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Abstract

We prove that the PNP-type query complexity (alternatively, decision list width) of any boolean
function f is quadratically related to the PNP-type communication complexity of a lifted version
of f . As an application, we show that a certain “product” lower bound method of Impagliazzo
and Williams (CCC 2010) fails to capture PNP communication complexity up to polynomial
factors, which answers a question of Papakonstantinou, Scheder, and Song (CCC 2014).

1 Introduction

Broadly speaking, a query-to-communication lifting theorem (a.k.a. communication-to-query
simulation theorem) translates, in a black-box fashion, lower bounds on some type of query complexity
(a.k.a. decision tree complexity) [Ver99, BdW02, Juk12] of a boolean function f : {0, 1}n → {0, 1}
into lower bounds on a corresponding type of communication complexity [KN97, Juk12, RY17] of a
two-party version of f . Table 1 lists several known results in this vein.

In this work, we provide a lifting theorem for PNP-type query/communication complexity.

PNP decision trees. Recall that a deterministic (i.e., P-type) decision tree computes an n-bit
boolean function f by repeatedly querying, at unit cost, individual bits xi ∈ {0, 1} of the input x
until the value f(x) is output at a leaf of the tree. A PNP decision tree is more powerful: in each
step, it can query/evaluate a width-k DNF of its choice, at the cost of k. Here k is simply the
nondeterministic (i.e., NP-type) decision tree complexity of the predicate being evaluated at a node.
The overall cost of a PNP decision tree is the maximum over all inputs x of the sum of the costs of
the individual queries that are made on input x. The PNP query complexity of f , denoted PNPdt(f),
is the least cost of a PNP decision tree that computes f .
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Query model Communication model References

deterministic deterministic [RM99, GPW15, dRNV16, HHL16]

nondeterministic nondeterministic [GLM+16, Göö15]

polynomial degree rank [SZ09, She11, RS10, RPRC16]

conical junta degree nonnegative rank [GLM+16, KMR17]

Sherali–Adams LP extension complexity [CLRS16, KMR17]

sum-of-squares SDP extension complexity [LRS15]

Table 1: Some query-to-communication lifting theorems. The first four are formulated in the
language of boolean functions (as in this paper); the last two are formulated in the language of
combinatorial optimization.

Example. Consider the fabled odd-max-bit function [Bei94, BVdW07, STT12, Tha16, BT16] defined
by Omb(x) := 1 iff x 6= 0n and the largest index i ∈ [n] such that xi = 1 is odd. This function
admits an efficient O(log n)-cost PNP decision tree: we can find the largest i with xi = 1 by using a
binary search that queries 1-DNFs of the form

∨
a≤j≤n xj for different a ∈ [n].

PNP communication protocols. Let F : X × Y → {0, 1} be a two-party function, i.e., Alice
holds x ∈ X , Bob holds y ∈ Y . A deterministic communication protocol can be viewed as a decision
tree where in each step, at unit cost, it evaluates either an arbitrary predicate of Alice’s input x or
an arbitrary predicate of Bob’s input y. A PNP communication protocol [BFS86, GPW16] is more
powerful: in each step, it can evaluate an arbitrary predicate of the form (x, y) ∈

⋃
i∈[2k]Ri (“oracle

query”) at the cost of k (we always assume k ≥ 1). Here each Ri is a rectangle (i.e., Ri = Xi × Yi
for some Xi ⊆ X , Yi ⊆ Y) and k is just the usual nondeterministic communication complexity of the
predicate being evaluated. The overall cost of a PNP protocol is the maximum over all inputs (x, y)
of the sum of the costs of the individual oracle queries that are made on input (x, y). The PNP

communication complexity of F , denoted PNPcc(F ), is the least cost of a PNP protocol computing F .
Note that if F : {0, 1}n × {0, 1}n → {0, 1} can be written as a k-DNF on 2n variables, then the

nondeterministic communication complexity of F , denoted NPcc(F ), is at most O(k log n) bits: we
can guess one of the ≤ 2k

(
n
k

)
many terms in the k-DNF and verify that the term evaluates to true.

Consequently, any PNP decision tree for a function f can be simulated efficiently by a PNP protocol,
regardless of how the input bits of f are split between Alice and Bob. That is, letting F be f
equipped with any bipartition of the input bits, we have

PNPcc(F ) ≤ PNPdt(f) ·O(log n). (1)

1.1 Main result

Our main result establishes a rough converse to inequality (1) for a special class of composed, or lifted,
functions. For an n-bit function f and a two-party function g : X × Y → {0, 1} (called a gadget),
their composition F := f ◦ gn : X n × Yn → {0, 1} is given by F (x, y) := f(g(x1, y1), . . . , g(xn, yn)).
We use as a gadget the popular index function Indm : [m]× {0, 1}m defined by Indm(x, y) := yx.

Theorem 1 (Lifting for PNP). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) ≥

√
PNPdt(f) · Ω(log n).
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The lower bound is tight up to the square root, since (1) can be adapted for composed functions
to yield PNPcc(f ◦ Indn

m) ≤ PNPdt(f) · O(logm + log n). The reason we incur a quadratic loss is
because we actually prove a lossless lifting theorem for a related complexity measure that is known
to capture PNP query/communication complexity up to a quadratic factor, namely decision lists,
discussed shortly in Section 1.3.

1.2 Application

Impagliazzo and Williams [IW10] gave the following criteria—we call it the product method—for
a function F to have large PNP communication complexity. Here, a product distribution µ over
X × Y is such that µ(x, y) = µX (x) · µY(y) for some distributions µX , µY . A rectangle R ⊆ X × Y
is monochromatic (relative to F ) if F is constant on R.

Product method [IW10]: Let F : X × Y → {0, 1} and suppose µ is a product
distribution over X × Y such that µ(R) ≤ δ for every monochromatic rectangle R. Then

PNPcc(F ) ≥ Ω(log(1/δ)).

This should be compared with the well-known rectangle size method [KKN95], [KN97, §2.4] (µ over
F−1(1) such that µ(R) ≤ δ for all monochromatic R implies NPcc(F ) ≥ Ω(log(1/δ))), which is
known to characterize nondeterministic communication complexity up to an additive Θ(log n) term.

Papakonstantinou, Scheder, and Song [PSS14, Open Problem 1] asked whether the product
method can yield a tight PNP communication lower bound for every function. This is especially
relevant in light of the fact that all existing lower bounds against PNPcc (proved in [IW10, PSS14])
have used the product method (except those lower bounds that hold against an even stronger model:
unbounded error randomized communication complexity, UPPcc [PS86]). We show that the product
method can fail exponentially badly, even for total functions.

Theorem 2. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.

− F has large PNP communication complexity: PNPcc(F ) ≥ nΩ(1).
− For any product distribution µ over {0, 1}n×{0, 1}n, there exists a monochromatic rectangle R

that is large: log(1/µ(R)) ≤ logO(1) n.

1.3 Decision lists (DLs)

Conjunction DLs. The following definition is due to Rivest [Riv87]: a conjunction decision list
of width k is a sequence (C1, `1), . . . , (CL, `L) where each Ci is a conjunction of ≤ k literals and
`i ∈ {0, 1} is a label. We assume for convenience that CL is the empty conjunction (accepting every
input). Given an input x, the conjunction decision list finds the least i ∈ [L] such that Ci(x) = 1 and
outputs `i. We define the conjunction decision list width of f , denoted DLdt(f), as the minimum k
such that f can be computed by a width-k conjunction decision list. For example, DLdt(Omb) = 1.
This complexity measure is quadratically related to PNP query complexity (see Appendix A).

Fact 3. For all f : {0, 1}n → {0, 1}, Ω(DLdt(f)) ≤ PNPdt(f) ≤ O(DLdt(f)2 · log n).

x2x5? x3x4x6? x1x3? x4x5x6? x1x2x3? ∅

A conjunction decision list of width 3

1 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1 1
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Rectangle DLs. A communication complexity variant of decision lists was introduced by Pa-
pakonstantinou, Scheder, and Song [PSS14] (they called them rectangle overlays). A rectangle
decision list of cost k is a sequence (R1, `1), . . . , (R2k , `2k) where each Ri is a rectangle and `i ∈ {0, 1}
is a label. We assume for convenience that R2k contains every input. Given an input (x, y), the
rectangle decision list finds the least i ∈ [2k] such that (x, y) ∈ Ri and outputs `i. We define
the rectangle decision list complexity of F , denoted DLcc(F ), as the minimum k such that F can
be computed by a cost-k rectangle decision list. We again have a quadratic relationship [PSS14,
Theorem 3] (see Appendix A).

Fact 4. For all F : {0, 1}n × {0, 1}n → {0, 1}, Ω(DLcc(F )) ≤ PNPcc(F ) ≤ O(DLcc(F )2).

DLs are combinatorially slightly more comfortable to work with than PNP decision trees/protocols.
This is why our main lifting theorem (Theorem 1) is in fact derived as a corollary of a lossless lifting
theorem for DLs.

Theorem 5 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(log n).

Indeed, Theorem 1 follows because PNPcc(f ◦ Indn
m) ≥ Ω(DLcc(f ◦ Indn

m)) ≥ Ω(DLdt(f) · log n) ≥
Ω((PNPdt(f)/ log n)1/2 · log n) = (PNPdt(f) · Ω(log n))1/2, where the first inequality is by Fact 4, the
second is by Theorem 5, and the third is by Fact 3. We mention that Theorems 1 and 5, as well as
Facts 3 and 4, in fact hold for all partial functions.

As a curious aside, we mention that a time-bounded analogue of decision lists (capturing PNP)
has also been studied in a work of Williams [Wil01].

1.4 Separation between PNP and DL

Facts 3 and 4 show that decision lists can be converted to PNP decision trees/protocols with a
quadratic overhead. Is this conversion optimal? In other words, are there functions that witness
a quadratic gap between PNP and DL? We at least show that if a lossless lifting theorem holds
for PNP, then such a quadratic gap indeed exists for communication complexity.

Conjecture 6. There is an m = m(n) := nΘ(1) such that for every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) = PNPdt(f) ·Θ(log n).

Our bonus contribution here (proven in Section 5) shows that the simple O(log n)-cost PNP

decision tree for the odd-max-bit function is optimal:

Theorem 7. PNPdt(Omb) ≥ Ω(log n).

Corollary 8. The second inequality of Fact 3 is tight (i.e., PNPdt(f) ≥ Ω(DLdt(f)2 · log n) for some
f), and assuming Conjecture 6, the second inequality of Fact 4 is tight (i.e., PNPcc(F ) ≥ Ω(DLcc(F )2)
for some F ).

This corollary is witnessed by f := Omb (which has DLdt(f) ≤ O(1) and PNPdt(f) ≥ Ω(log n))
and its lifted version F := Omb ◦ Indn

m (which has DLcc(F ) ≤ O(log n) and PNPcc(F ) ≥ Ω(log2 n)
under Conjecture 6). One caveat is that we have only shown the corollary for an extreme setting
of parameters (constant DLdt(f) and logarithmic DLcc(F )). It would be interesting to show a
separation for functions of nΩ(1) decision list complexity.
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2 Preliminaries: Decision List Lower Bound Techniques

We present two basic lemmas in this section that allow one to prove lower bounds on conjunc-
tion/rectangle decision lists. First we recall the proof of the product method, which will be important
for us, as we will extend the proof technique in both Section 3 and Section 4.

Lemma 9 (Product method for DLcc). Let F : X×Y → {0, 1} and suppose µ is a product distribution
over X × Y. Then F admits a monochromatic rectangle R with log(1/µ(R)) ≤ O(DLcc(F )).

Proof (from [IW10, PSS14]). Let (R1, `1), . . . , (R2k , `2k) be an optimal rectangle decision list of cost
k := DLcc(F ) computing F . Recall we assume that R2k = X × Y contains every input. We find a
monochromatic R with µ(R) ≥ 2−2k via the following process.

We initialize X := X and Y := Y and iterate the following for i = 1, . . . , 2k rounds, shrinking
the rectangle X × Y in each round.

(†) Round i: (loop invariant: Ri ∩X × Y is a monochromatic rectangle)

Write Ri ∩X × Y = Xi × Yi and test whether µ(Xi × Yi) = µX (Xi) · µY(Yi) is at least 2−2k.
Suppose not, as otherwise we are successful. Then either µX (Xi) < 2−k or µY(Yi) < 2−k; say
the former. We now “delete” the rows Xi from consideration by updating X ← X rXi.

Note that since Ri ∩ X × Y is removed from X × Y in each unsuccessful round, it must hold
(inductively) that

⋃
j<iRj is disjoint from X×Y at the start of the i-th round, and so Ri∩X×Y is

indeed monochromatic (since it only contains points for which Ri is the first rectangle in the decision
list to contain them, which means F evaluates to `i). The process starts out with µ(X ×Y ) = 1 and
in each unsuccessful round the quantity µ(X × Y ) decreases by < 2−k. Some round must succeed,
as otherwise the process would finish with X × Y = ∅ and hence µ(X × Y ) = 0 in 2k rounds, which
is impossible.

Recall that our Theorem 2 states that the product method is not complete for the measure DLcc.
By contrast, we are able to give an alternative characterization for the analogous query complexity
measure DLdt. We do not know if this characterization has been observed in the literature before.

Lemma 10 (Characterization for DLdt). Let f : {0, 1}n → {0, 1}. Then DLdt(f) ≤ k iff for every
nonempty Z ⊆ {0, 1}n there exists an ` ∈ {0, 1} and a width-k conjunction that accepts an input in
Z` := Z ∩ f−1(`) but none in Z1−`.

Proof. Suppose f has a width-k conjunction decision list (C1, `1), (C2, `2), . . . , (CL, `L). The first
Ci that accepts an input in Z (such an i must exist since the last CL accepts every input) must
accept an input in Z`i but none in Z1−`i (since all inputs in C−1

i (1) ∩Z are such that Ci is the first
conjunction in the decision list to accept them).

Conversely, assume the right side of the “iff” holds. Then we can build a conjunction decision list
for f iteratively as follows. Start with Z = {0, 1}n. Let C1 be a width-k conjunction that accepts an
input in some Z`1 but none in Z1−`1 , and remove from Z all inputs accepted by C1. Then continue
with the new Z: let C2 be a width-k conjunction that accepts an input in some Z`2 but none in
Z1−`2 , and further remove from Z all inputs accepted by C2. Once Z becomes empty (this must
happen since the right side of the iff holds for all nonempty Z), we have constructed a conjunction
decision list (C1, `1), (C2, `2), . . . for f .
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3 Proof of the Lifting Theorem

In this section we prove Theorem 5, restated here for convenience.

Theorem 5 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(log n).

We use the abbreviations g := Indm : [m]× {0, 1}m → {0, 1} and F := f ◦ gn.
The upper bound of Theorem 5 is straightforward: given a width-k conjunction decision list

for f (which necessarily has length ≤ 2k
(
n
k

)
≤ nO(k)), we can form a rectangle decision list for F by

transforming each labeled conjunction into a set of same-labeled rectangles (which can be ordered
arbitrarily among themselves), one for each of the mk ways of choosing a row from each of the copies
of g corresponding to bits read by the conjunction—for a total of nO(k) ·mk ≤ nO(k) rectangles
and hence a cost of k ·O(log n). For example, if k = 2 and the conjunction is z1z2, then for each
x1, x2 ∈ [m] there would be a rectangle consisting of all inputs with that value of x1, x2 and with
y1, y2 such that g(x1, y1) = 1 and g(x2, y2) = 0. For the rest of this section, we prove the matching
lower bound.

3.1 Overview

Fix an optimal rectangle decision list (R1, `1), . . . , (R2k , `2k) for F . By our characterization of DLdt

(Lemma 10) it suffices to show that for every nonempty Z ⊆ {0, 1}n there is a width-O(k/ log n)
conjunction that accepts an input in Z` := Z ∩ f−1(`) for some ` ∈ {0, 1}, but none in Z1−`. Thus
fix some nonempty Z henceforth.

Write G := gn for short. We view the communication matrix of F as being partitioned into
slices G−1(z) = {(x, y) : G(x, y) = z}, one for each z ∈ {0, 1}n; see (a) below. We focus naturally
on the slices corresponding to Z, namely G−1(Z) =

⋃
z∈Z G

−1(z), which is further partitioned into
G−1(Z0) and G−1(Z1); see (b) below. Our goal is to find a rectangle R that touches G−1(Z`) (for
some `) but not G−1(Z1−`), and such that G(R) = C−1(1) for a width-O(k/ log n) conjunction C;
see (c) below. Thus C−1(1) touches Z` but not Z1−`, as desired.

[m]n

({0, 1}m)n

G −
1
(Z

0 )

G −
1
(Z

1 )

R

(a) (b) (c)

We find such an R as follows. We maintain a rectangle X × Y , which is initially the whole
domain of F and which we iteratively shrink. In each round, we consider the next rectangle Ri in
the decision list, and one of two things happens. Either:

− The round is declared unsuccessful, in which case we remove from X × Y a small number
of rows and columns that together cover all of Ri ∩X × Y ∩G−1(Z). This guarantees that
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throughout the whole execution, by the i-th round,
⋃

j<i(Rj ∩ G−1(Z)) has been removed

from X × Y—thus every input in Ri ∩X × Y ∩G−1(Z) is such that Ri is the first rectangle
in the decision list that contains it, so it is in G−1(Z`i) ⊆ F−1(`i) by the definition of decision
lists.

Or,

− Success is declared, in which case it will hold that Ri ∩ X × Y touches G−1(Z)—in fact,
it touches G−1(Z`i) but not G−1(Z1−`i), by the above—and we can restrict Ri ∩X × Y to
a subrectangle R that still touches G−1(Z`i) but is such that G(R) is fixed on O(k/ log n)
coordinates and has full support on the remaining coordinates. In other words, G(R) = C−1(1)
for a width-O(k/ log n) conjunction C.

This process is a variation of the process (†) from the product method (Lemma 9). The difference
is that the Z-slices, G−1(Z), now play the role of the product distribution, and we maintain the
monochromatic property for Ri ∩X × Y only inside the Z-slices. Another difference is that in each
unsuccessful round we remove both rows and columns from X × Y (not either–or as in (†)).

To flesh out this outline, we need to specify how to determine whether a round is successful,
which rows and columns to remove if not, and how to restrict to the desired R if so, and we need to
argue that the process will terminate with success.

3.2 Tools

We will need to find a rectangle R such that G(R) is fixed on few coordinates and has full support on
the remaining coordinates. We now describe some tools that help us achieve this. First of all, under
what conditions on R = A×B can we guarantee that G(R) has full support over all n coordinates?

Definition 1 (Blockwise-density [GLM+16]). A ⊆ [m]n is called δ-dense if the uniform random
variable x over A satisfies the following: for every nonempty I ⊆ [n], the blocks xI have min-entropy
rate at least δ, that is, H∞(xI) ≥ δ · |I| logm. Here, xI is marginally distributed over [m]I , and
H∞(x) := minx log(1/Pr[x = x]) is the usual min-entropy of a random variable (see, e.g., Vadhan’s
monograph [Vad12] for an introduction).

Definition 2 (Deficiency). For B ⊆ ({0, 1}m)n, we define D∞(B) := mn − log |B| (equivalently,
|B| = 2mn−D∞(B)), representing the log-size deficiency of B compared to the universe ({0, 1}m)n.
(The notation D∞ was chosen partly because this corresponds to the Rényi max-divergence between
the uniform distributions over B and over ({0, 1}m)n.)

Lemma 11 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.3,
then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with G(x, y) = z).

We prove Lemma 11 in Section 3.4 using the probabilistic method: we show for a suitably
randomly chosen rectangle U × V ⊆ G−1(z), (i) U intersects A with high probability, and (ii) V
intersects B with high probability. The proof of (i) uses the second moment method (which is
different from how blockwise-density was employed in previous work [GLM+16]). The proof of (ii)
is a tightened analysis of a combination of arguments from [RM99, GPW15] (which were not stated
in those papers with the high-probability guarantee we need). The latter papers proved the full
support property under a different assumption on A, which they called “thickness”.

Lemma 11 gives us the full support property assuming A is blockwise-dense and B has low
deficiency. How can we get blockwise-density? Our tool for this is the following claim, which follows
from [GLM+16]; we provide the simple argument.
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Claim 12. If A ⊆ [m]n satisfies |A| ≥ mn/2O(k) then there exists an I ⊆ [n] of size |I| ≤ O(k/ log n)
and an A′ ⊆ A such that A′ is fixed on I and 0.9-dense on I := [n] r I.

Proof. If A is 0.9-dense, then we can take I = ∅ and A′ = A, so assume not. Letting x be
the uniform random variable over A, take I ⊆ [n] to be a maximal subset for which there is a
violation of blockwise-density: H∞(xI) < 0.9 · |I| logm. From H∞(x) ≥ n logm−O(k) we deduce
H∞(xI) ≥ |I| logm−O(k) since marginalizing out |I| logm bits may only cause the min-entropy to
go down by |I| logm. Combining these, we get |I| logm−O(k) < 0.9 · |I| logm, so |I| ≤ O(k/ log n).

Let α ∈ [m]I be an outcome for which Pr[xI = α] > 2−0.9·|I| logm, and take A′ := {x ∈ A : xI =
α}, which is fixed on I. To see that A′ is 0.9-dense on I, let x′ be the uniform random variable over
A′ and note that if H∞(x′J) < 0.9 · |J | logm for some nonempty J ⊆ I, a straightforward calculation
shows that then xI∪J would also have min-entropy rate < 0.9, contradicting the maximality of I.

3.3 Finding R

We initialize X := [m]n and Y := ({0, 1}m)n and iterate the following for i = 1, . . . , 2k rounds.

(‡) Round i: (loop invariant: Ri ∩X × Y ∩G−1(Z) is monochromatic)

Define a set A ⊆ X of weighty rows as

A := {x ∈ X : |Yx| ≥ 2mn−3n logm} where Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}.

Test whether there are many weighty rows: |A| ≥ mn/2k+1?

− If no, we update X ← X rA and Y ← Y r
⋃

x∈XrA Yx and proceed to the next round.
Since Ri ∩ G−1(Z) has been removed from X × Y , this ensures our loop invariant, as
explained in Section 3.1.

− If yes, we declare this round a success and halt.

X

Y

Ri

Ri ∩
X×Y ∩
G−1(Z)

G
−
1(Z

)

A

⋃
x∈XrA Yx

We shortly argue that the process halts with success. First, we show how to find a desired R
assuming the process is successful in round i (with associated sets Ri, X × Y , A, and Yx for x ∈ X).
Using Claim 12, obtain A′ ⊆ A which is fixed to α on some I ⊆ [n] of size O(k/ log n) and is
0.9-dense on I. Pick any x′ ∈ A′, and define γ ∈ {0, 1}I to be a value that maximizes the size of
B := {y ∈ Yx′ : gI(α, yI) = γ}. Note that |B| ≥ |Yx′ |/2|I| ≥ 2mn−3n logm−O(k/ logn) ≥ 2mn−m0.3

since
x′ ∈ A and k ≤ n log(2m).

We claim that R := A′ ×B can serve as our desired rectangle. Certainly, R touches G−1(Z`i)
(at (x′, y) for any y ∈ B) but not G−1(Z1−`i) by the loop invariant (since R ⊆ Ri ∩X × Y ). Also,
G(R) is fixed to γ on I. Defining

A′
I

:= {xI ∈ [m]I : αxI ∈ A
′} and BI := {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B}
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to be the projections of A′ and B to the coordinates I, we have that

A′
I

is 0.9-dense and D∞(BI) ≤ D∞(B) ≤ m0.3

(noting that D∞(BI) is relative to ({0, 1}m)I). Applying Lemma 11 to A′
I
×BI shows that G(R)

has full support on I. In summary, “zI = γ” is the conjunction we were looking for.
We now argue that the process halts with success. In each unsuccessful round, we remove

|A| < mn/2k+1 rows from X and at most
∑

x∈XrA |Yx| < mn · 2mn−3n logm ≤ 2mn/2k+1 columns
from Y (since k + 1 ≤ 2n logm). Suppose for contradiction that all 2k rounds are unsuccessful;
then at most half of the rows and half of the columns are removed altogether. Supposedly the set
X × Y we finish with is disjoint from

⋃
i∈[2k](Ri ∩G−1(Z)) = G−1(Z). But since Z is nonempty,

this contradicts the fact that G(X × Y ) has full support by Lemma 11 (as it is straightforward to
check that since X × Y contains at least half the rows and half the columns, it also satisfies the
assumptions of the lemma).

This concludes the proof of Theorem 5, except for the proof of Lemma 11.

3.4 Full Support Lemma

Lemma 11 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.3,
then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with G(x, y) = z).

For coordinates I ⊆ [n] we define BI := {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B} as the projection of
B onto I. Moreover, for V ⊆ {0, 1}m and i ∈ [n] we let Bi,V := {y ∈ B : yi ∈ V } be the restriction
of the i-th coordinate to be in V . We will often use combinations of these notations; e.g., Bn,V

[n−1]
denotes the restriction of the n-th coordinate to be in V , subsequently projected on the coordinates
in [n− 1].

We write random variables as bold letters. For a random variable y supported on B, yI denotes
the marginal distribution of y on the coordinates in I. In contrast, BI only denotes the set obtained
by projecting B on the coordinates in I, without any distribution associated to it. Note that while
D∞(B) is the deficiency relative to ({0, 1}m)n, the quantity D∞(BI) is the deficiency relative to
({0, 1}m)I ; i.e., D∞(BI) = m|I| − log |BI |.

Lemma 11 follows from the following two claims.

Claim 13 (Alice side). Suppose A ⊆ [m]n is 0.9-dense. Choose U := U1 × · · · × Un ⊆ [m]n

uniformly at random where each Ui ⊆ [m] is of size |Ui| = m0.36. Then

Pr[A ∩U 6= ∅] ≥ 1− 2m−0.01.

Claim 14 (Bob side). Let z ∈ {0, 1} and suppose B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.31. Choose
U ⊆ [m], |U | = m0.36, uniformly at random and let V := {y ∈ {0, 1}m : ∀j ∈ U , yj = z}. Then

for n ≥ 2: Pr
[
D∞

(
Bn,V

[n−1]

)
≤ D∞(B) + 1

]
≥ 1− 60m−0.28,

for n = 1: Pr [B ∩ V 6= ∅] ≥ 1− 60m−0.28.

We prove the Alice side claim shortly using the second moment method. The Bob side claim
follows by a tightened analysis of arguments from [RM99, GPW15], which we provide in Appendix B.
Let us see why these two claims imply Lemma 11.
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Proof of Lemma 11. Our goal is to show that for each z ∈ {0, 1}n we have A × B ∩ G−1(z) 6= ∅.
Choose U := U1 × · · · ×Un ⊆ [m]n, |Ui| = m0.36, uniformly at random. Correspondingly, define
V := V1 × · · · × Vn where Vi := {y ∈ {0, 1}m : ∀j ∈ Ui, yj = zi}. We have U × V ⊆ G−1(z) by
construction so it suffices to show that A×B ∩U × V is nonempty with positive probability. To
this end, we show that the events A ∩U 6= ∅ and B ∩ V 6= ∅ both happen with high probability,
and hence, by a union bound, A×B ∩U × V is nonempty with high probability. The Alice side
claim (Claim 13) already shows A ∩U 6= ∅ w.h.p., so it remains to consider B ∩ V .

Define BBi := B∩ (({0, 1}m)i×Vi+1×· · ·×Vn). That is, BBi is obtained by restricting the j-th
coordinate to be in Vj for i+ 1 ≤ j ≤ n. Note that BBn = B, BBi−1 = (BBi)i,Vi and BB0 = B ∩V .

Let B̂Bi := BBi
[i] be the projection of BBi onto [i]. We define the following events Ei:

for i ≥ 2: Ei ⇐⇒ D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1,

for i = 1: E1 ⇐⇒ B̂B1 ∩ V1 6= ∅.

Note that B̂B1 ∩ V1 6= ∅ implies that BB0 = B ∩ V 6= ∅. Conditioned on En ∩ · · · ∩ Ei+1, we have

D∞
(
B̂Bi

)
≤ D∞

(
B̂Bn

)
+ n− i− 1 ≤ m0.3 + n ≤ m0.31

and thus for i ≥ 2, we have from Claim 14 that D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1 holds with probability
at least 1− 60m−0.28. Thus

Pr[Ei | En ∩ · · · ∩ Ei+1] ≥ 1− 60m−0.28.

Also, conditioned on En ∩ · · · ∩ E2, we have D∞(B̂B1) ≤ m0.31, and hence using the case of n = 1
in Claim 14, Pr[B̂B1 ∩ V1 6= ∅] ≥ 1− 60m−0.28. That is,

Pr[E1 | En ∩ · · · ∩ E2] ≥ 1− 60m−0.28.

Now we are able to show B ∩ V 6= ∅ w.h.p., which concludes the proof:

Pr[B ∩ V 6= ∅] ≥ Pr[E1]

≥ Pr[En ∩ · · · ∩ E1]

=
∏n

i=1 Pr[Ei | En ∩ · · · ∩ Ei+1]

≥ (1− 60m−0.28)n

≥ 1− 60nm−0.28

= 1− 60m−0.03.

Proof of Claim 13. For each x ∈ A consider the indicator random variable 1x ∈ {0, 1} indicating
whether x ∈ U . Let s :=

∑
x∈A 1x so that s = |A∩U | and E[s] = δ|A|, where δ = |U |/mn = m−0.64n.

We use the second moment method to estimate

Pr[A ∩U 6= ∅] = 1−Pr[s = 0] ≥ 1− Var[s]

E[s]2
.

Thus, to prove the claim it suffices to show that Var[s] ≤ 2m−0.01 ·E[s]2 = 2m−0.01 · δ2|A|2. Since

Var[s] =
∑

x,x′ Cov[1x,1x′ ] =
∑

x,x′ (E[1x1x′ ]−E[1x]E[1x′ ]) ,

it suffices to show that, for each fixed x∗ ∈ A,∑
x∈A Cov[1x,1x∗ ] ≤ 2m−0.01 · δ2|A|.
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Fix x∗ ∈ A. Let Ix ⊆ [n] denote the set of all blocks i such that xi = x∗i . First note that under
Ix = ∅ it holds that Cov[1x,1x∗ ] < 0, i.e., the events “x ∈ U” and “x∗ ∈ U” are negatively
correlated. The interesting case is thus Ix 6= ∅ when the two events are positively correlated. We
note that

Pr[x ∈ U | x∗ ∈ U ] =
(
m0.36−1
m−1

)n−|Ix|
≤ m0.64|Ix| · δ. (2)

Let I be the distribution of Ix when x ∈ A is chosen uniformly at random. We have∑
x∈A Cov[1x,1x∗ ] ≤

∑
x:Ix 6=∅Cov[1x,1x∗ ]

≤
∑

x:Ix 6=∅E[1x1x∗ ]

=
∑

x:Ix 6=∅Pr[x ∈ U and x∗ ∈ U ]

= Pr[x∗ ∈ U ] ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U ]

= δ ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U ]

= δ|A| ·
∑
∅6=I⊆[n] Pr[I = I] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U ]

≤ δ|A| ·
∑
∅6=I⊆[n] Prx∼A[xI = x∗I ] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U ]

≤ δ|A| ·
∑
∅6=I⊆[n] 2−0.9|I| logm ·m0.64|I| · δ (0.9-density and (2))

= δ2|A| ·
∑
∅6=I⊆[n] 2−0.26|I| logm

= δ2|A| ·
∑

k∈[n]

(
n
k

)
2−0.26k logm

≤ δ2|A| ·
∑

k∈[n](m
0.25)k · 2−0.26k logm

≤ δ2|A| · 2 · 2−0.01 logm

≤ 2m−0.01 · δ2|A|.

4 Application

In this section we prove Theorem 2, restated here for convenience.

Theorem 2. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.

− F has large PNP communication complexity: PNPcc(F ) ≥ nΩ(1).
− For any product distribution µ over {0, 1}n×{0, 1}n, there exists a monochromatic rectangle R

that is large: log(1/µ(R)) ≤ logO(1) n.

The function witnessing the separation is F := f ◦ gn where g := Indm is the index function
with m := n4 and f : {0, 1}n → {0, 1} is defined as follows. We interpret the input M to f as a√
n×
√
n boolean matrix, and set

f(M) := 1 iff every row of M contains a unique 1-entry.

Complexity class aficionados [AKG17] can recognize f as the canonical complete problem for the
decision tree analogue of ∀·US (⊆ Π2P) where US is the class of functions whose 1-inputs admit a
unique witness [BG82]. We have F : {0, 1}n logm × {0, 1}nm → {0, 1}, but we can polynomially pad
Alice’s input length to match Bob’s (as in the statement of Theorem 2).
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4.1 Lower bound

It is proved in several sources [San89, Ko90, HJP95] that f cannot be computed by an efficient
Σ2P-type decision tree (i.e., quasi-polynomial-size depth-3 circuit with an Or-gate at the top and
small bottom fan-in), let alone an efficient PNP decision tree. However, for completeness, we might
as well give a simple proof using our characterization (Lemma 10). Applying the lifting theorem to
the following lemma yields the lower bound.

Lemma 15. DLdt(f) ≥
√
n.

Proof. By Lemma 10 it is enough to exhibit a nonempty subset Z ⊆ {0, 1}n of inputs such that
each conjunction C of width

√
n− 1 accepts an input in Z1 := Z ∩ f−1(1) iff it accepts an input in

Z0 := Z ∩ f−1(0). We define Z as the set of
√
n×
√
n matrices with at most one 1-entry in each

row. If C accepts an input M ∈ Z1, then there is some row of M none of whose entries are read
by C; we may modify that row to all-0 and conclude that C accepts an input in Z0. If C accepts
an input M ∈ Z0, then for each all-0 row of M there is some entry that is not read by C; we may
modify each of those entries to a 1 and conclude that C accepts an input in Z1.

4.2 Upper bound

Let µ be a product distribution over the domain of F = f ◦ gn. Call a matrix M heavy if it
contains a row with at least two 1-entries. Hence f(M) = 0 for every heavy matrix M . There is an
efficient nondeterministic protocol of cost k ≤ O(log n), call it Π, that checks whether a particular
(x, y) describes a heavy matrix M = gn(x, y). Namely, Π guesses a row index i ∈ [

√
n] and two

column indices 1 ≤ j < j′ ≤
√
n, and then communicates 2 logm + 1 ≤ O(log n) bits to check

that Mij = Mij′ = 1. We view Π as defining a rectangle covering
⋃

i∈[2k]Ri of all those (x, y) that
describe heavy matrices. Note that each Ri is monochromatic for F .

If there is an Ri with µ(Ri) ≥ 2−4k, the theorem is proved. So suppose not: µ(Ri) < 2−4k for
all i. Starting with S := domain of F and iterating over the Ri exactly as in the proof of Lemma 9,
we can delete from S either the rows or the columns of each Ri, ending up with a rectangle S still
of measure µ(S) ≥ 1− 2k · 2−2k ≥ 0.99. We will complete the argument by showing that FS (i.e., F
restricted to the rectangle S) admits a large monochromatic rectangle relative to µS , the conditional
distribution of µ given S (which is also product).

∀·US

∀·UP

∀·P

coNP

Large monochr.
rectangle

restrict to S

Yannakakis

=

product
method

All (x, y) ∈ S are such that M = gn(x, y) is not heavy. This means
that the function FS is easier than the (∀·US-complete) function F in
the following sense: for each row i ∈ [

√
n] there is an efficient O(log n)-

cost nondeterministic protocol, call it Πi, to check whether the i-th
row of M = gn(x, y) contains a 1-entry, and moreover, this protocol is
unambiguous in that it has at most one accepting computation on any
input. (In complexity lingo, FS admits an efficient ∀·UP protocol.) It
is a well-known theorem of Yannakakis [Yan91, Lemma 1] that any such
unambiguous Πi can be made deterministic with at most a quadratic
blow-up in cost; let Πdet

i be that O(log2 n)-bit deterministic protocol.
But now ¬FS (negation of FS) is computed by the following O(log2 n)-
bit nondeterministic protocol: on input (x, y) guess a row index i ∈ [

√
n]

and run Πdet
i accepting iff Πdet

i (x, y) = 0. (That is, FS admits an
efficient ∀·P = coNP protocol.) We proved NPcc(¬FS) ≤ O(log2 n); in
particular,

DLcc(FS) ≤ O(PNPcc(FS)) ≤ O(NPcc(¬FS)) ≤ O(log2 n).
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Hence we can apply (as a black box) the product method (Lemma 9) to find a monochromatic
rectangle R ⊆ S with log(1/µS(R)) ≤ O(log2 n) and hence log(1/µ(R)) ≤ O(log2 n). This completes
the proof of Theorem 2.

5 Odd-Max-Bit Lower Bound

Proof of Theorem 7: PNPdt(Omb) ≥ Ω(log n).

Consider any PNP decision tree of cost o(log n), i.e., on every root-to-leaf path, the sum of the widths
of the DNFs queried is o(log n). We exhibit an adversary strategy that finds an input on which
the decision tree fails to compute Omb. The adversary maintains a partial assignment (which fixes
some of the input bits to 0 or to 1 and leaves others unfixed), starting with the empty assignment
and fixing more bits in each round until a complete input has been specified at the end. The
game between the decision tree and the adversary follows a root-to-leaf path (with one round per
node on the path), and the adversary ensures that all inputs consistent with the current partial
assignment indeed lead the decision tree to the current node. In other words, in each non-leaf round
the adversary extends the partial assignment in a way that forces the current DNF query to evaluate
to a particular value (0 or 1). In the leaf round the adversary fixes all remaining bits to get an input
x such that the output produced at the leaf disagrees with Omb(x).

Here is our adversary strategy, which also maintains a contiguous “range” of indices (with
smaller indices being thought of as to the left, and larger indices to the right).

1. Initialize x = empty partial assignment, range = [n], and node = root of the decision tree.
2. While node is not a leaf:

2a. If the DNF queried at node contains a term that (i) is not refuted by x and (ii) does not
contain a positive literal whose index is in the right half of range, then:
. Extend x by fixing the bits appearing in the term in the unique way to satisfy it.
. Restrict range to its right half.
. Update node by following the edge labeled 1.

2b. Otherwise, if every term of the DNF either (i) is refuted by x or (ii) contains a positive
literal whose index is in the right half of range, then:
. Extend x by fixing all remaining bits in the right half of range to 0.
. Restrict range to its left half.
. Update node by following the edge labeled 0.

3. When node becomes a leaf:
. Find an index i in range such that xi is unfixed and such that i is odd if the leaf’s output

is 0 and is even if the leaf’s output is 1.
. Fix xi = 1.
. Fix all remaining bits of x to the right of i to 0.
. Fix all remaining bits of x to the left of i arbitrarily.

It is straightforward to verify that this adversary indeed ensures that all inputs consistent with the
current x lead to the current node: in step 2a it fixes bits in a way that forces the DNF to evaluate
to 1, and in step 2b it fixes bits in a way that forces the DNF to evaluate to 0. Furthermore, the
adversary maintains the following invariants:

(I) All bits to the right of range are fixed to 0.
(II) No bit within range is fixed to 1.

(III) The number of bits in range that are fixed to 0 is at most the sum of the widths of the DNFs
queried so far.
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(IV) The size of range is n/2depth(node) where depth(node) is the distance of node from the root.

Assuming that in step 3 such an i does, in fact, exist, (I) and (II) guarantee that i is the maximum
index of a 1 in the final x, so the output of the decision tree on x disagrees with Omb(x). To see
that such an i exists, note that (III) guarantees that the number of fixed bits in range is at most
the cost of the decision tree, which is at most log n, while (IV) guarantees that the size of range is
at least n/2depth-of-tree ≥ n/2o(logn) > 2 log n+ 1. Thus in step 3, range must contain both an odd
unfixed index and an even unfixed index.

6 Conclusion

Let PM(F ) denote the best lower bound on DLcc(F ) that can be derived by the product method
(Lemma 9). For any communication complexity measure C(F ), we use the convention that C by itself
refers to the class of (families of) functions F : {0, 1}n × {0, 1}n → {0, 1} with C(F ) ≤ polylog(n).
Then our application (Theorem 2) shows that the inclusion PNPcc ⊆ PM is strict: there is an
F ∈ PMr PNPcc. Here are some open questions.

(1) Is there an F ∈ PM r UPPcc? This would be a stronger result since PNPcc ⊆ UPPcc. Note
that our ∀·US-complete function does not witness this, since it is in PPcc. One way to see
this is to note that it is the intersection of a coNPcc function (does each row have at most
one 1?) and a PPcc function (is the number of 1’s at least the number of rows?), and use the
closure of PP under intersection [BRS95].

(2) Is there any reasonable upper bound for PM? For example, does PM ⊆ PSPACEcc hold?

(3) Does BPPcc ⊆ PM or even BPPcc ⊆ PNPcc hold for total functions? The separation BPPcc 6⊆
PM was shown for partial functions implicitly in [PSS14].

(4) Is there a lossless PNPdt-to-PNPcc lifting theorem (Conjecture 6)?

(5) Can the quadratic upper bounds in Facts 3 and 4 be shown tight for more general parameters
(beyond constant DLdt(f) and logarithmic DLcc(F ) as in Section 1.4)?
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A Appendix: Quadratic Relationship Between PNP and DL

Proof of Fact 3: Ω(DLdt(f)) ≤ PNPdt(f) ≤ O(DLdt(f)2 · log n).

For the first inequality, consider an optimal PNP decision tree for f of cost k. Assume all the 0-edges
point left and the 1-edges point right. We will generate a width-k conjunction decision list for f in
phases, one phase for each leaf of the tree in right-to-left order (i.e., reverse lexicographic order of
the bit strings formed by the edges along root-to-leaf paths). In each phase, say associated with
some path v0, v1, . . . , vh (where v0 is the root and vh is a leaf), we append to our decision list a set
of conjunctions (ordered arbitrarily among themselves), each labeled with vh’s output. Specifically,
the conjunctions associated with this path are each obtained by the following process: (i) for every
vi such that (vi, vi+1) is a 1-edge, choose a conjunction from the DNF queried by vi, and (ii) if the
conjunctions chosen in (i) are consistent with each other then form the conjunction of all of them
and append it to the decision list. By the definition of PNPdt cost, each conjunction we append has
width ≤ k. If an input follows the path v0, v1, . . . , vh, then the first conjunction in the decision list
that accepts it will indeed be from vh’s phase (hence have the correct label): the input is accepted by
the DNFs queried by each vi such that (vi, vi+1) is a 1-edge, and so is accepted by a conjunction in
vh’s phase; furthermore, no conjunction from an earlier phase can accept the input since they would
all include the literals of a conjunction from a DNF that rejects the input. Thus the conjunction
decision list we constructed is correct.

For the second inequality, consider an optimal conjunction decision list (C1, `1), . . . , (CL, `L) for
f of width k (which necessarily has length L ≤ 2k

(
n
k

)
≤ nO(k)). Our PNP decision tree will perform

a binary search to find the first conjunction Ci that accepts, then output `i. That is, the root will
query the disjunction of the first half of the Ci’s, (C1 ∨ C2 ∨ · · · ∨ CL/2), the 1-child of the root
will query the disjunction of the first quarter of the Ci’s, the 0-child of the root will query the
disjunction of the third quarter of the Ci’s, and so on. Since an execution consists of O(k · log n)
DNF queries, each of width ≤ k, the cost of our PNP decision tree for f is O(k2 · log n).

Proof of Fact 4: Ω(DLcc(F )) ≤ PNPcc(F ) ≤ O(DLcc(F )2).

The proof is very analogous to the proof of Fact 3 but with rectangles playing the role of conjunctions.
For the first inequality, consider an optimal PNP protocol tree for F of cost k. Assume all the

0-edges point left and the 1-edges point right. We will generate a cost-O(k) rectangle decision list
for F in phases, one phase for each leaf of the tree in right-to-left order (i.e., reverse lexicographic
order of the bit strings formed by the edges along root-to-leaf paths). In each phase, say associated
with some path v0, v1, . . . , vh (where v0 is the root and vh is a leaf), we append to our decision list a
set of rectangles (ordered arbitrarily among themselves), each labeled with vh’s output. Specifically,
the rectangles associated with this path are each obtained by the following process: (i) for every vi
such that (vi, vi+1) is a 1-edge, choose a rectangle from the union queried by vi, and (ii) append
the intersection of all the rectangles chosen in (i) to the decision list. (For the leftmost path, we
take the “intersection of no rectangles” to be the whole domain of F .) By the definition of PNPcc

cost, each phase contributes ≤ 2k rectangles and there are ≤ 2k phases, so the cost of the final
rectangle decision list is ≤ 2k. If an input follows the path v0, v1, . . . , vh, then the first rectangle
in the decision list that contains it will indeed be from vh’s phase (hence have the correct label):
the input is contained in the unions queried by each vi such that (vi, vi+1) is a 1-edge, and so is
contained in a rectangle in vh’s phase; furthermore, no rectangle from an earlier phase can contain
the input since they would all be contained within a union that does not contain the input. Thus
the rectangle decision list we constructed is correct.

For the second inequality, consider an optimal rectangle decision list (R1, `1), . . . , (R2k , `2k) for
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F . Our PNP protocol tree will perform a binary search to find the first rectangle Ri that contains
the input, then output `i. That is, the root will query the union of the first half of the Ri’s,
(R1∪R2∪· · ·∪R2k/2), the 1-child of the root will query the union of the first quarter of the Ri’s, the
0-child of the root will query the union of the third quarter of the Ri’s, and so on. Since an execution
consists of k oracle queries, each of cost ≤ k, the cost of our PNP protocol for F is ≤ k2.

B Appendix: Proof of Claim 14

We prove Claim 14 (restated below) using a combination of ideas in [RM99, GPW15]. We present a
tightened analysis of their arguments to show the high-probability conclusions of Claim 14. For the
sake of completeness, we reprove everything we need here. We start with a couple of claims.

Let W ⊆ {0, 1}m. For any j ∈ [m] and z ∈ {0, 1}, define W j,z := {w ∈W : wj = z} and
Badz(W ) := {j ∈ [m] : |W j,z| < |W |/4}. Recall that D∞(W ) = m− log |W |.

Claim 16. For every W ⊆ {0, 1}m and z ∈ {0, 1}, |Badz(W )| ≤ 6D∞(W ).

Proof. Let w be a random variable uniformly distributed over W and let H( · ) denote the Shannon
entropy. Note that j ∈ Badz(W ) iff Pr[wj = z] < 1/4. There are at most 6D∞(W ) coordinates
j such that Pr[wj = z] < 1/4, since otherwise H(w) ≤

∑m
j=1 H(wj) < 6D∞(W ) ·H(1/4) + (m−

D∞(W )) · 1 ≤ m − 6D∞(W ) · (1 − 0.82) ≤ m − D∞(W ), contradicting the fact that H(w) =
log |W | = m−D∞(W ).

Claim 17. Let z ∈ {0, 1} and suppose W ⊆ {0, 1}m satisfies D∞(W ) ≤ m0.32. Choose U ⊆ [m],
|U | = m0.36, uniformly at random and let V := {y ∈ {0, 1}m : ∀j ∈ U , yj = z}. Then

Pr[W ∩ V 6= ∅] ≥ 1− 20m−0.28.

Proof. Suppose we sample U := {j1, . . . , jm0.36} by iteratively picking each ji+1 ∈ [m]r {j1, . . . , ji}
uniformly at random. For 0 ≤ i ≤ m0.36, define Wi := {w ∈W : wj1 = · · · = wji = z}, and note

that W0 = W , Wi+1 = W
ji+1,z
i , and Wm0.36 = W ∩ V . That is, the chain W = W0 ⊇W1 ⊇ · · · ⊇

Wm0.36 = W ∩ V is obtained by restricting the bits indexed by U to z one by one.
Let Ei+1 be the event that “ji+1 /∈ Badz(Wi)”, and note that if Ei+1 occurs then D∞(Wi+1) ≤

D∞(Wi)+2. Thus, if E1∩· · ·∩Em0.36 occurs then D∞(W∩V ) ≤ D∞(W )+2m0.36 ≤ m0.32+2m0.36 <
m and hence W ∩V 6= ∅. Conditioned on any particular outcome of j1, . . . , ji for which E1∩· · ·∩Ei

occurs, by Claim 16 we have

|Badz(Wi)| ≤ 6D∞(Wi) ≤ 6(D∞(W ) + 2i) ≤ 6(m0.32 + 2m0.36) ≤ 18m0.36.

Thus,

Pr [Ei+1 | E1 ∩ · · · ∩ Ei] ≥ 1− Badz(Wi)

m− i
≥ 1− 18m0.36

(9/10)m
= 1− 20

m0.64
.

We conclude that

Pr[W ∩ V 6= ∅] ≥ Pr [E1 ∩ · · · ∩ Em0.36 ]

=
∏m0.36−1

i=0 Pr [Ei+1 | E1 ∩ · · · ∩ Ei]

≥
(
1− 20

m0.64

)m0.36

≥ 1− 20m−0.28.

16



Claim 14 (Bob side). Let z ∈ {0, 1} and suppose B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.31. Choose
U ⊆ [m], |U | = m0.36, uniformly at random and let V := {y ∈ {0, 1}m : ∀j ∈ U , yj = z}. Then

for n ≥ 2: Pr
[
D∞

(
Bn,V

[n−1]

)
≤ D∞(B) + 1

]
≥ 1− 60m−0.28,

for n = 1: Pr [B ∩ V 6= ∅] ≥ 1− 60m−0.28.

Proof. The case n = 1 follows immediately from Claim 17 with W := B, so consider the case
n ≥ 2. For y ∈ ({0, 1}m)n−1, define Wy := {w ∈ {0, 1}m : (y, w) ∈ B}. In words, Wy is the set of

all possible ways to complete the (n− 1)-tuple y to lie in B. Note that y ∈ Bn,V
[n−1] iff Wy ∩ V 6= ∅.

Write D := D∞(B) for short. We wish to bound the probability that

D∞
(
Bn,V

[n−1]

)
≤ D∞(B) + 1, equivalently:

∣∣Bn,V
[n−1]

∣∣
2mn−m ≥ 1

2
· |B|

2mn
=

2−D

2
.

Let B̂ := {y : |Wy| ≥ (1/4) · 2m−D}. Then

|B| ≤ |B̂| · 2m +
∣∣({0, 1}m)n−1 r B̂

∣∣ · 1
4 · 2

m−D ≤ |B̂| · 2m + 1
4 · 2

mn−D.

Since |B| = 2mn−D, we have |B̂| · 2m ≥ 3
4 · 2

mn−D, that is,

|B̂|
2mn−m ≥ 3

4 · 2
−D.

Thus, it suffices to simply prove that with probability at least 1− 60m−0.28, it holds that∣∣Bn,V
[n−1]

∣∣ ≥ 2
3 |B̂|, which is implied by:

∣∣B̂ rBn,V
[n−1]

∣∣ ≤ 1
3 |B̂|.

For any y ∈ B̂, we have D∞(Wy) ≤ D + 2 ≤ m0.31 + 2 ≤ m0.32, so by Claim 17,

Pr
[
y ∈ Bn,V

[n−1]

]
= Pr[Wy ∩ V 6= ∅] ≥ 1− 20m−0.28.

By linearity of expectation,

E
[∣∣B̂ rBn,V

[n−1]

∣∣] ≤ 20m−0.28 · |B̂|.

Using Markov’s inequality, we can then conclude that

Pr
[
D∞

(
Bn,V

[n−1]

)
> D∞(B) + 1

]
≤ Pr

[∣∣B̂ rBn,V
[n−1]

∣∣ > 1
3 |B̂|

]
≤ 60m−0.28.
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