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Abstract

This paper gives the first separation between the power of formulas and circuits of equal
depth in the AC0[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for
all d(n) ≤ O( logn

log logn ), that there exist polynomial-size depth-d circuits that are not equivalent

to depth-d formulas of size no(d) (moreover, this is optimal in that no(d) cannot be improved to
nO(d)). This result is obtained by a combination of new lower and upper bounds for Approximate
Majorities, the class of Boolean functions {0, 1}n → {0, 1} that agree with the Majority function
on 3/4 fraction of inputs.

AC0[⊕⊕⊕] formula lower bound. We show that every depth-d AC0[⊕] formula of size s has
a 1/8-error polynomial approximation over F2 of degree O( 1

d log s)d−1. This strengthens a classic
O(log s)d−1 degree approximation for circuits due to Razborov [12]. Since the Majority function
has approximate degree Θ(

√
n), this result implies an exp(Ω(dn1/2(d−1))) lower bound on the

depth-d AC0[⊕] formula size of all Approximate Majority functions for all d(n) ≤ O(log n).

Monotone AC0 circuit upper bound. For all d(n) ≤ O( logn
log logn ), we give a random-

ized construction of depth-d monotone AC0 circuits (without NOT or MOD2 gates) of size
exp(O(n1/2(d−1))) that compute an Approximate Majority function. This strengthens a con-
struction of formulas of size exp(O(dn1/2(d−1))) due to Amano [1].

1 Introduction

The relative power of formulas versus circuits is one of the great mysteries in complexity theory.
The central question in this area is whether NC1 (the class of languages decidable by polynomial-size
Boolean formulas) is a proper subclass of P/poly (the class of languages decidable by polynomial-size
Boolean circuits). Despite decades of efforts, this question remains wide open.1 In the meantime,
there has been progress on analogues of the NC1 vs. P/poly question in certain restricted settings.
For instance, in the monotone basis (with AND and OR gates only), the power of polynomial-size
formulas vs. circuits was separated by the classic lower bound of Karchmer and Wigderson [8] (on
the monotone formula size of st-Connectivity).

∗Supported by NSERC
1In this paper we focus on non-uniform complexity classes. The question of uniform-NC1 vs. P is wide open as

well.
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The bounded-depth setting is another natural venue for investigating the question of formula vs.
circuits. Consider the elementary fact that every depth-d circuit of size s is equivalent to a depth-d
formula of size at most sd−1, where we measure size by the number of gates. This observation is
valid with respect to any basis (i.e. set of gate types). In particular, we may consider the AC0 basis
(unbounded fan-in AND, OR, NOT gates) and the AC0[⊕] basis (unbounded fan-in MOD2 gates
in addition to AND, OR, NOT gates). With respect to either basis, there is a natural depth-d
analogue of the NC1 vs. P/poly question (where d = d(n) is a parameter that may depend on
n), namely whether every language decidable by polynomial-size depth-d circuits is decidable by
depth-d formulas of size no(d) (i.e. better than the trivial nO(d) upper bound).

It is reasonable to expect that this question could be resolved in the sub-logarithmic depth
regime (d(n) � log n), given the powerful lower bound techniques against AC0 circuits (H̊astad’s
Switching Lemma [5]) and AC0[⊕] circuits (the Polynomial Method of Razborov [12] and Smolensky
[15]). However, because the standard way of applying these techniques does not distinguish between
circuits and formulas, it is not clear how to prove quantitatively stronger lower bounds on formula
size vis-a-vis circuit size of a given function. Recent work of Rossman [13] developed a new way
of applying H̊astad’s Switching Lemma to AC0 formulas, in order to prove an exp(Ω(dn1/(d−1)))
lower bound on the formula size of the Parity function for all d ≤ O(log n). Combined with the
well-known exp(O(n1/(d−1))) upper bound on the circuit size of Parity, this yields an asymptotically
optimal separation in the power of depth-d AC0 formulas vs. circuits for all d(n) ≤ O( logn

log logn), as
well as a super-polynomial separation for all ω(1) ≤ d(n) ≤ o(log n).

In the present paper, we carry out a similar development for formulas vs. circuits in the AC0[⊕]
basis, obtaining both an asymptotically optimal separation for all d(n) ≤ O( logn

log logn) and a super-
polynomial separation for all ω(1) ≤ d(n) ≤ o(log n). Our target functions lie in the class of
Approximate Majorities, here defined as Boolean functions {0, 1}n → {0, 1} that approximate the
Majority function on 3/4 fraction of inputs. First, we show how to apply the Polynomial Method
to obtain better parameters in the approximation of AC0[⊕] formulas by low-degree polynomials
over F2. This leads to an exp(Ω(dn1/2(d−1))) lower bound on the AC0[⊕] formula size of all Ap-
proximate Majority functions. The other half of our formulas vs. circuits separation comes from
an exp(O(n1/2(d−1))) upper bound on the AC0[⊕] circuit size of some Approximate Majority func-
tion. In fact, this upper bound is realized by a randomized construction of monotone AC0 circuits
(without NOT or MOD2 gates). Together these upper and lower bound give our main result:

Theorem 1.

(i) For all 2 ≤ d(n) ≤ O( logn
log logn), there exist AC0[⊕] circuits (in fact, monotone AC0 circuits)

of depth d and size poly(n) that are not equivalent to any AC0[⊕] formulas of depth d and
size no(d).

(ii) For all ω(1) ≤ d(n) ≤ o(log n), the class of languages decidable by polynomial-size depth-d
AC0[⊕] formulas is a proper subclass of the class of languages decidable by polynomial-size
depth-d AC0[⊕] circuits.

Separation (i) is asymptotically optimal, in view of the aforementioned simulation of poly(n)-
size depth-d circuits by depth-d formulas of size nO(d). Separation (ii) resembles an analogue of
NC1 6= P/poly (or rather NC1 6= AC1) within the class AC0[⊕]. In fact, extending separation (ii)
from depth o(log n) to depth log n is equivalent the separation of NC1 and AC1.
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1.1 Proof outline

Improved polynomial approximation. The lower bound for AC0[⊕] formulas follows the gen-
eral template due to Razborov [12] on proving lower bounds for AC0[⊕] circuits using low-degree
polynomials over F2. Razborov showed that for any Boolean function f : {0, 1}n → {0, 1} that has
an AC0[⊕] circuit of size s and depth d, there is a randomized polynomial P of degree O(log s)d−1

that computes f correctly on each input with probability 7
8 (we call such polynomials 1/8-error

probabilistic polynomials). By showing that some explicit Boolean function f (e.g. the Majority
function or the MODq function for q odd) on n variables does not have such an approximation of
degree less than Ω(

√
n) [12, 15, 16], we get that any AC0[⊕] circuit of depth d computing f must

have size exp(Ω(n1/2(d−1))).
In this paper, we improve the parameters of Razborov’s polynomial approximation from above

for AC0[⊕] formulas. More precisely, for AC0[⊕] formulas of size s and depth d, we are able to
construct 1/8-error probabilistic polynomials of degree O(1d log s)d−1. (Since every depth-d circuit of
size s is equivalent to a depth-d formula of size at most sd−1, this result implies Razborov’s original
theorem that AC0[⊕] circuits of size s and depth d have 1/8-error probabilistic polynomials of
degree O(log s)d−1.)

We illustrate the idea behind this improved polynomial approximation with the special case of
a balanced formula (i.e. all gates have the same fan-in) of fan-in t and depth d. Note that the
size of the formula (number of gates) is Θ(td−1) and hence it suffices in this case to show that
it has a 1/8-error probabilistic polynomial of degree O(log t)d−1. We construct the probabilistic
polynomial inductively. Given a balanced formula F of depth d and fan-in t, let F1, . . . , Ft be
its subformulas of depth d − 1. Inductively, each Fi has a 1/8-error probabilistic polynomial Pi

of degree O(log t)d−2 and by a standard error-reduction [10], it has a (1/16t)-error probabilistic
polynomial of degree O(log t)d−1 (in particular, at any given input x ∈ {0, 1}n, the probability that
there exists an i ∈ [t] such that Pi(x) 6= Fi(x) is at most 1/16). Using Razborov’s construction
of a 1/16-error probabilistic polynomial of degree O(1) for the output gate of F and composing
this with the probabilistic polynomials Pi, we get the result for balanced formulas. This idea can
be extended to general (i.e. not necessarily balanced) formulas with a careful choice of the error
parameter for each subformula Fi to obtain the stronger polynomial approximation result.

Improved formula lower bounds. Combining the above approximation result with known
lower bounds for polynomial approximation [12, 15, 16], we can already obtain stronger lower
bounds for AC0[⊕] formulas than are known for AC0[⊕] circuits. For instance, it follows that
any AC0[⊕] formula of depth d computing the Majority function on n variables must have size
exp(Ω(dn1/2(d−1))) for all d ≤ O(log n), which is stronger than the corresponding circuit lower
bound. Similarly stronger formula lower bounds also follow for the MODq function (q odd).

Separation between formulas and circuits. However, the above improved lower bounds do
not directly yield the claimed separation between AC0[⊕] formulas and circuits. This is because
we do not have circuits computing (say) the Majority function of the required size. To be able to
prove our result, we would need to show that the Majority function has AC0[⊕] circuits of depth d
and size exp(O(n1/2(d−1))) (where the constant in the O(·) is independent of d). However, as far as
we know, the strongest result in this direction [9] only yields AC0[⊕] circuits of size greater than
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exp(Ω(n1/(d−1))),2 which is superpolynomially larger than the upper bound.
To circumvent this issue, we change the hard functions to the class of Approximate Majorities,

which is the class of Boolean functions that agree with Majority function on most inputs. While this
has the downside that we no longer are dealing with an explicitly defined function, the advantage
is that the polynomial approximation method of Razborov yields tight lower bounds for some
functions from this class.

Indeed, since the method of Razborov is based on polynomial approximations, it immediately
follows that the same proof technique also yields the same lower bound for computing Approximate
Majorities. Formally, any AC0[⊕] circuit of depth d computing any Approximate Majority must
have size exp(Ω(n1/2(d−1))). On the upper bound side, it is known from the work of O’Donnell and
Wimmer [11] and Amano [1] that there exist Approximate Majorities that can be computed by
monotone AC0 formulas of depth d and size exp(O(dn1/2(d−1))). (Note that the double exponent

1
2(d−1) is now the same in the upper and lower bounds.)

We use the above ideas for our separation between AC0[⊕] formulas and circuits. Plugging in
our stronger polynomial approximation for AC0[⊕] formulas, we obtain that any AC0[⊕] formula
of depth d computing any Approximate Majority must have size exp(Ω(dn1/2(d−1))). In particular,
this implies that Amano’s construction is tight (up to the universal constant in the exponent) even
for AC0[⊕] formulas.

Further, we also modify Amano’s construction [1] to obtain better constant-depth circuits for
Approximate Majorities: we show that there exist Approximate Majorities that are computed by
monotone AC0 circuits of depth d of size exp(O(n1/2(d−1))) (the constant in the O(·) is a constant
independent of d).

Smaller circuits for Approximate Majority. Our construction closely follows Amano’s, which
in turn is related to Valiant’s probabilistic construction [18] of monotone formulas for the Majority
function. However, we need to modify the construction in a suitable way that exploits the fact that
we are constructing circuits. This modification is in a similar spirit to a construction of Hoory,
Magen and Pitassi [6] who modify Valiant’s construction to obtain smaller monotone circuits (of
depth Θ(log n)) for computing the Majority function exactly.

At a high level, the difference between Amano’s construction and ours is as follows. Amano
constructs random formulas Fi of each depth i ≤ d as follows. The formula F1 is the AND
of a1 independent and randomly chosen variables. For even (respectively odd) i > 1, Fi is the
OR (respectively AND) of ai independent and random copies of Fi−1. For suitable values of
a1, . . . , ad ∈ N, the random formula Fd computes an Approximate Majority with high probability.
In our construction, we build a depth i circuit Ci for each i ≤ d in a similar way, except that each
Ci now has M different outputs. Given such a Ci−1, we construct Ci by taking M independent
randomly chosen subsets T1, . . . , TM of ai many outputs of Ci−1 and adding gates that compute
either the OR or AND (depending on whether i is even or odd) of the gates in Ti. Any of the M
final gates of Cd now serves as the output gate. By an analysis similar to Amano’s (see also [6]) we
can show that this computes an Approximate Majority with high probability, which finishes the
proof.3

2Indeed, this is inevitable with all constructions that we are aware of, since they are actually AC0 circuits and
it is known by a result of H̊astad [5] that any AC0 circuit of depth d for the Majority function must have size
exp(Ω(n1/(d−1))).

3This is a slightly imprecise description of the construction as the final two levels of the circuit are actually defined
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2 Preliminaries

Throughout, n will be a growing parameter. We will consider Boolean functions on n variables,
i.e. functions of the form f : {0, 1}n → {0, 1}. We will sometimes identify {0, 1} with the field F2

in the natural way and consider functions f : Fn2 → F2 instead.
Given a Boolean vector y ∈ {0, 1}n, we use |y|0 and |y|1 to denote the number of 0s and number

of 1s respectively in y.
The Majority function on n variables, denoted MAJn is the Boolean function that maps inputs

x ∈ {0, 1}n to 1 if and only if |x|1 > n/2.

Definition 2. An (ε, n)-Approximate Majority is a function f : {0, 1}n → {0, 1} such that
Prx∈{0,1}n [f(x) 6= Majn(x)] ≤ ε.

As far as we know, the study of this class of functions was initiated by O’Donnell and Wim-
mer [11]. See also [1, 4].

We refer the reader to [2, 7] for standard definitions of Boolean circuits and formulas. We use
AC0 circuits (respectively formulas) to denote circuits (respectively formulas) of constant depth
made up of AND, OR and NOT gates. Similarly, AC0[⊕] circuits (respectively formulas) will be
circuits (respectively formulas) of constant depth made up of AND, OR, MOD2 and NOT gates.

The size of a circuit will denote the number of gates in the circuit and the size of a formula will
denote the number of its leaves which is within a constant multiplicative factor of the number of
gates in the formula.4

3 Lower Bound

In this section, we show that any AC0[⊕] formulas of depth d computing a (1/4, n)-Approximate
Majority must have size at least exp(Ω(dn1/2(d−1))) for all d ≤ O(log n).

We work over the field F2 and identify it with {0, 1} in the natural way. The following concepts
are standard in circuit complexity (see, e.g., Beigel’s survey [3]).

Definition 3. Fix any ε ∈ [0, 1]. A polynomial P ∈ F2[X1, . . . , Xn] is said to be an ε-approximating
polynomial for a Boolean function f : {0, 1}n → {0, 1} if

Pr
x∈{0,1}n

[f(x) = P (x)] ≥ 1− ε.

We will use the following result of Smolensky [16] (see also Szegedy’s PhD thesis [17]).

Lemma 4 (Smolensky [16]). Let ε ∈ (0, 12) be any fixed constant. Any (12 − ε)-approximating
polynomial for the Majority function on n variables must have degree Ω(

√
n).

Corollary 5. Let f be any (1/4, n)-Approximate Majority and ε ∈ (0, 1/4) an arbitrary constant.
Then any (14 − ε)-approximating polynomial for f must have degree Ω(

√
n).

Proof. The proof is immediate from Lemma 4 and the triangle inequality.

somewhat differently.
4We assume here without loss of generality that the formula does not contain a gate of fan-in 1 feeding into

another.
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Definition 6. An ε-error probabilistic polynomial of degree D for a Boolean function f : {0, 1}n →
{0, 1} is a random variable P taking values from polynomials in F2[X1, . . . , Xn] of degree at most
D such that for all x ∈ {0, 1}n, we have Pr[ f(x) = P(x) ] ≥ 1− ε.

Definition 7. Let Dε(f) be the minimum degree of an ε-error probabilistic polynomial for f .

We will make use of the following two lemmas concerning Dε(·).

Lemma 8 (Razborov [12]). Let ORn and ANDn be the OR and AND functions on n variables
respectively. Then Dε(ORn), Dε(ANDn) ≤ dlog(1/ε)e.

Lemma 9 (Kopparty and Srinivasan [10]). There is an absolute constant c1 such that for any
ε ∈ (0, 1), Dε(f) ≤ c1 · dlog(1/ε)e ·D1/8(f) for all Boolean functions f .

We now state our main result, which shows that every AC0[⊕] formula of size s and depth d+ 1
admits a 1/8-error approximating polynomial of degree O(1d log s)d.

Theorem 10. There is an absolute constant c2 such that, if f is computed by an AC0[⊕] formula
F of size s and depth d+ 1, then D1/8(f) ≤ 3(c2(

1
d log(s) + 1))d.

Proof. The proof is an induction on the depth d of the formula.
The base case d = 0 corresponds to the case when the formula is a single AND, OR or MOD2

gate and we need to show that D1/8(f) ≤ 3. In the case that the formula is an AND or OR gate,
this follows from Lemma 8. If the formula is a MOD2 gate, this follows from the fact that the
MOD2 function is exactly a polynomial of degree 1.

Let d ≥ 1. We assume that the formula F is the AND/OR/MOD2 of sub-formulas F1, . . . , Fm
computing f1, . . . , fm where Fi has size si and depth d + 1. So F has size s = s1 + · · · + sm
and depth d + 2. Assume that D1/8(fi) ≤ 3(c2(

1
d log(si) + 1))d for all i. We must show that

D1/8(f) ≤ 3(c2(
1
d+1 log(s) + 1))d+1.

By Lemma 9, each fi has an si/(16s)-error probabilistic polynomial Pi of degree c1 ·
dlog(16s/si)e ·D1/8(fi), which is at most

3c1 · 5(log(s/si) + 1) · (c2(1d log(si) + 1))d.

Then (P1, . . . ,Pm) jointly computes (f1, . . . , fm) with error 1/16 (=
∑m

i=1(si/(16s))).
By a reasoning identical to the base case, it follows that there exists a 1/16-error probabilistic

polynomial Q of degree 4 for the output gate of the formula.
Then Q(P1, . . . ,Pm) is a 1/8-error probabilistic polynomial for f of degree

60c1 ·max
i

(log(s/si) + 1) · (c2(1d log(si) + 1))d.

So long as c2 ≥ 20c1, it suffices to show that for all i,

(log(s/si) + 1) · (1d log(si) + 1)d ≤ ( 1
d+1 log(s) + 1)d+1.

Consider any i and let a, b ≥ 0 such that si = 2a and s = 2a+b. We must show

(b+ 1)

(
a

d
+ 1

)d
≤
(
a+ b

d+ 1
+ 1

)d+1

.
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For fixed a ≥ 0, as a polynomial in b, the function

pa,d(b) :=

(
a+ b

d+ 1
+ 1

)d+1

− (b+ 1)

(
a

d
+ 1

)d
is nonnegative over b ≥ 0 with a unique root at b = a/d. This follows from

∂

∂b
pa,d(b) =

(
a+ b

d+ 1
+ 1

)d
−
(
a

d
+ 1

)d
,

which is zero iff b = a/d; this value is a minimum of pa,d with pa,d(a/d) = 0.

Corollary 11. Fix any constant d and let n ∈ N be a growing parameter. Let f be any
(1/4, n)-Approximate Majority. Then any AC0[⊕] formula of depth d computing f must have
size exp(Ω(dn1/2(d−1))) for all d ≤ O(log n), where asymptotic notation O(·) and Ω(·) hide absolute
constants (independent of d and n).

Proof. Say that F is an AC0[⊕] formula of depth d and size s computing f . Then, by Lemma 9,
we see that F has a 1/8-error probabistic polynomial P of degree D ≤ O(O(1d log s + 1)d−1). In
particular, by an averaging argument, there is some fixed polynomial P ∈ F2[X1, . . . , Xn] of degree
at most D such that P is a 1/8-error approximating polynomial for f .

Corollary 5 implies that the degree of P must be Ω(
√
n). Hence, we obtain O(1d log s+ 1)d−1 ≥

Ω(
√
n). It follows that

s ≥ exp(Ω(dn1/2(d−1))−O(d)).

Observe that Ω(dn1/2(d−1)) dominates O(d) so long as d ≤ ε log n for some absolute constant
ε > 0 (depending on the constants in Ω(·) and O(·)). Hence, we get the claimed lower bound
s ≥ exp(Ω(dn1/2(d−1))) for all d ≤ ε log n.

4 Upper Bound

In this section, we show that for any constant ε, there are (ε, n)-Approximate Majorities that can
be computed by depth d AC0 circuits of size exp(O(n1/2(d−1))).

Let ε0 ∈ (0, 1) be a small enough constant so that the following inequalities hold for any β ≤ ε0
• exp(−β) ≤ 1− β exp(−β),

• 1− β ≥ exp(−β − β2) ≥ exp(−2β).

(It suffices to take ε0 = 1/2.)
We need the following technical lemma.

Lemma 12. Let A, s be positive reals, M,n ∈ N, and γ ∈ ( 1
n ,

1
10) be such that eA ≥ n3, n ≥ 1

ε0
,

and s ≤ n. Define I0(γ) := {y ∈ {0, 1}M | |y|1 ≤Me−A(1− γ)} and I1(γ) := {y ∈ {0, 1}M | |y|1 ≥
Me−A(1 + γ)}. If we choose S ⊆ [M ] of size t := deA · se by picking t random elements from M
with replacement, then

x ∈ I0(γ)⇒ Pr
S

[
∨
j∈S

xj = 0] ≥ exp(−s) · exp(sγ/2),

x ∈ I1(γ)⇒ Pr
S

[
∨
j∈S

xj = 0] ≤ exp(−s) · exp(−sγ).
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Further, if sγ ≤ ε0, then the above probabilities can be lower bounded and upper bounded by exp(−s)·
(1 + sγ exp(−sγ)) and exp(−s) · (1− sγ exp(−sγ)) respectively.

A similar statement can be obtained above for the sets J1(γ) := {y ∈ {0, 1}M | |y|0 ≤Me−A(1−
γ)} and J0(γ) := {y ∈ {0, 1}M | |y|0 ≥Me−A(1 + γ)}, with the event “

∨
j∈S xj = 0” being replaced

by the event “
∧
j∈S xj = 1”.

Proof. We give the proof only for I0(γ) and I1(γ). The proof for J0(γ) and J1(γ) is similar.
Consider first the case that x ∈ I1(γ). In this case, we have the following computation.

Pr
S

[
∨
j∈S

xj = 0] ≤
(

1− 1 + γ

eA

)eA·s
≤ exp(−(1 + γ) · s) ≤ exp(−s) · exp(−sγ). (1)

The above implies the first upper bound on PrS [
∨
j∈S xj = 0] from the lemma statement. When

sγ ≤ ε0, we further have exp(−sγ) ≤ 1−sγ exp(−sγ), which implies the second upper bound. This
proves the lemma when x ∈ I1.

Now consider the case that x ∈ I0(γ). We have

Pr
S

[
∨
j∈S

xj = 0] ≥
(

1− 1− γ
eA

)eA·s+1

≥ exp

(
(−1− γ

eA
− 1

e2A
) · (eA · s+ 1)

)
= exp

(
−s+ sγ − s

eA
− 1− γ

eA
− 1

e2A

)
≥ exp

(
−s+ sγ − 2s

eA

)
= exp(−s) · exp(sγ(1− 2e−A

γ
))) (2)

where for the second inequality we have used the fact that since e−A ≤ 1
n3 ≤ ε0, we have 1− 1−γ

eA
≥

exp(−1−γ
eA
− 1

e2A
). Since e−A ≤ 1

n3 ≤ 1
4n ≤ γ/4, we can lower bound the right hand side of (2) by

exp(−s) · exp(sγ/2). Also, note that

1− 2e−A

γ
≥ 1− 2/n3

1/n
= 1− 2

n2

≥ exp(−1/n) ≥ exp(−γ) ≥ exp(−sγ).

This implies that the RHS of (2) can also be lower bounded by exp(−s) exp(sγ exp(−sγ)) ≥
exp(−s) · (1 + sγ exp(−sγ)), which implies the claim about PrS [

∨
j∈S xj = 0] assuming that

x ∈ I0(γ).

We now prove the main result of this section.

Theorem 13. For any growing parameter n ∈ N and 2 ≤ d ≤ O( logn
log logn) and ε > 0,

there is an (ε, n)-Approximate Majority fn computable by a monotone AC0 circuit with at most
exp(O(n1/2(d−1) log(1/ε)/ε)) many gates, where both O(·)’s hide absolute constants (independent of
d, ε).
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Proof. We assume throughout that ε is a small enough constant and that n is large enough for
various inequalities to hold. We will actually construct a monotone circuit of depth d and size
exp(O(n1/2(d−1) log(1/ε)/ε)) computing a (4ε, n)-Approximate Majority, which also implies the
theorem.

Fix parameters A = bn1/2(d−1)c and M = de10Ae. We assume that A ≥ 10 log n (which holds
as long as d ≤ c logn

log logn for an absolute constant c > 0) and that ε ≤ ε0.
Define a sequence of real numbers γ0, γ1, . . . , γd−2 as follows:

γ0 =
ε√
n

γi = Aγi−1 exp(−2Aγi−1), for each i ∈ [d− 2].

It is clear that γi ≤ Aiγ0 for each i ∈ [d− 2]. As a result we also obtain

γi = Aiγ0 exp(−2A(γ0 + γ1 + · · ·+ γi−1))

≥ Aiγ0 exp(−2γ0A(1 +A+A2 + · · ·+Ai−1)) ≥ Aiγ0 exp(−3Aiγ0). (3)

Let

Yε =

{
x ∈ {0, 1}n

∣∣∣∣ |x|1 ≥ (1

2
+

ε√
n

)
n

}
,

Nε =

{
x ∈ {0, 1}n

∣∣∣∣ |x|1 ≤ (1

2
− ε√

n

)
n

}
.

The idea is to define a sequence of circuits C1, C2, . . . , Cd−2 with n inputs and M outputs such
that Ci has depth i and iM many (non-input) gates. Further, for odd i

x ∈ Nε ⇒ Ci(x) ∈ I0(γi)
x ∈ Yε ⇒ Ci(x) ∈ I1(γi) (4)

and similarly for even i

x ∈ Nε ⇒ Ci(x) ∈ J0(γi)
x ∈ Yε ⇒ Ci(x) ∈ J1(γi). (5)

After this is done, we will add on top a depth-2 circuit that will reject most inputs from I0(γd−2)
or J0(γd−2) — depending on whether d− 2 is odd or even respectively — and accept most inputs
from I1(γd−2) or J1(γd−2).

We begin with the construction of C1, . . . , Cd−2 which is done by induction.

Construction of C1. The base case of the induction is the construction of C1, which is done as
follows. We choose M i.i.d. random subsets T1, . . . , TM ⊆ [n] in the following way: for each i ∈ [M ],
we sample A random elements of [n] with replacement. Let bxi =

∧
j∈Ti xj .

If x ∈ Nε, then the probability that bxi = 1 is given by

Pr[bxi = 1] ≤
(

1

2
− γ0

)A
≤ 1

2A
(1− 2γ0)

A ≤ 1

eA
(1− γ0A)

9



where the last inequality follows from the fact that (1− z)A ≤ (1− zA+ A2z2

2 ).
Let δ = 1/n3. Note in particular that 2δ/γ0A ≤ ε0 for large enough n.
By a Chernoff bound, the probability that 1

M

∑
i b
x
i ≥ 1

eA
(1 − γ0A)(1 + δ) is bounded by

exp(−Ω(δ2M/eA)) ≤ exp(−Ω(e9A/n6)) ≤ exp(−n), since eA ≥ n10. Thus, with probability at
least 1− exp(−n), we have∑

i b
x
i

M
≤ 1

eA
(1− γ0A)(1 + δ)

≤ 1

eA
(1− γ0A+ δ) =

1

eA
(1− γ0A(1− δ

γ0A
))

≤ 1

eA
(1− γ0A exp(− 2δ

γ0A
)) ≤ 1

eA
(1− γ0A exp(−γ0A))

≤ 1

eA
(1− γ1). (6)

Above, we have used the fact that (1 − δ
γ0A

) ≥ exp(−2δγ0A
) since δ/γ0A ≤ ε0 for large enough n, as

noted above.
If x ∈ Yε, then the probability that bxi = 1 is given by

Pr[bxi = 1] ≥
(

1

2
+ γ0

)A
≥ 1

2A
(1 + 2γ0)

A ≥ 1

eA
(1 + γ0A)

≥ 1

eA
(1 + γ0A).

As above, we can argue that the probability that 1
M

∑
i b
x
i ≤ 1

eA
(1 + γ0A)(1 − δ) is at most

exp(−n). Thus, with probability 1− exp(−n)

∑
i b
x
i

M
≥ 1

eA
(1 + γ0A)(1− δ)

≥ 1

eA
(1 + γ0A− 2δ) =

1

eA
(1 + γ0A(1− 2δ

γ0A
))

≥ 1

eA
(1 + γ0A exp(− 4δ

γ0A
)) ≥ 1

eA
(1 + γ0A exp(−γ0A))

≥ 1

eA
(1 + γ1). (7)

Thus, by a union bound over x, we can fix a choice of T1, . . . , TM so that (6) holds for all x ∈ Nε

and (7) holds for all x ∈ Yε. Hence, (4) holds for i = 1 as required. This concludes the construction
of C1, which just outputs the values of

∧
j∈Ti xj for each i.

Construction of Ci+1. For the inductive case, we proceed as follows. We assume that i is odd
(the case that i is even is similar). So by the inductive hypothesis, we know that (4) holds and
hence that Ci(x) ∈ I0(γi) or I1(γi) depending on whether x ∈ Nε or Yε. Let γ := γi. Let the output
gates of Ci be g1, . . . , gM .

10



We choose T1, . . . , TM ⊆ [M ] randomly as in the statement of Lemma 12 with s = A. Note
that the chosen parameters satisfy all the hypotheses of Lemma 12. Further we also have sγ ≤
A ·Aiγ0 ≤ Ad−1 · ε√

n
≤ ε0.

The random circuit C ′ is defined to be the circuit obtained by adding M OR gates to Ci such
that the jth OR gate computes

∨
k∈Tj gk. Let bxj be the output of the jth OR gate on Ci(x).

By Lemma 12, we have

x ∈ Nε ⇒ Pr
S

[bxj = 0] ≥ exp(−A) · (1 +Aγ exp(−Aγ))

x ∈ Yε ⇒ Pr
S

[bxj = 0] ≤ exp(−A) · (1−Aγ exp(−Aγ)) (8)

Let δ = 1
n3 . Note that Aγ ∈ [ 1√

n
, 1
n1/2(d−1) ] and hence for large enough n, 2δ

Aγ exp(−Aγ) ≤ ε0.
Assume x ∈ Nε. In this case, the Chernoff bound implies that the probability that

∑
j∈[M ] b

x
j ≤

M exp(−A) · (1 +Aγ exp(−Aγ))(1− δ) is at most exp(−Ω(δ2M/eA)) ≤ exp(−n). When this event
does not occur, we have∑

i b
x
i

M
≥ 1

eA
(1 +Aγ exp(−Aγ))(1− δ)

≥ 1

eA
(1 +Aγ exp(−Aγ)− 2δ) =

1

eA
(1 +Aγ exp(−Aγ)(1− 2δ

Aγ exp(−Aγ)
))

≥ 1

eA
(1 +Aγ exp(−Aγ) · exp(− 4δ

Aγ exp(−Aγ)
))

≥ 1

eA
(1 +Aγ exp(−Aγ) · exp(−Aγ))

≥ 1

eA
(1 +Aγ exp(−2Aγ)) ≥ 1

eA
(1 + γi+1). (9)

We have used above that for large enough n, 2δ
Aγ exp(−Aγ) ≤ ε0 and hence 1 − 2δ

Aγ exp(−Aγ) ≥
exp( −4δ

Aγ exp(−Aγ)).

Similarly when x ∈ Yε, the Chernoff bound tells us that the probability that
∑

j∈[M ] b
x
j ≥

M exp(−A) · (1−Aγ exp(−Aγ))(1 + δ) is at most exp(−n). In this case, we get∑
i b
x
i

M
≤ 1

eA
(1−Aγ exp(−Aγ))(1 + δ)

≤ 1

eA
(1−Aγ exp(−Aγ) + δ) =

1

eA
(1−Aγ exp(−Aγ)(1− δ

Aγ exp(−Aγ)
))

≤ 1

eA
(1−Aγ exp(−Aγ) · exp(− 2δ

Aγ exp(−Aγ)
))

≤ 1

eA
(1−Aγ exp(−Aγ) · exp(−Aγ))

=
1

eA
(1−Aγ exp(−2Aγ)) ≥ 1

eA
(1− γi+1). (10)

By a union bound, we can fix T1, . . . , TM so that (9) and (10) are true for all x ∈ Nε and x ∈ Yε
respectively. This gives us the circuit Ci+1 which satisfies all the required properties.
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The top two levels of the circuit. At the end of the above procedure we have a circuit Cd−2
of depth d − 2 and at most (d − 2)M gates that satisfies one of (4) or (5) depending on whether
d− 2 is odd or even respectively. We assume that d− 2 is even (the other case is similar).

Define γ := γd−2. Recall from (3) that γ ≥ Ad−2γ0 exp(−3Ad−2γ0) ≥ Ad−2γ0/2.

Let M ′ = dexp(10A log(1/ε)
ε + 10A)e. We choose M ′ many subsets T1, . . . , TM ′ ⊆ [M ] i.i.d. so

that each Tj is picked as in Lemma 12 with s = 10A log(1/ε)/ε. Note that

sγ ≥ sA
d−2γ0

2
=

10A log(1/ε)

ε
· A

d−2

2
· ε√

n
≥ 5 log(1/ε).

Say g1, . . . , gM are the output gates of Cd−2. We define the random circuit C ′ (with n inputs
and M ′ outputs) to be the circuit obtained by adding M ′ AND gates such that the jth AND gate
computes

∧
k∈Tj gk. Let bxj be the output of the jth AND gate on Cd−2(x).

By Lemma 12, we have

x ∈ Nε ⇒ Pr
S

[bxj = 1] ≤ exp(−s) · exp(−sγ) ≤ ε2 · exp(−s)

x ∈ Yε ⇒ Pr
S

[bxj = 1] ≥ exp(−s) · exp(sγ/2) ≥ exp(−s)
ε2

. (11)

Say x ∈ Nε. By a Chernoff bound, the probability that
∑

j b
x
j ≥ 2ε2M ′ exp(−s) is at most

exp(−Ω(ε2M ′ exp(−s))) ≤ exp(−Ω(ε2e10A)) ≤ exp(−n). Similarly, when x ∈ Yε, the probability

that
∑

j b
x
j ≤

M ′ exp(−s)
2ε2

is also bounded by exp(−n). By a union bound, we can fix a T1, . . . , TM ′

to get a circuit Cd−1 such that

x ∈ Nε ⇒ |Cd−1(x)|1 ≤ 2ε2 exp(−s)M ′

x ∈ Yε ⇒ |Cd−1(x)|1 ≥
1

2ε2
exp(−s)M ′. (12)

This gives us the depth d− 1 circuit Cd−1. Note that Cd−1 has M ′ +O(dM) = O(M ′) gates.
To get the depth d circuit, we choose a random subset T ⊆ [M ′] by sampling exactly dexp(s)e

many elements of [M ′] with replacement. We construct a random depth-d circuit C ′d by taking the
OR of the the output gates of Cd−1 indexed by the subset T .

From (12) it follows that

x ∈ Nε ⇒ Pr
T

[C ′d(x) = 1] ≤ |T | · 2ε2 exp(−s) ≤ 4ε2 < ε

x ∈ Yε ⇒ Pr
T

[C ′d(x) = 0] ≤
(

1− exp(−s)
2ε2

)exp(s)

≤ exp(−1/2ε2) < ε.

The final inequalities in each case above hold as long as ε is a small enough constant.
It follows from the above that there is a choice for T such that C ′d makes an error — i.e.

C ′d(x) = 1 for x ∈ Nε or C ′d(x) = 0 for x ∈ Yε — on at most a 2ε fraction of inputs from Nε ∪ Yε.
We fix such a choice for T and the corresponding circuit C.

We have

Pr
x∈{0,1}n

[C(x) 6= Majn(x)] ≤ Pr
x∈Yε∪Nε

[C(x) 6= Majn(x)] + Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε]

≤ 2ε+ Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε].

12



Finally by Stirling’s approximation we get

Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε] =
1

2n

∑
m∈[n

2
−ε
√
n,n

2
+ε
√
n]

(
n

m

)
≤ 1

2n

∑
m∈[n

2
−ε
√
n,n

2
+ε
√
n]

(
n

n/2

)
≤ 2ε.

Hence we see that the circuit C computes a (4ε, n)-Approximate Majority, which proves Theo-
rem 13.

The circuit has depth d and size O(M ′) = exp(O(n1/2(d−1) log(1/ε)/ε)).

5 Conclusion

Our main results extend straightforwardly to AC0[MODp] for any fixed prime p. The proofs are
exactly the same except for the fact that the approximating polynomials of degree O(1d log s)d−1

from Section 3 are constructed over Fp.
Using the fact [15] that any (1/4)-approximating polynomial over Fp (p odd) for the Parity

function on n variables must have degree Ω(
√
n), we see that any polynomial-sized AC0[MODp]

formula computing the Parity function on n variables must have depth Ω(log n). This strengthens
a result of Rossman [13] which gives this statement for AC0 formulas.
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