
The Power of Natural Properties as Oracles

Russell Impagliazzo ∗ Valentine Kabanets † Ilya Volkovich ‡

Abstract

We study the power of randomized complexity classes that are given oracle access to a
natural property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit
Size Problem (MCSP). We obtain new circuit lower bounds, as well as some hardness results
for the relativized version of MCSP under randomized reductions. For example, we show that

ZPEXPMCSP 6⊆ P/poly,

and that
⊕P ⊆ ZPPMCSP⊕P

.

Our results build on the recent work of Carmosino, Impagliazzo, Kabanets, and Kolokolova
(CCC, 2016) connecting natural properties and learning algorithms.

Keywords: natural properties, Minimal Circuit Size Problem (MCSP), circuit lower bounds,
hardness of MCSP, learning algorithms

1 Introduction

Historically, the problem of minimizing a circuit representing a given Boolean function (MCSP)
was one of the first where the prohibitive computational cost of searching through a huge space
of candidate solutions was noted [Kar85, Tra84]. This issue would later be formalized in the
theory of NP-completeness. However, the complexity of circuit minimization itself remains largely
mysterious. It is an NP problem, but neither known to be NP-complete nor in any sub-class of
NP thought proper. This mystery remains despite a large body of work devoted to this problem
[KC00, ABK+06, AHM+08, AD14, AHK15, HP15, MW15, HW16].

We do know that MCSP is not NP-hard (even P-hard) under very restrictive reductions [MW15],
and that the NP-hardness of MCSP under other kinds of restricted reductions would imply new
circuit lower bounds [KC00, MW15, AHK15]. We also know that NP-hardness of MCSP cannot be
shown with certain “black-box” reductions [HW16]. On the other hand, the only hardness results
known for MCSP is that it is SZK-hard under randomized (BPP) reductions [AD14], and NC1-hard
under truth table reductions computable by non-uniform TC0 circuits [OS16].

There are two interpretations of the negative results about completeness. Are these results
about MCSP and its relationship to other problems, or about the weakness of certain types of

∗Department of Computer Science, University of California San Diego, La Jolla, CA. Email russell@cs.ucsd.edu
†School of Computing Science, Simon Fraser University, Burnaby, BC, Canada. Email kabanets@cs.sfu.ca
‡Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI. Email: ilyavol@umich.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 23 (2017)

reductions? If we can’t prove completeness of MCSP, can we find other evidence that MCSP is
indeed a hard problem, or at least that it will be difficult to design an efficient algorithm for it?

Motivated by these questions, we consider the strength of MCSP under much stronger classes
of reductions: probabilistic Turing reductions. Since previous non-completeness results also held
for relativized versions of this class, we also consider MCSPB, the relativized version where the
circuits have gates for an oracle B. (It is known MCSPB is PSPACE-complete under randomized
zero-error (ZPP) reductions, for any PSPACE-complete language B [ABK+06]. For more restrictive
reductions and various oracles B, a number of impossibility results are given in [AHK15].) Since an
efficient algorithm for MCSP would be an almost ideal “natural property” for circuit lower bounds,
in the sense of [RR97], we were also motivated by some unexpected algorithmic uses of natural
properties [CIKK16, OS16]. Since natural properties are useful in proving circuit lower bounds, we
would also like to tie easiness of MCSP to the construction of explicit hard functions in the sense
of circuit complexity.

1.1 Our results

While, for simplicity, we state these results below for the special case of reductions to MCSP, for
most of our results, MCSP could be replaced with any other natural property (having largeness and
usefulness, but with oracle access replacing constructivity). Roughly, our results are of two kinds:

• circuit lower bounds for randomized complexity classes with MCSP oracle, and

• hardness results for relativized versions of MCSP under randomized reductions.

The former give evidence that designing an efficient algorithm for MCSP, or even putting it in
a very small complexity class, will be non-trivial, as it would yield new circuit lower bounds. The
latter results give evidence that the non-completeness results for MCSP do not hold for the most
powerful reductions, and so give hope that we will be able to show hardness results for MCSP.

To prove our circuit lower bounds, we first show a number of conditional collapses (à la Karp-
Lipton [KL80]) saying that if a certain complexity class has low circuit complexity, then it can be
computed by efficient randomized algorithms with the MCSP oracle. Below, the notation C-MCSP
means the version of MCSP for circuits of type C, for some circuit class C. Also, C-SIZE[s] denotes
the class of Boolean functions computable by size s circuits of type C.

Conditional collapses. The results of [LFKN92], [BFL91], [IKW02] and [BH92] (building upon
[KL80]) imply collapse theorems for the classes P#P,PSPACE and EXP,NEXP,EXPNP, respectively.
More specifically, they show that if any of the above classes has polynomial size Boolean circuits,
then the corresponding class collapses to MA. Using the observation that MA ⊆ NPMCSP (see e.g.
[ABK+06]) and an argument similar to Lemma 2.14, one could extend these theorems to get a
collapse down to NPC-MCSP, given that the underlying class has polynomial size circuits from C. We
strengthen the above collapse further to ZPPC-MCSP, under the same conditions.

Theorem 1. Let C be any circuit class and let Γ ∈
{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
. If

Γ ⊆ C-SIZE[poly], then Γ ⊆ ZPPC-MCSP.

Remark 1.1. The theorem above can be interpreted as follows: A proof that MCSP is not NP-hard
(or even #P-hard) under ZPP-reductions would imply that P#P 6∈ P/poly.

2

Circuit lower bounds for MCSP-oracle complexity classes. Given the collapse theorems
above, we get fixed-polynomial and super-polynomial lower bounds for randomized polynomial and
exponential times, respectfully. The extra bit of advice in the case of randomized polynomial time
comes to accommodate the need to keep the promise of bounded away probabilities of acceptance
and rejection; the same problem arises in [Bar02, FS04, MP07, San09, Vol14]. Alternatively, we
can consider the corresponding class of promise problems (i.e., prZPP).

Theorem 2. For every circuit class C, we have the following:

1. ZPPC-MCSP/1 6⊆ C-SIZE[nk] and prZPPC-MCSP 6⊆ C-SIZE[nk], for all k ∈ N.

2. ZPEXPC-MCSP 6⊆ C-SIZE[poly].

The above result still holds if we relax the C-MCSP oracle to a natural property strongly useful
against C (see Theorem 9 for more details). Combining this result with Lemma 2.17, we obtain that
PAC learning algorithms imply fixed-polynomial lower bounds against BPP/1 and super polynomial
lower bounds againt BPEXP. These bounds match the results of [Vol14] and [FK09, KKO13],
respectively (see Corollary 2.18 for more details). In this sense, our unconditional lower bounds
generalize the conditional lower bounds of [Vol14] and [FK09, KKO13]. Indeed, our result is
obtained by extending the techniques of [FK09, KKO13, Vol14].

The following theorem should be contrasted with a result from [IKW02] saying that the existence
of a P-natural property (even without the largeness condition) that is useful against P/poly would
imply that NEXP 6⊆ P/poly. With the largeness condition, the circuit lower bound can be shown
to hold for the potentially smaller uniform complexity class ZPEXP.

Theorem 3. Let C be any circuit class such that there is a ZPP-natural property strongly useful
against C. Then ZPEXP 6⊆ C-SIZE[poly].

Remark 1.2. The conclusion of Theorem 3 still holds if we assume a natural property with only
weakly-exponential usefulness, 2n

Ω(1)
.

Corollary 1.3. If there is a ZPP-natural property that is weakly-exponentially useful against ACC0

circuits, then ZPEXP 6⊆ ACC0[poly]. 1

In [HW16], Hirahara and Watanabe defined the notion of oracle-independent randomized reduc-
tions and initiated a study of the set of languages that are reducible in randomized polynomial time

to MCSPB for every B. As a part of their study, they showed that
⋂
B BPPMCSPB [1] ⊆ AM∩ coAM;

this implies that NP-hardness of MCSP cannot be established via oracle-independent reductions un-

less the polynomial hierarchy collapses. We show circuit lower bounds for the class
⋂
B BPPMCSPB

.

Theorem 4. We have that
⋂
B

BPPMCSPB

/1 6⊆ C-SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆ SIZE(nk), for all

k ∈ N, and that
⋂
B

BPEXPMCSPB

6⊆ P/poly.

The smallest uniform complexity classes for which unconditional lower bounds as above are
known are MA/1 and prMA [San09], and MAEXP [BFT98], respectively. The relationship between

1The result that P-natural properties against sub-exponential size circuits yield ZPEXP lower bounds was also
obtained in independent work by Igor Oliveira and Rahul Santhanam [OS16].

3

ZPPC-MCSP and MA is not entirely known. Indeed, much research [KC00, ABK+06, AHM+08,
AHK15, HP15, MW15, HW16] has been invested in the question whether C-MCSP is NP-hard
or even if NP ⊆ ZPPC-MCSP, for various circuit classes C. We remark that for every C: NP ⊆
ZPPC-MCSP ⇐⇒ ZPPNP ⊆ ZPPC-MCSP. This, in turn, implies that NP ⊆ ZPPC-MCSP ⇐⇒ MA ⊆
ZPPC-MCSP since MA ⊆ ZPPNP [GZ11]. Indeed, in the cases when NP ⊆ ZPPC-MCSP, the theorems
in this section provide alternative proofs for previously known results. On the other hand, if
ZPPMCSP ⊆ NP, then NP = MA (see e.g. [ABK+06]).

Hardness of relativized versions of MCSP. It is shown by [ABK+06] that every language in
PSPACE is reducible to MCSPPSPACE via ZPP-reductions. We use different techniques to re-prove
this result, as well as obtain a few new results along the same lines.

Theorem 5. 1. PSPACE ⊆ ZPPMCSPPSPACE
[ABK+06]

2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1P

MCSPPP
.

Next we show that every language B can be approximated by polynomial size circuits with
MCSPB gates. For self-correctable languages, this implies that they can be computed exactly by
such circuits.

Theorem 6. For any language B, n ∈ N and δ > 0, there exists a MCSPB-oracle circuit C of size
poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is self-correctable then B has polynomial
size MCSPB-oracle circuits.

Mimicking self-correctable languages, we extend the ability of MCSPB-oracle circuits to compute
the language exactly (rather than just approximate it) for a large family of languages.

Theorem 7. Let B be a language such that PSPACEB has polynomial size B-oracle circuits. Then
B has polynomial-size MCSPB-oracle circuits.

In [ABK+06], the same outcome was achieved under a stronger assumption that PSPACEB ⊆
PB. We note our result is not a mere syntactical improvement, as there are numerous languages
B for which PSPACEB ⊆ PB/poly yet PSPACEB 6= PB; see Appendix B for more details. While we
suspect that the consequent of the theorem holds unconditionally, we note that the precondition
statement of the theorem cannot be improved further since Lemma 2.11 implies that, for every
language B, the class PSPACEB does not have fixed-polynomial size B-oracle circuits.

1.2 Our techniques

We rely on the result of [CIKK16] showing that natural properties useful against a (sufficiently
powerful) circuit class C yield learning algorithms (under the uniform distribution, with membership
queries) for the same circuit class. We note that this result relativizes in the following sense: if we
have a natural property useful against circuits with L oracle gates (say, MCSPL), for some language
L, then we can approximately learn L, with the hypotheses being circuits with MCSPL oracle gates.

4

If, in addition, this language L is both downward and random self-reducible, then we can learn L
exactly, with the same type of MCSPL oracle circuits, using the ideas of [IW98].

This allows us to prove, for example, that P#P ⊆ BPPMCSP#P
, as #P has a complete problem

(the permanent) that is well-known to be both downward and random self-reducible. We show
that ⊕P also has such a complete problem (building upon [TV07]), getting the inclusion ⊕P ⊆
BPPMCSP⊕P

. To get the stronger result that ⊕P ⊆ ZPPMCSP⊕P
, we use Toda’s Theorem [Tod91]

and hardness-randomness tradeoffs of [IW97] to get rid of the two-sided error of our BPP reduction
(similarly to the work of [KC00]).

Our circuit lower bounds are proved using similar ideas. For example, to prove ZPEXPMCSP 6⊆
P/poly, we argue as follows. If PSPACE 6⊆ P/poly, we are done (as PSPACE ⊆ EXP). As-
suming PSPACE ⊆ P/poly, we get that PSPACE ⊆ ZPPMCSP, using the fact that PSPACE con-
tains a complete problem that is both downward and random self-reducible [TV07], and that
MCSPPSPACE ⊆ PSPACE ⊆ P/poly. The circuit lower bound then follows by a translation argu-
ment, as we get that EXPSPACE ⊆ ZPEXPMCSP and EXPSPACE is known to contain languages of
maximal circuit complexity (by a simple diagonalization argument).

Remainder of the paper. We give basic definitions and notation in Section 2. In Section 3, we
prove our main results (Theorems 1 - 4) which show new collapse results as well as new circuit lower
bounds for uniform complexity classes with oracle access to (relativized) MCSP. In fact, we prove
somewhat stronger results (Theorems 8 and 9) which apply to the more general type of oracles:
strongly useful natural properties. Next, in Section 3.3, we prove our results about reductions to
the problem MCSPB, for various languages B. Specifically, we give such reductions for several
complexity classes (Theorem 5), and also show that every language B can be approximated by
“small” Boolean circuits containing MCSPB oracle gates (Theorem 6). Finally, we show that under
certain conditions, a language B can be computed exactly by “small” Boolean circuits containing
MCSPB oracle gates (rather than just approximated) (Theorem 7). We conclude with some open
questions in Section 4. Some of the proofs (e.g., our proof that ⊕P has a complete problem that is
both downward and random self-reducible) are given in the appendix.

2 Preliminaries

2.1 Basics

For Boolean functions f, g : {0, 1}n → {0, 1}, we define the relative distance ∆(f, g) to be the
fraction of inputs x ∈ {0, 1}n where f(x) 6= g(x). For ε ≥ 0, we say that f is ε-close to g if
∆(f, g) ≤ ε, otherwise we say that f is ε-far from g.

Let L ⊆ {0, 1}∗ be a language. We denote by L|n the set of the strings of length n in L. We will
associate a language L with a corresponding Boolean function in the natural way: L(x) = 1 ⇐⇒
x ∈ L. We say that L has circuits of size a(n) and denote it by L ∈ SIZE(a(n)) if for every n ∈ N
the function L|n can be computed by a Boolean circuit of size O(a(n)).

A circuit class C is a subset of all Boolean circuits (e.g. circuits with AND,OR and NOT gates,
AC0,ACC0,TC0,NC2 etc.). We assume that the representation in C is chosen in way that a size s
circuit can be described using poly(s) bits. In addition, given a circuit C ∈ C of size s the circuit
C|xi=b is also in C and of size at most s, when C|xi=b is the circuit resulting from C by fixing

5

the variable xi to the bit b ∈ {0, 1}. We aalso ssume that a circuit C ∈ C can be evaluated in
polynomial time given its description.

We denote by C-SIZE[a(n)] the set of languages having circuits of size O(a(n)) from the class
C. The circuit complexity sCL(n) of L with respect to the circuit class C at length n is the smallest
integer t such that there is a circuit of size t from C that computes L|n. We similarly define sL(n) to
be the circuit complexity of L with respect to general Boolean circuits, and sBL (n) to be the circuit
complexity of L with respect to B-oracle circuits.

We say that a class C implements P if P has polynomial size circuits from C (i.e. P ⊆
C-SIZE[poly]). The following Lemma translates a uniform inclusion to a non-uniform.

Lemma 2.1. Let C be a circuit class that implements P. Then for any circuit class C′ there exists
k ∈ N such that for every language L: sCL(n) ≤ (sC

′
L (n) · n)k.

Proof. Consider the C′-circuit value problem: C′-val
∆
= {(C ′, x) | C ′ ∈ C′, C ′(x) = 1}. By definition,

C′-val ∈ P. By the assumption, there exists k ∈ N such that for every n,m ∈ N there exists a circuit
Cm,n(y, x) ∈ C of size (m · n)k such that for every circuit C ′ ∈ C, described using m bits, we have

that: Ĉm,n(x)
∆
= Cm,n(〈C ′〉 , x) ≡ C ′(x). Here 〈C ′〉 denote the description of C ′ in bits. The claim

follows by recalling that a circuit of size s from C′ can be described using poly(s) bits.

In particular, the lemma implies that if C implements P then C-SIZE[poly] = P/poly. We will
use this relation implicitly going forward. Similarly, we have the following easy observation.

Observation 2.2. Let A,B be two languages. Suppose that A ∈ SIZEB(nk) for some k ∈ N. Then
for every language L: sBL (n) ≤ sAL(n)k+1.

A promise problem is a relaxation of a language, defined as follows.

Definition 2.3 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise problem if ΠY ES ∩ΠNO = ∅.
We say that a language L is consistent with Π iff x ∈ ΠY ES =⇒ x ∈ L and x ∈ ΠNO =⇒ x 6∈ L.
The containment of L outside of ΠY ES ·∪ΠNO can be arbitrary. We say that a set of languages Γ
is consistent with a set of promise problems Λ iff for every Π ∈ Λ there is L ∈ Γ that is consistent
with Π.

Definition 2.4 (Lower Bounds for Promise Problems). Let C be a circuit class and f(n) be a
function. Then Π 6∈ C-SIZE(f(n)) ⇐⇒ ∀L consistent with Π: L 6∈ C-SIZE(f(n)).

In other words, in order to translate a lower bound for a set of promise problems Λ into a lower
bound for a set of languages, one must find a set of languages Γ that is consistent with Λ.

We refer the reader to [AB09] for the definitions of standard complexity classes such as P, ZPP,
RP, BPP, NP, MA, PSPACE, etc. We say that a language L ∈ BPP/1 if L can be decided by a BPP
machine with an auxiliary advice bit bn for each input of length n; note that given the complement
advice bit b̄n, the machine is not guaranteed to be a BPP machine (i.e., may not have bounded
away acceptance and rejection probabilities on all inputs of length n). We define ZPP/1 in a similar
fashion.

We define a family of natural problems complete for prBPP relative to any oracle.

Definition 2.5 (Circuit Approximation). For a language B, define CAB ∆
= (CAB

Y ES ,CAB
NO):

CAB
Y ES = {C is a B-oracle circuit | ∆(C, 0̄) ≥ 3/4},

CAB
NO = {C is a B-oracle circuit | ∆(C, 0̄) ≤ 1/4}.

6

CAB is prBPPB-complete for any B.

To prove lower bounds against randomized classes with one bit of advice, we shall rely on the
following definitions (and their extensions) from [San09, Vol14].

Definition 2.6 (Padded Languages). Let L be a language and C be a circuit class. For k ∈ N we
define the padded version of L, denoted L′k,C, to consist of the strings 1mx satisfying the following:

(1) m is power of 2; (2) r
∆
= |x| ≤ m; (3) x ∈ L; and (4) sCL(r) ≤ m2k.

The main property of the padded languages is that, for every L, sufficiently small circuits for
L′k,C can be used to construct small circuits for L.

Lemma 2.7 ([San09, Vol14]). Let k ∈ N. Suppose L′k,C ∈ C-SIZE[nk]. Then sCL(n) = O(n2k).

The next lemma is implicit in [Vol14]. We provide the proof for completeness.

Lemma 2.8. Let R be a strongly useful property against C and let L be a downward self-reducible
and self-correctable language. Then for all k ∈ N: L′k,C ∈ BPPR/1.

Proof. Let y = 1mx be an input for L′k,C . Conditions 1 and 2 can be checked easily. As y has a

unique interpretation, we use the advice bit to determine whether sCL(|x|) ≤ m2k. If the advice bit
is 0 (i.e “no”) we reject. Otherwise, we apply Lemma 3.4 with t = m2k to decide if x ∈ L.

We also need the following result that shows that a lower bound on ZPP/1 carries over to prZPP.

Lemma 2.9 ([San09]). For every circuit class C and a function u(n), if ZPP/1 6⊆ C-SIZE[u(n)],
then prZPP 6⊆ C-SIZE[u(n)].

Finally, we need the following collapse results and a simple circuit lower bounds against PSPACE.

Lemma 2.10 ([BFL91, IKW02, BH92]). If Γ ∈
{
EXP,NEXP,EXPNP

}
is in P/poly, then Γ = MA.

Lemma 2.11 (Folklore). For any circuit class C and a language B, let CB be the class of circuits
from C with B-oracle gates. Then, for any k ∈ N, PSPACEB 6⊆ CB-SIZE[nk]. More generally, for
every function s(n) = O(2n), DSPACEB(poly(s(n))) 6⊆ CB-SIZE[s(n)].

2.2 Derandomization from hardness

We recall the celebrated hardness-randomness tradeoff.

Lemma 2.12 ([NW94, BFNW93, IW97, Uma03, KM02]). There is a polynomial-time computable
oracle predicate MB(x, y) and a constant ` ∈ N such that the following holds for every language
B and s ∈ N. If tt ∈ {0, 1}2

m

is a string that represents the truth table of an m-variate Boolean
function f which requires B-oracle circuits of size s`, then, for all s-size B-oracle circuits C,
MB(C, tt) is consistent with CAB.

The non-relativized version of this result was used in [KC00] to show that BPP ⊆ ZPPMCSP.
We use the relativized version to show that under certain assumptions BPPA = ZPPA.

Lemma 2.13. Let A,B be any languages such that:

7

1. A ∈ PB/poly.

2. MCSPB ∈ ZPPA.

Then BPPA = ZPPA.

Proof. By definition, ZPPA ⊆ BPPA. For the second direction, let L ∈ BPPA. Then for each n
there exists an A-oracle circuit C(w, r) of size poly(n) such that x ∈ L ⇐⇒ C(x, ·) ∈ CAA. We
now describe a machine that decides L:

• For m = O(log n) pick a truth table tt ∈ {0, 1}2
m

at random

• If tt has B-circuits of size less than 2m/4 return “?” (using an oracle to MCSPB).

• Otherwise, run MA(C(x, ·), tt) and answer the same (using MA from Lemma 2.12)

By counting arguments, a random function requires exponential size circuits w.h.p. Therefore,
the algorithm will output “?” extremly rarely. By Observation 2.2 tt requires A-oracle circuits of
size 2Ω(m) = nΩ(1). Consequently, the correctness of the algorithm follows from Lemma 2.12. As

described, the algorithm can be implemented in ZPPA,MCSPB

. By the preconditions,

ZPPA,MCSPB

⊆ ZPPA,ZPP
A

= ZPPA

due to the self-lowness of ZPP.

Lemma 2.14. Let C be a circuit class that implements P. Then BPP ⊆ ZPPC-MCSP. If, in addition,
C-MCSP ∈ C-SIZE[poly], then BPPC-MCSP = ZPPC-MCSP.

Proof. Similar to the proof of Lemma 2.13, by using Lemma 2.1 instead of Observation 2.2.

2.3 Natural properties, PAC learning and MCSP

We first define natural properties.

Definition 2.15 (Natural Property [RR97]). Let Γ and Λ be complexity classes. We say that a
property R is Γ-natural with density δn and useful against Λ if the following holds:

1. Constructivity: Given a binary string tt ∈ {0, 1}2
m

, tt ∈ R can be decided in Γ.

2. Largeness: For all n, R contains at least a δn fraction of all 2n binary strings, representing
n-variate Boolean functions.

3. Usefulness: For every sequence of Boolean functions f1, f2, . . . , where fn is a function on
n variables, such that {tt | tt is a truth table of some fn } ⊆ R and sufficiently large n, we
have fn 6∈ Λ.

We say that R is strongly useful against a circuit class C if there exists a ∈ N such that R is
useful against C-SIZE[2an] and has density δn ≥ 2−an.

8

Considering R as an oracle allows us to “ignore” its complexity. In addition, if R is strongly
useful against C, then, as observed in [CIKK16, Lemma 2.7], there exists another property R′ ∈ PR

that is strongly useful against C with density δn ≥ 1/2. Therefore, when considering a strongly
useful property as an oracle we can assume w.l.o.g that it has density δn ≥ 1/2.

Observe that MCSP yields a strongly useful natural property. Often, the only requirement from
an MCSP oracle is to “serve” as a strongly useful natural property. Consequently, the oracle can
be relaxed. The following can be shown along the lines of previous claims.

Lemma 2.16. Let C be a circuit class that implements P and let R be a natural property strongly
useful against C. Then BPP ⊆ ZPPR. If, in addition, R ∈ C-SIZE[poly] then BPPR = ZPPR.

Recall Valiant’s PAC learning model [Val84]. We have a (computationally bounded) learner that
is given a set of samples of the form (x̄, f(x̄)) from some fixed function f ∈ C, where x̄ is chosen
according to some unknown distribution D. Given ε > 0 and δ > 0, the learner’s goal is to output,
with probability 1 − ε a hypothesis f̂ such that f̂ is a 1 − δ close to f under D. We say that a
function class C is PAC learnable if there exists a learner which given any f ∈ C, ε > 0 and δ > 0 in
time polynomial in n, 1/ε, 1/δ, |f | outputs a hypothesis as required. In a more general model, the
learner is allowed membership queries (as in the exact learning model). In this case, we say that C
is PAC learnable with membership queries.

In [CIKK16] it was shown that natural properties yield efficient learning algorithms. Specifically,
a BPP-natural property that is strongly useful against a circuit class C implies that C is PAC
learnable under the uniform distribution, with membership queries (see Section 3.2 for more details).
Here we show that the contrary holds as well: if C is PAC learnable under the uniform distribution,
with membership queries then there is a BPP-natural property that is strongly useful against C.

Lemma 2.17. Let C be a circuit class. If C is PAC learnable under the uniform distribution, with
membership queries, then there exists a BPP-natural property that is strongly useful against C.

The proof goes along the lines of Theorem 3 from [Vol14], where it is shown how to turn an effi-
cient randomized exact learner A for a circuit class C into a P/poly-natural property strongly useful
against C. Combined with Theorem 2, we obtain a somewhat different proof for the conditional
lowers bounds of [Vol14] and [FK09, KKO13].

Corollary 2.18. For every circuit class C, if C is PAC learnable under the uniform distribution,
with membership queries then:

1. BPP/1 6⊆ C-SIZE[nk] and prBPP 6⊆ C-SIZE[nk], for all k ∈ N [Vol14] .

2. BPEXP 6⊆ C-SIZE[poly] [FK09, KKO13].

2.4 Downward self-reducible and self-correctable languages

Definition 2.19. We say that a language L is downward self-reducible if there is a deterministic
polynomial-time algorithm COMPUTE such that for all n ≥ 1:

COMPUTEL|n−1 = L|n.

In other words, COMPUTE efficiently computes L on inputs of size n given oracle access to a
procedure that computes L on inputs of size n− 1.

9

We say that a language L is self-correctable2 if there is a probabilistic polynomial-time algorithm
CORRECT such that, for any n ∈ N and a Boolean function f : {0, 1}n → {0, 1} it holds that if
∆(f, L|n) ≤ 1/n then for all x̄ ∈ {0, 1}n: Pr[CORRECTf (x̄) 6= L|n(x̄)] ≤ 1/poly(n).

Several complexity classes have complete problems that are both downward self-reducible and
self-correctable.3

Lemma 2.20 ([Val79, BF90, LFKN92, IW98]). There exists a downward self-reducible and self-
correctable #P-complete language Lperm.

Lemma 2.21 ([TV07]). There is a downward self-reducible and self-correctable PSPACE-complete
language LPSPACE.

Using similar ideas as in [TV07], we also show the following; see Appendix A for the proof.

Lemma 2.22. There is a downward self-reducible and self-correctable ⊕P-complete language L⊕P.

To handle a larger family of languages, we generalize the notion of self-correctability.

Definition 2.23. A language L is (ε(n), A)-correctable if there are a polynomial r(n) and a ran-

domized polynomial-time algorithm CORRECT such that, for all n ∈ N and f : {0, 1}r(n) → {0, 1},
if ∆

(
f,A|r(n)

)
≤ ε(n), then, for all x̄ ∈ {0, 1}n, Pr

[
CORRECTf (x̄) 6= L|n(x̄)

]
≤ 1/poly(n).

In other words, there is a randomized polynomial-time algorithm that can decide L|n given an
oracle to a function that approximates a A|r(n). Self-correctability is special case when ε = 1/n,
A = L and r(n) = n. The following is immediate using Adleman’s result [Adl78]:

Lemma 2.24. Let L be a (ε(n), A)-correctable language with r(n), and let B be a language. Given
n ∈ N, suppose C is an r(n)-variate B-oracle circuit of size s such that ∆(C,A|r(n)) ≤ ε(n). Then
there exists an n-variate B-oracle circuit C ′ of size poly(r(n), s) such that C ′ ≡ L|n. Moreover, C ′

can be produced from C in randomized polynomial time.

Klivans and van Melkebeek [KM02] show that any language L is (ε(n), A)-correctable for A
computable in PSPACE with an oracle to L (by encoding the truth table of L with a list-decodable
code of [STV01]).

Theorem 2.25. For any language L and ε(n) there exist a language A ∈ DSPACEL(n + 1/ε(n))
such that L is

(
1
2 − ε(n), A

)
-correctable with r(n) = poly(n, 1/ε(n)).

2.5 Learning downward self-reducible and self-correctable languages

Lemma 2.26. Let B be a language and let C be a circuit class that is PAC learnable using member-
ship and B queries with hypotheses being B-oracle circuits. Suppose L is a downward self-reducible
and self-correctable language. Then there is a randomized algorithm making oracle queries to B,
that, given x and t, computes L(x) with probability at least 1 − 1/poly(|x|) in time poly(|x| , t),
provided that t ≥ sCL(|x|).

2More generally, such languages are referred to as “random self-reducible” languages.
3It is not hard to see that every downward self-reducible language is computable in PSPACE. On the other hand,

the results of [FF93] suggest that there cannot be self-correctable languages which are complete for any level of the
polynomial hierarchy, unless the hierarchy collapses.

10

Proof. Let A be a PAC learner for C and let n = |x|. First, we describe an algorithm that produces
B-oracle circuits for L|1, L|2, . . . , L|n w.h.p. We then use the circuit for L|n to decide x.

• Begin with a lookup table C̃1 = C1 for L|1.

• For i ≥ 2, invoke A with ε = 1/i3 and δ = 1/i to learn a circuit C̃i of size t for L|i.

• Answer the queries to B using the provided oracle.

• Given a query to L|i, invoke COMPUTE with Ci−1(x) as an oracle.

• Set Ci
∆
= CORRECTC̃i (convert the algorithm into a circuit using Lemma 2.24).

We claim that w.h.p it holds for all 1 ≤ i ≤ n that Ci is a B-oracle circuit of size poly(i, t)
computing L|i. The proof is by induction on i. Basis i = 1 is clear. Now assume that hypothesis
holds for i − 1. Observe that since Ci−1(x) is B-oracle circuit, it can be evaluated in polynomial
time given and an oracle to B. Hence, by downward self-reducibility of L invoking COMPUTE with
Ci−1(x) can be used to obtain oracle access to L|i. As t ≥ sCL(i), A will output a circuit C̃i of size
poly(i, t). which is 1/i close to L|i. Finally, using Lemma 2.24 the algorithm will produce a circuit
Ci of size poly(i, t) that computes L|i.

The above analysis is correct assuming that no errors have occurred. Note that the total number
of steps is poly(i) while each steps has at most 1/poly(i) probability error. As the latter polynomial
can be made arbitrary small, we obtain that w.h.p. for all i, Ci ≡ L|i.

Finally, all the listed procedures are in time poly(n, t), given oracle access to B.

3 The proofs

Our proofs will use the following.

Lemma 3.1 (Extension of Theorem 5.1 from [CIKK16]). Let C be any circuit class that implements
P. Let R be a natural property with density at least 1/5, that is useful against C-SIZE[u(n)], for
some size function u(n) : N→ N. Then there is a randomized algorithm that makes oracle queries
to R such that, given s ∈ N, oracle access to a function f ∈ C of size s on n variables, and δ > 0,
it produces in time poly(n, 1/δ, 2u

−1(poly(n,1/δ,s))) an R-oracle circuit C where ∆(C, f) ≤ δ.

Corollary 3.2. Let C be any circuit class that implements P and let R be a strongly useful property
against C. Then C is PAC learnable under the uniform distribution, using membership and R queries
with hypotheses being R-oracle circuits.

Theorem 3.3. Let C be any circuit class that implements P. Then C is PAC learnable under the
uniform distribution, using membership and C-MCSP queries with hypotheses being C-MCSP-oracle
circuits.

By combining Lemma 2.26 and Corollary 3.2, we get the following.

Lemma 3.4. Let C be any circuit class that implements P and let R be a strongly useful property
against C. Furthermore, let L be a downward self-reducible and self-correctable language. Then
there is a randomized algorithm that makes oracle queries to R, that given x and t computes L(x)
with probability at least 1− 1/poly(|x|) in time poly(|x| , t) provided that t ≥ sCL(|x|).

11

3.1 Conditional collapses: Proof of Theorem 1

Theorem 1 by follows as a corollary from the next, somewhat stronger, theorem.

Theorem 8. Let C be any circuit class and let R be a strongly useful property against C. Further-
more, let

Γ ∈
{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
.

Then, if Γ ⊆ C-SIZE[poly], then Γ ⊆ BPPR. If, in addition, R is PH-natural then Γ ⊆ ZPPR.

Proof. Clearly, C implements P. First, consider the case of Γ such that PSPACE ⊆ Γ. For LPSPACE

from Lemma 2.21, we have that sCLPSPACE
(n) = O(nk) for some k ∈ N. By Lemma 3.4, given x,

we can compute LPSPACE(x) in randomized polynomial time given oracle to R. Consequently,
PSPACE ⊆ BPPR. By Lemma 2.10, we get Γ = MA. Hence, we have

Γ ⊆ MA ⊆ PSPACE ⊆ BPPR.

If, in addition, R ∈ PH then R ∈ Γ ⊆ C-SIZE[poly]. By Lemma 2.16, BPPR ⊆ ZPPR.
For Γ = ⊕P, we argue as before, using Lemma 2.22 instead of Lemma 2.21, to obtain that

⊕P ⊆ BPPR. If, in addition, R ∈ PH, then, by Toda’s Theorem [Tod91], PH ⊆ BPP⊕P, and hence
R ∈ BPP⊕P ⊆ C-SIZE[poly]. The rest of the argument follows as above.

For Γ = P#P, we argue as before using Lemma 2.20 instead of 2.21, with the additional obser-
vation that in this case the permanent has small circuits from C. The only difference is that in this
case the function has multiple inputs. For more details we refer the reader to [IW98].

3.2 Circuit lower bounds for MCSP-oracle classes: Proofs of Theorems 2–4

Theorems 2 and 3 follow from the next theorem.

Theorem 9. For every circuit class C and property R that is strongly useful against C, we have

1. ZPPR/1 6⊆ C-SIZE[nk] and prZPPR 6⊆ C-SIZE[nk] for all k ∈ N, and

2. ZPEXPR 6⊆ C-SIZE[poly].

Proof. Assume w.l.o.g that C implements P and R ∈ C-SIZE[poly] (otherwise there is nothing to
prove). Consider L = LPSPACE from Lemma 2.21. As L ∈ PSPACE ⊆ EXP, by a translation

argument there exists d ≥ 1 such that L ∈ SIZE(2n
d
). Therefore, sCL(n) is well-defined and in

particular sCL(n) = O(2n
d
).

We first prove part (1) of the theorem. We focus on the class ZPPR/1; the claim about prZPP
will follow by Lemma 2.9. We consider two cases:

Case 1: PSPACE ⊆ C-SIZE[poly]. By Theorem 1 and Lemma 2.16, PSPACE ⊆ BPPR ⊆ ZPPR.
Hence, by Lemma 2.11, for all k ∈ N : ZPPR 6⊆ C-SIZE[nk].

Case 2: PSPACE 6⊆ C-SIZE[poly]. As L is PSPACE-complete, we have that L 6∈ C-SIZE[poly].
Assume towards contradiction that BPPR/1 ⊆ C-SIZE[nk], for some k ∈ N. By Lemma 2.8,
L′k,C ∈ C-SIZE[nk]. And thus, by Lemma 2.7, sCL(n) = O(n2k). This contradicts the assumption

that L 6∈ C-SIZE[poly]. As in Lemma 2.16, we obtain that, for all k ∈ N, ZPPR/1 6⊆ C-SIZE[nk].
Part (2) of the theorem is also shown by considering two cases:
Case 1: PSPACE ⊆ C-SIZE[poly]. As above, PSPACE ⊆ ZPPR. By a translation argument,

EXPSPACE ⊆ ZPEXPR. By Lemma 2.11, ZPEXPR 6⊆ C-SIZE[poly].
Case 2: PSPACE 6⊆ C-SIZE[poly]. Since PSPACE ⊆ EXP ⊆ ZPEXPR, the theorem follows.

12

We now prove Theorem 4, which we re-state below.

Theorem 10 (Theorem 4 re-stated). We have
⋂
B

BPPMCSPB

/1 6⊆ C-SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆

SIZE(nk) for all k ∈ N, and
⋂
B

BPEXPMCSPB

6⊆ P/poly.

Proof. As in the proof of Theorem 9, we consider two cases:
Case 1: PSPACE ⊆ P/poly. Let LPSPACE be the language from Lemma 2.21. Observe that for

every language B, we have LPSPACE ∈ PB/poly. By Lemma 3.6 (3), PSPACE ⊆ BPPMCSPB

for all
B. By Lemma 2.11, the required circuit lower bound follows.

Case 2: PSPACE 6⊆ P/poly. For each k ∈ N there exists L′k 6∈ SIZE(nk) such that L′k ∈
BPPMCSPB

/1 for all B.

3.3 Hardness of relativized versions of MCSP: Proofs of Theorems 5–7

First we observe that, for every oracle B, there is a PMCSPB
-natural property for B-oracle circuits.

Combined with Lemma 3.1, this yields the following theorem along the lines of Theorem 3.3.

Theorem 3.5. For every oracle B the class of B-oracle circuits is PAC learnable under the uniform
distribution, using membership and MCSPB queries with hypotheses being MCSPB-oracle circuits.

Lemma 3.6. Let A,B be two oracles (languages) such that A ∈ PB/poly. Then:

1. For every n ∈ N and δ > 0, there exists a MCSPB-oracle circuit C of size poly(n, 1/δ) such
that ∆(C,A|n) ≤ δ.

2. If, in addition, A is self-correctable then A ∈ PMCSPB
/poly.

3. If, in addition to the above, A is downward self-reducible, then A ∈ BPPMCSPB

.

Proof. 1. By the assumption, for every n ∈ N the function A|n(x) has a B-oracle circuit of
size poly(n). Therefore, by Theorem 3.5, given oracle access to A|n, the learning algorithm
produces an MCSPB-oracle circuit C of size poly(n, 1/δ) such that ∆(C,B|n) ≤ δ.

2. Follows from Lemma 2.24.

3. Follows by combining Theorem 3.5 with Lemma 2.26.

Remark 3.7. In the lemma above, although the learning algorithm actually needs an oracle access
to A|n to produce C, in parts 1 and 2 we are only interested in mere existence. In part 3, on the
other hand, we actually benefit from the learning algorithm.

We are now ready to give the proofs of Theorems 5–7. For convenience, we re-state them below.

Theorem 11 (Theorem 5 re-stated). 1. PSPACE ⊆ ZPPMCSPPSPACE
[ABK+06]

2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

13

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1P

MCSPPP
.

Proof. 1. Consider any PSPACE-complete language B. Let LPSPACE be the language from

Lemma 2.21. By Lemma 3.6 (3), LPSPACE ∈ BPPMCSPB

, and hence PSPACE ⊆ BPPMCSPB

.
Observe that

MCSPB ∈ NPB ⊆ PSPACEB = PSPACE,

and so MCSPB ∈ PB/poly. By Lemma 2.13, we conclude that BPPMCSPB

= ZPPMCSPB

.

2. Arguing as above, using Lemma 2.22 instead of Lemma 2.21, we obtain ⊕P ⊆ BPPMCSP⊕P
.

By Toda’s Theorem [Tod91], NP⊕P ⊆ BPP⊕P. Therefore, we get

MCSP⊕P ∈ NP⊕P ⊆ BPP⊕P ⊆ P⊕P/poly.

The rest of the argument is the same as above.

3. Similar to the first proof, using Lemma 2.20 instead of Lemma 2.21.

4. Since P#P = PPP [Tod91], we get that PP ⊆ P#P ⊆ BPPMCSPPP
.

5. PP ⊆ BPPMCSPPP
. The second part of the claim follow by induction since CkP = PPCk−1P.

Theorem 12 (Theorem 6 re-stated). For any language B, n ∈ N and δ > 0, there exists a MCSPB-
oracle circuit C of size poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is self-correctable
then B has polynomial size MCSPB-oracle circuits.

Proof. The proof follows from Lemma 3.6 for A = B, since B ∈ PB/poly.

Theorem 13 (Theorem 7 re-stated). Let B be a language such that PSPACEB has polynomial size
B-oracle circuits. Then B has polynomial-size MCSPB-oracle circuits.

Proof. Let A ∈ PSPACEB be a language such that B is (1/poly(n), A)-correctable with r(n) =
poly(n), as guaranteed by Theorem 2.25. By assumption, A ∈ PSPACEB ⊆ PB/poly. By Lemma
3.6 (1), for every n ∈ N, there exists an MCSPB-oracle circuit Cn of size poly(n) such that
∆(Cn, A|r(n)) ≤ 1/poly(n). Lemma 2.24 completes the proof.

4 Open questions

Some of our hardness results for the relativized MCSP (Theorem 5) are for ZPP reductions, while
others for BPP reductions. Is it possible to replace the BPP reductions with ZPP reductions? We
have shown it for PSPACE and ⊕P, but not for #P.

Our circuit lower bound ZPEXPMCSP 6⊆ P/poly shows that MCSP is powerful enough to get a
hard function (and that the full power of SAT is not needed). It would be interesting to see more
examples of complexity results proved with the SAT oracle that remain true when SAT is replaced
with MCSP. For example, is it true that if SAT ∈ P/poly, then SAT circuits can be found by a
ZPPMCSP algorithm (strengthening the ZPPNP result by [BCG+96, KW98])? Probably a simpler
question along these lines is: Does SAT ∈ P/poly imply that NP ⊆ ZPPMCSP?

14

We proved that, under some assumptions, every language L is computable by a polynomial-size
circuit with MCSPL oracle gates (Theorem 7). Is it true without any assumptions?

The main open question is, of course, to determine the complexity of MCSP. The results in this
paper may be interpreted as giving some hope that hardness of MCSP is possible to prove under
randomized Turing reductions, as we see a growing list of non-trivial computational tasks that can
be solved with the help of the MCSP oracle.

Acknowledgments. We thank Eric Allender and Scott Aaronson for answering our questions
and many useful conversations.

References

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[ABK+06] E. Allender, H. Buhrman, M.l Koucký, D. van Melkebeek, and D. Ronneburger. Power
from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.

[AD14] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Erzsébet
Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Founda-
tions of Computer Science 2014 - 39th International Symposium, MFCS 2014, Bu-
dapest, Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture
Notes in Computer Science, pages 25–32. Springer, 2014.

[Adl78] L. M. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 75–83,
1978.

[AHK15] E. Allender, D. Holden, and V. Kabanets. The minimum oracle circuit size problem.
In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS
2015, March 4-7, 2015, Garching, Germany, pages 21–33, 2015.

[AHM+08] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. E. Saks. Minimizing dis-

junctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput.,
38(1):63–84, 2008.

[Bar02] B. Barak. A probabilistic-time hierarchy theorem for ”slightly non-uniform” algorithms.
In RANDOM, pages 194–208, 2002.

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino
Tamon. Oracles and queries that are sufficient for exact learning. J. Comput. Syst.
Sci., 52(3):421–433, 1996.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In STACS, pages
37–48, 1990.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

15

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simu-
lations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proceedings
of the 13th Annual IEEE Conference on Computational Complexity (CCC), pages 8–12,
1998.

[BH92] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the
exponential hierarchy. In Foundations of Software Technology and Theoretical Computer
Science, 12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, pages
116–127, 1992.

[CIKK16] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning algorithms
from natural proofs. In 31st Conference on Computational Complexity, CCC, pages 1–
24, 2016.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM J. on
Computing, 22(5):994–1005, 1993.

[FK09] L. Fortnow and A. R. Klivans. Efficient learning algorithms yield circuit lower bounds.
J. Comput. Syst. Sci., 75(1):27–36, 2009.

[FS04] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 316–324, 2004.

[GZ11] O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and more). Studies
in Complexity and Cryptography, pages 40–53, 2011.

[Hel86] H. Heller. On relativized exponential and probabilistic complexity classes. Information
and Control, 71(3):231–243, 1986.

[HP15] J. M. Hitchcock and A. Pavan. On the NP-completeness of the minimum circuit size
problem. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS, pages 236–245, 2015.

[HW16] Sh. Hirahara and O. Watanabe. Limits of minimum circuit size problem as oracle. In
31st Conference on Computational Complexity, CCC, pages 18:1–18:20, 2016.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Expo-
nential time vs. probabilistic polynomial time. J. of Computer and System Sciences,
65(4):672–694, 2002.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: De-
randomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), pages 220–229, 1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a
uniform assumption. In Proceedings of the 39th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 734–743, 1998.

16

[Kar85] Richard M. Karp. Turing award lecture. In Bill Healy and Judith D. Schlesinger, editors,
Proceedings of the 1985 ACM annual conference on The range of computing: mid-80’s
perspective: mid-80’s perspective, Denver, Colorado, USA, October 14-16, 1985, page
193. ACM, 1985.

[KC00] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[KKO13] A. Klivans, P. Kothari, and I. Oliveira. Constructing hard functions from learning
algorithms. In Proceedings of the 28th Annual IEEE Conference on Computational
Complexity (CCC), pages 86–97, 2013.

[KL80] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 302–309, 1980.

[KM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–
1526, 2002.

[KW98] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small
circuits. SIAM J. Comput., 28(1):311–324, 1998.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. JACM, 39(4):859–868, 1992.

[MP07] D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice.
Computational Complexity, 16(2):139–179, 2007.

[MW15] C. D. Murray and R. R. Williams. On the (non) NP-hardness of computing circuit
complexity. In 30th Conference on Computational Complexity, CCC, pages 365–380,
2015.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

[OS16] I. C. Oliveira and R. Santhanam. Conspiracies between learning algorithms, circuit
lower bounds and pseudorandomness. CoRR, abs/1611.01190, 2016.

[RR97] A. A. Razborov and S. Rudich. Natural proofs. J. of Computer and System Sciences,
55(1):24–35, 1997.

[San09] R. Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Tod91] S. Toda. PP is as hard as the polynomial time hierarchy. SIAM J. on Computing,
20(5):865–877, 1991.

17

[Tra84] Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.

[TV07] L. Trevisan and S. P. Vadhan. Pseudorandomness and average-case complexity via
uniform reductions. Computational Complexity, 16(4):331–364, 2007.

[Uma03] C. Umans. Pseudo-random generators for all hardnesses. J. of Computer and System
Sciences, 67(2):419–440, 2003.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[Vol14] I. Volkovich. On learning, lower bounds and (un)keeping promises. In Proceedings of
the 41st ICALP, pages 1027–1038, 2014.

A Self-correctable and downward-reducible ⊕P-complete problem

In this section we prove Lemma 2.22

Lemma A.1. There is a downward self-reducible and self-correctable ⊕P-complete language L⊕P.

Proof sketch. The proof is very similar to the one in [TV07] for the case of PSPACE. We define
a formula Φn(x̄, ȳ) that is universal for n-variate 3-cnf formulas on the variables x̄ = (x1, . . . , xn),
where ȳ = (y1, . . . , y8n3) describes a particular 3-cnf formula φ by specifying, for each possible
clause on 3 variables, whether this clause is present in φ. For example, if c1, . . . , cm, for m = 8n3,
is a sequence of all possible 3-clauses on n variables x1, . . . , xn, we can define Φ as follows:

Φ(x̄, ȳ) = ∧mi=1((yi ∧ ci) ∨ ¬yi).

We now “arithmetize” the formula Φ, getting a polynomial that agrees with Φ over all Boolean
inputs. We will work over the finite field F2k of characteristic 2, for k = 5 log n. Arithmetizing all
clauses ci’s (by replacing each ci with a degree 3 multilinear polynomial c′i, in the same 3 variables,
that agrees with ci over Boolean all assignments), we get the following arithmetization Φ′ of Φ:

Φ′(x̄, ȳ) =
m∏
i=1

(yi · c′i + 1 + yi).

For each 0 ≤ i ≤ n, define a polynomial

fn,i(x1, . . . , xi, ȳ) =
∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ′(x̄, ȳ),

where the summation is over our field F2k of characteristic 2. Note that fn,0(ȳ), for a Boolean ȳ, is
exactly ⊕SAT on the 3-cnf instance described by ȳ. So fn,0 is ⊕P-hard to compute.

We have that fn,i can be expressed in terms of fn,i+1, for i < n, by the formula:

fn,i(x1, . . . , xi, ȳ) = fn,i+1(x1, . . . , xi, 0) + fn,i+1(x1, . . . , xi, 1).

18

So fn,i can be computed in polynomial time with oracle access to fn,i+1. It is also clear that fn,n
can be evaluated in polynomial time (directly).

Next, in the same way as in [TV07], we define a Boolean function family F = {Ft}t≥1 so that
each fn,i is “embedded” into some Fh(n,i), for some function h : N × N → N. Namely, h can be
chosen so that

• h(n, i) > h(n, i+ 1) (and so we have downward-reducibility for fn,i’s), and

• the length h(n, i) is large enough to accommodate both an input to fn,i and an index j ∈ [k].

We then define
Fh(n,i)(x1, . . . , xi, ȳ, j) = fn,i(x1, . . . , xi, ȳ)j ,

i.e., the jth bit of the value of fn,i in the field F2k , whose elements are viewed as k-bit vectors.
The downward-reducibility of F follows from the properties of fn,i (and the way we arranged

the lengths h(n, i)). The self-correctability of F follows from the fact each fn,i is a O(n3)-degree
polynomial over the field of size 2k ≥ n5 (see [TV07] for more details). The ⊕P-hardness of F
follows from ⊕P-hardness of fn,0’s.

It remains to show that F ∈ ⊕P. Note that every bit j of the value of fn,n(ȳ), for every input
ȳ, is computable in P, and hence also in ⊕P. For any 0 ≤ i < n, the jth bit of fn,i(x1, . . . , xi, ȳ)
can be computed in ⊕P using the following nondeterministic algorithm:

“Nondeterministically guess Boolean values bi+1, . . . , bn. Compute the value

v = Φ′(x1, . . . , xi, bi+1, . . . , bn, ȳ).

Accept if the jth bit of the computed field element v is 1, and reject otherwise.”

The parity of the number of accepting paths of the algorithm above is exactly the sum modulo 2
of the bits vj , over all Boolean assignments to xi+1, . . . , xn. The latter is exactly the jth bit of fn,i
because addition in the field F2k is the bit-wise XOR of the corresponding k-bit vectors.

B Oracles B where PSPACEB ⊆ PB/poly but PSPACEB 6= PB

Lemma B.1. Let B be a language such that EXPB ⊆ PB/poly. Then PSPACEB 6= PB.

Proof. Assume the contrary. By Meyer’s Theorem [KL80]: EXPB ⊆ ΣB
2 ⊆ PSPACEB. By the

assumption, EXPB ⊆ PSPACEB ⊆ PB which contradicts Time Hierarchy Theorem.

There are numerous examples of languages satisfying the preconditions of the Lemma; see, e.g.,
[Hel86, BFT98].

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

