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Abstract

A Boolean function is said to have maximal sensitivity s if s is the largest number
of Hamming neighbors of a point which differ from it in function value. We construct
a pseudorandom generator with seed-length 20(v®) . log(n) that fools Boolean func-
tions on n variables with maximal sensitivity at most s. Prior to our work, the best
pseudorandom generators for this class of functions required seed-length 2°(%) - log(n).

1 Introduction

The sensitivity of a Boolean function f : {—1,1}" — {—1,1} at a point x € {—1,1}",
denoted s(f,z), is the number of neighbors of x in the Hypercube whose f-value is different
than f(z). The maximal sensitivity of f, denoted s(f), is the maximum over s(f,x) for all
x € {—1,1}". The sensitivity conjecture by Nisan and Szegedy [Nis92, NS94| asserts that
low-sensitivity functions (also called “smooth” functions) are “easy”. More precisely, the
conjecture states that any Boolean function whose maximal sensitivity is s can be computed
by a decision tree of depth poly(s). The conjecture remains wide open for several decades
now, and the state-of-the-art upper bounds on decision tree complexity are merely exp(O(s)).

Assuming the sensitivity conjecture, low-sensitivity functions are not any stronger than
low-depth decision trees, which substantially limits their power. Hence, towards settling the
conjecture, it is natural to inspect how powerful low-sensitivity functions are. One approach
that follows this idea aims to prove limitations of low-sensitivity functions, which follow
from the sensitivity conjecture, unconditionally. This line of work was initiated recently by
Gopalan et al. [GNST16], who considered low-sensitivity functions as a complexity class.
Denote by Sens(s) the class of Boolean functions with sensitivity at most s. The sensitivity
conjecture asserts that Sens(s) C DecTree-depth(poly(s)), which then implies

Sens(s) C DecTree-depth(poly(s)) € DNF-size(2P°V(®)) C AC-size(2P°V ()
C Formula-depth(poly(s)) C Circuit-size(2P°Y(*)) |
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whereas Gopalan et al. [GNS'16] proved that Sens(s) C Formula-depth(poly(s)) uncondi-
tionally. It remains open to prove that Sens(s) is contained in smaller complexity classes
such as AC"-size(2P°¥(%)) or even TC’-size(2PV(*)).

One consequence of the sensitivity conjecture is the existence of pseudorandom generators
(PRGs) with short seeds fooling low-sensitivity functions. This follows since k-wise indepen-
dence fools degree k functions and the sensitivity conjecture asserts that deg(f) < poly(s(f))
for any Boolean function f. Thus, under the conjecture, the standard construction of k-wise
distributions gives a PRG with seed length deg(f)-log(n) < poly(s) -log(n) fooling Sens(s).!
The goal of our work is to construct PRGs fooling Sens(s) unconditionally. We fall short
of achieving seed length poly(s) - log(n) and get the weaker seed length of 2°0v®) . log(n).
Nonetheless, prior to our work, only seed-length 2°¢) . log(n) was known, which follows
from the state of the art upper bounds on degree in terms of sensitivity deg(f) < 25(1+e(1)
[ABGT14].

The paradigm of Hardness vs Randomness, initiated by Nisan and Wigderson [NW94],
asserts that PRGs and average-case lower bounds are essentially equivalent, for almost all
reasonable complexity classes. For example, the average-case lower bound of Hastad [Has86]
for the parity function by AC? circuits implies a pseudorandom generator fooling AC®
circuits with poly-logarithmic seed-length. This general transformation of hardness to ran-
domness is achieved via the NW-generator, which constructs a PRG based on the hard
function. In [GSTW16], it was proved that low-sensitivity functions can be e-approximated
by real polynomials of degree O(s - log(1/¢)), which implies that the parity function on n
variables can only have agreement 1/2 + 274"/%) with Boolean functions of sensitivity s. In
other words, the parity function on n variables is average-case hard for the class Sens(s).
It thus seems very tempting to use the parity function in the NW-generator to construct
a PRG fooling Sens(s), however, the proof does not follow through since the class of low-
sensitivity functions is not closed under the transformations made by the analysis of the
NW-generator (in particular it is not closed under identifying a set of the input variables
with one variable). We do not claim that the NW-generator with the parity function does
not fool Sens(s), but we point out that the argument in the standard proof breaks. (See
more details in Appendix A).

1.1 Our Results

A function G : {—1,1}" — {—1,1}" is said to be a pseudorandom generator with seed-length
r that e-fools a class of Boolean functions C if for every f € C:

LB UG- B @) <e.
In other words, any f € C cannot distinguish (with advantage greater than €) between an
input sampled according to the uniform distribution over {—1,1}" and an input sampled
according to the uniform distribution over {—1, 1}" and expanded to an n-bit string using G.
The main contribution of this paper is the first pseudorandom generator for low-sensitivity
Boolean functions with subexponential seed length in the sensitivity.

1Even under the weaker conjecture Sens(s) C AC’-size(nPo¥(*)) we would get that poly(s, logn)-wise
independence fools Sens(s) via the result of [Bral0].



Theorem 1.1. There is a distribution D on {—1,1}" with seed-length 200V 5+10e(1/2) o0 ()
that e-fools every f:{—1,1}" — {=1,1} with s(f) = s.

Our construction relies on the following strengthening of Friedgut’s Theorem for low
sensitivity functions. (In the following, we denote by W=F[f] = 31 16155 F(S)?)

Lemma 1.2. Let f : {—1,1}" — {=1,1} with s(f) < s. Let 1 < k < s/10. Assume
W=F[f] < 275 and that at most 275 fraction of the points in {—1,1}" have sensitivity at
least k. Then, f is a 22°%-junta.

1.2 Proof Outline

Below we give a sketch of our proof of Theorem 1.1.

Similar to a construction of Trevisan and Xue [TX13], our pseudorandom generator in-
volves repeated applications of “pseudorandom restrictions”. Using Lemma 1.2 and studying
the behavior of the Fourier spectrum of low-sensitivity functions under pseudorandom re-
strictions, we are able to prove the following. Let f : {—1,1}" — {—1,1} be a Boolean
function, let S C [n] be randomly selected according to a k-wise independent distribution
such that |S| =~ pn, and let xg = (z;)igs € {—1, 1}|S| be selected uniformly at random. Then

5]?r [f(2g,.) is not a 22°*-junta] < O(ps)* - 2%. (1)
g

Since every 22%%_junta is fooled by an almost 22%*-wise independent distribution, we will fill
the xg coordinates according to efficient constructions of such distributions due to [AGHP92].
The final distribution involves applying the above process repeatedly over the remaining
unset variables (i.e. zg) until all the coordinates are set, observing that for every J C [n]
and x;, f(.,zs) has sensitivity at most s. The subexponential seed-length is achieved by
optimizing the parameters k and p from (1) while making sure that the overall error does
not exceed €.

Discussion

Our overall construction involves a combination of several samples from any k-wise indepen-
dent distribution for an appropriate k. It is not clear whether simply one sample from a
k-wise independent distribution suffices to fool low sensitivity functions (recall that this is a
consequence of the sensitivity conjecture with & = poly(s)). If this were true for all k-wise
independent distributions, then via LP Duality (see the work of Bazzi [Baz09]) we would get
that every Boolean function f with sensitivity s has sandwiching real polynomials f,, f, of
degree k such that Vo : fo(x) < f(z) < fu(x) and E,[f.(x) — fo(x)] < e. We ask if a similar
characterization can be obtained for the class of functions fooled by our construction.

2 Preliminaries

We denote by [n] = {1,...,n}. We denote by U,, the uniform distribution over {—1,1}". We
denote by log and In the logarithms in bases 2 and e, respectively. For f: {—1,1}" — R,



we denote by || f|, = (Exe{_lvl}n[|f(x)]p])1/p. For x € {—1,1}", denote by z & e; the vector
obtained from x by changing the sign of z;.

For a Boolean function f : {—1,1}" — {—1,1}, denote by S(f,y), the set of sensitive
coordinates of f at y, i.e.,

S(fy)={ieh]: fly) # flyse)}.
The sensitivity of f, denoted s(f,x), is defined to be the number of sensitive coordinates of
[, namely s(f,z) = |S(f,z)|. For example if f(z1, 22, 23) = z129, then s(f,111) = 2 and
S(f,111) = {1,2}. The sensitivity of a Boolean function f, denoted s(f) is the maximum
s(f,x) over all choices of x.

2.1 Harper’s Inequality

Theorem 2.1 (Harper’s Inequality). Let G = (V, E) be the n-dimensional hypercube, where
V ={-1,1}". Let A CV be a non-empty set. Then,

|E(A, A (2”)
——— >log, | — | -
A “\14]

We will use the following simple corollary of Harper’s inequality on multiple occasions:

Corollary 2.2. Let f : {—1,1}" — {—1,1} be a non-constant function with s'(f) < s.
Then, | f~1(1)| > 275,

Proof. Let A= f~!(1). Since f is non-constant, |A| > 0. By Harper’s inequality the average
sensitivity of f on A is at least log(2"/|A|). However the average sensitivity of f on A is at
most s, hence log(2"/|A|) < s, or equivalently, |A| > 2"7%. |

2.2 Restrictions

Definition 2.3 (Restriction). Let f: {—1,1}" — {—1,1} be a Boolean function. A restric-
tion is a pair (J, z) where J C [n] and z € {—1,1}’. We denote by f,, : {—1,1}" — {-1,1}
the function f restricted according to (J,z), defined by

Ty, 1€ J

z;, otherwise

fJIZ(l’) = f(y), where y;= {

Definition 2.4 (Random Valued Restriction). Let n € N. A random variable (J, z), dis-
tributed over restrictions of {—1,1}" is called random-valued if conditioned on J, the variable
2z is uniformly distributed over {—1,1}7.

Definition 2.5 ((p, k)-wise Random Selection). A random variable J C [n] is said to be a
(p, k)-wise random selection if the events {(1 € J),(2 € J),...,(n € J)} are k-wise indepen-
dent, and each one of them happens with probability p.

A (k,p)-wise independent restriction is a random-valued restriction in which J is chosen
using a (k, p)-wise independent selection.



2.3 Fourier Analysis of Boolean Functions

Any function f:{—1,1}" — R has a unique Fourier representation:

Zf Hﬂh‘,

SC|n] i€S

where the coefficients f(S) € R are given by f(S) = E,[f(2) - [[,cq ®i]. Parseval’s identity
states that >4 f(S)? = E.[f(z)?] = ||f]2, and in the case that f is Boolean (i.e., f :
{-1,1}" — {—1,1}), all are equal to 1. The Fourier representation is the unique multilinear
polynomial which agrees with f on {—1,1}". We denoted by deg(f) the degree of this
polynomial, which also equals max{|S| : f(S) # 0}. We denote by

W’“[f]é Z £(5)?

n],|S|=k

the Fourier weight at level k of f. Similarly, we denote W=k[f] £ ZSQ[n],|S|2k f(S)Q. For
k € N we denote the k-th Fourier moment of f by

Inf*[f] 2 Y f(S)? (’S|) de ()

SC[n]
We will use the following result of Gopalan et al. [GSTW16].

Theorem 2.6 ([GSTW16]). Let f be a Boolean function with sensitivity at most s. Then,
for all k, Inf*[f] < (16 - s)*.

For more about Fourier moments of Boolean functions see [Tall4, GSTW16]. The fol-
lowing fact relates the Fourier coefficients of f and f;., where (J,2) is a random valued
restriction.

Fact 2.7 (Proposition 4.17, [O’D14]). Let f : {—1,1}" — R, let S C [n], and let D be a
distribution of random valued restrictions. Then,

)] = fs)- Pr [sc ]

(J (J.2)~D

and

E [fﬂ ] Zf U Pr [JNU=S5]

(JVZ)N Jz ~D

We include the proof of this fact for completeness.

Proof. Let (J,z) ~ D. Then, by definition of random valued restriction, given J we have
that z is a random string in {—1,1}7. ~
Fix J, and rewrite f’s Fourier expansion by splitting the variables to (., J).

Zf H%IZH%'ZJE(TUT/)'H%

SCln] €S TCJieT T'CT JET!
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Hence,

fr-(x ZHL ZfTUT’ H

TCJ €T T'CJ JET’

So the Fourier coefficient of S on f;, is 0 if S ¢ J and it is Doy (S uT’)- HjGT, 2;

otherwise. In other words,

Fr(8) = Lscs - Y FSUT) -] 2

T JeT’

and it’s expectation in z in the case S C J is f(S). As for the second moment,

E[/5:(5)") = BE[/1:(5)")] = El[Lsc; - B3 f(SuT) [] %)

T'CJ JET’
Ellscs- ) f(TUT)]= ) J(U)? PrlJnU=5]. n
T'c] Ucn]

3 PRGs for Low-Sensitivity Functions

In this section we prove our main theorem.

Theorem 1.1. There is a distribution D on {—1,1}" with seed-length 200V +108(1/2) . og(n)
that e-fools every f: {—1,1}" — {—1,1} with s(f) = s.

Our main tool will be the following theorem stating that under k-wise independent ran-
dom restrictions every low-sensitivity function becomes a junta with high probability. We
postpone the proof of Theorem 3.1 to Section 4.

Theorem 3.1. Let f: {—1,1}" — {—1,1} with s(f) = s. Let 1 < k < s/10, and let D be
a distribution of (k,p)-wise independent restrictions. Then,

A ) [fJ|Z is not a (22°%)-junta] < O(ps)~ - 2%

Theorem 3.1 allows us to employ the framework of Trevisan and Xue [TX13] who used a
derandomized switching lemma to construct pseudorandom generators for ACO circuits. In
what follows we will make the following choices of parameters

i. k:=0(y/s+1og(1/e)).

ii. p:= 2*’6/3 — 9—0(y/s+log(1/e))

]11 m = O(p_l . log(s . 45/5*)) — 20( 5+10g(1/5))

We select a sequence of disjoint sets Jy, ..., J,, as follows. We pick J; C [n]\(J; U--- U
Ji—1) by letting J; := K;\(J1 U---U J;_1) where K; C [n] is drawn from a (p,k)-wise
independent selection. For each 7, we pick z; € {—1,1}"”'| according to an ;—-almost
22%_wise independent distribution. Finally, we will fix z; := 0 for any i € [n]\(JyU---UJ,,).

To account for the seed-length:



e By a construction of [ABI86] each K; can be selected using O(k - logn) random bits,
and

e By constructions of [AGHP92] each z; € {—1,1}”! can be selected using O(22% +
loglog(n) + log(1/¢)) random bits.

Thus, the total seed-length is
O (m - (2°°" +loglog(n) + log(1/e) + k - log(n))) < 20(Vs+18(1/9) og(n) .

To conclude the proof, we show that the above distribution fools sensitivity s Boolean
functions. Denote by D the distribution described above, and suppose f : {—1,1}" —
{—1,1} satisfies s(f) = s. We first note that by a result of Simon [Sim83], f depends on
at most s - 4° variables, denote this set S, so that |S| < s-4°. By our choice of m, with
probability at least 1 — %, SCJiU---Ud,.

We use x to denote a vector drawn from D and y to denote a vector drawn according
to the uniform distribution over {—1,1}". Moreover, for every i = 0,1,...,m, we let z; :=
(g, T, Yn\(J1u...sy)). Note that zo = y. We first prove that for every i =0,1,...,m —1,

€
) — . < =
i f) = B fa)| < 5o (2)
This holds since by Theorem 3.1, for every fixed choice of .Jy, ..., J; and zj,, ...z, we have

. . , €
Jifl),;;u [f(le, Ty Y\ (iU Jsy ) 1S O & 220’“—Junta] < O(ps)k 225 < I

220k 220k

and that every -junta is €/4m-fooled by any ¢/4m-almost -wise independent distri-

bution. By triangle inequality and summing up (2) for all i we get
m—1

=l

E fly)— E f(zm)

y~U z~D,y~U

E f(z)— E f(zip)]| <

~D,y~U x~U,y~D

: (3)

DN ™

To finish the proof of Theorem 1.1, note that with probability at least 1—¢/2, f(x,,,..., 2z, *)
is a constant function (which follows from S C JU- - -UJ,,), and thus | E, ,, f(z,)—E, f(z)] <
/2. Combining this with Eq. (3) gives |Eyu f(y) — Euop f(2)] < /2 +¢/2.

4 Measures of Boolean Functions under k-Wise Inde-
pendent Random Restrictions

Lemma 4.1. Let t € R* and f: {—1,1}" — {—1,1}. Let D be a distribution of (k,p)-wise
independent restrictions. Then, for any d < k we have

E [W=I[f;.]] <p?- Inf'[f]. (4)

(J,2)~D



Proof. Using Fact 2.7, we have
BW=(f],.] = 3 F(0)-PrllU 0| > d
’ UCn]

Fix U. Let us upper bound Pr;[|[UNJ| > d]. It is at most (‘g') -p? by taking a union bound

over all (‘Z‘) subsets S of size d of U and noticing that Pr;[S C J] = p? by the fact that J
is a k-wise p-random restriction. We thus have

[W>d[f|JZ < > fw (’Z’) -p? = Inf[f] - p*. u
UC|n]

Lemma 4.2. Let f: {—1,1}" — {—1,1}, with s(f) = s. Let D be a distribution of (k,p)-
wise independent restrictions. Then,

B [Pristfne.o) = 4] < (09"

(J,2)~D

Proof. We expand E(;.).p [Prx[s(fJ|Z7m) > k:]]

E [P 22K =B E B [lgeoa
E |Brls(fi1g:w) 2 K] Jze{_n}me{—l,l}”[ (G m2h ]
=E E E [l ensn]

ze{ 11}z e{-1,1}’

| |
Ly,

ye{ Ly [ Lttty 2k} )

E [ﬂ{s(ﬂyj,.),w)zm]]

ye{-1,1}" LJ

B [Prl/ns(f.)l > K]

ye{-1,1}" L J

- '(s(J;y)> 'pk:| < (ps)"

ye{flal}n L

where the second to last inequality is due to the following observation. We observe that for
a given y and a set S = {iy, ..., } of k sensitive directions of f at y, the probability that
S C Jis p¥. We then union-bound over all subsets S of cardinality k of S(f,y). |

We are now ready to prove the main theorem of this section (restated next).

Theorem 3.1. Let f: {—1,1}" — {—1,1} with s(f) = s. Let 1 < k < s/10, and let D be

a distribution of (k,p)-wise independent restrictions. Then,

P [fa s mot a (2%)junta] < O(ps)* - 2™

Proof. We upper and lower bound the value of

()= B [W2[fy.] + Prls(fo.. ) > k]|

(J,2)~D



For the upper bound we use Lemma 4.2 to get

o [P;r[s(fﬂzvrr) > k]] < (ps)*,

and Lemma 4.1 and Theorem 2.6 to get

E [wW=F < k
(J,2)~D [ [fJ|zH = O<p5) ’
which gives (¥) < O(ps)*.

For the lower bound we use the following lemma, the proof of which we defer to Section 5.
Lemma 1.2. Let f : {—1,1}" — {—1,1} with s(f) < s. Let 1 < k < s/10. Assume
W=F[f] < 275 and that at most 275 fraction of the points in {—1,1}" have sensitivity at
least k. Then, f is a 22°%-junta.

Let € be the event that f,, is not a 22°*-junta. Whenever £ occurs, Lemma 1.2 implies
that either Pr[s(f., ) > k] > 27% or W=*[f,.] > 27%. In both cases, Pr,[s(f.,z) >
k] + W=F[f;.] > 276 Thus, we get the lower bound

() > Prfe] - B [WZ’“[ fl+ Prls(fye2) > k)| €] > Prlg] - 27

Comparing the upper and lower bound gives

(JP)rD[fJ‘Z is not a K-junta] = Pr[£] < 2% - (x) < 25 . O(ps)* . [
5 A Strengthening of Friedgut’s Theorem for Low Sen-
sitivity Functions
Theorem 5.1 (Friedgut’s Junta Theorem - [O’D14, Thm 9.28]). Let f : {—1,1}" — {—1,1}.
Let 0 <e <1 and k> 0. If W>k[f] <&, then f is 2e-close to a (9% - Inf[f]3/&%)-junta.

Lemma 1.2. Let f : {—1,1}" — {—1,1} with s(f) < s. Let 1 < k < s/10. Assume
W=F[f] < 275 and that at most 275 fraction of the points in {—1,1}" have sensitivity at
least k. Then, f is a 22°%-junta.

Proof. We first show that Inf[f] < k. By Simon’s work [Sim83], f depends on at most 4° - s
variables?. Thus, Inf[f] < (k — 1) + W=2k[f] - (4° - s) < (k — 1) + 1 = k. Apply Friedgut’s
theorem with ¢ = 276*~1 > W=2k[f]. We get a K-junta h, for

K = 9k . Inf[f]3/€2 S 9k . k3 . 212k+2 < 220k’

that 2¢ = 275% approximates f. Let C1, ..., Cy be the subcube corresponding to the N = 2%
different assignments to the junta variables. Without loss of generality, under each C;, h

2Note that our final goal will be to show that f actually depends on 220% variables, and that k can be
significantly smaller than s.



attains the constant value that is the majority-vote of f on C;. In other words, f and h
agree on at least 1/2 of the points in each subcube C;.

Let p;, = {z € C; : f(z) # h(x)}|/|Ci], for i € [N]. By the above discussion, 0 <
pi < 1/2. In addition, since f|c, has sensitivity at most s, if p; > 0, then p; > 27° using
Corollary 2.2.

Assume towards contradiction that h # f. We will think of the hamming cube {—1,1}"
as an outer cube of dimension K, and an inner cube of dimension n — K. Each subcube C}
is an instance of the inner cube {—1,1}"%. The graph of subcubes is an instance of the
outer cube {—1,1}%. Call a subcube C;:

decisive if p; = 0,
confused if 27% < p; < 2% or
indecisive if p; > 27%1.

Denote by «, 8, v the fraction of decisive, confused and indecisive subcubes correspondingly.
Since we assumed (towards contradiction) that h # f, at least one subcube is confused
or indecisive. Consider the graph G of subcubes, which is isomorphic to {—1,1}¥, in which
each vertex represents either a decisive, confused or indecisive subcube, and two vertices are
adjacent if and only if their corresponding subcubes are adjacent in {—1,1}". First, we show
that at least 272° fraction of the subcubes are confused or indecisive. Assume otherwise,
then by Harper’s inequality (Thm. 2.1) there is a confused or indecisive cube C; with at
least 2s 4+ 1 decisive subcubes as neighbors. As there are points with both {—1, 1} values in
C;, we may pick a point x € C; whose value is the opposite of the majority of the decisive
neighbor subcubes of C;, which gives s(f,z) > s + 1, a contradiction. We thus have

B+vy>27% (5)

Next, we show that [ is very small and in particular much smaller than ~. Towards
this end, we shall analyze the sensitivity within confused subcubes. If C; is confused (i.e.,
27¢ < p; < 27%71), then by Harper’s inequality (inside C;) the average sensitivity on the
minority of f|c, is greater than k 4+ 1. Since sensitivity ranges between 0 to s, at least 1/s
of the points with minority value in f|o, have sensitivity at least k (otherwise the average
sensitivity among them will be less than (1/s) - s+ k < k+ 1). As there are at least 27°
points with the minority value on the subcube C;, we get that at least 27%/s > 272¢ fraction
of the points in C; have sensitivity at least k.

If the fraction of confused subcubes is more than 272¢ /(K +1), then more than 27 /(K +
1) > 27% fraction of the points in {—1,1}" has sensitivity at least k, which contradicts one
of the assumptions. Thus,

B<27%/(K +1). (6)

Furthermore, combining Eq. (5) and (6), we have that the fraction of indecisive subcubes,
v, is at least

s K
VZQQ'K—HZK'B- (7)

Consider again the graph G of subcubes (which is isomorphic to {—1,1}*). Recall that
each vertex in the graph G corresponds to a subcube which is either decisive, confused

10



or indecisive. Call A the set of vertices that correspond to indecisive subcubes. Then,
|A] = v - 2%, By the fact that h approximates f with error at most 27 the size of A is at
most 270k . 2k+1. 9K < 9=4k 9K j o 4 < 274 By Harper’s inequality, |E(A, A)| > |A]|- (4k).
There are at most 8- 2% - K <~ 25 = |A| edges touching confused nodes, hence there are
at least |A| - (4k — 1) edges from A to decisive nodes. As before, the maximal number of
edges from a node in A to decisive nodes is at most 2s, otherwise we get a contradiction to
s(f) <'s. This implies that at least 1/2s fraction of the nodes in A have at least 4k —2 edges
to decisive subcubes. For each indecisive subcube C; with at least 4k — 2 edges to decisive
subcubes, let b € {—1,1} be the majority-vote among these decisive subcubes. All points
with value —b in C; have sensitivity at least (4k —2)/2 > 2k — 1 > k, and the fraction of
such points in C; is at least 27571, Using Eq. (7) we get that

1 K 1
L. 2—k—1 > 2—28 L 2—/4:—1 > 2—68
705 = K+1 2s =
of the points in {—1, 1}" have sensitivity at least k, which yields a contradiction. [
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A Does the NW-Generator Fool Low-Sensitivity Func-
tions?

In this section we recall the construction and analysis of the NW-Generator [NW94]. For
ease of notation, we treat Boolean functions here as f : {0,1}" — {0,1}. Suppose we want
to construct a pseudorandom generator fooling a class of Boolean functions C. Nisan and
Wigderson provide a generic way to construct such PRGs based on the premise that there
is some explicit function f which is average-case hard for a class C’ that slightly extends
C. Recall that Sens(s) is the class of all Boolean functions with sensitivity at most s. In
the case C = Sens(s), the argument may fail, because C’ is not provably similar to C. The
difficulty comes from the fact that low-sensitivity functions are not closed under projections
as will be explained later.

Let f : {0,1}" — {0,1} be a function that is average-case hard for class C. Let
Sty ..., 5 C [r] be a design over a universe of size r where |S;| = ¢, and [S; N S5;| < a for all
i # j € [n] (think of a as much smaller than ¢). The NW-generator Gy : {0,1}" — {0,1}"
is defined as

Gf(mlﬂ s ’xT) = (f<x51)7 f<$52)7 R f($5n))

where zg, is the restriction of x to the coordinates in S;, for any set S; C [n].
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The proof that the NW-generator fools C goes via a contrapositive argument. We assume
that there is a distinguisher ¢ € C such that

(G = B le(@)]] > ¢,

2€r{0,1}" zer{0,1}"

and prove that f can be computed on more than 1/24Q(e)/n fraction of the inputs by some
function ¢” which is not much more complicated than c. First, by Yao’s next-bit predictor

lemma, there exists an i € [n] and constants a;, ..., a,,b € {0,1} such that
1 Q)
P Vg an) ®b= flrs)] > = 4 L
IE{O,Ii}T[C (f(xsﬁ)a f(msz)a ,f($5171),a a ) D f(msz)] 9 + n

Since the class of function with sensitivity s is closed under restrictions (i.e., fixing the input

variables to constant values) and negations we have that (21, ..., zi-1) == c(21,. .., 2i—1, i, - . .

b is of sensitivity at most s. We get

Pr [¢(f(ws,). F(as,)..... Fas, ) = flas)] 2 & + )

z€{0,1}" n

Next, we wish to fix all values in [r] \ S;. By averaging there exists an assignment y to the
variables in [r] \ S; such that

Pr [(f((zoy)s,), f((xoy)s,), .., f((xey)s. ) = flzs)] =

1
ze{0,1}% 2 n

Note that for j = 1,...,i — 1, the value of f((x oy)s,) depends only on the variables in
S; N .S; and there aren’t too many such variables (at most «). The next step is to consider
" {0,1}% = {0,1}, defined by ¢(z) = ¢(f((zoy)s,), f((zoy)s,), ..., f((xoy)s,_,)), that
have agreement at least 1/2 + Q(e)/n with f(zg,). If ¢’ is a “simple” function then we get
a contradiction as f is average-case hard.

It seems that ¢” is simple, since it is the composition of ¢ with a-juntas. However, the
point that we want to make is that even if ¢ is low-sensitivity and even if o = 1, we are not
guaranteed that ¢’ is of low-sensitivity.

To see this, suppose that a = 1, i.e., all |S; N.S;| <1 for j < i. This means that as a
function of z, each f((xoy)s;) depends on at most one variable, i.e., f((zoy)s,) = a;-x, ©b;
for some index k; € S; and some constants a;,b; € {0,1}. We get that

dx)=Cd(ay - xp, ®br,ag-xp, Bbay ... 0 Tp,, Bbiq).

Next, we argue that ¢’ could potentially have very high sensitivity. To see that, observe that
flipping one bit z; in the input to ¢ results in changing a block of variables in the input
to ¢/, as there may be several j for which k; = 4. In the worst-case scenario, the sensitivity
of ¢ could be as big as the block sensitivity of ¢’. However, the best known bound is only
bs(f) < 2°()-(1+oW) for any Boolean function f [ABGT14]. This means that we can only
guarantee that s(c”) < bs(¢') < 25(+°() "and we do not have average-case hardness for such
high-sensitivity functions.
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Remark: The above argument shows that the standard analysis of the Nisan-Wigderson
generator applied to low-sensitivity Boolean functions breaks, but it does not mean that the
generator does not ultimately fool Sens(s). Indeed, assuming the sensitivity conjecture, the
argument will follow through.
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