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Abstract

A Boolean function is said to have maximal sensitivity s if s is the largest number
of Hamming neighbors of a point which differ from it in function value. We construct
a pseudorandom generator with seed-length 2O(

√
s) · log(n) that fools Boolean func-

tions on n variables with maximal sensitivity at most s. Prior to our work, the best
pseudorandom generators for this class of functions required seed-length 2O(s) · log(n).

1 Introduction

The sensitivity of a Boolean function f : {−1, 1}n → {−1, 1} at a point x ∈ {−1, 1}n,
denoted s(f, x), is the number of neighbors of x in the Hypercube whose f -value is different
than f(x). The maximal sensitivity of f , denoted s(f), is the maximum over s(f, x) for all
x ∈ {−1, 1}n. The sensitivity conjecture by Nisan and Szegedy [Nis92, NS94] asserts that
low-sensitivity functions (also called “smooth” functions) are “easy”. More precisely, the
conjecture states that any Boolean function whose maximal sensitivity is s can be computed
by a decision tree of depth poly(s). The conjecture remains wide open for several decades
now, and the state-of-the-art upper bounds on decision tree complexity are merely exp(O(s)).

Assuming the sensitivity conjecture, low-sensitivity functions are not any stronger than
low-depth decision trees, which substantially limits their power. Hence, towards settling the
conjecture, it is natural to inspect how powerful low-sensitivity functions are. One approach
that follows this idea aims to prove limitations of low-sensitivity functions, which follow
from the sensitivity conjecture, unconditionally. This line of work was initiated recently by
Gopalan et al. [GNS+16], who considered low-sensitivity functions as a complexity class.
Denote by Sens(s) the class of Boolean functions with sensitivity at most s. The sensitivity
conjecture asserts that Sens(s) ⊆ DecTree-depth(poly(s)), which then implies

Sens(s) ⊆ DecTree-depth(poly(s)) ⊆ DNF-size(2poly(s)) ⊆ AC0-size(2poly(s))

⊆ Formula-depth(poly(s)) ⊆ Circuit-size(2poly(s)) ,
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whereas Gopalan et al. [GNS+16] proved that Sens(s) ⊆ Formula-depth(poly(s)) uncondi-
tionally. It remains open to prove that Sens(s) is contained in smaller complexity classes
such as AC0-size(2poly(s)) or even TC0-size(2poly(s)).

One consequence of the sensitivity conjecture is the existence of pseudorandom generators
(PRGs) with short seeds fooling low-sensitivity functions. This follows since k-wise indepen-
dence fools degree k functions and the sensitivity conjecture asserts that deg(f) ≤ poly(s(f))
for any Boolean function f . Thus, under the conjecture, the standard construction of k-wise
distributions gives a PRG with seed length deg(f) · log(n) ≤ poly(s) · log(n) fooling Sens(s).1

The goal of our work is to construct PRGs fooling Sens(s) unconditionally. We fall short
of achieving seed length poly(s) · log(n) and get the weaker seed length of 2O(

√
s) · log(n).

Nonetheless, prior to our work, only seed-length 2O(s) · log(n) was known, which follows
from the state of the art upper bounds on degree in terms of sensitivity deg(f) ≤ 2s(1+o(1))

[ABG+14].
The paradigm of Hardness vs Randomness, initiated by Nisan and Wigderson [NW94],

asserts that PRGs and average-case lower bounds are essentially equivalent, for almost all
reasonable complexity classes. For example, the average-case lower bound of H̊astad [H̊as86]
for the parity function by AC0 circuits implies a pseudorandom generator fooling AC0

circuits with poly-logarithmic seed-length. This general transformation of hardness to ran-
domness is achieved via the NW-generator, which constructs a PRG based on the hard
function. In [GSTW16], it was proved that low-sensitivity functions can be ε-approximated
by real polynomials of degree O(s · log(1/ε)), which implies that the parity function on n
variables can only have agreement 1/2 + 2−Ω(n/s) with Boolean functions of sensitivity s. In
other words, the parity function on n variables is average-case hard for the class Sens(s).
It thus seems very tempting to use the parity function in the NW-generator to construct
a PRG fooling Sens(s), however, the proof does not follow through since the class of low-
sensitivity functions is not closed under the transformations made by the analysis of the
NW-generator (in particular it is not closed under identifying a set of the input variables
with one variable). We do not claim that the NW-generator with the parity function does
not fool Sens(s), but we point out that the argument in the standard proof breaks. (See
more details in Appendix A).

1.1 Our Results

A function G : {−1, 1}r → {−1, 1}n is said to be a pseudorandom generator with seed-length
r that ε-fools a class of Boolean functions C if for every f ∈ C:∣∣∣∣ E

z∈R{−1,1}r
[f(G(z))]− E

x∈R{−1,1}n
[f(x)]

∣∣∣∣ ≤ ε .

In other words, any f ∈ C cannot distinguish (with advantage greater than ε) between an
input sampled according to the uniform distribution over {−1, 1}n and an input sampled
according to the uniform distribution over {−1, 1}r and expanded to an n-bit string using G.

The main contribution of this paper is the first pseudorandom generator for low-sensitivity
Boolean functions with subexponential seed length in the sensitivity.

1Even under the weaker conjecture Sens(s) ⊆ AC0-size(npoly(s)), we would get that poly(s, log n)-wise
independence fools Sens(s) via the result of [Bra10].
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Theorem 1.1. There is a distribution D on {−1, 1}n with seed-length 2O(
√

s+log(1/ε)) · log(n)
that ε-fools every f : {−1, 1}n → {−1, 1} with s(f) = s.

Our construction relies on the following strengthening of Friedgut’s Theorem for low
sensitivity functions. (In the following, we denote by W≥k[f ] =

∑
S⊆[n],|S|≥k f̂(S)2.)

Lemma 1.2. Let f : {−1, 1}n → {−1, 1} with s(f) ≤ s. Let 1 ≤ k ≤ s/10. Assume
W≥k[f ] ≤ 2−6s, and that at most 2−6s fraction of the points in {−1, 1}n have sensitivity at
least k. Then, f is a 220k-junta.

1.2 Proof Outline

Below we give a sketch of our proof of Theorem 1.1.
Similar to a construction of Trevisan and Xue [TX13], our pseudorandom generator in-

volves repeated applications of “pseudorandom restrictions”. Using Lemma 1.2 and studying
the behavior of the Fourier spectrum of low-sensitivity functions under pseudorandom re-
strictions, we are able to prove the following. Let f : {−1, 1}n → {−1, 1} be a Boolean
function, let S ⊆ [n] be randomly selected according to a k-wise independent distribution

such that |S| ≈ pn, and let xS = (xi)i 6∈S ∈ {−1, 1}|S| be selected uniformly at random. Then

Pr
S,xS

[f(xS, .) is not a 220k-junta] ≤ O(ps)k · 26s. (1)

Since every 220k-junta is fooled by an almost 220k-wise independent distribution, we will fill
the xS coordinates according to efficient constructions of such distributions due to [AGHP92].
The final distribution involves applying the above process repeatedly over the remaining
unset variables (i.e. xS) until all the coordinates are set, observing that for every J ⊆ [n]
and xJ , f(., xJ) has sensitivity at most s. The subexponential seed-length is achieved by
optimizing the parameters k and p from (1) while making sure that the overall error does
not exceed ε.

Discussion

Our overall construction involves a combination of several samples from any k-wise indepen-
dent distribution for an appropriate k. It is not clear whether simply one sample from a
k-wise independent distribution suffices to fool low sensitivity functions (recall that this is a
consequence of the sensitivity conjecture with k = poly(s)). If this were true for all k-wise
independent distributions, then via LP Duality (see the work of Bazzi [Baz09]) we would get
that every Boolean function f with sensitivity s has sandwiching real polynomials f`, fu of
degree k such that ∀x : f`(x) ≤ f(x) ≤ fu(x) and Ex[fu(x)− f`(x)] ≤ ε. We ask if a similar
characterization can be obtained for the class of functions fooled by our construction.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by Un the uniform distribution over {−1, 1}n. We
denote by log and ln the logarithms in bases 2 and e, respectively. For f : {−1, 1}n → R,
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we denote by ‖f‖p =
(
Ex∈{−1,1}n [|f(x)|p]

)1/p
. For x ∈ {−1, 1}n, denote by x⊕ ei the vector

obtained from x by changing the sign of xi.
For a Boolean function f : {−1, 1}n → {−1, 1}, denote by S(f, y), the set of sensitive

coordinates of f at y, i.e.,

S(f, y) , {i ∈ [n] : f(y) 6= f(y ⊕ ei)} .

The sensitivity of f , denoted s(f, x), is defined to be the number of sensitive coordinates of
f , namely s(f, x) = |S(f, x)|. For example if f(x1, x2, x3) = x1x2, then s(f, 111) = 2 and
S(f, 111) = {1, 2}. The sensitivity of a Boolean function f , denoted s(f) is the maximum
s(f, x) over all choices of x.

2.1 Harper’s Inequality

Theorem 2.1 (Harper’s Inequality). Let G = (V,E) be the n-dimensional hypercube, where
V = {−1, 1}n. Let A ⊆ V be a non-empty set. Then,

|E(A,Ac)|
|A|

≥ log2

(
2n

|A|

)
.

We will use the following simple corollary of Harper’s inequality on multiple occasions:

Corollary 2.2. Let f : {−1, 1}n → {−1, 1} be a non-constant function with s1(f) ≤ s.
Then, |f−1(1)| ≥ 2n−s.

Proof. Let A = f−1(1). Since f is non-constant, |A| > 0. By Harper’s inequality the average
sensitivity of f on A is at least log(2n/|A|). However the average sensitivity of f on A is at
most s, hence log(2n/|A|) ≤ s, or equivalently, |A| ≥ 2n−s. �

2.2 Restrictions

Definition 2.3 (Restriction). Let f : {−1, 1}n → {−1, 1} be a Boolean function. A restric-

tion is a pair (J, z) where J ⊆ [n] and z ∈ {−1, 1}J . We denote by fJ |z : {−1, 1}n → {−1, 1}
the function f restricted according to (J, z), defined by

fJ |z(x) = f(y), where yi =

{
xi, i ∈ J
zi, otherwise

.

Definition 2.4 (Random Valued Restriction). Let n ∈ N. A random variable (J, z), dis-
tributed over restrictions of {−1, 1}n is called random-valued if conditioned on J , the variable

z is uniformly distributed over {−1, 1}J .

Definition 2.5 ((p, k)-wise Random Selection). A random variable J ⊆ [n] is said to be a
(p, k)-wise random selection if the events {(1 ∈ J), (2 ∈ J), . . . , (n ∈ J)} are k-wise indepen-
dent, and each one of them happens with probability p.

A (k, p)-wise independent restriction is a random-valued restriction in which J is chosen
using a (k, p)-wise independent selection.
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2.3 Fourier Analysis of Boolean Functions

Any function f : {−1, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x) ·
∏

i∈S xi]. Parseval’s identity

states that
∑

S f̂(S)2 = Ex[f(x)2] = ‖f‖2
2, and in the case that f is Boolean (i.e., f :

{−1, 1}n → {−1, 1}), all are equal to 1. The Fourier representation is the unique multilinear
polynomial which agrees with f on {−1, 1}n. We denoted by deg(f) the degree of this
polynomial, which also equals max{|S| : f̂(S) 6= 0}. We denote by

Wk[f ] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote W≥k[f ] ,
∑

S⊆[n],|S|≥k f̂(S)2. For
k ∈ N we denote the k-th Fourier moment of f by

Infk[f ] ,
∑
S⊆[n]

f̂(S)2 ·
(
|S|
k

)
=

n∑
d=1

Wd[f ] ·
(
d

k

)
.

We will use the following result of Gopalan et al. [GSTW16].

Theorem 2.6 ([GSTW16]). Let f be a Boolean function with sensitivity at most s. Then,
for all k, Infk[f ] ≤ (16 · s)k.

For more about Fourier moments of Boolean functions see [Tal14, GSTW16]. The fol-
lowing fact relates the Fourier coefficients of f and fJ |z, where (J, z) is a random valued
restriction.

Fact 2.7 (Proposition 4.17, [O’D14]). Let f : {−1, 1}n → R, let S ⊆ [n], and let D be a
distribution of random valued restrictions. Then,

E
(J,z)∼D

[
f̂J |z(S)

]
= f̂(S) · Pr

(J,z)∼D
[S ⊆ J ]

and
E

(J,z)∼D

[
f̂J |z(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
(J,z)∼D

[J ∩ U = S]

We include the proof of this fact for completeness.

Proof. Let (J, z) ∼ D. Then, by definition of random valued restriction, given J we have

that z is a random string in {−1, 1}J .
Fix J , and rewrite f ’s Fourier expansion by splitting the variables to (J, J).

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi =
∑
T⊆J

∏
i∈T

xi ·
∑
T ′⊆J

f̂(T ∪ T ′) ·
∏
j∈T ′

xj
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Hence,

fJ,z(x) =
∑
T⊆J

∏
i∈T

xi ·
∑
T ′⊆J

f̂(T ∪ T ′) ·
∏
j∈T ′

zj

So the Fourier coefficient of S on fJ,z is 0 if S * J and it is
∑

T ′⊆J f̂(S ∪ T ′) ·
∏

j∈T ′ zj
otherwise. In other words,

f̂J,z(S) = 1S⊆J ·
∑
T ′⊆J

f̂(S ∪ T ′) ·
∏
j∈T ′

zj ,

and it’s expectation in z in the case S ⊆ J is f̂(S). As for the second moment,

E
J,z

[f̂J,z(S)2] = E
J

[E
z

[f̂J,z(S)2]] = E
J

[1S⊆J · E
z

[(
∑
T ′⊆J

f̂(S ∪ T ′)
∏
j∈T ′

zj)
2]]

= E
J

[1S⊆J ·
∑
T ′⊆J

f̂(T ∪ T ′)2] =
∑
U⊆[n]

f̂(U)2 ·Pr[J ∩ U = S] . �

3 PRGs for Low-Sensitivity Functions

In this section we prove our main theorem.

Theorem 1.1. There is a distribution D on {−1, 1}n with seed-length 2O(
√

s+log(1/ε)) · log(n)
that ε-fools every f : {−1, 1}n → {−1, 1} with s(f) = s.

Our main tool will be the following theorem stating that under k-wise independent ran-
dom restrictions every low-sensitivity function becomes a junta with high probability. We
postpone the proof of Theorem 3.1 to Section 4.

Theorem 3.1. Let f : {−1, 1}n → {−1, 1} with s(f) = s. Let 1 ≤ k ≤ s/10, and let D be
a distribution of (k, p)-wise independent restrictions. Then,

Pr
(J,z)∼D

[fJ |z is not a (220k)-junta] ≤ O(ps)k · 26s

Theorem 3.1 allows us to employ the framework of Trevisan and Xue [TX13] who used a
derandomized switching lemma to construct pseudorandom generators for AC0 circuits. In
what follows we will make the following choices of parameters

i. k := O(
√
s+ log(1/ε)).

ii. p := 2−k/s = 2−O(
√

s+log(1/ε))

iii. m := O(p−1 · log(s · 4s/ε)) = 2O(
√

s+log(1/ε))

We select a sequence of disjoint sets J1, ..., Jm as follows. We pick Ji ⊆ [n]\(J1 ∪ · · · ∪
Ji−1) by letting Ji := Ki\(J1 ∪ · · · ∪ Ji−1) where Ki ⊆ [n] is drawn from a (p, k)-wise

independent selection. For each i, we pick xJi ∈ {−1, 1}|Ji| according to an ε
4m

-almost
220k-wise independent distribution. Finally, we will fix xi := 0 for any i ∈ [n]\(J1∪· · ·∪Jm).

To account for the seed-length:
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• By a construction of [ABI86] each Ki can be selected using O(k · log n) random bits,
and

• By constructions of [AGHP92] each xJi ∈ {−1, 1}|Ji| can be selected using O(220k +
log log(n) + log(1/ε)) random bits.

Thus, the total seed-length is

O
(
m ·
(
220k + log log(n) + log(1/ε) + k · log(n)

))
≤ 2O(

√
s+log(1/ε)) · log(n) .

To conclude the proof, we show that the above distribution fools sensitivity s Boolean
functions. Denote by D the distribution described above, and suppose f : {−1, 1}n →
{−1, 1} satisfies s(f) = s. We first note that by a result of Simon [Sim83], f depends on
at most s · 4s variables, denote this set S, so that |S| ≤ s · 4s. By our choice of m, with
probability at least 1− ε

2
, S ⊆ J1 ∪ · · · ∪ Jm.

We use x to denote a vector drawn from D and y to denote a vector drawn according
to the uniform distribution over {−1, 1}n. Moreover, for every i = 0, 1, . . . ,m, we let zi :=
(xJ1 , ..., xJi , y[n]\(J1∪...Ji)). Note that z0 = y. We first prove that for every i = 0, 1, . . . ,m− 1,∣∣∣∣ E

x∼D,y∼U
f(zi)− E

x∼D,y∼U
f(zi+1)

∣∣∣∣ ≤ ε

2m
. (2)

This holds since by Theorem 3.1, for every fixed choice of J1, . . . , Ji and xJ1 , . . . xJi , we have

Pr
Ji+1,y∼U

[
f(xJ1 , . . . , xJi , · , y[n]\(J1∪...Ji+1)) is not a 220k-junta

]
≤ O(ps)k · 25s ≤ ε

4m
,

and that every 220k-junta is ε/4m-fooled by any ε/4m-almost 220k-wise independent distri-
bution. By triangle inequality and summing up (2) for all i we get∣∣∣∣ E

y∼U
f(y)− E

x∼D,y∼U
f(zm)

∣∣∣∣ ≤ m−1∑
i=0

∣∣∣∣ E
x∼D,y∼U

f(zi)− E
x∼U ,y∼D

f(zi+1)

∣∣∣∣ ≤ ε

2
. (3)

To finish the proof of Theorem 1.1, note that with probability at least 1−ε/2, f(xJ1 , . . . , xJm , ·)
is a constant function (which follows from S ⊆ J1∪· · ·∪Jm), and thus |Ex,y f(zm)−Ex f(x)| ≤
ε/2. Combining this with Eq. (3) gives |Ey∼U f(y)− Ex∼D f(x)| ≤ ε/2 + ε/2.

4 Measures of Boolean Functions under k-Wise Inde-

pendent Random Restrictions

Lemma 4.1. Let t ∈ R+ and f : {−1, 1}n → {−1, 1}. Let D be a distribution of (k, p)-wise
independent restrictions. Then, for any d ≤ k we have

E
(J,z)∼D

[W≥d[fJ |z]] ≤ pd · Infd[f ]. (4)
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Proof. Using Fact 2.7, we have

E
J,z

[W≥d[f |J,z]] =
∑
U⊆[n]

f̂(U)2 ·Pr
J

[|U ∩ J | ≥ d]

Fix U . Let us upper bound PrJ [|U ∩J | ≥ d]. It is at most
(|U |

d

)
·pd by taking a union bound

over all
(|U |

d

)
subsets S of size d of U and noticing that PrJ [S ⊆ J ] = pd by the fact that J

is a k-wise p-random restriction. We thus have

E
J,z

[W≥d[f |J,z]] ≤
∑
U⊆[n]

f̂(U)2 ·
(
|U |
d

)
· pd = Infd[f ] · pd. �

Lemma 4.2. Let f : {−1, 1}n → {−1, 1}, with s(f) = s. Let D be a distribution of (k, p)-
wise independent restrictions. Then,

E
(J,z)∼D

[
Pr
x

[s(fJ |z, x) ≥ k]
]
≤ (ps)k.

Proof. We expand E(J,z)∼D
[
Prx[s(fJ |z, x) ≥ k]

]
:

E
J,z

[
Pr
x

[s(fJ |qz, x) ≥ k]
]

= E
J

E
z∈{−1,1}J

E
x∈{−1,1}n

[
1{s(f(z,.),xJ )≥k}

]
= E

J
E

z∈{−1,1}J
E

xJ∈{−1,1}J

[
1{s(f(z,.),xJ )≥k}

]
= E

J
E

y∈{−1,1}n

[
1{s(f(yJ ,.),yJ )≥k}

]
= E

y∈{−1,1}n

[
E
J

[
1{s(f(yJ ,.),yJ )≥k}

]]
= E

y∈{−1,1}n

[
Pr
J

[|J ∩ S(f, y)| ≥ k]
]

≤ E
y∈{−1,1}n

[(
s(f, y)

k

)
· pk
]
≤ (ps)k

where the second to last inequality is due to the following observation. We observe that for
a given y and a set S = {i1, ..., ik} of k sensitive directions of f at y, the probability that
S ⊆ J is pk. We then union-bound over all subsets S of cardinality k of S(f, y). �

We are now ready to prove the main theorem of this section (restated next).

Theorem 3.1. Let f : {−1, 1}n → {−1, 1} with s(f) = s. Let 1 ≤ k ≤ s/10, and let D be
a distribution of (k, p)-wise independent restrictions. Then,

Pr
(J,z)∼D

[fJ |z is not a (220k)-junta] ≤ O(ps)k · 26s

Proof. We upper and lower bound the value of

(∗) = E
(J,z)∼D

[
W≥k[fJ |z] + Pr

x
[s(fJ |z, x) ≥ k]

]
.
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For the upper bound we use Lemma 4.2 to get

E
(J,z)∼D

[
Pr
x

[s(fJ |z, x) ≥ k]
]
≤ (ps)k,

and Lemma 4.1 and Theorem 2.6 to get

E
(J,z)∼D

[
W≥k[fJ |z]

]
≤ O(ps)k,

which gives (∗) ≤ O(ps)k.
For the lower bound we use the following lemma, the proof of which we defer to Section 5.

Lemma 1.2. Let f : {−1, 1}n → {−1, 1} with s(f) ≤ s. Let 1 ≤ k ≤ s/10. Assume
W≥k[f ] ≤ 2−6s, and that at most 2−6s fraction of the points in {−1, 1}n have sensitivity at
least k. Then, f is a 220k-junta.

Let E be the event that fJ |z is not a 220k-junta. Whenever E occurs, Lemma 1.2 implies
that either Prx[s(fJ |z, x) ≥ k] ≥ 2−6s or W≥k[fJ |z] ≥ 2−6s. In both cases, Prx[s(fJ |z, x) ≥
k] + W≥k[fJ |z] ≥ 2−6s. Thus, we get the lower bound

(∗) ≥ Pr[E ] · E
(J,z)

[
W≥k[fJ |z] + Pr

x
[s(fJ |z, x) ≥ k] | E

]
≥ Pr[E ] · 2−6s

Comparing the upper and lower bound gives

Pr
(J,z)∼D

[fJ |z is not a K-junta] = Pr[E ] ≤ 26s · (∗) ≤ 26s ·O(ps)k . �

5 A Strengthening of Friedgut’s Theorem for Low Sen-

sitivity Functions

Theorem 5.1 (Friedgut’s Junta Theorem - [O’D14, Thm 9.28]). Let f : {−1, 1}n → {−1, 1}.
Let 0 < ε ≤ 1 and k ≥ 0. If W>k[f ] ≤ ε, then f is 2ε-close to a (9k · Inf[f ]3/ε2)-junta.

Lemma 1.2. Let f : {−1, 1}n → {−1, 1} with s(f) ≤ s. Let 1 ≤ k ≤ s/10. Assume
W≥k[f ] ≤ 2−6s, and that at most 2−6s fraction of the points in {−1, 1}n have sensitivity at
least k. Then, f is a 220k-junta.

Proof. We first show that Inf[f ] ≤ k. By Simon’s work [Sim83], f depends on at most 4s · s
variables2. Thus, Inf[f ] ≤ (k − 1) + W≥k[f ] · (4s · s) ≤ (k − 1) + 1 = k. Apply Friedgut’s
theorem with ε = 2−6k−1 ≥W≥k[f ]. We get a K-junta h, for

K = 9k · Inf[f ]3/ε2 ≤ 9k · k3 · 212k+2 < 220k,

that 2ε = 2−6k approximates f . Let C1, . . . , CN be the subcube corresponding to the N = 2K

different assignments to the junta variables. Without loss of generality, under each Ci, h

2Note that our final goal will be to show that f actually depends on 220k variables, and that k can be
significantly smaller than s.
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attains the constant value that is the majority-vote of f on Ci. In other words, f and h
agree on at least 1/2 of the points in each subcube Ci.

Let pi = |{x ∈ Ci : f(x) 6= h(x)}|/|Ci|, for i ∈ [N ]. By the above discussion, 0 ≤
pi ≤ 1/2. In addition, since f |Ci

has sensitivity at most s, if pi > 0, then pi ≥ 2−s using
Corollary 2.2.

Assume towards contradiction that h 6= f . We will think of the hamming cube {−1, 1}n
as an outer cube of dimension K, and an inner cube of dimension n−K. Each subcube Ci

is an instance of the inner cube {−1, 1}n−K . The graph of subcubes is an instance of the
outer cube {−1, 1}K . Call a subcube Ci:

decisive if pi = 0,

confused if 2−s ≤ pi < 2−k−1, or

indecisive if pi ≥ 2−k−1.

Denote by α, β, γ the fraction of decisive, confused and indecisive subcubes correspondingly.
Since we assumed (towards contradiction) that h 6= f , at least one subcube is confused

or indecisive. Consider the graph G of subcubes, which is isomorphic to {−1, 1}K , in which
each vertex represents either a decisive, confused or indecisive subcube, and two vertices are
adjacent if and only if their corresponding subcubes are adjacent in {−1, 1}n. First, we show
that at least 2−2s fraction of the subcubes are confused or indecisive. Assume otherwise,
then by Harper’s inequality (Thm. 2.1) there is a confused or indecisive cube Ci with at
least 2s+ 1 decisive subcubes as neighbors. As there are points with both {−1, 1} values in
Ci, we may pick a point x ∈ Ci whose value is the opposite of the majority of the decisive
neighbor subcubes of Ci, which gives s(f, x) ≥ s+ 1, a contradiction. We thus have

β + γ ≥ 2−2s (5)

Next, we show that β is very small and in particular much smaller than γ. Towards
this end, we shall analyze the sensitivity within confused subcubes. If Ci is confused (i.e.,
2−s ≤ pi < 2−k−1), then by Harper’s inequality (inside Ci) the average sensitivity on the
minority of f |Ci

is greater than k + 1. Since sensitivity ranges between 0 to s, at least 1/s
of the points with minority value in f |Ci

have sensitivity at least k (otherwise the average
sensitivity among them will be less than (1/s) · s + k ≤ k + 1). As there are at least 2−s

points with the minority value on the subcube Ci, we get that at least 2−s/s ≥ 2−2s fraction
of the points in Ci have sensitivity at least k.

If the fraction of confused subcubes is more than 2−2s/(K+1), then more than 2−4s/(K+
1) ≥ 2−6s fraction of the points in {−1, 1}n has sensitivity at least k, which contradicts one
of the assumptions. Thus,

β ≤ 2−2s/(K + 1). (6)

Furthermore, combining Eq. (5) and (6), we have that the fraction of indecisive subcubes,
γ, is at least

γ ≥ 2−2s · K

K + 1
≥ K · β. (7)

Consider again the graph G of subcubes (which is isomorphic to {−1, 1}K). Recall that
each vertex in the graph G corresponds to a subcube which is either decisive, confused
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or indecisive. Call A the set of vertices that correspond to indecisive subcubes. Then,
|A| = γ · 2K . By the fact that h approximates f with error at most 2−6k, the size of A is at
most 2−6k ·2k+1 ·2K ≤ 2−4k ·2K , i.e., γ ≤ 2−4k. By Harper’s inequality, |E(A,A)| ≥ |A| · (4k).
There are at most β · 2K ·K ≤ γ · 2K = |A| edges touching confused nodes, hence there are
at least |A| · (4k − 1) edges from A to decisive nodes. As before, the maximal number of
edges from a node in A to decisive nodes is at most 2s, otherwise we get a contradiction to
s(f) ≤ s. This implies that at least 1/2s fraction of the nodes in A have at least 4k−2 edges
to decisive subcubes. For each indecisive subcube Ci with at least 4k − 2 edges to decisive
subcubes, let b ∈ {−1, 1} be the majority-vote among these decisive subcubes. All points
with value −b in Ci have sensitivity at least (4k − 2)/2 ≥ 2k − 1 ≥ k, and the fraction of
such points in Ci is at least 2−k−1. Using Eq. (7) we get that

γ · 1

2s
· 2−k−1 ≥ 2−2s · K

K + 1
· 1

2s
· 2−k−1 ≥ 2−6s

of the points in {−1, 1}n have sensitivity at least k, which yields a contradiction. �
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A Does the NW-Generator Fool Low-Sensitivity Func-

tions?

In this section we recall the construction and analysis of the NW-Generator [NW94]. For
ease of notation, we treat Boolean functions here as f : {0, 1}n → {0, 1}. Suppose we want
to construct a pseudorandom generator fooling a class of Boolean functions C. Nisan and
Wigderson provide a generic way to construct such PRGs based on the premise that there
is some explicit function f which is average-case hard for a class C ′ that slightly extends
C. Recall that Sens(s) is the class of all Boolean functions with sensitivity at most s. In
the case C = Sens(s), the argument may fail, because C ′ is not provably similar to C. The
difficulty comes from the fact that low-sensitivity functions are not closed under projections
as will be explained later.

Let f : {0, 1}` → {0, 1} be a function that is average-case hard for class C. Let
S1, . . . , Sn ⊆ [r] be a design over a universe of size r where |Si| = `, and |Si ∩ Sj| ≤ α for all
i 6= j ∈ [n] (think of α as much smaller than `). The NW-generator Gf : {0, 1}r → {0, 1}n
is defined as

Gf (x1, . . . , xr) = (f(xS1), f(xS2), . . . , f(xSn))

where xSi
is the restriction of x to the coordinates in Si, for any set Si ⊆ [n].

12



The proof that the NW-generator fools C goes via a contrapositive argument. We assume
that there is a distinguisher c ∈ C such that∣∣∣∣ E

z∈R{0,1}r
[c(Gf (z))]− E

x∈R{0,1}n
[c(x)]

∣∣∣∣ ≥ ε ,

and prove that f can be computed on more than 1/2+Ω(ε)/n fraction of the inputs by some
function c′′ which is not much more complicated than c. First, by Yao’s next-bit predictor
lemma, there exists an i ∈ [n] and constants ai, . . . , an, b ∈ {0, 1} such that

Pr
x∈{0,1}r

[c
(
f(xS1), f(xS2), . . . , f(xSi−1

), ai, . . . , an
)
⊕ b = f(xSi

)] ≥ 1

2
+

Ω(ε)

n
.

Since the class of function with sensitivity s is closed under restrictions (i.e., fixing the input
variables to constant values) and negations we have that c′(z1, . . . , zi−1) := c(z1, . . . , zi−1, ai, . . . , an)⊕
b is of sensitivity at most s. We get

Pr
x∈{0,1}r

[c′(f(xS1), f(xS2), . . . , f(xSi−1
)) = f(xSi

)] ≥ 1

2
+

Ω(ε)

n
.

Next, we wish to fix all values in [r] \ Si. By averaging there exists an assignment y to the
variables in [r] \ Si such that

Pr
x∈{0,1}Si

[c′(f((x ◦ y)S1), f((x ◦ y)S2), . . . , f((x ◦ y)Si−1
)) = f(xSi

)] ≥ 1

2
+

Ω(ε)

n
.

Note that for j = 1, . . . , i − 1, the value of f((x ◦ y)Sj
) depends only on the variables in

Sj ∩ Si and there aren’t too many such variables (at most α). The next step is to consider

c′′ : {0, 1}Si → {0, 1}, defined by c′′(x) = c′(f((x ◦ y)S1), f((x ◦ y)S2), . . . , f((x ◦ y)Si−1
)), that

have agreement at least 1/2 + Ω(ε)/n with f(xSi
). If c′′ is a “simple” function then we get

a contradiction as f is average-case hard.
It seems that c′′ is simple, since it is the composition of c′ with α-juntas. However, the

point that we want to make is that even if c′ is low-sensitivity and even if α = 1, we are not
guaranteed that c′′ is of low-sensitivity.

To see this, suppose that α = 1, i.e., all |Sj ∩ Si| ≤ 1 for j < i. This means that as a
function of x, each f((x◦y)Sj

) depends on at most one variable, i.e., f((x◦y)Sj
) = aj ·xkj⊕bj

for some index kj ∈ Si and some constants aj, bj ∈ {0, 1}. We get that

c′′(x) = c′(a1 · xk1 ⊕ b1, a2 · xk2 ⊕ b2, . . . , a2 · xki−1
⊕ bi−1).

Next, we argue that c′′ could potentially have very high sensitivity. To see that, observe that
flipping one bit xi in the input to c′′ results in changing a block of variables in the input
to c′, as there may be several j for which kj = i. In the worst-case scenario, the sensitivity
of c′′ could be as big as the block sensitivity of c′. However, the best known bound is only
bs(f) ≤ 2s(f)·(1+o(1)) for any Boolean function f [ABG+14]. This means that we can only
guarantee that s(c′′) ≤ bs(c′) ≤ 2s·(1+o(1)), and we do not have average-case hardness for such
high-sensitivity functions.
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Remark: The above argument shows that the standard analysis of the Nisan-Wigderson
generator applied to low-sensitivity Boolean functions breaks, but it does not mean that the
generator does not ultimately fool Sens(s). Indeed, assuming the sensitivity conjecture, the
argument will follow through.
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