

# Pseudorandom Generators for Low-Sensitivity Functions

Pooya Hatami<sup>\*</sup> DIMACS pooyahat@math.ias.edu Avishay Tal<sup>†</sup> Institute for Advanced Study avishay.tal@gmail.com

#### Abstract

A Boolean function is said to have maximal sensitivity s if s is the largest number of Hamming neighbors of a point which differ from it in function value. We construct a pseudorandom generator with seed-length  $2^{O(\sqrt{s})} \cdot \log(n)$  that fools Boolean functions on n variables with maximal sensitivity at most s. Prior to our work, the best pseudorandom generators for this class of functions required seed-length  $2^{O(s)} \cdot \log(n)$ .

## 1 Introduction

The sensitivity of a Boolean function  $f : \{-1,1\}^n \to \{-1,1\}$  at a point  $x \in \{-1,1\}^n$ , denoted s(f,x), is the number of neighbors of x in the Hypercube whose f-value is different than f(x). The maximal sensitivity of f, denoted s(f), is the maximum over s(f,x) for all  $x \in \{-1,1\}^n$ . The sensitivity conjecture by Nisan and Szegedy [Nis92, NS94] asserts that low-sensitivity functions (also called "smooth" functions) are "easy". More precisely, the conjecture states that any Boolean function whose maximal sensitivity is s can be computed by a decision tree of depth poly(s). The conjecture remains wide open for several decades now, and the state-of-the-art upper bounds on decision tree complexity are merely  $\exp(O(s))$ .

Assuming the sensitivity conjecture, low-sensitivity functions are not any stronger than low-depth decision trees, which substantially limits their power. Hence, towards settling the conjecture, it is natural to inspect how powerful low-sensitivity functions are. One approach that follows this idea aims to prove limitations of low-sensitivity functions, which follow from the sensitivity conjecture, unconditionally. This line of work was initiated recently by Gopalan et al. [GNS<sup>+</sup>16], who considered low-sensitivity functions as a complexity class. Denote by Sens(s) the class of Boolean functions with sensitivity at most s. The sensitivity conjecture asserts that Sens(s)  $\subseteq$  DecTree-depth(poly(s)), which then implies

$$\begin{aligned} \mathsf{Sens}(s) &\subseteq \mathsf{DecTree-depth}(\mathrm{poly}(s)) \subseteq \mathsf{DNF-size}(2^{\mathrm{poly}(s)}) \subseteq \mathsf{AC}^0\text{-size}(2^{\mathrm{poly}(s)}) \\ &\subseteq \mathsf{Formula-depth}(\mathrm{poly}(s)) \subseteq \mathsf{Circuit-size}(2^{\mathrm{poly}(s)}) \;, \end{aligned}$$

<sup>\*</sup>Partially supported by the National Science Foundation under agreement No. CCF-1412958.

<sup>&</sup>lt;sup>†</sup>Supported by the Simons Collaboration on Algorithms and Geometry, and by the National Science Foundation grant No. CCF-1412958.

whereas Gopalan et al. [GNS<sup>+</sup>16] proved that  $Sens(s) \subseteq Formula-depth(poly(s))$  unconditionally. It remains open to prove that Sens(s) is contained in smaller complexity classes such as  $AC^{0}$ -size $(2^{poly(s)})$  or even  $TC^{0}$ -size $(2^{poly(s)})$ .

One consequence of the sensitivity conjecture is the existence of pseudorandom generators (PRGs) with short seeds fooling low-sensitivity functions. This follows since k-wise independence fools degree k functions and the sensitivity conjecture asserts that  $\deg(f) \leq \operatorname{poly}(s(f))$  for any Boolean function f. Thus, under the conjecture, the standard construction of k-wise distributions gives a PRG with seed length  $\deg(f) \cdot \log(n) \leq \operatorname{poly}(s) \cdot \log(n)$  fooling Sens(s).<sup>1</sup> The goal of our work is to construct PRGs fooling Sens(s) unconditionally. We fall short of achieving seed length  $\operatorname{poly}(s) \cdot \log(n)$  and get the weaker seed length of  $2^{O(\sqrt{s})} \cdot \log(n)$ . Nonetheless, prior to our work, only seed-length  $2^{O(s)} \cdot \log(n)$  was known, which follows from the state of the art upper bounds on degree in terms of sensitivity  $\deg(f) \leq 2^{s(1+o(1))}$  [ABG+14].

The paradigm of Hardness vs Randomness, initiated by Nisan and Wigderson [NW94], asserts that PRGs and average-case lower bounds are essentially equivalent, for almost all reasonable complexity classes. For example, the average-case lower bound of Håstad [Hås86] for the parity function by  $AC^0$  circuits implies a pseudorandom generator fooling  $AC^0$ circuits with poly-logarithmic seed-length. This general transformation of hardness to randomness is achieved via the NW-generator, which constructs a PRG based on the hard function. In [GSTW16], it was proved that low-sensitivity functions can be  $\varepsilon$ -approximated by real polynomials of degree  $O(s \cdot \log(1/\varepsilon))$ , which implies that the parity function on n variables can only have agreement  $1/2 + 2^{-\Omega(n/s)}$  with Boolean functions of sensitivity s. In other words, the parity function on n variables is average-case hard for the class Sens(s). It thus seems very tempting to use the parity function in the NW-generator to construct a PRG fooling Sens(s), however, the proof does not follow through since the class of lowsensitivity functions is not closed under the transformations made by the analysis of the NW-generator (in particular it is not closed under identifying a set of the input variables with one variable). We do not claim that the NW-generator with the parity function does not fool Sens(s), but we point out that the argument in the standard proof breaks. (See more details in Appendix A).

#### 1.1 Our Results

A function  $G: \{-1,1\}^r \to \{-1,1\}^n$  is said to be a pseudorandom generator with seed-length r that  $\varepsilon$ -fools a class of Boolean functions C if for every  $f \in C$ :

$$\left| \mathbf{E}_{z \in R\{-1,1\}^r} [f(G(z))] - \mathbf{E}_{x \in R\{-1,1\}^n} [f(x)] \right| \le \varepsilon .$$

In other words, any  $f \in C$  cannot distinguish (with advantage greater than  $\varepsilon$ ) between an input sampled according to the uniform distribution over  $\{-1, 1\}^n$  and an input sampled according to the uniform distribution over  $\{-1, 1\}^r$  and expanded to an *n*-bit string using *G*.

The main contribution of this paper is the first pseudorandom generator for low-sensitivity Boolean functions with subexponential seed length in the sensitivity.

<sup>&</sup>lt;sup>1</sup>Even under the weaker conjecture  $Sens(s) \subseteq AC^0$ -size $(n^{poly(s)})$ , we would get that  $poly(s, \log n)$ -wise independence fools Sens(s) via the result of [Bra10].

**Theorem 1.1.** There is a distribution D on  $\{-1,1\}^n$  with seed-length  $2^{O(\sqrt{s+\log(1/\varepsilon)})} \cdot \log(n)$  that  $\varepsilon$ -fools every  $f : \{-1,1\}^n \to \{-1,1\}$  with s(f) = s.

Our construction relies on the following strengthening of Friedgut's Theorem for low sensitivity functions. (In the following, we denote by  $\mathbf{W}^{\geq k}[f] = \sum_{S \subset [n], |S| > k} \hat{f}(S)^2$ .)

**Lemma 1.2.** Let  $f : \{-1,1\}^n \to \{-1,1\}$  with  $s(f) \leq s$ . Let  $1 \leq k \leq s/10$ . Assume  $\mathbf{W}^{\geq k}[f] \leq 2^{-6s}$ , and that at most  $2^{-6s}$  fraction of the points in  $\{-1,1\}^n$  have sensitivity at least k. Then, f is a  $2^{20k}$ -junta.

#### **1.2** Proof Outline

Below we give a sketch of our proof of Theorem 1.1.

Similar to a construction of Trevisan and Xue [TX13], our pseudorandom generator involves repeated applications of "pseudorandom restrictions". Using Lemma 1.2 and studying the behavior of the Fourier spectrum of low-sensitivity functions under pseudorandom restrictions, we are able to prove the following. Let  $f : \{-1,1\}^n \to \{-1,1\}$  be a Boolean function, let  $S \subseteq [n]$  be randomly selected according to a k-wise independent distribution such that  $|S| \approx pn$ , and let  $x_{\overline{S}} = (x_i)_{i \notin S} \in \{-1,1\}^{|S|}$  be selected uniformly at random. Then

$$\Pr_{S,x_{\overline{S}}}[f(x_{\overline{S}},.) \text{ is not a } 2^{20k}\text{-junta}] \le O(ps)^k \cdot 2^{6s}.$$
(1)

Since every  $2^{20k}$ -junta is fooled by an almost  $2^{20k}$ -wise independent distribution, we will fill the  $x_S$  coordinates according to efficient constructions of such distributions due to [AGHP92]. The final distribution involves applying the above process repeatedly over the remaining unset variables (i.e.  $x_{\overline{S}}$ ) until all the coordinates are set, observing that for every  $J \subseteq [n]$ and  $x_J$ ,  $f(., x_J)$  has sensitivity at most s. The subexponential seed-length is achieved by optimizing the parameters k and p from (1) while making sure that the overall error does not exceed  $\varepsilon$ .

#### Discussion

Our overall construction involves a combination of several samples from any k-wise independent distribution for an appropriate k. It is not clear whether simply one sample from a k-wise independent distribution suffices to fool low sensitivity functions (recall that this is a consequence of the sensitivity conjecture with k = poly(s)). If this were true for all k-wise independent distributions, then via LP Duality (see the work of Bazzi [Baz09]) we would get that every Boolean function f with sensitivity s has sandwiching real polynomials  $f_{\ell}, f_u$  of degree k such that  $\forall x : f_{\ell}(x) \leq f(x) \leq f_u(x)$  and  $\mathbf{E}_x[f_u(x) - f_{\ell}(x)] \leq \epsilon$ . We ask if a similar characterization can be obtained for the class of functions fooled by our construction.

### **2** Preliminaries

We denote by  $[n] = \{1, \ldots, n\}$ . We denote by  $\mathcal{U}_n$  the uniform distribution over  $\{-1, 1\}^n$ . We denote by log and ln the logarithms in bases 2 and e, respectively. For  $f : \{-1, 1\}^n \to \mathbb{R}$ ,

we denote by  $||f||_p = (\mathbf{E}_{x \in \{-1,1\}^n}[|f(x)|^p])^{1/p}$ . For  $x \in \{-1,1\}^n$ , denote by  $x \oplus e_i$  the vector obtained from x by changing the sign of  $x_i$ .

For a Boolean function  $f : \{-1, 1\}^n \to \{-1, 1\}$ , denote by S(f, y), the set of sensitive coordinates of f at y, i.e.,

$$S(f, y) \triangleq \{i \in [n] : f(y) \neq f(y \oplus e_i)\}.$$

The sensitivity of f, denoted s(f, x), is defined to be the number of sensitive coordinates of f, namely s(f, x) = |S(f, x)|. For example if  $f(x_1, x_2, x_3) = x_1x_2$ , then s(f, 111) = 2 and  $S(f, 111) = \{1, 2\}$ . The sensitivity of a Boolean function f, denoted s(f) is the maximum s(f, x) over all choices of x.

#### 2.1 Harper's Inequality

**Theorem 2.1** (Harper's Inequality). Let G = (V, E) be the n-dimensional hypercube, where  $V = \{-1, 1\}^n$ . Let  $A \subseteq V$  be a non-empty set. Then,

$$\frac{|E(A, A^c)|}{|A|} \ge \log_2\left(\frac{2^n}{|A|}\right).$$

We will use the following simple corollary of Harper's inequality on multiple occasions:

**Corollary 2.2.** Let  $f : \{-1,1\}^n \to \{-1,1\}$  be a non-constant function with  $s^1(f) \leq s$ . Then,  $|f^{-1}(1)| \geq 2^{n-s}$ .

*Proof.* Let  $A = f^{-1}(1)$ . Since f is non-constant, |A| > 0. By Harper's inequality the average sensitivity of f on A is at least  $\log(2^n/|A|)$ . However the average sensitivity of f on A is at most s, hence  $\log(2^n/|A|) \le s$ , or equivalently,  $|A| \ge 2^{n-s}$ .

#### 2.2 Restrictions

**Definition 2.3** (Restriction). Let  $f : \{-1, 1\}^n \to \{-1, 1\}$  be a Boolean function. A restriction is a pair (J, z) where  $J \subseteq [n]$  and  $z \in \{-1, 1\}^{\overline{J}}$ . We denote by  $f_{J|z} : \{-1, 1\}^n \to \{-1, 1\}$  the function f restricted according to (J, z), defined by

$$f_{J|z}(x) = f(y), \quad where \quad y_i = \begin{cases} x_i, & i \in J \\ z_i, & otherwise \end{cases}$$

**Definition 2.4** (Random Valued Restriction). Let  $n \in \mathbb{N}$ . A random variable (J, z), distributed over restrictions of  $\{-1, 1\}^n$  is called random-valued if conditioned on J, the variable z is uniformly distributed over  $\{-1, 1\}^{\overline{J}}$ .

**Definition 2.5** ((p, k)-wise Random Selection). A random variable  $J \subseteq [n]$  is said to be a (p, k)-wise random selection if the events  $\{(1 \in J), (2 \in J), \dots, (n \in J)\}$  are k-wise independent, and each one of them happens with probability p.

A (k, p)-wise independent restriction is a random-valued restriction in which J is chosen using a (k, p)-wise independent selection.

#### 2.3 Fourier Analysis of Boolean Functions

Any function  $f: \{-1, 1\}^n \to \mathbb{R}$  has a unique Fourier representation:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

,

where the coefficients  $\hat{f}(S) \in \mathbb{R}$  are given by  $\hat{f}(S) = \mathbf{E}_x[f(x) \cdot \prod_{i \in S} x_i]$ . Parseval's identity states that  $\sum_S \hat{f}(S)^2 = \mathbf{E}_x[f(x)^2] = ||f||_2^2$ , and in the case that f is Boolean (i.e.,  $f : \{-1,1\}^n \to \{-1,1\}$ ), all are equal to 1. The Fourier representation is the unique multilinear polynomial which agrees with f on  $\{-1,1\}^n$ . We denoted by  $\deg(f)$  the degree of this polynomial, which also equals  $\max\{|S|: \hat{f}(S) \neq 0\}$ . We denote by

$$\mathbf{W}^{k}[f] \triangleq \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^{2}$$

the Fourier weight at level k of f. Similarly, we denote  $\mathbf{W}^{\geq k}[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2$ . For  $k \in \mathbb{N}$  we denote the k-th Fourier moment of f by

$$\operatorname{Inf}^{k}[f] \triangleq \sum_{S \subseteq [n]} \hat{f}(S)^{2} \cdot \binom{|S|}{k} = \sum_{d=1}^{n} \mathbf{W}^{d}[f] \cdot \binom{d}{k}.$$

We will use the following result of Gopalan et al. [GSTW16].

**Theorem 2.6** ([GSTW16]). Let f be a Boolean function with sensitivity at most s. Then, for all k,  $\text{Inf}^k[f] \leq (16 \cdot s)^k$ .

For more about Fourier moments of Boolean functions see [Tal14, GSTW16]. The following fact relates the Fourier coefficients of f and  $f_{J|z}$ , where (J, z) is a random valued restriction.

**Fact 2.7** (Proposition 4.17, [O'D14]). Let  $f : \{-1,1\}^n \to \mathbb{R}$ , let  $S \subseteq [n]$ , and let D be a distribution of random valued restrictions. Then,

$$\mathop{\mathbf{E}}_{(J,z)\sim D}\left[\widehat{f_{J|z}}(S)\right] = \widehat{f}(S) \cdot \mathop{\mathbf{Pr}}_{(J,z)\sim D}[S \subseteq J]$$

and

$$\mathop{\mathbf{E}}_{(J,z)\sim D}\left[\widehat{f_{J|z}}(S)^{2}\right] = \sum_{U\subseteq[n]}\widehat{f}(U)^{2}\cdot \mathop{\mathbf{Pr}}_{(J,z)\sim D}[J\cap U=S]$$

We include the proof of this fact for completeness.

*Proof.* Let  $(J, z) \sim D$ . Then, by definition of random valued restriction, given J we have that z is a random string in  $\{-1, 1\}^{\overline{J}}$ .

Fix J, and rewrite f's Fourier expansion by splitting the variables to  $(J, \overline{J})$ .

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq \bar{J}} \hat{f}(T \cup T') \cdot \prod_{j \in T'} x_j$$

Hence,

$$f_{J,z}(x) = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq \bar{J}} \hat{f}(T \cup T') \cdot \prod_{j \in T'} z_j$$

So the Fourier coefficient of S on  $f_{J,z}$  is 0 if  $S \not\subseteq J$  and it is  $\sum_{T' \subseteq \overline{J}} \hat{f}(S \cup T') \cdot \prod_{j \in T'} z_j$  otherwise. In other words,

$$\widehat{f_{J,z}}(S) = \mathbb{1}_{S \subseteq J} \cdot \sum_{T' \subseteq \overline{J}} \widehat{f}(S \cup T') \cdot \prod_{j \in T'} z_j ,$$

and it's expectation in z in the case  $S \subseteq J$  is  $\hat{f}(S)$ . As for the second moment,

$$\begin{split} \mathbf{E}_{J,z}[\widehat{f_{J,z}}(S)^2] &= \mathbf{E}_J[\mathbf{E}[\widehat{f_{J,z}}(S)^2]] = \mathbf{E}_J[\mathbbm{1}_{S\subseteq J} \cdot \mathbf{E}_z[(\sum_{T'\subseteq \bar{J}} \widehat{f}(S\cup T')\prod_{j\in T'} z_j)^2]] \\ &= \mathbf{E}_J[\mathbbm{1}_{S\subseteq J} \cdot \sum_{T'\subseteq \bar{J}} \widehat{f}(T\cup T')^2] = \sum_{U\subseteq [n]} \widehat{f}(U)^2 \cdot \mathbf{Pr}[J\cap U=S] \;. \end{split}$$

### **3** PRGs for Low-Sensitivity Functions

In this section we prove our main theorem.

**Theorem 1.1.** There is a distribution D on  $\{-1,1\}^n$  with seed-length  $2^{O(\sqrt{s+\log(1/\varepsilon)})} \cdot \log(n)$  that  $\varepsilon$ -fools every  $f : \{-1,1\}^n \to \{-1,1\}$  with s(f) = s.

Our main tool will be the following theorem stating that under k-wise independent random restrictions every low-sensitivity function becomes a junta with high probability. We postpone the proof of Theorem 3.1 to Section 4.

**Theorem 3.1.** Let  $f : \{-1,1\}^n \to \{-1,1\}$  with s(f) = s. Let  $1 \le k \le s/10$ , and let  $\mathcal{D}$  be a distribution of (k,p)-wise independent restrictions. Then,

$$\Pr_{(J,z)\sim\mathcal{D}}[f_{J|z} \text{ is not } a \ (2^{20k})\text{-junta}] \le O(ps)^k \cdot 2^{6s}$$

Theorem 3.1 allows us to employ the framework of Trevisan and Xue [TX13] who used a derandomized switching lemma to construct pseudorandom generators for AC0 circuits. In what follows we will make the following choices of parameters

i. 
$$k := O(\sqrt{s + \log(1/\varepsilon)})$$
.

ii. 
$$p := 2^{-k}/s = 2^{-O(\sqrt{s + \log(1/\varepsilon)})}$$

iii. 
$$m := O(p^{-1} \cdot \log(s \cdot 4^s/\varepsilon)) = 2^{O(\sqrt{s + \log(1/\varepsilon)})}$$

We select a sequence of disjoint sets  $J_1, ..., J_m$  as follows. We pick  $J_i \subseteq [n] \setminus (J_1 \cup \cdots \cup J_{i-1})$  by letting  $J_i := K_i \setminus (J_1 \cup \cdots \cup J_{i-1})$  where  $K_i \subseteq [n]$  is drawn from a (p, k)-wise independent selection. For each i, we pick  $x_{J_i} \in \{-1, 1\}^{|J_i|}$  according to an  $\frac{\varepsilon}{4m}$ -almost  $2^{20k}$ -wise independent distribution. Finally, we will fix  $x_i := 0$  for any  $i \in [n] \setminus (J_1 \cup \cdots \cup J_m)$ .

To account for the seed-length:

- By a construction of [ABI86] each  $K_i$  can be selected using  $O(k \cdot \log n)$  random bits, and
- By constructions of [AGHP92] each  $x_{J_i} \in \{-1, 1\}^{|J_i|}$  can be selected using  $O(2^{20k} + \log \log(n) + \log(1/\varepsilon))$  random bits.

Thus, the total seed-length is

$$O\left(m \cdot \left(2^{20k} + \log\log(n) + \log(1/\varepsilon) + k \cdot \log(n)\right)\right) \le 2^{O(\sqrt{s} + \log(1/\varepsilon))} \cdot \log(n)$$

To conclude the proof, we show that the above distribution fools sensitivity s Boolean functions. Denote by  $\mathcal{D}$  the distribution described above, and suppose  $f : \{-1,1\}^n \to \{-1,1\}$  satisfies s(f) = s. We first note that by a result of Simon [Sim83], f depends on at most  $s \cdot 4^s$  variables, denote this set S, so that  $|S| \leq s \cdot 4^s$ . By our choice of m, with probability at least  $1 - \frac{\varepsilon}{2}$ ,  $S \subseteq J_1 \cup \cdots \cup J_m$ .

We use x to denote a vector drawn from  $\mathcal{D}$  and y to denote a vector drawn according to the uniform distribution over  $\{-1,1\}^n$ . Moreover, for every  $i = 0, 1, \ldots, m$ , we let  $z_i := (x_{J_1}, \ldots, x_{J_i}, y_{[n] \setminus (J_1 \cup \ldots J_i)})$ . Note that  $z_0 = y$ . We first prove that for every  $i = 0, 1, \ldots, m - 1$ ,

$$\left| \underbrace{\mathbf{E}}_{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_i) - \underbrace{\mathbf{E}}_{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_{i+1}) \right| \le \frac{\varepsilon}{2m}.$$
 (2)

This holds since by Theorem 3.1, for every fixed choice of  $J_1, \ldots, J_i$  and  $x_{J_1}, \ldots, x_{J_i}$ , we have

$$\Pr_{J_{i+1}, y \sim \mathcal{U}} \left[ f(x_{J_1}, \dots, x_{J_i}, \cdot, y_{[n] \setminus (J_1 \cup \dots J_{i+1})}) \text{ is not a } 2^{20k} \text{-junta} \right] \le O(ps)^k \cdot 2^{5s} \le \frac{\varepsilon}{4m}$$

and that every  $2^{20k}$ -junta is  $\varepsilon/4m$ -fooled by any  $\varepsilon/4m$ -almost  $2^{20k}$ -wise independent distribution. By triangle inequality and summing up (2) for all *i* we get

$$\left| \underbrace{\mathbf{E}}_{y \sim \mathcal{U}} f(y) - \underbrace{\mathbf{E}}_{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_m) \right| \leq \sum_{i=0}^{m-1} \left| \underbrace{\mathbf{E}}_{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_i) - \underbrace{\mathbf{E}}_{x \sim \mathcal{U}, y \sim \mathcal{D}} f(z_{i+1}) \right| \leq \frac{\varepsilon}{2}.$$
 (3)

To finish the proof of Theorem 1.1, note that with probability at least  $1-\varepsilon/2$ ,  $f(x_{J_1},\ldots,x_{J_m},\cdot)$  is a constant function (which follows from  $S \subseteq J_1 \cup \cdots \cup J_m$ ), and thus  $|\mathbf{E}_{x,y} f(z_m) - \mathbf{E}_x f(x)| \le \varepsilon/2$ . Combining this with Eq. (3) gives  $|\mathbf{E}_{y\sim\mathcal{U}} f(y) - \mathbf{E}_{x\sim\mathcal{D}} f(x)| \le \varepsilon/2 + \varepsilon/2$ .

## 4 Measures of Boolean Functions under k-Wise Independent Random Restrictions

**Lemma 4.1.** Let  $t \in \mathbb{R}^+$  and  $f : \{-1,1\}^n \to \{-1,1\}$ . Let  $\mathcal{D}$  be a distribution of (k,p)-wise independent restrictions. Then, for any  $d \leq k$  we have

$$\mathop{\mathbf{E}}_{(J,z)\sim D}[\mathbf{W}^{\geq d}[f_{J|z}]] \le p^d \cdot \mathrm{Inf}^d[f].$$
(4)

*Proof.* Using Fact 2.7, we have

$$\mathbf{E}_{J,z}[\mathbf{W}^{\geq d}[f|_{J,z}]] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbf{Pr}_J[|U \cap J| \ge d]$$

Fix U. Let us upper bound  $\mathbf{Pr}_J[|U \cap J| \ge d]$ . It is at most  $\binom{|U|}{d} \cdot p^d$  by taking a union bound over all  $\binom{|U|}{d}$  subsets S of size d of U and noticing that  $\mathbf{Pr}_J[S \subseteq J] = p^d$  by the fact that J is a k-wise p-random restriction. We thus have

$$\mathbf{E}_{J,z}[\mathbf{W}^{\geq d}[f|_{J,z}]] \leq \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \binom{|U|}{d} \cdot p^d = \mathrm{Inf}^d[f] \cdot p^d.$$

**Lemma 4.2.** Let  $f : \{-1,1\}^n \to \{-1,1\}$ , with s(f) = s. Let  $\mathcal{D}$  be a distribution of (k,p)-wise independent restrictions. Then,

$$\mathop{\mathbf{E}}_{(J,z)\sim\mathcal{D}}\left[\mathop{\mathbf{Pr}}_{x}[s(f_{J|z},x)\geq k]\right]\leq (ps)^{k}$$

*Proof.* We expand  $\mathbf{E}_{(J,z)\sim\mathcal{D}}\left[\mathbf{Pr}_x[s(f_{J|z},x)\geq k]\right]$ :

$$\begin{split} \mathbf{E}_{J,z} \left[ \mathbf{P}_{x}^{\mathbf{r}} [s(f_{J|qz}, x) \geq k] \right] &= \mathbf{E}_{J} \mathbf{E}_{z \in \{-1,1\}^{\overline{J}} x \in \{-1,1\}^{n}} \left[ \mathbbm{1}_{\{s(f(z,.),x_{J}) \geq k\}} \right] \\ &= \mathbf{E}_{J} \mathbf{E}_{z \in \{-1,1\}^{\overline{J}} x_{J} \in \{-1,1\}^{J}} \left[ \mathbbm{1}_{\{s(f(z,.),x_{J}) \geq k\}} \right] \\ &= \mathbf{E}_{J} \mathbf{E}_{y \in \{-1,1\}^{n}} \left[ \mathbbm{1}_{\{s(f(y_{\overline{J}},.),y_{J}) \geq k\}} \right] \\ &= \mathbf{E}_{y \in \{-1,1\}^{n}} \left[ \mathbf{E}_{J} \left[ \mathbbm{1}_{\{s(f(y_{\overline{J}},.),y_{J}) \geq k\}} \right] \right] \\ &= \mathbf{E}_{y \in \{-1,1\}^{n}} \left[ \mathbf{P}_{J}^{\mathbf{r}} [|J \cap S(f,y)| \geq k] \right] \\ &\leq \mathbf{E}_{y \in \{-1,1\}^{n}} \left[ \binom{s(f,y)}{k} \cdot p^{k} \right] \leq (ps)^{k} \end{split}$$

where the second to last inequality is due to the following observation. We observe that for a given y and a set  $S = \{i_1, ..., i_k\}$  of k sensitive directions of f at y, the probability that  $S \subseteq J$  is  $p^k$ . We then union-bound over all subsets S of cardinality k of S(f, y).

We are now ready to prove the main theorem of this section (restated next).

**Theorem 3.1.** Let  $f : \{-1, 1\}^n \to \{-1, 1\}$  with s(f) = s. Let  $1 \le k \le s/10$ , and let  $\mathcal{D}$  be a distribution of (k, p)-wise independent restrictions. Then,

$$\Pr_{(J,z)\sim\mathcal{D}}[f_{J|z} \text{ is not } a \ (2^{20k})\text{-junta}] \le O(ps)^k \cdot 2^{6s}$$

*Proof.* We upper and lower bound the value of

$$(*) = \mathop{\mathbf{E}}_{(J,z)\sim\mathcal{D}} \left[ \mathbf{W}^{\geq k}[f_{J|z}] + \mathop{\mathbf{Pr}}_{x}[s(f_{J|z}, x) \geq k] \right].$$

For the upper bound we use Lemma 4.2 to get

$$\mathop{\mathbf{E}}_{(J,z)\sim\mathcal{D}}\left[\mathop{\mathbf{Pr}}_{x}[s(f_{J|z},x)\geq k]\right]\leq (ps)^{k},$$

and Lemma 4.1 and Theorem 2.6 to get

$$\mathop{\mathbf{E}}_{(J,z)\sim\mathcal{D}}\left[\mathbf{W}^{\geq k}[f_{J|z}]\right] \leq O(ps)^{k}$$

which gives  $(*) \leq O(ps)^k$ .

For the lower bound we use the following lemma, the proof of which we defer to Section 5.

**Lemma 1.2.** Let  $f : \{-1,1\}^n \to \{-1,1\}$  with  $s(f) \leq s$ . Let  $1 \leq k \leq s/10$ . Assume  $\mathbf{W}^{\geq k}[f] \leq 2^{-6s}$ , and that at most  $2^{-6s}$  fraction of the points in  $\{-1,1\}^n$  have sensitivity at least k. Then, f is a  $2^{20k}$ -junta.

Let  $\mathcal{E}$  be the event that  $f_{J|z}$  is not a  $2^{20k}$ -junta. Whenever  $\mathcal{E}$  occurs, Lemma 1.2 implies that either  $\mathbf{Pr}_x[s(f_{J|z}, x) \ge k] \ge 2^{-6s}$  or  $\mathbf{W}^{\ge k}[f_{J|z}] \ge 2^{-6s}$ . In both cases,  $\mathbf{Pr}_x[s(f_{J|z}, x) \ge k] + \mathbf{W}^{\ge k}[f_{J|z}] \ge 2^{-6s}$ . Thus, we get the lower bound

$$(*) \ge \mathbf{Pr}[\mathcal{E}] \cdot \mathop{\mathbf{E}}_{(J,z)} \left[ \mathbf{W}^{\ge k}[f_{J|z}] + \mathop{\mathbf{Pr}}_{x}[s(f_{J|z}, x) \ge k] \mid \mathcal{E} \right] \ge \mathbf{Pr}[\mathcal{E}] \cdot 2^{-6\varepsilon}$$

Comparing the upper and lower bound gives

$$\Pr_{(J,z)\sim\mathcal{D}}[f_{J|z} \text{ is not a } K\text{-junta}] = \Pr[\mathcal{E}] \le 2^{6s} \cdot (*) \le 2^{6s} \cdot O(ps)^k.$$

# 5 A Strengthening of Friedgut's Theorem for Low Sensitivity Functions

**Theorem 5.1** (Friedgut's Junta Theorem - [O'D14, Thm 9.28]). Let  $f : \{-1, 1\}^n \to \{-1, 1\}$ . Let  $0 < \varepsilon \leq 1$  and  $k \geq 0$ . If  $\mathbf{W}^{>k}[f] \leq \varepsilon$ , then f is  $2\varepsilon$ -close to a  $(9^k \cdot \text{Inf}[f]^3/\varepsilon^2)$ -junta.

**Lemma 1.2.** Let  $f : \{-1,1\}^n \to \{-1,1\}$  with  $s(f) \leq s$ . Let  $1 \leq k \leq s/10$ . Assume  $\mathbf{W}^{\geq k}[f] \leq 2^{-6s}$ , and that at most  $2^{-6s}$  fraction of the points in  $\{-1,1\}^n$  have sensitivity at least k. Then, f is a  $2^{20k}$ -junta.

*Proof.* We first show that  $\text{Inf}[f] \leq k$ . By Simon's work [Sim83], f depends on at most  $4^s \cdot s$  variables<sup>2</sup>. Thus,  $\text{Inf}[f] \leq (k-1) + \mathbf{W}^{\geq k}[f] \cdot (4^s \cdot s) \leq (k-1) + 1 = k$ . Apply Friedgut's theorem with  $\varepsilon = 2^{-6k-1} \geq \mathbf{W}^{\geq k}[f]$ . We get a K-junta h, for

$$K = 9^k \cdot \ln[f]^3 / \varepsilon^2 \le 9^k \cdot k^3 \cdot 2^{12k+2} < 2^{20k},$$

that  $2\varepsilon = 2^{-6k}$  approximates f. Let  $C_1, \ldots, C_N$  be the subcube corresponding to the  $N = 2^K$  different assignments to the junta variables. Without loss of generality, under each  $C_i$ , h

<sup>&</sup>lt;sup>2</sup>Note that our final goal will be to show that f actually depends on  $2^{20k}$  variables, and that k can be significantly smaller than s.

attains the constant value that is the majority-vote of f on  $C_i$ . In other words, f and h agree on at least 1/2 of the points in each subcube  $C_i$ .

Let  $p_i = |\{x \in C_i : f(x) \neq h(x)\}|/|C_i|$ , for  $i \in [N]$ . By the above discussion,  $0 \leq p_i \leq 1/2$ . In addition, since  $f|_{C_i}$  has sensitivity at most s, if  $p_i > 0$ , then  $p_i \geq 2^{-s}$  using Corollary 2.2.

Assume towards contradiction that  $h \neq f$ . We will think of the hamming cube  $\{-1, 1\}^n$  as an outer cube of dimension K, and an inner cube of dimension n - K. Each subcube  $C_i$  is an instance of the inner cube  $\{-1, 1\}^{n-K}$ . The graph of subcubes is an instance of the outer cube  $\{-1, 1\}^K$ . Call a subcube  $C_i$ :

decisive if  $p_i = 0$ ,

**confused** if  $2^{-s} \le p_i < 2^{-k-1}$ , or

indecisive if  $p_i \ge 2^{-k-1}$ .

Denote by  $\alpha, \beta, \gamma$  the fraction of decisive, confused and indecisive subcubes correspondingly.

Since we assumed (towards contradiction) that  $h \neq f$ , at least one subcube is confused or indecisive. Consider the graph G of subcubes, which is isomorphic to  $\{-1,1\}^K$ , in which each vertex represents either a decisive, confused or indecisive subcube, and two vertices are adjacent if and only if their corresponding subcubes are adjacent in  $\{-1,1\}^n$ . First, we show that at least  $2^{-2s}$  fraction of the subcubes are confused or indecisive. Assume otherwise, then by Harper's inequality (Thm. 2.1) there is a confused or indecisive cube  $C_i$  with at least 2s + 1 decisive subcubes as neighbors. As there are points with both  $\{-1,1\}$  values in  $C_i$ , we may pick a point  $x \in C_i$  whose value is the opposite of the majority of the decisive neighbor subcubes of  $C_i$ , which gives  $s(f, x) \geq s + 1$ , a contradiction. We thus have

$$\beta + \gamma \ge 2^{-2s} \tag{5}$$

Next, we show that  $\beta$  is very small and in particular much smaller than  $\gamma$ . Towards this end, we shall analyze the sensitivity within confused subcubes. If  $C_i$  is confused (i.e.,  $2^{-s} \leq p_i < 2^{-k-1}$ ), then by Harper's inequality (inside  $C_i$ ) the average sensitivity on the minority of  $f|_{C_i}$  is greater than k + 1. Since sensitivity ranges between 0 to s, at least 1/sof the points with minority value in  $f|_{C_i}$  have sensitivity at least k (otherwise the average sensitivity among them will be less than  $(1/s) \cdot s + k \leq k + 1$ ). As there are at least  $2^{-s}$ points with the minority value on the subcube  $C_i$ , we get that at least  $2^{-s}/s \geq 2^{-2s}$  fraction of the points in  $C_i$  have sensitivity at least k.

If the fraction of confused subcubes is more than  $2^{-2s}/(K+1)$ , then more than  $2^{-4s}/(K+1) \ge 2^{-6s}$  fraction of the points in  $\{-1,1\}^n$  has sensitivity at least k, which contradicts one of the assumptions. Thus,

$$\beta \le 2^{-2s}/(K+1).$$
 (6)

Furthermore, combining Eq. (5) and (6), we have that the fraction of indecisive subcubes,  $\gamma$ , is at least

$$\gamma \ge 2^{-2s} \cdot \frac{K}{K+1} \ge K \cdot \beta. \tag{7}$$

Consider again the graph G of subcubes (which is isomorphic to  $\{-1, 1\}^K$ ). Recall that each vertex in the graph G corresponds to a subcube which is either decisive, confused or indecisive. Call A the set of vertices that correspond to indecisive subcubes. Then,  $|A| = \gamma \cdot 2^K$ . By the fact that h approximates f with error at most  $2^{-6k}$ , the size of A is at most  $2^{-6k} \cdot 2^{k+1} \cdot 2^K \leq 2^{-4k} \cdot 2^K$ , i.e.,  $\gamma \leq 2^{-4k}$ . By Harper's inequality,  $|E(A, \overline{A})| \geq |A| \cdot (4k)$ . There are at most  $\beta \cdot 2^K \cdot K \leq \gamma \cdot 2^K = |A|$  edges touching confused nodes, hence there are at least  $|A| \cdot (4k-1)$  edges from A to decisive nodes. As before, the maximal number of edges from a node in A to decisive nodes is at most 2s, otherwise we get a contradiction to  $s(f) \leq s$ . This implies that at least 1/2s fraction of the nodes in A have at least 4k-2 edges to decisive subcubes. For each indecisive subcube  $C_i$  with at least 4k-2 edges to decisive subcubes, let  $b \in \{-1, 1\}$  be the majority-vote among these decisive subcubes. All points with value -b in  $C_i$  have sensitivity at least  $(4k-2)/2 \geq 2k-1 \geq k$ , and the fraction of such points in  $C_i$  is at least  $2^{-k-1}$ . Using Eq. (7) we get that

$$\gamma \cdot \frac{1}{2s} \cdot 2^{-k-1} \ge 2^{-2s} \cdot \frac{K}{K+1} \cdot \frac{1}{2s} \cdot 2^{-k-1} \ge 2^{-6s}$$

of the points in  $\{-1, 1\}^n$  have sensitivity at least k, which yields a contradiction.

### Acknowledgements

We would like to thank Li-Yang Tan for bringing the problem to our attention and for stimulating and helpful discussions.

### References

- [ABG<sup>+</sup>14] A. Ambainis, M. Bavarian, Y. Gao, J. Mao, X. Sun, and S. Zuo. Tighter relations between sensitivity and other complexity measures. In *ICALP* (1), pages 101– 113, 2014.
- [ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. *Journal of algorithms*, 7(4):567–583, 1986.
- [AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost k-wise independent random variables. *Random Structures and Algorithms*, 3(3):289–304, 1992.
- [Baz09] L. M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. *SIAM J. Comput.*, 38(6):2220–2272, 2009.
- [Bra10] M. Braverman. Polylogarithmic independence fools  $ac^0$  circuits. J. ACM, 57(5):28:1-28:10, 2010.
- [GNS<sup>+</sup>16] P. Gopalan, N. Nisan, R. A. Servedio, K. Talwar, and A. Wigderson. Smooth boolean functions are easy: Efficient algorithms for low-sensitivity functions. In *ITCS*, pages 59–70, 2016.

- [GSTW16] P. Gopalan, R. A. Servedio, A. Tal, and A. Wigderson. Degree and sensitivity: tails of two distributions. *Electronic Colloquium on Computational Complexity* (ECCC), 23:69, 2016.
- [Hås86] J. Håstad. Almost optimal lower bounds for small depth circuits. In *STOC*, pages 6–20, 1986.
- [Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. *Combina*torica, 12(4):449–461, 1992.
- [NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational Complexity, 4:301–313, 1994.
- [NW94] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167, 1994.
- [O'D14] R. O'Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
- [Sim83] H. U. Simon. A tight  $\Omega(\log \log n)$ -bound on the time for parallel ram's to compute nondegenerated boolean functions. In *Foundations of computation theory*, pages 439–444. Springer, 1983.
- [Tal14] A. Tal. Tight bounds on the Fourier spectrum of  $AC^0$ . Electronic Colloquium on Computational Complexity (ECCC), 21:174, 2014.
- [TX13] L. Trevisan and T. Xue. A derandomized switching lemma and an improved derandomization of AC0. In *CCC*, pages 242–247, 2013.

# A Does the NW-Generator Fool Low-Sensitivity Functions?

In this section we recall the construction and analysis of the NW-Generator [NW94]. For ease of notation, we treat Boolean functions here as  $f : \{0,1\}^n \to \{0,1\}$ . Suppose we want to construct a pseudorandom generator fooling a class of Boolean functions C. Nisan and Wigderson provide a generic way to construct such PRGs based on the premise that there is some explicit function f which is average-case hard for a class C' that slightly extends C. Recall that Sens(s) is the class of all Boolean functions with sensitivity at most s. In the case C = Sens(s), the argument may fail, because C' is not provably similar to C. The difficulty comes from the fact that low-sensitivity functions are not closed under projections as will be explained later.

Let  $f : \{0,1\}^{\ell} \to \{0,1\}$  be a function that is average-case hard for class  $\mathcal{C}$ . Let  $S_1, \ldots, S_n \subseteq [r]$  be a design over a universe of size r where  $|S_i| = \ell$ , and  $|S_i \cap S_j| \leq \alpha$  for all  $i \neq j \in [n]$  (think of  $\alpha$  as much smaller than  $\ell$ ). The NW-generator  $G_f : \{0,1\}^r \to \{0,1\}^n$  is defined as

$$G_f(x_1, \ldots, x_r) = (f(x_{S_1}), f(x_{S_2}), \ldots, f(x_{S_n}))$$

where  $x_{S_i}$  is the restriction of x to the coordinates in  $S_i$ , for any set  $S_i \subseteq [n]$ .

The proof that the NW-generator fools C goes via a contrapositive argument. We assume that there is a distinguisher  $c \in C$  such that

$$\mathbf{E}_{z \in R\{0,1\}^r}[c(G_f(z))] - \mathbf{E}_{x \in R\{0,1\}^n}[c(x)] \ge \varepsilon ,$$

and prove that f can be computed on more than  $1/2 + \Omega(\varepsilon)/n$  fraction of the inputs by some function c'' which is not much more complicated than c. First, by Yao's next-bit predictor lemma, there exists an  $i \in [n]$  and constants  $a_i, \ldots, a_n, b \in \{0, 1\}$  such that

$$\Pr_{x \in \{0,1\}^r} [c\left(f(x_{S_1}), f(x_{S_2}), \dots, f(x_{S_{i-1}}), a_i, \dots, a_n\right) \oplus b = f(x_{S_i})] \ge \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}$$

Since the class of function with sensitivity s is closed under restrictions (i.e., fixing the input variables to constant values) and negations we have that  $c'(z_1, \ldots, z_{i-1}) := c(z_1, \ldots, z_{i-1}, a_i, \ldots, a_n) \oplus b$  is of sensitivity at most s. We get

$$\Pr_{x \in \{0,1\}^r} [c'(f(x_{S_1}), f(x_{S_2}), \dots, f(x_{S_{i-1}})) = f(x_{S_i})] \ge \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}$$

Next, we wish to fix all values in  $[r] \setminus S_i$ . By averaging there exists an assignment y to the variables in  $[r] \setminus S_i$  such that

$$\Pr_{x \in \{0,1\}^{S_i}} [c'(f((x \circ y)_{S_1}), f((x \circ y)_{S_2}), \dots, f((x \circ y)_{S_{i-1}})) = f(x_{S_i})] \ge \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}$$

Note that for j = 1, ..., i - 1, the value of  $f((x \circ y)_{S_j})$  depends only on the variables in  $S_j \cap S_i$  and there aren't too many such variables (at most  $\alpha$ ). The next step is to consider  $c'' : \{0,1\}^{S_i} \to \{0,1\}$ , defined by  $c''(x) = c'(f((x \circ y)_{S_1}), f((x \circ y)_{S_2}), ..., f((x \circ y)_{S_{i-1}}))$ , that have agreement at least  $1/2 + \Omega(\varepsilon)/n$  with  $f(x_{S_i})$ . If c'' is a "simple" function then we get a contradiction as f is average-case hard.

It seems that c'' is simple, since it is the composition of c' with  $\alpha$ -juntas. However, the point that we want to make is that even if c' is low-sensitivity and even if  $\alpha = 1$ , we are not guaranteed that c'' is of low-sensitivity.

To see this, suppose that  $\alpha = 1$ , i.e., all  $|S_j \cap S_i| \leq 1$  for j < i. This means that as a function of x, each  $f((x \circ y)_{S_j})$  depends on at most one variable, i.e.,  $f((x \circ y)_{S_j}) = a_j \cdot x_{k_j} \oplus b_j$  for some index  $k_j \in S_i$  and some constants  $a_j, b_j \in \{0, 1\}$ . We get that

$$c''(x) = c'(a_1 \cdot x_{k_1} \oplus b_1, a_2 \cdot x_{k_2} \oplus b_2, \dots, a_2 \cdot x_{k_{i-1}} \oplus b_{i-1}).$$

Next, we argue that c'' could potentially have very high sensitivity. To see that, observe that flipping one bit  $x_i$  in the input to c'' results in changing a block of variables in the input to c', as there may be several j for which  $k_j = i$ . In the worst-case scenario, the sensitivity of c'' could be as big as the block sensitivity of c'. However, the best known bound is only  $bs(f) \leq 2^{s(f) \cdot (1+o(1))}$  for any Boolean function f [ABG<sup>+</sup>14]. This means that we can only guarantee that  $s(c'') \leq bs(c') \leq 2^{s \cdot (1+o(1))}$ , and we do not have average-case hardness for such high-sensitivity functions. **Remark:** The above argument shows that the standard analysis of the Nisan-Wigderson generator applied to low-sensitivity Boolean functions breaks, but it does not mean that the generator does not ultimately fool Sens(s). Indeed, assuming the sensitivity conjecture, the argument will follow through.

ECCC

ISSN 1433-8092

https://eccc.weizmann.ac.il