where M is the automaton from the input and f (q) = 1 if q is an initial
state and f (q) = 0 else. Given a ∈ Σ, the operation ~a is defined as (f ,M)~a (g,M) = (h,M) where
h(q) = ∑q∈δ (q1,q2,a) f (q1) ·g(q2) and δ is the transition function of M.

20

Clearly if we evaluate the term we get from the input over the algebra, we get the desired value. The
evaluation is a pair where the first component holds for each state how many runs there are to end up in it.
Now add all values which correspond to a final state; this is the output.

step 2. We design a coding to later be able to show the upper bound. We need to code

F (A) = ({D, D̃},(~a)a∈Σ,†,(
←−
~ a)a∈Σ,(

−→
~ a)a∈Σ,◦,�).

Note that for a given term, the automaton always stays the same, so we just assume D to be N[n], so we
omit explicitly coding the automaton. We focus on coding the functions N[n]→ N[n] and constants N[n].
The constants we can code as c(N[n]) = Nn, so the functions of N[n] become an n-tuple. Further we code

c
((

N[n]
)N[n])

= Nn,n×Nn.

So each function f : N[n]→ N[n] can be represented by a matrix M and a vector b. Note that a matrix can
be seen as a sequence of numbers. A function then is a map of the form x 7→ xM+b for x ∈ Nn. We now
show that all functions of the algebra conform to this:

• The identity function is represented by x 7→ xI +0 where I is the identity matrix.

• Consider f ◦g and let c(f) = (M,b) and c(g) = (M′,b′), then c(f ◦g) = c(f)◦c c(g) is a map of
the form x 7→ xMM′+bM′+b′, so c(f ◦g) = (MM′,bM′+b′).

• For f ∈ Ñ[n], d ∈N[n], and c(f) = (M,b) we get c(f)�c(d) = c(f (d)) = c(f)�c c(d) = c(d)M+b.

• For a ∈ Σ consider f←−~ ad where c(f) = (M,b), then c(f←−~ ad) = c(f)←−~ c
ac(d) = (MMa

d ,bMa
d)

where the matrix Ma
d is defined as follows: For i, j ∈ [n], let S⊆ [n] be the set of all states such that

i ∈ δ (j,S,a). Then in Ma
d the position (i, j) is ∑s∈S ds. The operation −→~ a follows similarly.

step 3. Multiplying matrices requires multiplication gates of fan-in 2 and addition gates of fan-in n.
The depth is constant. Hence the gates used in the c(F (A))-NC1 circuits can be replaced by #SAC0

N
constructions which yields an overall complexity of #SAC1.

If we consider the previous proof, then it is immediate that we end up with a Boolean circuit if we are
not interested in counting but only the existence of accepting runs. Hence we get the following result.

Theorem 28 ([36]). The uniform membership problem for nondeterministic BUTA is in SAC1.

Also we can look at the proof and consider the situation for a fixed automaton. The complexity we
determined for the operations is #SAC0, where the unbounded addition gates have a fan-in equal to the
number of states of the automaton. If now the automaton is fixed, a constant depth construction with
bounded fan-in suffices, hence we get:

Theorem 29. For a fixed BUTA, counting the number of accepting runs is in #NC1.

And again, if we are only interested in acceptance and not in counting, the proof directly yields a
Boolean upper bound:

Theorem 30 ([36]). For a fixed BUTA, the membership problem is in NC1.

21

4.4 Visibly pushdown languages and quantitative automata models

Visibly pushdown languages (VPL) are a proper subclass of context-free languages which contains
regular languages. They were first defined and studied by [39]. They were referred to as the input-
driven pushdown languages in this early reference. Subsequently they were rediscovered by Alur and
Madhusudan in [4]. VPL is the set of languages for which there is a visibly pushdown automaton (VPA).
A VPA is a pushdown automaton M which has the following restrictions: If Σ is the input alphabet then
there is a partition of Σ into subsets Σcall, Σret, and Σint such that M pushes one symbol onto the stack
if a letter of Σcall is read. If a letter of Σret is read then one symbol is popped of the stack. If a letter of
Σint is read, the stack is not accessed at all. This model yields many desirable properties with regard
to decidability and closure properties. Also determinism equals nondeterminism in this model. VPA
have their applications in fields like XML or verification. The intuition is that a word accepted by a VPA
basically represents an unranked tree.

Definition 31 (Visibly pushdown automaton). Given a partitioned alphabet Σ = Σcall ∪Σret ∪Σint, a
VPA is a tuple M = (Q,Q0,F,Γ,⊥,δcall,δret,δint) where Q is a finite set of states, Q0 ⊆ Q is a set of
initial states, F ⊆ Q a set of final states, Γ the stack alphabet, ⊥ ∈ Γ the bottom-of-stack symbol,
δcall ⊆ Q×Σcall×Q×Γ is the transition relation for call letters, δret ⊆ Q×Σret×Γ×Q is the transition
relations for return letters and δint ⊆ Q×Σint×Q is the transition relation for internal letters.

We omit details for the semantic here. However note that we impose that VPLs only contain well-
matched words. A word is well-matched if all positions of call or return letters have a matching position.
Two positions i < j in a word w match if wi ∈ Σcall, w j ∈ Σret, the number of call letters equals the
number of return letters in wi . . .w j, and in all prefixes of wi . . .w j there are at least as many call letters as
return letters. That way well-matched words can be seen as well-parenthesized expressions or as valid
representations of trees. If there is only one initial state and the transition relations are functions, the
automaton is called deterministic.

Using our evaluation algorithm we can derive upper bounds for membership and counting problems.

Theorem 32. Given a nondeterministic VPA M and a well-matched word w ∈ Σ∗ as input, computing the
number of accepting runs of M on w can be done in #SAC1

Proof. step 1. A well-matched word can be considered to be a linearization of a tree or a term. So what
we will do is to interpret the input word as a term and the input automaton can be found again in the
family of algebras (An)n∈N we will evaluate the term over. We choose

An = (N[n]×[n]×Mn,~,(⊗a,b)a∈Σcall,b∈Σret ,(†e)e∈Σint∪{ε}).

Now given as input a well-matched input word, we construct a term. If the input w is either the empty
word or an internal letter, then the corresponding term is t(w) = †w. If w = w1w2 where w1,w2 are
well matched then t(w) = t(w1)~ t(w2). If w = aw′b where a ∈ Σcall, b ∈ Σret, and w′ is well-matched,
then t(w) =⊗a,bt(w). The intuition of the algebra is that the second part Mn of the domain stores the
automaton which is then constant for the whole term. We assume it to have state set [n], where n is the
input length which is no restriction. Then the first component N[n]×[n] then assigns each pair of states
q1,q2 the number of runs from q1 to q2 there are by passing through the corresponding well-matched
word. Also note that in the construction we did not explicitly convert the automaton into a term. It is easy
to do and we leave out the details for the sake of readability. The only point worth noting in building a
term is that the same automaton is accessible in every step of the evaluation. The definition of the algebra
operations is as follows:

• †ε is a 0-ary operation, hence an element of the domain, which is a function [n]× [n]→ N. We
define it as (q,q′) 7→ 1 iff q = q′ and (q,q′) 7→ 0 otherwise.

22

• †e for e ∈ Σint is defined as (q,q′) 7→ 1 if q′ ∈ δint(q,e) and (q,q′) 7→ 0 otherwise.

• ~ is a binary operation and α~β is defined as (α~β)(q,q′) = ∑r∈Q α(x,r)β (r,y).

• ⊗a,b is unary and (⊗a,bα)(q,q′) is defined as the sum of all α(p, p′) such that there exists γ ∈ Γ

and (p,γ) ∈ δcall(q,a) and q′ ∈ δret(p′,b,γ).

If we evaluate the term over this algebra we get the number of runs.
step 2. The algebra F (An) has a subdomain which consists of maps of the form N[n]×[n]→ N[n]×[n].

Potentially the set of such maps is too large, but actually they are made up in a regular manner. The idea
for a function [n]× [n]→ N was to store how many paths there are between a pair of states for a given
well-matched word. For functions N[n]×[n]→ N[n]×[n] there is a similar picture. Given a well-matched
word w1w2 where w1 and w2 not necessarily have to be well-matched, then a function f can be considered
to be storing for given states q1,q2,q3,q4 how many ways there are to from q1 to q2 via w1 and from q3 to
q4 via w2. We can now consider f (d), where d is a function d : [n]× [n]→N which fills in the transitions
from q2 to q3. If d resulted from evaluating a well matched word w, f (d) is the evaluation corresponding
to w1ww2.

The idea for our coding c is that we have to store natural numbers for these four-tuples of states. We
set c(N[n]×[n]) = Nn,n and

c((N[n]×[n])N
[n]×[n]

) = (Nn,n)n,n.

To assign a semantic to these matrices we define �c first:

• �c: Given c(f)∈ (Nn,n)n,n and d ∈Nn,n we define the matrix c(f (d)) = c(f �d) = c(f)�c c(d) =
A as follows. For a matrix like A we write A(q1,q2) to address the entry which corresponds to
the pair q1,q2. If we are given a matrix like c(f) we write c(f)(q1,q2) to address the matrix
corresponding to q1,q2 and we set c(f)(q1,q2)(q3,q4) = c(f)(q1,q2,q3,q4). Now A(q1,q2) is
defined as ∑q3,q4∈[n] c(f)(q1,q2,q3,q4)c(d)(q3,q4). This is the sum of the entries of the point-
wise matrix multiplication of c(f)(q1,q2) and c(d). Note that the coding of the identity map is
c(id) = In,n, where I is the identity map of size n times n.

• ◦c: Given c(f) and c(g) of (Nn,n)n,n, then c(f) ◦c c(g)(q1,q2,q3,q4) =

∑q5,q6∈[n] c(f)(q1,q2,q5,q6)c(g)(q5,q6,q3,q4).

• ~c: This is just the normal matrix multiplication.

• ⊗c
a,b: Consider the matrix Ma,b ∈ (Nn,n,)n,n, where Ma,b(q1,q2,q3,q4) = 1 if there exists γ ∈ Γ

such that (q2,γ) ∈ δcall(q1,a) and q4 ∈ δret(q3,b,γ) and Ma,b(q1,q2,q3,q4) = 0 else. Now we set
⊗c

a,bc(d) = Ma,b�c c(d).

• ⊗̃c
a,b: This is similar to the previous case and we set ⊗̃c

a,bc(f) = Ma,b ◦c c(f).

• ←−~ c: We set c(f←−~d) = c(f)←−~ cc(d) as c(f←−~d)(q1,q2) = ∑q3∈[n] c(f)(q1,q3)c(d)(q3,q2) where
the summation is a point-wise matrix summation and the multiplication is a scalar multiplication.
The operation −→~ c is defined similarly.

step 3. So far we have reduced the problem such that we know it is in c(F (A))-NC1. By considering
the definition of the algebra operations above, one can see that in all cases arithmetic circuits of constant
depth suffice. In particular we only use multiplication between two elements. The fan-in of addition gates
is n. Hence we have a #SAC0

N bound for the the operations. This again yields the #SAC1 bound for the
actual problem. �

23

Here the setting is very similar to the one for tree automata. By fixing a automaton or restriction to
the Boolean case, we get the following theorems. Recall that the uniform membership problem is the
membership problem, where the automaton is part of the input.

Theorem 33. The uniform membership problem for nondeterministic VPA is in SAC1.

Theorem 34 ([34]). For a fixed nondeterministic VPA, counting the number of accepting runs is in #NC1.

Theorem 35 ([17]). For a fixed VPA, the membership problem is in NC1.

Weighted automata theory is a branch of theory which received ample attention since the 70s
and has been decades of research. The original concept is based on finite automata however also
generalizations to VPA have been investigated [12]. We define a weighted VPA (WVPA) based on a
nondeterministic VPA and a semiring (D,⊕,⊗). Then each transition of the VPA is assigned an element
of D. In a run, all weights are added by ⊕. Then the results for all the runs are multiplied by ⊗ which
then is the output. That way a WVPA implements a function Σ∗→ D. A typical example for the semiring
is (N,+,min).

Theorem 36. Functions of WVPA over a semiring A = (D,⊕,⊗) are in A -NC1.

Proof. step 1. In a WVPA M, the value of the word is computed by taking the sum (i.e. ⊕) of weights
along all the computational runs regenarted by that word, where the weight of a run is nothing but the
product of the weights of the steps taken by the WVPA along that path. An approach of computing the
value of a given word by this approach is clearly inefficient since there can exist exponentially many runs.

Here, we again think of the input word as a term over an appropriate algebra. Then we can assign each
well-matched subword w a value which is a map Q×Q→ D where (q1,q2)→ d ∈ D gives a placeholder
for the weight accumulated when going from q1 to q2 by reading w. Hence let

A ′ = (DQ×Q,},(~a,b)a∈Σcall,b∈Σret,(†e)e∈Σint∪{ε}

where (f } f)(q1,q2) =
⊗

q∈Q f (q1,q) ⊕ g(q,q2) and †e is 0-ary. Further ~a,b(f)(q1,q2) =⊗
q′1,q

′
2∈Q,γ∈Γweight(q1,q′1,a,γ)⊕ f (q′1,q

′
2)⊕weight(q′2,q2,b,γ). Here, weight : Q×Q×Σcall ∪Σret×

Γ→ D maps to each transition its weight; if a ∈ Σcall then γ ∈ Γ is the letter which is pushed on stack
and if b ∈ Σret it is the one popped of stack. Now we build a term: The empty word has the identity map
as corresponding value: †ε . An internal letter e corresponds to a map f where f (q1,q2) is the weight
associated with the transition δ (q1,q2,e): †e. If w1 and w2 are well matched words and f1, f2 are the
corresponding terms, then (f1} f2) is the term for w1w2. If w is well-matched and f is the term belonging
to w then the term for the word awb is ~a,b,(f). It can be seen by induction that the constructed term
evaluates to the function which tells us the weight for each pair of states. By assuming that there exists
one initial and one final state, looking up at the pair of initial and final state we get the final output.

Using the construction and regarding the pair of initial state and final state one can obtain an A -term
which evaluates to the final output because the maps of A ′ can be considered matrices and the matrix
operations can be made explicit.

step 2. and step 3. By Theorem 23 it follows that those terms over A can be evaluated in the bounds
of A -NC1.

Applied, we directly obtain:

Theorem 37. Functions of WVPA over (N,+,×) resp. (Z,+,×) are in #NC1 resp. GapNC1.

A prime example for A in the context of weighted automata is (N,+,min), the tropical semiring.
For this we get the following:

24

Theorem 38. Functions of WVPA over (N,+,min) or (Z,+,min) where the output is coded binary are
in SAC1.

Proof. By Theorem 36 we know that this problem is in (N,+,min)-NC1. The class SAC1 is an upper
bound because addition and minimum can be computed in Boolean constant-depth circuits. �

Cost register automata(CRA) [3] are a different generalization of automata to capture quantitative
properties. They are more powerful than weighted automata, however work somewhat differently. The
idea is to let the states direct act on registers. A register holds a value of some algebra. Note that, here
registers do not have influence on the states, i.e. the states which one reaches is only a function of the
better being read and not the registered being updated. In [2] the complexity of CRA has been analyzed
and in [31] a generalization to visibly pushdown automata (CVPA) has been made where complexity
aspects also were considered. CVPA are based on deterministic VPA. Say it has a state set Q then we
have in addition an algebra A , a finite set of registers X , an initial valuation v0 : X → D, and a register
update function ρ:

• ρ : Q×Σintermal×X → E(A ,Xprev)

• ρ : Q×Σcall×X → E(A ,Xprev)

• ρ : Q×Σreturn×Γ×X → E(A ,Xprev,Xmatch)

Here E(A ,Xprev) is the set of expressions over the algebra A , which may use variable names of Xprev
which is a copy of X . In E(A ,Xprev,Xprev) there are two copies of the variable set X involved. The final
cost function µ : Q→ E(A ,X) completes the definition. Now a CVPA implements a function Σ∗→ D.
On some input word we get the output value by updating the registers in each step according to the state
and the letter read beginning with the initial valuation before the first letter is read. If a push letter is read,
the register values are pushed onto the stack and when the corresponding return letter is read these values
are made available again Xmatch-variables. After the word is read, all values can be combined, depending
on the state, by µ . An equivalent and sometime beneficial interpretation is that a CVPA generates an
A -term which then is evaluated. However there are algebras which may lead to exponentially large terms,
like (N,+), so splitting the computation in term generation and evaluation is not feasible. Also note that
there are algebras which lead to output values which need exponentially many bits. The algebra (N,+×)
is an example for that. For details see [31].

Theorem 39 ([31]). Functions realized by CVPA over (Z,+) are in GapNC1.

Proof. step 1. We proceed as in the previous proofs by interpreting the well-matched input word
as a term over an algebra such that the evaluation yields the desired value but here it is desirable
to have the state information precomputed. Given a well-matched word w we can compute a word
r(w) ∈ (Σ∪{ε}×Q× (Γ∪{ε}))|w|+1 where r(w)(i) = (w(i),q,γ) means that that automaton is in state
q when w(1) . . .w(i−1) is already read. Also if w(i) ∈ Σret, then γ 6= ε is the symbol which can be seen
on the stack. For r(|w|+1) we set (ε,q,ε). Using Theorem 35, the word r(w) can be computed in NC1.

Let the algebra be

An = ((ZX)Z
X
,

},(⊗a,qa,b,qb,γ)a∈Σcall,b∈Σret,qa,qb∈Q,γ∈Γ,(†e,q)q∈Q,e∈Σint ,†ε),

where X is the set of registers of the automaton and Q the set of states. The domain can be understood
as a function which takes a valuation ZX and transforms is into another valuation. If we evaluate the
term which will correspond to a well-matched word, we get the transformation of the register values. So
we define } as α}β as the usual functional composition. The operation ⊗a,qa,b,qb,γ takes a valuation α

25

and then ⊗a,qa,b,qb,γα is defined as ρ(qa,a)}α}ρ1(qb,b,γ)+ρ2(qb,b,γ), where ρ(qa,a) : ZX → ZX

is the register transformation map we naturally can derive of ρ . For return letters we distinguish between
ρ1(qb,b,γ) and ρ2(qb,b,γ). An assignment of ρ(qb,b,γ,x) has the form v1x1 + . . .+ vmx′m + v1x1 + . . .+
vmx′m where variables xi correspond to values computed in the previous step and variables x′i correspond
to values which have been stored onto the stack in the matching position. Now ρ1(qb,b,γ) is the map
we get by omitting all variables x′i and ρ2(qb,b,γ) is the map we get by omitting all variables xi. Finally
†e,q = ρ(q,e) and †ε is the identity map.

From r(w) we can then build the term. Note that r(w) can also be considered a well-matched word.
Inductively if there is a well-matched factor r in r(w) with r = r1r2 such that r1 and r2 are also well-
matched then let T (r1) and T (r2) be the terms of t1 and t2. Now the term for r is T (r1)}T (r2). All
factors of length one which correspond to an internal letter e are assigned a term †e,q for q. If there
is a factor which corresponds to a word awb where w 6= ε is well-matched, then the term for awb is
⊗a,qa,b,qb,γT (w) for appropriate qa,qb,γ . A factor ab becomes ⊗a,qa,b,qb,γ†ε .

Now the term evaluation yields the mapping f the automaton implements. If we then insert the initial
valuation v0 and apply the final update function, we have computed the output value µ(f (v0)).

step 2. The algebra F (A) has the domains D= (ZX)Z
X

and

D̃⊆
(
(ZX)Z

X
)(ZX)Z

X

.

An element of D can be understood as an m-dimensional matrix of integers, where m = |X |. Hence the
other domain consists of matrix-manipulating functions. As it turns out, these functions can be captured
by functions of the form x 7→ AxB+C where A and B are matrices. So we choose c(D) = Zm,m and
c(D̃) = Zm,m×Zm,m×Zm,m. By checking all operations of F (A), we show that this is actually a coding.

• �c: Given d ∈ D and f ∈ D̃, then f �d = f (d). Now c(f) is a map x 7→ AxB+C and c(d) is a
matrix. So c(f)�c c(d) = c(f (d)) = Ac(d)B+C.

• ◦c: Given f ,g ∈ D̃, then f is of the form x 7→ A f xB f +C f and g is of the form x 7→ AgxBg +Cg.
Now c(f ◦g) = c(f)◦c c(g) is the map x 7→ A f (AgxBg+Cg)B f +C f = A f AgxBgB f +A fCgB f +C f ,
so c(f ◦g) = (A f Ag,BgB f ,A fCgB f +C f).

• }c: When coded, }c takes two matrices and multiplies them.

• ⊗c
a,qa,b,qb,γ

: This operation translates also into matrix multiplication. As by definition we have
that⊗a,qa,b,qb,γα translates to ρ(qa,a)}α}ρ1(qb,b,γ)+ρ2(qb,b,γ). So we define a matrix Mqa,a

from ρ(qa,a) and matrices M1
qb,b,γ and M2

qb,b,γ from ρ1(qb,b,γ) and ρ2(qb,b,γ). Now for d ∈ D
we have c(⊗a,qa,b,qb,γd) =⊗c

a,qa,b,qb,γ
c(d) = Mqa,ac(d)M1

qb,b,γ +M2
qb,b,γ .

• †e,q)
c
q∈Q,e∈Σint

: The coded version †e,q)
c
q∈Q,e∈Σint

is a matrix Me,q corresponding to ρ(q,e) and †c
ε is

the identity matrix.

• ←−} c: Given a function f ∈ D̃ and some d ∈ D, we have c(f←−}d) = c(f)←−} cc(d) where ←−} c is
again a multiplication: If c(f) is of the form x 7→ AxB +C then c(f)←−} cc(d) is of the form
x 7→ (AxB+C)c(D) = AxBc(D)+Cc(D). The operation −→} c is defined analogously.

• ⊗̃c
a,qa,b,qb,γ

: Given f ∈ D̃, we have c(⊗a,qa,b,qb,γ f) = ⊗c
a,qa,b,qb,γ

c(f). If c(f) is of the form
x 7→ AxB + C then ⊗c

a,qa,b,qb,γ
c(f) is of the form x 7→ Mqa,a(AxB + C)M1

qb,b,γ + M2
qb,b,γ =

Mqa,aAxBM1
qb,b,γ +Mqa,aCM1

qb,b,γ +M2
qb,b,γ .

step 3. All operations of the algebra c(F (A)) are based on matrix operations and the domains are
based on matrices of fixed dimensions. Because of that and since the matrices are of integer values, all
operations of c(F (A)) are in GapNC0

Z. This leads to the upper bound of GapNC1 for the problem in
question.

26

4.5 Definitions: Tree and clique width of graphs

The rest of the applications rely on width notions of graphs. In this subsection we present the basic graph
theoretic definitions and also the different width concepts.

A graph is a tuple (V,E) where V is a set of vertices (or nodes) and E ⊆
(V

2

)
is the set of edges. Here,(S

n

)
⊆ 2S denotes the set of all subsets of S of size n. A directed graph is a tuple (V,E) where E ⊂V ×V .

A path in a graph is a sequence of connected edges and a cycle is a non-trivial path starting and ending in
the same node. Directed acyclic graphs are abbreviated DAG. For basics in graph theory we refer e.g. to
[16].

The tree width [25] is a parameter which has been successfully utilized to bound complexity, where
Courcelle’s Theorem is a prime example [14].

Definition 40. Given a graph G = (V,E) then (T,τ) is a tree decomposition, where T = (V (T),E(T))
is a tree and τ : V (T)→ 2V is a map for which the following conditions hold:

• For each v ∈V there exists b ∈V (T) such that v ∈ τ(b).

• For each (u,v) ∈ E there exists b ∈V (T) such that {u,v} ⊆ t(b).

• If there is a path from r ∈ V (T) to s ∈ V (T) then for all nodes t ∈ V (T) on the path holds that
τ−1(r)∩ τ−1(s)⊆ τ−1(t)

The elements of V (T) are called bags. The size of the largest bag minus one is the width of the
decomposition width(T,τ). The minimal width of all decompositions of G is called the tree width of G
which we denote as width(G).

Besides tree decompositions we also consider a generalized notion of decomposition: NLC decom-
positions resp. clique decompositions [15, 48]. Both notions are closely related. A set of graphs has
bounded clique width iff it has bounded NLC-width [15]. We will be only interested in the case of
bounded width. Clique width has emerged as the more popular notion, so we speak mostly of clique
width, but when it comes to decompositions we stick to the NLC variant as this has been used in the work
our proofs are based on. For the rest we will only speak about clique width and decompositions even
though it technically is NLC.

Given a graph G = (V,E) and k ∈ N, we can assign a coloring l : V → [k]. A graph together with
coloration using k colors is called a k-colored graph: (V,E, l).

Definition 41 (Clique decomposition of width k). A clique decomposition of width k of a graph G is a
expression defined as follows:

• All k-colored graphs of the form ({v}, /0, l) have clique width k.

• Given a colored graph (V,E, l) of width k and a map l′ : [k]→ [k] then (V,E, l′ ◦ l) is also a
k-colored graph.

• Given k-colored disjoint graphs G1 = (V1,E1, l1) and G2 = (V2,E2, l2) of width k and S⊆ [k]× [k]
then G1×S G2 has also width k, where G1×S G2 is defined as (V1∪V2,E1∪E2∪E ′, l′) and E ′ =
{{v1,v2} | ∃(i, j) ∈ S ∈ [k] : v1 ∈ l−1

1 (i)∧ v2 ∈ l−1
2 (j)} and l′(v) = l1(v) if v ∈V1 and l′(v) = l2(v)

if v ∈V2.

If for a graph G a clique decomposition of width k exists, then G has clique width k.

If we want to compute our bounded width tree decompositions, we know from [18] that this is
possible in log-space. For clique width the complexity is poly-time [41].

27

4.6 Circuits of bounded tree width

We apply the term evaluation algorithm to a recent result concerning circuits of bounded tree width [29].
It states that Boolean circuit families of polynomial size and bounded tree width can be balanced to obtain
logarithmically deep circuit families. We show a short and generalized proof using term evaluation.

Whenever we speak of tree decompositions and tree width of a circuit we mean the corresponding
underlying DAG of the circuit. The graph of a circuit satisfies some desirable properties, e.g. it is a DAG
which has input and output gates. We want to decompose the graphs of circuits in a way to preserve these
properties which leads to the following lemma.

Lemma 42. For all w ∈ N there exists c ∈ N such that given a graph G of a circuit C and its mini-
mal decomposition (T,τ) of width w, there exists a decomposition (T ′,τ ′) of C with c ·width(T,τ) ≥
width(T ′,τ ′) which satisfies:

• The tree T ′ is binary.

• If u ∈V (G) is a parent of v then let p,q ∈V (T ′) be the bags closest to the root satisfying u ∈ t ′(p)
and v ∈ t ′(q). Then p is not closer to the root than q.

• For each input node v ∈V (G) there is a leaf l ∈V (T ′) such that v ∈ τ−1(l).

• The output node of the circuit can be found in τ−1(r), where r is the root of the tree.

Proof. We can assume the tree T ′ to be binary without increasing the width, because for minimal
decompositions the maximal rank of nodes is dependent on the width, hence bounded. Nodes with a rank
greater than 2 can be resolved by a constant size construction.

The second requirement can be achieved by labeling those nodes by u which are labeled v and are
closer to the root than all nodes labeled u. Since there is some v ∈V ′ such that u,v ∈ l−1(v), the result is
again a valid tree decomposition.

The third requirement can be met by picking a node u labeled v and label the shortest path from u to
some leaf with v. The last requirement can be implemented by labeling a path from a node labeled r to
the root.

All operations at most need a constant factor in the width.

By the lemma we get that assuming the stated properties preserves boundedness of tree width.
The proof idea for the following theorem is to interpret the tree decomposition as a term and evaluate

it.
Consider a circuit Cn over an algebra A = (D,~1, . . . ,~k) and let G = (V,E) be the graph of Cn. Let

the smallest tree decomposition following the previous lemma have width w−1. We define the algebra

A (Cn,w) =
(
D′,(~A,B,C)A,B,C∈

(V
w

),(†s)s∈S2w

)
where D′ = (D∪{⊥})2w and ~A,B,C is an operation D′×D′→ D′ and S consists of all 0-ary operation
values of A and ⊥.. To define the operations assume V to be of the form {1,2, . . .m}. Then A,B and C
are sets of numbers. Also let A = {ag1 , . . . ,ag|A|}, B = {bh1 , . . . ,bh|A|} and C = {ci1 , . . . ,ci|C|}. Consider
α~A,B,C β where α,β ∈ (D∪{⊥})2w. For a node ag j ∈ A the elements α j and αw+ j correspond to the
left and right parent of ag j . The situation for B and β resp. C and γ is similar. The following rules define
the operation:

• If ag j = cil then α j = γl .

• If bh j = cil then β j = γl .

28

• If cil has parents which appear in α or β with values v1 6=⊥ and v2 6=⊥ and ~ is the operation of
the gate cil , then γl = v1~ v2.

• In all other cases the result is ⊥.

As the sets A,B and C are finite and there are only finitely many possibilities of ways how the gates can be
wired we get that there is only a finite number of operations - independently of the actual circuit. Hence
we write A (w) while dropping the circuit in the notation.

Theorem 43. Given a family of circuits C of bounded tree width and polynomial size over an algebra A ,
we can find an equivalent F (A (w))-NC1 circuit family in the sense that inputs and outputs are constant
vectors which contain the input or output values respectively in some position, where w−1 is the width
of the decomposition satisfying the conditions of Lemma 42.

Proof. We take the decomposition of width w−1 satisfying the conditions of Lemma 42. We interpret
it as a term over the algebra A (w) where each node v is assigned the operation ~A,B,C where C = τ(v)
and B and C are the bags of the parents of v. To the left and right of the leafs must be constants. Such a
constant s is a vector which is ⊥ in all positions but those corresponding to an input gate; here the right
input value is present. This then ends up being the operation †s.

This term can be evaluated by a F (A (w))-NC1 circuit. The output will be a vector which has
positions p and w+ p which corresponds to the inputs of the output gate. Applying the function of the
output gate to those two values yields the overall output.

In summary, in the previous proof the word problem is solved in F (A (w))-NC1 by constructing a
term and then evaluating it. For each circuit of the family we get one fixed term; only the constants are
input-dependent. That means that actually we could fall back to a static version of our algorithm. In the
algorithm in every step decisions have to be made which determine how to split subterms. Now since the
structure of the term is fixed we could also fix those decisions (recall the circuits computing the cases)
and end up directly with a logarithmic depth circuit without multiplexing.

Theorem 44 ([29]). Languages accepted by families of Boolean circuits of polynomial size and bounded
tree width are in NC1.

Proof. Since F (A (w)) is finite, F (A (w))-NC1 ⊆ NC1 follows from Theorem 25 and 43.

4.7 Courcelle’s Theorem

Courcelle’s Theorem [14] is a famous example of a meta theorem. It makes a claim concerning the
complexity of the word problem if a restriction in the input set is imposed. In particular, given an MSO
formula over graphs then Courcelle’s Theorem states that it is decidable in linear time whether a graph is
a model for the formula if we only consider graphs of some bounded tree width. The generality of the
theorem stems from the fact that many relevant problems are expressible in MSO.

The algorithm has two steps. First a tree decomposition has to be computed and secondly the formula
has to be fitted to tree decompositions. Checking a MSO formula on trees is then NC1. Elberfeld et al.
[18] improved the overall complexity to log-space. In a follow-up paper they looked at the second step
more closely and analyzed the complexity under the assumption that the tree decomposition is already
given [19]. Besides confirming the NC1 bound in the Boolean case they considered an arithmetic version:
Given an MSO formula and a free second-order variable X , how many valuations are there for X which
satisfy the formula. The upper bound they achieved is #NC1. We will re-prove this, however note that
[19] has a bit more general setting of finite model theory. For simplicity of presentation we restrict
ourselves to ordinary graphs and trees.

29

Here we consider finite graphs (V,E) with a labeling V → Σ. A MSO formula is made of Boolean
combinations, first and second order vertex quantification and predicates which are Qa(x), where a ∈ Σ

and x is a first order variable and tells whether position x is labeled a. Also X(x) and X ⊆Y are predicates,
where x is a first order variable and X and Y are second order variables. Lastly there is a predicate E(x,y)
for two first order variables which codes the edge relation E of the input graph.

Our proof of the theorem requires some preliminaries on forest algebras. Regular tree languages
are accepted by finite forest algebras [7]. A forest algebra (H,V) consists of two (finite) monoids, the
horizontal and the vertical monoid. The setting is very similar to the word case. There is also the concept
of a syntactic forest algebra and recognition. Each tree corresponds to an element of H and depending
whether this element is in the accepting set or not, the tree is accepted or rejected. We can turn the input
tree into a term. If there is a node v labeled with a1 ∈ Σ and children v1 and v2 labeled with a2 and a3
and f1 and f2 are terms for v1 and v2 which are inductively given then the formula for v is �V

a (f1�H f2).
The algebra then is (H,�H ,(�V

a)a∈Σ), where �H is the monoid operation of H and �V
a : H → H is a

unary operation which maps t 7→ c(a)�V t where �V is the monoid operation of V and c(a) is the context
consisting of an node labeled a and one child which is a hole. Note that this is isomorphic to the algebra
we used to show that visibly pushdown languages are in NC1.

Now we consider a counting problem. If we are given a formula with a free second-order variable,
how many valuations for this variable exist satisfying the formula. This can be used to formulate counting
versions of MSO-expressible problems.

Theorem 45 ([19]). Given w ∈ N, a graph G of tree width w, and its tree decomposition T as well as
a MSO formula φ(X) with one free second-order variable X then the problem of counting how many
valuations for X there are such that G satisfies φ(X) is in #NC1.

Proof. step 1.
Consider the proof for Courcelle’s Theorem. Proving it takes the following steps:

• Compute the tree decomposition of the input graph.

• Compile the MSO formula into a new one which fits to tree decomposition.

• Check if the tree decomposition is a model for the new MSO formula.

The first one we do not care about since in our case the input already is a decomposition. So at this
point we are interested in the second step. The standard construction [14] gives us the following: if
ψ(X) is an MSO formula over G with free second order variable X then the corresponding new formula
ψ ′(X1, . . . ,Xw+1) over the tree decomposition T has w+1 free second order variables. For each S⊆V (G)
there exists exactly one corresponding S′ ⊆V (T)w+1, i.e. G |= ψ(S) iff T |= ψ ′(S′). Note that subsets of
V (T)w+1 must have a certain form which is imposed by the construction of ψ ′. Valuations that are not
well-formed are dismissed. By the reasoning above it follows that the number of valuations for X which
satisfy G |= ψ(X) is equal to the number of valuations for X1, . . . ,Xw+1 which satisfy T |= ψ ′(X). Hence
we only have to show that we can count the number of fulfilling valuations in the formula over the tree
decomposition.

In the following we assign formulas with free variables the semantics of accepting V -structures [45].
In this case a V -structure is a tree which is not only labeled with Σ but also with a bit which tells whether
a position is in X or not; hence the alphabet then is Σ×{0,1} (or Σ×{0,1}w+1 if we have several free
variables, respectively).

The idea then is that a formula with a free variable models a set of V -structures. And each V -structure
belongs to a tree which we get by stripping it of the variable information. In the following we consider
the language of V -structures. Given a formula with a free variable and an input tree, we count how many
V -structures based on this tree fulfill the formula. This we will do using forest algebras to build an
algebra.

30

Let φ ′(X1, . . . ,Xw+1) be the MSO formula we get from φ(X) by the standard construction of [14].
Let (H,V) be the syntactic forest algebra of the tree language defined by φ ′(X1, . . . ,Xw+1) interpreted
over V -structures and consider the algebra

A = (NH ,⊕H ,(⊕V
a)a∈Σ).

The idea is that an element f : H→ N of this algebra keeps track of how many possibilities there are to
end up with some element of H. The different possibilities are generated by the ways we can choose
X1, . . . ,Xw+1. So A can be used to count the number of assignments for X1, . . . ,Xw+1. The operation
⊕H is defined as f1⊕H f2 = f where f (h) = ∑h1�H h2=h f1(h1) f1(h2). The operation ⊕V

a is defined as
⊕V

a (f)(h) = ∑�V
a (h′)=h f (h′). From T we can construct a term inductively ψ over the algebra A . For a

node t labeled a and its descendants t1, . . . , td the formula is ⊕V
a (f1⊕H . . .⊕H fd), where fi is the formula

for ti.
If we evaluate ψ we get a map which tells us for each element of H how many ways there are to

obtain it. If we sum all values which correspond to elements of the accepting subset of H we have the
final output.
step 2. The algebra F (A) has the domains NH and D̃⊆ (NH)N

H
. We code c(NH) = Nn where n = |H|

which is straight forward. As we only use addition and multiplication the result is that we can represent
the elements of D̃ as functions of the form x 7→ xA+ b where A is a matrix and b is a vector. Hence
c(D̃) = Nn,n×Nn. This conforms with the operations of the algebra:

• ⊕H,c and ⊕V,c
a : Those two operations stay basically the same as ⊕H and ⊕V

a .

• ◦c: Given f ,g∈ D̃ with c(f) : x 7→ xA1+b1 and c(g) : x 7→ xA2+b2 we have that c(f ◦g) = c(f)◦c

c(g) is a map x 7→ (xA2 +b2)A1 +b1 = xA2A1 +b2A1 +b1, so c(f)◦c c(g) = (A2A1,b2A1 +b1).

• �c: Given a function f ∈ D̃ with c(f) : xA+b and a vector c(d)∈Nn we have c(f �d)= c(f (d))=
c(f)�c c(d) = x 7→ dA+b.

• ←−⊕H,c: Given a function f ∈ D̃ with c(f) : xA+b and a vector d ∈ Nn we have that c(f←−⊕Hd) =
c(f)←−⊕H,cc(d) is of the form x 7→ xAMd +bMd where Md is a matrix where position (i, j) has value
∑hi=h jh dh where hi,h j ∈ H are the elements corresponding to vector positions i and j and dh is the
value of d representing h. The operation −→⊕H,c is done by a similar construction.

• ⊕̃V,c
a : Given a function f ∈ D̃ with c(f) : xA+ b we have that c(⊕V

a f) = ⊕V,c
a c(f) is the map

x 7→ xAMa +bMa where Ma is a matrix where position (i, j) is 1 iff �V
a (hi) = h j hi,h j ∈ H are the

elements corresponding to vector positions i and j. In all other positions Ma is 0.

step 3. All operations operate on matrices and vectors of a fixed size with natural values. Hence we can
implement them in #NC0

N which yields the overall complexity of #NC1.

Since #NC1 is a subset of log-space, we get that counting MSO problems on bounded tree-width
graphs are also log-space.

4.8 Maximal cuts in graphs of bounded clique width

We consider the problems of finding maximal cuts in graphs. This is one of the most well-studied
problems in theoretical computer science since its introduction in Karp’s classical 21 NP-complete
problems [30]. In [48] it was shown that it becomes tractable if we impose a restriction on the input
graph. This restriction is that the clique-width is bounded. This notion is related to NLC-width [48]: A
graph has bounded clique width if and only if it has bounded NLC-width. We show an improvement of
the upper bound from P to parallel complexity.

31

The maximum cut problem for width k is the following problem: Given a clique decomposition of an
undirected graph G = (V,E) of clique width k. Now let V1∪V2 be a partition of V such that the cardinality
of the set {{e1,e2} ∈ E | e1 ∈V1∧ e2 ∈V2} is maximal. The output is the value of the maximal partition.
A partition is also called a cut.

In the following we revisit the proof form [48] and show an upper bound of SAC1.

Theorem 46. The maximum cut problem for width k is in SAC1.

Proof. step 1. We are given a clique decomposition. This is a tree and this tree we can interpret as a term
over some algebra that, if evaluated, results in the actual graph. We now assign a new family of algebras
(An)n∈N to that term. If evaluated we get the desired value. So let

An =
(
P
(
[n]2k+1

)
,(⊗l)l : [k]→[k],(~S)S⊆[k]×[k],(†i)i∈[k]

)
.

We choose n to be |V |. This is formally not a family of algebras but it can be made into one. The way as
it is, is however easier to understand.

So each element is a set of vectors of the form (a1, . . . ,ak,b1, . . . ,bk,c). The intuition behind this is
that each ai counts how many elements of V1 are labeled i and each bi counts how many elements of V2
are labeled i. The number c then stores the value of the corresponding cut [48].

The operations are defined as follows.

• There are 0-ary operations †i for i ∈ [k] is a set containing one tuple corresponding to the graph of
one vertex colored i.

• For each total map l : [k] → [k] there is a unary operations ⊗′l : N2k+1 → N2k+1 with
(a1, . . . ,ak,b1, . . . ,bk,c) 7→ (a′1, . . . ,a

′
k,b
′
1, . . . ,b

′
k,c) where a′i = ∑ j∈l−1(i) a j and b′i = ∑ j∈l−1(i) b j.

Then for D being the domain,⊗l : D→D is derived from⊗′ by the following map: {x1, . . . ,xm} 7→
{⊗′l(x1), . . . ,⊗′l(xm)}. These unary operations directly correspond to the unary relabeling opera-
tions from the clique width definition.

• For each S ⊆ [k]× [k] there is an operation of the form ~S : D×D→ D. It maps X ~S Y 7→⋃
x∈X ,y∈Y{~′S(x,y)}. Let x = (a′1, . . .a

′
k,b
′
1, . . .b

′
k,c), y = (a′′1, . . .a

′′
k ,b
′′
1, . . .b

′′
k ,c) and ~′S(x,y) =

(a1, . . .ak,b1, . . .bk,c). Then ai = a′i + a′′i and bi = b′i + b′′i . Further c = c′+ c′′+∑(i, j∈S) a′i · b′′j +
b′i ·a′′j .

The evaluation of this term yields the desired value [48].
step 2. We first give a coding for An and then extend it to F (An). Consider the domain of An which is
P
(
[n]2k+1

)
. The set [n]2k+1 has polynomial size. Hence we can represent each element of the domain by

a word of {0,1}n2k+1
, where each position holds the information whether the corresponding tuple is part

of the set. Let φ : [n]2k+1→ [n2k+1] be a bijection and let

c : P
(
[n]2k+1

)
→{0,1}n2k+1

be a code with c(X) being a string of length n2k+1 which is 1 in position i if and only if there is an x ∈ X
such that φ(x) = i and 0 otherwise.

Now, in F (An) we also have the subdomain D̃ which contains functions of the form
f : P

(
[n]2k+1

)
→P

(
[n]2k+1

)
. We will use the property f (X) =

⋃
x∈X f ({x}) of these functions which

we call singleton property. We will now observe that the functions indeed have the singleton property.
First, the identity function clearly has it. Further if we are given two functions f ,g which have the
singleton property, then f ◦g has also does: (f ◦g)(X) = f (g(X)) = f (

⋃
x∈X g({x})) =

⋃
x∈X f (g({x})).

For ⊗̃l f we get ⊗̃l f (X) = ⊗̃l
⋃

x∈X f ({x}) =
⋃

x∈X ⊗̃l f ({x}) since ⊗̃l f (X)⊆ ⊗̃l f (Y) iff X ⊆ Y . Lastly

32

for ←−~ S and −→~ S we see that the singleton property holds since ~S is already defined as a union over
singletons.

The consequence of the singleton property is that each map can be represented by only considering
the image of singleton inputs. So a coding of f becomes a table:

c :
(

P
(
[n]2k+1

)P([n]2k+1)
)
→
(
{0,1}n2k+1

)n2k+1

.

An element is a table, wherein the i’th line holds c(f (φ−1(i))), hence c(f) =
c(f (φ−1(1))) . . .c(f (φ−1(n2k+1))). The definition of the coded functions of F (A) follow im-
mediately.
step 3. We now are interested in the complexity of the operations of

c(F (An)) = ({c(D),c(D̃)},(⊗c
l)l : [k]→[k],(~

c
S)S⊆[k]×[k],◦c,�c,

(⊗̃c
l)l : [k]→[k],(

←−
~ c

S)S⊆[k]×[k],(
−→
~ c

S)S⊆[k]×[k]),

as well as the complexity of the multiplexer operations for the two subdomains. The multiplexer operations
can be implemented by constant size Boolean circuits with regard to one output bit.

• ⊗c
l : Consider a string c(d) ∈ c(D) and the result ⊗c

l c(d). For each x ∈ c−1(⊗c
l c(d)) there exists

a set Y containing all y such that x ∈ ⊗l({y}). Now to compute ⊗c
l c(d), if a bit corresponds to x

then it is the result of a disjunction of all positions in c(d) that correspond to an element of Y . This
is a SAC0-construction.

• ~c
S: Consider X ~S Y 7→

⋃
x∈X ,y∈Y{~′S(x,y)}. So for each element in z ∈ (X ~S Y) there exists a

number of pairs xi,yi such that {xi}~S {yi}= {z}. Now in the coded version where we have strings
instead of sets, each position in the output string becomes a disjunction over all these pairs and
each pair is a conjunction of two. Hence this operation can also be implemented in SAC0.

• ◦c: To compute c(f)◦c c(g) we have to build a table which represents the function. To that end,
define a table t(di), where di is the i’th row of c(g). Then the j’th row of t(di) is the j′th row
of the pointwise conjunction of c(f) with d j(i). Now k’th letter of the i’th row of c(f)◦c c(g) is
the disjunction of the k’th column of t(d j). This construction needs fan-in two conjunctions and
unbounded fan-in disjunctions, hence it it SAC0.

• �c: The computation of c(f)�c c(d) can be reduced to c(f)◦c c(d′) where d′ is a constant function
with d′(x) = d. The table c(d′) we get by filling all rows with c(d). Then in c(f)◦c c(d′) also each
row is identical since it codes a constant function. Take one of the rows as output for c(f)�c c(d).

• ⊗̃c
l : This case is similar to ⊗c

l with the difference that the input is a coded function, hence a table.
We apply ⊗c

l to all rows of the table.

• ←−~ c
S: To compute the table c(f)←−~ c

Sc(d), we can use ~c. Let ri be the i’th row of c(f). Then the
i’th row of c(f)←−~ c

Sc(d) is ri~c c(d).

• −→~ c
S: This case is similar to←−~ c

S.

Since all operations are in SAC0, the whole problem is in SAC1.

33

4.9 Counting Hamiltonian paths and Euler tours in graphs of bounded clique width

Besides computing maximal cuts, the problem of computing the Hamiltonian circuits in graphs was also
considered in [48]. They showed a poly-time upper-bound for this problem for bounded tree width graphs.
It is also possible to count the number of Hamiltonian circuits. In [5] a #SAC1 upper bound has been
shown for the case of bounded tree width. Here we will prove the same #SAC1 upper bound in the cae of
bounded clique width graphs.

A path is a sequence of vertices p = p1 . . . pm such that no vertex appears more than once and
{pi, pi+1} ∈ E for 1 ≤ i < m. A Hamiltonian circuit is a union of the following two things: a path of
length |V | and an edge between the last vertex in the path and the first vertex. The Hamiltonian circuit
problem for width k is the following: Given a clique decomposition of an undirected graph G = (V,E) of
width k check whether there exists a Hamiltonian circuit in G.

Theorem 47. Given a natural number k, computing the number of Hamiltonian circuits in clique width k
graphs where the clique decomposition is given in the input is in #SAC1.

Proof. step 1. As in the case of the maximum cut problem, we are given a tree decomposition as a term
and we assign an algebra to it such that the evaluation yields the desired result. Actually we assign a
family of algebras (An)n∈N:

An =
(
N([n]

k(k+1)/2),(⊗l)l : [k]→[k],(~S)S⊆[k]×[k],(†i)i∈[k]

)
The variable n can be chosen as |V |, as in the case of the maximum cut problem. This algebra is rooted
in the construction for the Boolean version in [48] where they used P([n]k(k+1)/2) as domain. Instead
of holding the information whether a tuple is in a set, we count how often is has been occurring. Now
an element of [n]k(k+1)/2 corresponds to a subset of the edges covering the vertices. We can understand
this as a path coverage of V . We have many paths and each vertex is present in exactly one. Now the
information the tuple actually holds is how many such paths go between two colors. See [48] for further
details. The domain we chose now counts how many such path coverings result in a certain tuple.

The operations of the algebra are defined as follows.

• The 0-ary operation †i is the characteristic function of the set containing the single tuple corre-
sponding to a graph with a single node colored i.

• For each total map l : [k]→ [k] there is a unary operation

⊗l : N([n]
k(k+1)/2)→ N([n]

k(k+1)/2)

which is defined using a unary operation ⊗′ : [n]k(k+1)/2→ [n]k(k+1)/2 with

⊗′l(v)i, j = ∑
i′∈l−1(i), j′∈l−1(j)

vi′, j′

as defined in [48]. Now
⊗l(f)(v) = ∑

v′∈⊗′−1
l (v)

f (v′).

• For each S⊆ [k]→ [k] there is an operation

~S : N([n]
k(k+1)/2)×N([n]

k(k+1)/2)→ N([n]
k(k+1)/2).

This operation is a counting version of the corresponding operation described in [48]. There it
is defined by a procedure which generates new elements based on present elements. In our case

34

we also have to keep track of the count of paths generating a certain element. Given two vectors
v1,v2 ∈ [n]k(k+1)/2 a new set of vectors is generated. This is done by defining tuples (A,B,C) the
initial tuple being (v1,0,v2).

We want to define (f ~S g)(v) for all v ∈ [n]k(k+1)/2 and define a procedure which yields the value.
First assume the values (f ~S g)(v) to be 0 for all v. Then for all v1,v2 ∈ [n]k(k+1)/2 do the steps
of [48] for generating a new set of tuples. In each step one new edge is drawn. That way we get
a DAG which originates in (v1,0,v2). Actually we are only interested in a spanning tree which
we get by imposing an order of the elements of S we process. We assign each triple (A,B,C) a
number #(A,B,C). The initial triple (v1,0,v2) is assigned f (v1)g(v2). Now assume we get from
triple (A,B,C) to (A′,B′,C′) in one step. Then #(A′,B′,C′) = p ·#(A,B,C) where p is the number
of possibilities to draw an edge; p is fixed by (A,B,C). Each triple can be made into an element
v ∈ [n]k(k+1)/2 as seen in [48]. Let #(v,v1,v2) = #(A,B,C) where v1 and v2 are the origins of
(A,B,C) and v is the vector we get from (A,B,C). Now

(f ~S g)(v) = ∑
v1,v2∈[n]k(k+1)/2

#(v,v1,v2).

In this sum, every summand has the factor f (v1)g(v2) as we can combine every path covering in f
which leads to the tuple v1 with everyone of g which leads to v2. Then this is multiplied with the
number of ways we can draw edges between the two graphs.

For obtaining the Hamilton paths we have to treat the last ~S operation (the root of the term tree)
differently. We generate the triples and then, as described in [48], if the situation occurs that a triple
(A,B,C) has A and B to only consist of 0 and B has exactly one value which is non-zero then, if S indicates
that we can close the loop, we have found a path. That means this would then result in a triple all zero.
Now in our counting setting we sum over all those zero-triples generated in that way and hence we get
the final resultant term over the algebra whose evaluation is the desired value.
step 2. We proceed as in the case of maximal cuts. We want to code F (An). The algebra An has the
domain N([n]

k(k+1)/2). We show how to code it and extend the code to F (An). So let φ : [n]k(k+1)/2→
[nk(k+1)/2] be a bijection and set c(N([n]

k(k+1)/2)) = Nnk(k+1)/2
where c(f) is a sequence of natural numbers

where c(f)i = f (φ−1(i)).
For F (An) we have to consider the second subdomain which consists of operations F of the form

F : N([n]
k(k+1)/2)→ N([n]

k(k+1)/2). In the case of maximal cuts we mentioned the singleton property these
functions possess. A similar singleton property we can find for the present case: The union becomes a
sum. So we observe that

F(f) = ∑
v∈[n]k(k+1)/2

F(f (v)χ{v}) = ∑
v∈[n]k(k+1)/2

f (v)F(χ{v})

where the sum is a sum over functions and χ{v} is the characteristic function of {v}
To verify the presence of the singleton property we begin with the identity function which has it.

Further we have to consider the operations of F (An). For The functional composition we get

(F ◦G)(f) = F(G(f)) =F(∑
v∈[n]k(k+1)/2

G(f (v)χ{v}))

= ∑
v∈[n]k(k+1)/2

F(G(f (v)χ{v}))

= ∑
v∈[n]k(k+1)/2

f (v)F(G(χ{v})).

35

For ⊗̃lF we get

⊗̃lF(f) =⊗̃l ∑
v∈[n]k(k+1)/2

F(f (v)χ{v})

= ∑
v∈[n]k(k+1)/2

⊗̃lF(f (v)χ{v})

= ∑
v∈[n]k(k+1)/2

f (v)⊗̃lF(χ{v})

by a similar argument as in the corresponding case for the maximal cuts result. Also similarly ~S is
already defined in a way which is a sum in the desired form.

Now by using this property when coding an operation F , we only need to store all maps of the form
χ{v}. Hence:

c :

(
N([n]

k(k+1)/2)N
([n]k(k+1)/2)

)
→
(
Nnk(k+1)/2

)nk(k+1)/2

.

The elements of this can be understood as a table where the i’th line is c(F(χ{φ−1(i)})). The definition
of the operations of F (An) follows.

step 3. We analyze the complexity of the operations of

c(F (An)) = ({c(D),c(D̃)},(⊗c
l)l : [k]→[k],(~

c
S)S⊆[k]×[k],◦c,�c,

(⊗̃c
l)l : [k]→[k],(

←−
~ c

S)S⊆[k]×[k],(
−→
~ c

S)S⊆[k]×[k]),

and the complexity of multiplexers as well. Multiplexing elements of c(D), resp. c(D̃) which are just
sequences of naturals can be done in #NC0. For the rest many ideas are very similar to the proof for
maximal cuts, so we keep similar constructions short.

• ⊗c
l : We want to compute ⊗c

l c(F) which is a table. For convenience assume a continuation of l
to l : [n]k(k+1)/2→ [n]k(k+1)/2 defined as l(vi, j) = ∑i′∈l−1(i), j′∈l−1(j) vi′, j′ . The i’th row of the table
consists of ⊗c

l c(F(χ{φ−1(i)})) which we can compute from the c(F(χ{φ−1(i)})) which again is a
row of a table for c(F). Now we get the row as ⊗c

l c(F(χ{φ−1(i)})) = c(F(χl−1({φ−1(i)}))). In terms
of complexity this translates into the need for unbounded fan-in summation gates and yields a
#SAC0-bound for ⊗c

l .

• ~c
S: We want to compute c(f)~c

S c(f) = c(f ~S g) for f ,g : [nk(k+1)/2]→ N. This is a sequence of
naturals and the i’th position is (f ~S g)(φ−1(i)) = ∑v1,v2∈[n]k(k+1)/2 #(v,v1,v2) where v = φ−1(i). So
given v,v1,v2 we basically have to compute #(v,v1,v2). Keep in mind how we defined #(v,v1,v2)
by constructing a tree of triples (A,B,C). This tree has at most depth nk2. By adjusting the
construction we can get a tree of depth k2 by choosing the number edges for a certain pair of S in
parallel. Instead of investing one step in depth for every singe edge. All edges which correspond to
one pair of S are inserted at once. The corresponding number #(A,B,C) consists of factors f (v1),
g(v2) and factors we get for each edge in the tree. These factors can be hard-coded. By then picking
the right number we obtain #(v,v1,v2) and can do the summation ∑v1,v2∈[n]k(k+1)/2 #(v,v1,v2). As the
depth of the trees we construct is constant in n we need only bounded fan-in multiplication gates.
Further we need an unbounded addition gate. This gives us a #SAC0 bound for ~c

S.

• ◦c: We want to compute c(F ◦G) which is a table and c((F ◦G)(χφ 1(i))) is the i’th row of the table.
We are given the tables for c(F) and c(G). To compute the i’th row of c(F ◦G) = c(F)◦c c(G),
take the i’th row of c(G); let ri denote this row. Now multiply the j’th row of c(F) by the j’th

36

element in ri, that is ri, j; let the resulting row be r′i, j. Now the i’th row of c(F) ◦c c(G) is the
point-wise sum of r′i, j for all j. In the construction we had to multiply pairs of numbers. Further,
addition gates with fan-in of at most nk(k+1)/2 were needed which gives us an #SAC0 bound for
computing the composition.

• �c: Computing c(F)�c c(d) can be reduced by using ◦c: c(F)�c c(d) = c(F)◦c c(d′) where d′ is
a constant function of value d.

• ⊗̃c
l : By invoking ⊗c

l and applying it on all rows of the argument we get the result.

• ←−~ c
S: If we want to compute c(F)

←−
~ c

Sc(d) we apply c(d) on each row by←−~ c
S and by that have a

reduction.

• −→~ c
S: This case is similar to←−~ c

S.

All operations are in the bounds of #SAC0
N, so the original problem is in #SAC1.

�

If we are only interested in whether a Hamiltonian circuit exists then we see that the previous
construction can be easily made Boolean to yield the following result:

Theorem 48. The Hamiltonian circuit problem for width k is in SAC1.

5 Discussion

We have seen that many problems that have a tree-like structure can be solved in parallel using our term
evaluation algorithm. The list of problem we covered here should indicate the potential of the framework.
We expect that there will be many more applications, which can be derived using the unifying framework
presented here.

References

[1] Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially bounded perfect
matching problem is in ncˆ 2. In STACS, volume 4393, pages 489–499, 2007.

[2] Eric Allender and Ian Mertz. Complexity of regular functions. In Adrian Horia Dediu, Enrico
Formenti, Carlos Martı́n-Vide, and Bianca Truthe, editors, Language and Automata Theory and Ap-
plications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings,
volume 8977 of Lecture Notes in Computer Science, pages 449–460. Springer, 2015. URL: http://
dx.doi.org/10.1007/978-3-319-15579-1_35, doi:10.1007/978-3-319-15579-1_35.

[3] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei Yuan.
Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 13–22. IEEE
Computer Society, 2013. URL: http://dx.doi.org/10.1109/LICS.2013.65, doi:10.1109/
LICS.2013.65.

[4] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor, Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 202–211. ACM, 2004. URL: http://doi.acm.org/10.1145/1007352.1007390,
doi:10.1145/1007352.1007390.

37

http://dx.doi.org/10.1007/978-3-319-15579-1_35
http://dx.doi.org/10.1007/978-3-319-15579-1_35
http://dx.doi.org/10.1007/978-3-319-15579-1_35
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1109/LICS.2013.65
http://doi.acm.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390

[5] Nikhil Balaji, Samir Datta, and Venkatesh Ganesan. Counting euler tours in undirected bounded
treewidth graphs. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015, December
16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 246–260. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.
246, doi:10.4230/LIPIcs.FSTTCS.2015.246.

[6] Christoph Behle and Klaus-Jörn Lange. Fo[<]-uniformity. In 21st Annual IEEE Conference
on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
183–189. IEEE Computer Society, 2006. URL: http://dx.doi.org/10.1109/CCC.2006.20,
doi:10.1109/CCC.2006.20.

[7] Mikołaj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas].,
volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press, 2008.

[8] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–
206, 1974. URL: http://doi.acm.org/10.1145/321812.321815, doi:10.1145/321812.
321815.

[9] Samuel R. Buss. The boolean formula value problem is in ALOGTIME. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA, pages 123–131. ACM, 1987. URL: http://doi.acm.org/10.1145/28395.28409,
doi:10.1145/28395.28409.

[10] Samuel R. Buss. Algorithms for boolean formula evaluation and for tree contraction. In Arithmetic,
Proof Theory and Computational Complexity, pages 96–115. Oxford University Press, 1993.

[11] Samuel R. Buss, Stephen A. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm
for formula evaluation. SIAM J. Comput., 21(4):755–780, 1992. URL: http://dx.doi.org/10.
1137/0221046, doi:10.1137/0221046.

[12] Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot. Visibly pushdown automata with
multiplicities: Finiteness and k-boundedness. In Hsu-Chun Yen and Oscar H. Ibarra, editors,
Developments in Language Theory - 16th International Conference, DLT 2012, Taipei, Taiwan,
August 14-17, 2012. Proceedings, volume 7410 of Lecture Notes in Computer Science, pages
226–238. Springer, 2012. URL: http://dx.doi.org/10.1007/978-3-642-31653-1_21, doi:
10.1007/978-3-642-31653-1_21.

[13] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64(1-3):2–21, 1985. URL: http://dx.doi.org/10.1016/S0019-9958(85)80041-3,
doi:10.1016/S0019-9958(85)80041-3.

[14] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf.
Comput., 85(1):12–75, 1990. URL: http://dx.doi.org/10.1016/0890-5401(90)90043-H,
doi:10.1016/0890-5401(90)90043-H.

[15] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101(1-3):77–114, 2000. URL: http://dx.doi.org/10.1016/S0166-218X(99)
00184-5, doi:10.1016/S0166-218X(99)00184-5.

[16] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

38

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.246
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.246
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.246
http://dx.doi.org/10.1109/CCC.2006.20
http://dx.doi.org/10.1109/CCC.2006.20
http://doi.acm.org/10.1145/321812.321815
http://dx.doi.org/10.1145/321812.321815
http://dx.doi.org/10.1145/321812.321815
http://doi.acm.org/10.1145/28395.28409
http://dx.doi.org/10.1145/28395.28409
http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1007/978-3-642-31653-1_21
http://dx.doi.org/10.1007/978-3-642-31653-1_21
http://dx.doi.org/10.1007/978-3-642-31653-1_21
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://dx.doi.org/10.1016/S0166-218X(99)00184-5

[17] Patrick W. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett., 26(5):247–
250, 1988. URL: http://dx.doi.org/10.1016/0020-0190(88)90148-2, doi:10.1016/
0020-0190(88)90148-2.

[18] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of bodlaen-
der and courcelle. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 143–152. IEEE Computer Society,
2010. URL: http://dx.doi.org/10.1109/FOCS.2010.21, doi:10.1109/FOCS.2010.21.

[19] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic meta theorems for circuit
classes of constant and logarithmic depth. In Christoph Dürr and Thomas Wilke, editors, 29th
International Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th
- March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 66–77. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66,
doi:10.4230/LIPIcs.STACS.2012.66.

[20] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Guest column: Parallel algorithms for
perfect matching. SIGACT News, 48(1):102–109, 2017. URL: http://doi.acm.org/10.1145/
3061640.3061655, doi:10.1145/3061640.3061655.

[21] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Theory of Computing Systems, 17(1):13–27, 1984.

[22] Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. CoRR, abs/1704.08705,
2017. URL: http://arxiv.org/abs/1704.08705.

[23] A. Gupta. A fast parallel algorithm for recognition of parenthesis languages. Master’s thesis, 1985.

[24] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A
chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. URL: https://doi.org/10.1137/
140957123, doi:10.1137/140957123.

[25] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186, 1976. URL: http:
//dx.doi.org/10.1007/BF01917434, doi:10.1007/BF01917434.

[26] Johan Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 6–20. ACM, 1986.

[27] Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput., 43(5):1699–
1708, 2014. URL: https://doi.org/10.1137/120897432, doi:10.1137/120897432.

[28] Joseph JáJá. An introduction to parallel algorithms, volume 17. Addison-Wesley Reading, 1992.

[29] Maurice J. Jansen and Jayalal Sarma. Balancing bounded treewidth circuits. Theory Comput.
Syst., 54(2):318–336, 2014. URL: http://dx.doi.org/10.1007/s00224-013-9519-3, doi:
10.1007/s00224-013-9519-3.

[30] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York., The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972. URL:
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

39

http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://doi.acm.org/10.1145/3061640.3061655
http://doi.acm.org/10.1145/3061640.3061655
http://dx.doi.org/10.1145/3061640.3061655
http://arxiv.org/abs/1704.08705
https://doi.org/10.1137/140957123
https://doi.org/10.1137/140957123
http://dx.doi.org/10.1137/140957123
http://dx.doi.org/10.1007/BF01917434
http://dx.doi.org/10.1007/BF01917434
http://dx.doi.org/10.1007/BF01917434
https://doi.org/10.1137/120897432
http://dx.doi.org/10.1137/120897432
http://dx.doi.org/10.1007/s00224-013-9519-3
http://dx.doi.org/10.1007/s00224-013-9519-3
http://dx.doi.org/10.1007/s00224-013-9519-3
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

[31] Andreas Krebs, Nutan Limaye, and Michael Ludwig. Cost register automata for nested words.
In Thang N. Dinh and My T. Thai, editors, Computing and Combinatorics - 22nd International
Conference, COCOON 2016, Ho Chi Minh City, Vietnam, August 2-4, 2016, Proceedings, volume
9797 of Lecture Notes in Computer Science, pages 587–598. Springer, 2016. URL: http://dx.
doi.org/10.1007/978-3-319-42634-1_47, doi:10.1007/978-3-319-42634-1_47.

[32] Andreas Krebs, Nutan Limaye, and Michael Ludwig. A unified method for placing problems in
polylogarithmic depth. Electronic Colloquium on Computational Complexity (ECCC), 24:19, 2017.
URL: https://eccc.weizmann.ac.il/report/2017/019.

[33] Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting paths in VPA is complete for
#nc1. In My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics, 16th Annual
International Conference, COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010. Proceedings,
volume 6196 of Lecture Notes in Computer Science, pages 44–53. Springer, 2010. URL: http:
//dx.doi.org/10.1007/978-3-642-14031-0_7, doi:10.1007/978-3-642-14031-0_7.

[34] Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting paths in VPA is complete
for #nc 1. Algorithmica, 64(2):279–294, 2012. URL: http://dx.doi.org/10.1007/

s00453-011-9501-x, doi:10.1007/s00453-011-9501-x.

[35] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to parallel com-
puting: design and analysis of algorithms, volume 400. Benjamin/Cummings Redwood City,
1994.

[36] Markus Lohrey. On the parallel complexity of tree automata. In Aart Middeldorp, editor, Rewriting
Techniques and Applications, 12th International Conference, RTA 2001, Utrecht, The Nether-
lands, May 22-24, 2001, Proceedings, volume 2051 of Lecture Notes in Computer Science,
pages 201–215. Springer, 2001. URL: http://dx.doi.org/10.1007/3-540-45127-7_16,
doi:10.1007/3-540-45127-7_16.

[37] Nancy A. Lynch. Log space recognition and translation of parenthesis languages. J. ACM, 24(4):583–
590, 1977. URL: http://doi.acm.org/10.1145/322033.322037, doi:10.1145/322033.
322037.

[38] Meena Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Michael E.
Saks, editor, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
5-7 January 1997, New Orleans, Louisiana., pages 730–738. ACM/SIAM, 1997. URL: http:
//dl.acm.org/citation.cfm?id=314161.314429.

[39] Kurt Mehlhorn. Pebbling moutain ranges and its application of dcfl-recognition. In J. W. de Bakker
and Jan van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium, No-
ordweijkerhout, The Netherland, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes
in Computer Science, pages 422–435. Springer, 1980. URL: http://dx.doi.org/10.1007/
3-540-10003-2_89, doi:10.1007/3-540-10003-2_89.

[40] Dan I Moldovan. Parallel processing from applications to systems. Elsevier, 2014.

[41] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb. Theory,
Ser. B, 96(4):514–528, 2006. URL: http://dx.doi.org/10.1016/j.jctb.2005.10.006, doi:
10.1016/j.jctb.2005.10.006.

[42] V. Ramachandran. Restructuring formula trees. Unpublished manuscript, 1986.

40

http://dx.doi.org/10.1007/978-3-319-42634-1_47
http://dx.doi.org/10.1007/978-3-319-42634-1_47
http://dx.doi.org/10.1007/978-3-319-42634-1_47
https://eccc.weizmann.ac.il/report/2017/019
http://dx.doi.org/10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.1007/s00453-011-9501-x
http://dx.doi.org/10.1007/s00453-011-9501-x
http://dx.doi.org/10.1007/s00453-011-9501-x
http://dx.doi.org/10.1007/3-540-45127-7_16
http://dx.doi.org/10.1007/3-540-45127-7_16
http://doi.acm.org/10.1145/322033.322037
http://dx.doi.org/10.1145/322033.322037
http://dx.doi.org/10.1145/322033.322037
http://dl.acm.org/citation.cfm?id=314161.314429
http://dl.acm.org/citation.cfm?id=314161.314429
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/j.jctb.2005.10.006

[43] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–
383, 1981. URL: http://dx.doi.org/10.1016/0022-0000(81)90038-6, doi:10.1016/
0022-0000(81)90038-6.

[44] P.M. Spira. On time hardware complexity tradeoffs for boolean functions. Proceedings of the Fourth
Hawaii International Symposium on System Sciences, pages 525–527, 1971.

[45] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,
1994.

[46] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 1999. URL: http://dx.doi.org/10.1007/
978-3-662-03927-4, doi:10.1007/978-3-662-03927-4.

[47] Heribert Vollmer. Introduction to circuit complexity: a uniform approach, 2013.

[48] Egon Wanke. k-nlc graphs and polynomial algorithms. Discrete Applied Mathematics, 54(2-
3):251–266, 1994. URL: http://dx.doi.org/10.1016/0166-218X(94)90026-4, doi:10.
1016/0166-218X(94)90026-4.

[49] Barry Wilkinson and Michael Allen. Parallel programming: techniques and applications using
networked workstations and parallel computers. Prentice-Hall, 1999.

A Dividing terms: some structural lemmas regarding terms

Proof of Lemma 16. Assume that p1 < p2 < q1 < q2 because otherwise the statement is trivial. The
interval [p2,q2] has to correspond to an open term since otherwise p1 6<T q1. So as p2 <T q1 holds we
have that [p2,q1] corresponds to an open term and so [p1, p2−1] is also a term; it could be open or closed.
By combining all parts, we get that [p1,q2] is a term and it is closed or open depending whether [p1,q1]
is closed or open.

Proof of Lemma 17. For the first statement, note that N ⊆M and hence N 2 ≤M 2 which follows
from the previous lemma. Now assume that N 2 is strictly smaller than M 2. Let p be the position such
that [p,N 2] is closed. If p ∈M then we find q ∈M and q≥N 2 such that [p,q] is an open term. But
then [N 2 +1,q] is also an open term and so is N ∪ [N 2 +1,q]. Hence this violates the maximality of
N 2. If p 6∈M then [M 1,N 1−1] is an open term and so is [M 1,N 2]. But then also [N 1,M 2] is an
open term and again maximality of N 2 is violated.

For the second statement, first note that M (l, l′,r′− 1)∪N (l′+ 1,r′,r) is indeed an interval, i.e.
[M 2(l, l′,r′−1)+1,N 1(l′+1,r′,r)−1] is empty. This we get though maximality of M 2(l, l′,r′−1).
Also M (l, l′,r′−1)∪N (l′+1,r′,r) is a closed or open term, depending on whether M (l, l′,r′−1) is
closed or open. If not empty, the interval M (l, l′,r′−1)∪N (l′+1,r′,r) has to be an open term and
hence N1(l′+1,r′,r) was not chosen maximal.

Proof of Lemma 18. If M is entirely contained in [l,r′−1], [l′+1,r] or [l′+1,r′−1] then it coincides
with one of the first three cases.

If the term stretches from the first third to the last third, it is not entirely contained in one of those
three. Let A be M (l, l′,r′−1)∪N (l′+1,r′,r). By Lemma 17 we know this interval is a disjoint union.
Further A is a closed or open term contained in M which contains m. If A = M we are done as case 4
holds.

The interval M (l, l′,r′− 1) is open iff A is open. But then M 1 = M 1(l, l′,r′− 1) because of
minimality of M 1(l, l′,r′− 1). Similarly it holds that M 2 = N 2(l′+ 1,r′,r). So we get A = M and
case 4 holds.

41

http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1016/0166-218X(94)90026-4
http://dx.doi.org/10.1016/0166-218X(94)90026-4
http://dx.doi.org/10.1016/0166-218X(94)90026-4

.l l′ m r′ r

E D C B A

Figure 6: In case five for M as shown in Lemma 18, the interval is subdivided into five parts. We see that
DC is a closed term where D = M (l, l′,r′−1) and C = N (l′+1,r′,r). Further, B consists of a single
position which is a operation symbol and A and E are open terms.

B

ACDE

Figure 7: A graphical representation of case five for M ; see Lemma 18 and also figure 6. Note that A, C,
and E represent open terms and D a closed one. The term DCB then is open again.

Now suppose A is a closed term. The term A is part of a lager possibly open term. It has either the
form AB~ or BA~ where B is a closed term. If AB~ is the case then ~ lies outside [l,r] and case 4 holds
which we again get by a maximality argument. If BA~ is the case, then O(l,m,r) addresses the operation
~. Let B′ be the largest suffix of B which is an open term and a subset of [l,r]. Note that B′ is a proper
suffix because |B| ≥ |A| and |A| is more than one third of r− l+1. The interval L coincides with B′. The
subterm B′A~ = L (l,m,r)∪M (l, l′,r′−1)∪N (l′+1,r′,r)∪O(l,m,r) can be followed by an open
term and we get again an open term if we unite those. The maximal one in [l,r] is addressed by R(l,m,r).
Note that L (l,m,r) and R(l,m,r) might be empty. This concludes the fifth case.

Figures 6 and 7 show how the interval is subdivided in case five.

Proof of Lemma 19. This proof is similar to the previous one. Only case five slightly differs. Again,
either the interval is completely contained in one of the three subintervals for which we fall back to
N (l, l′,r′−1), N (l′+1,r′,r), or N (l′+1,m,r′−1) respectively.

Otherwise let A=N (l, l′,r′−1)∪N (l′+1,r′,r), similar to the previous proof. Note that by Lemma
17 we get that N (l, l′,r′−1)∪N (l′+1,r′,r) is a disjoint union and an interval. If we are in the AB~
situation, then case 4 holds as ~ is outside of [l,r]. In case of BA~, B is not part of N due to maximality
of N 1. If A is closed we can insert ~ by O(l,m,r) and obtain an open term. Open terms following
O(l,m,r) can be appended and are addressed by R(l,m,r). This is possible since M 2 = N 2, which we
know from Lemma 17.

Proof of Lemma 20. By definition, the interval L lies to the left of M ∪N . The set M ∪N is a closed
term and M ∪N ∪O is an open one. We then want to address the largest term in [l, l′−1] that comes
before M . We can use M (l̄, m̄, r̄) for this. The inclusion L ⊆M (l̄, m̄, r̄) is clear from maximality of
M (l̄, m̄, r̄). On the other hand the converse direction is also true since any position to the right of L is
rooted after l′.

42

Now we can use the binary search inside [l, l′−1]. Start with this interval and then recursively do the
following: If m̄ is the middle position of the current interval then if:

• L is entirely left of m̄ then search in the left part.

• L is entirely right of m̄ then search in the right part.

• L contains m̄ and let l̄, r̄ be the borders of the current interval, then L = M (l̄, m̄, r̄).

Proof of Lemma 21. This proof is similar to the previous one. First note that R ⊆M (l̄, m̄, r̄) and
R2 = M 2(l̄, m̄, r̄) because of maximality. Further R is an open term. Now if M (l̄, m̄, r̄) is a strict
superset it must contain the operation set O(l,m,r). Inside [r′+1,r] both descendants stay open so there
is no open term in [r′+1,r] that contains O(l,m,r).

The binary search is the same as in the previous proof.

B Applications of the term evaluation algorithm

Before we start decribing the details of the applications, we need one more technical definition, which
will we present here.

B.1 Coding of algebras

It helps to embed some class A -NC1 in e.g. a purely Boolean one.

Definition 49 (Codings of algebras). Given algebras A = ({D1, . . . ,DS},F) and A ′ =
({D′1, . . . ,D′S′},F ′), where F resp. F ′ contain the operations. We say A ′ is a coding of A if there
exists a relation c⊆ D×D′ on the domains of A and A ′ such that:

• For all X ⊆ D holds that c(c−1(c(X))) = c(X).

• For all ~ ∈ F there exists ~′ ∈ F ′ such that ~(x1, . . . ,xn) = y if and only if ~(c(x1), . . . ,c(xn))⊆
c(y).

• For all ~′ ∈ F ′ there exists ~ ∈ F such that ~′(x1, . . . ,xn) = y if and only if
~(c−1(x1), . . . ,c−1(xn))⊆ c−1(y).

• For all ~ ∈ F there exists ~′ ∈ F ′ such that ~(x1, . . . ,xn) ∈ c−1(c(y))⇔~′(x′1, . . . ,x′n) ∈ c(y) iff
(xi,x′i) ∈ c for all i ∈ [n].

• For all d,e ∈ D if d 6= e then c(d)∩ c(e) = /0.

If such a relation exists, we write A �A ′.

Note that � is transitive. Also if we have two families (An)n∈N and (A ′
n)n∈N, we write (An)n∈N �

(A ′
n)n∈N if An � A ′

n for all n ∈ N. An algebra can also be coded into a family of algebras by taking
a family of codings. Note that the third condition the definition ensures that codings preserve all the
information. This property can be thought of as injectivity for relations.

By taking A = ({D1, . . . ,DS},~1, . . . ,~k) and c one can actually construct an algebra c(A) =
({c(D1), . . . ,c(DS)},~c

1, . . . ,~
c
k) such that A � c(A). This is slight abuse of notation since an algebra

c(A) is not already defined by c and A . The operations ~c
i can be defined in different ways. However

it will always be clear from the context how we define the these; especially since most of the time we
assume c to be a function or a family of functions.

43

As mentioned before, our main theorem shows a connection between evaluating terms over A and
the algebra F (A). If we want to use codings as outlined before, we need to make sure, that the coding
keeps all the relevant information. If A is single-sorted algebra with domain D, F (A)�A ′ via coding
c then if for all d1,d2 ∈ D holds that d1 = d2 iff c(d1) = c(d2) we say the coding is evaluation-stable and
write F (A)≤A ′. For the rest of the paper we are only interested in such codings.

A -evaluation reduces to A ′-evaluation and we write A �A ′.

44

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

