Pseudorandom Generators for Low-Sensitivity Functions

Pooya Hatami*
DIMACS
pooyahat@math.ias.edu

Avishay Tal†
Institute for Advanced Study
avishay.tal@gmail.com

Abstract

A Boolean function is said to have maximal sensitivity s if s is the largest number of Hamming neighbors of a point which differ from it in function value. We construct a pseudorandom generator with seed-length $2^{O(\sqrt{s})} \cdot \log(n)$ that fools Boolean functions on n variables with maximal sensitivity at most s. Prior to our work, the best pseudorandom generators for this class of functions required seed-length $2^{O(s)} \cdot \log(n)$.

1 Introduction

The sensitivity of a Boolean function $f : \{-1,1\}^n \rightarrow \{-1,1\}$ at a point $x \in \{-1,1\}^n$, denoted $s(f, x)$, is the number of neighbors of x in the Hypercube whose f-value is different than $f(x)$. The maximal sensitivity of f, denoted $s(f)$, is the maximum over $s(f, x)$ for all $x \in \{-1,1\}^n$. The sensitivity conjecture by Nisan and Szegedy [Nis92, NS94] asserts that low-sensitivity functions (also called “smooth” functions) are “easy”. More precisely, the conjecture states that any Boolean function whose maximal sensitivity is s can be computed by a decision tree of depth $\text{poly}(s)$. The conjecture remains wide open for several decades now, and the state-of-the-art upper bounds on decision tree complexity are merely $\exp(O(s))$.

Assuming the sensitivity conjecture, low-sensitivity functions are not any stronger than low-depth decision trees, which substantially limits their power. Hence, towards settling the conjecture, it is natural to inspect how powerful low-sensitivity functions are. One approach that follows this idea aims to prove limitations of low-sensitivity functions, which follow from the sensitivity conjecture, unconditionally. This line of work was initiated recently by Gopalan et al. [GNS+16], who considered low-sensitivity functions as a complexity class. Denote by $\text{Sens}(s)$ the class of Boolean functions with sensitivity at most s. The sensitivity conjecture asserts that $\text{Sens}(s) \subseteq \text{DecTree-depth}(\text{poly}(s))$, which then implies

\[
\text{Sens}(s) \subseteq \text{DecTree-depth}(\text{poly}(s)) \subseteq \text{DNF-size}(2^{\text{poly}(s)}) \subseteq \text{AC}^0\text{-size}(2^{\text{poly}(s)}) \subseteq \text{Formula-depth}(\text{poly}(s)) \subseteq \text{Circuit-size}(2^{\text{poly}(s)}),
\]

*Partially supported by the National Science Foundation under agreement No. CCF-1412958.
†Supported by the Simons Collaboration on Algorithms and Geometry, and by the National Science Foundation grant No. CCF-1412958.
whereas Gopalan et al. [GNS+16] proved that $\text{Sens}(s) \subseteq \text{Formula-depth}(\text{poly}(s))$ unconditionally. It remains open to prove that $\text{Sens}(s)$ is contained in smaller complexity classes such as $\text{AC}^0\text{-size}(2^{\text{poly}(s)})$ or even $\text{TC}^0\text{-size}(2^{\text{poly}(s)})$.

One consequence of the sensitivity conjecture is the existence of pseudorandom generators (PRGs) with short seeds fooling low-sensitivity functions. This follows since k-wise independence fools degree k functions and the sensitivity conjecture asserts that $\deg(f) \leq \text{poly}(s(f))$ for any Boolean function f. Thus, under the conjecture, the standard construction of k-wise distributions gives a PRG with seed length $\deg(f) \cdot \log(n) \leq \text{poly}(s) \cdot \log(n)$ fooling $\text{Sens}(s)$. The goal of our work is to construct PRGs fooling $\text{Sens}(s)$ unconditionally. We fall short of achieving seed length $\text{poly}(s) \cdot \log(n)$ and get the weaker seed length of $2^{O(\sqrt{n})} \cdot \log(n)$. Nonetheless, prior to our work, only seed-length $2^{O(s)} \cdot \log(n)$ was known, which follows from the state of the art upper bounds on degree in terms of sensitivity $\deg(f) \leq 2^{s(1+o(1))}$ [ABG+14].

The paradigm of Hardness vs Randomness, initiated by Nisan and Wigderson [NW94], asserts that PRGs and average-case lower bounds are essentially equivalent, for almost all reasonable complexity classes. For example, the average-case lower bound of Håstad [Hås86] for the parity function by AC^0 circuits implies a pseudorandom generator fooling AC^0 circuits with poly-logarithmic seed-length. This general transformation of hardness to randomness is achieved via the NW-generator, which constructs a PRG based on the hard function. In [GSTW16], it was proved that low-sensitivity functions can be ε-approximated by real polynomials of degree $O(s \cdot \log(1/\varepsilon))$, which implies that the parity function on n variables can only have agreement $1/2 + 2^{-\Omega(n/s)}$ with Boolean functions of sensitivity s. In other words, the parity function on n variables is average-case hard for the class $\text{Sens}(s)$. It thus seems very tempting to use the parity function in the NW-generator to construct a PRG fooling $\text{Sens}(s)$, however, the proof does not follow through since the class of low-sensitivity functions is not closed under the transformations made by the analysis of the NW-generator (in particular it is not closed under identifying a set of the input variables with one variable). We do not claim that the NW-generator with the parity function does not fool $\text{Sens}(s)$, but we point out that the argument in the standard proof breaks. (See more details in Appendix A).

1.1 Our Results

A function $G : \{-1,1\}^r \rightarrow \{-1,1\}^n$ is said to be a pseudorandom generator with seed-length r that ε-fools a class of Boolean functions \mathcal{C} if for every $f \in \mathcal{C}$:

$$\left| \varepsilon \cdot \mathbb{E}_{z \in \{-1,1\}^r} [f(G(z))] - \mathbb{E}_{x \in \{-1,1\}^n} [f(x)] \right| \leq \varepsilon.$$

In other words, any $f \in \mathcal{C}$ cannot distinguish (with advantage greater than ε) between an input sampled according to the uniform distribution over $\{-1,1\}^n$ and an input sampled according to the uniform distribution over $\{-1,1\}^r$ and expanded to an n-bit string using G.

The main contribution of this paper is the first pseudorandom generator for low-sensitivity Boolean functions with subexponential seed length in the sensitivity.

1Even under the weaker conjecture $\text{Sens}(s) \subseteq \text{AC}^0\text{-size}(n^{\text{poly}(s)})$, we would get that $\text{poly}(s, \log n)$-wise independence fools $\text{Sens}(s)$ via the result of [Bra10].
Theorem 1.1. There is a distribution D on $\{-1,1\}^n$ with seed-length $2^{O(\sqrt{s+\log(1/\varepsilon)})} \cdot \log(n)$ that ε-fools every $f : \{-1,1\}^n \rightarrow \{-1,1\}$ with $s(f) = s$.

Our construction relies on the following strengthening of Friedgut’s Theorem for low sensitivity functions. (In the following, we denote by $W^k[f] = \sum_{S \subseteq \{1,\ldots,n\} : |S| \geq k} \hat{f}(S)^2$.)

Lemma 1.2. Let $f : \{-1,1\}^n \rightarrow \{-1,1\}$ with $s(f) \leq s$. Let $1 \leq k \leq s/10$. Assume $W^k[f] \leq 2^{-6s}$, and that at most 2^{-6s} fraction of the points in $\{-1,1\}^n$ have sensitivity at least k. Then, f is a 2^{20k}-junta.

1.2 Proof Outline

Below we give a sketch of our proof of Theorem 1.1.

Similar to a construction of Trevisan and Xue [TX13], our pseudorandom generator involves repeated applications of “pseudorandom restrictions”. Using Lemma 1.2 and studying the behavior of the Fourier spectrum of low-sensitivity functions under pseudorandom restrictions, we are able to prove the following. Let $f : \{-1,1\}^n \rightarrow \{-1,1\}$ be a Boolean function, let $S \subseteq [n]$ be randomly selected according to a k-wise independent distribution such that $|S| \approx pn$, and let $x_S = (x_i)_{i \in S} \in \{-1,1\}^{|S|}$ be selected uniformly at random. Then

$$\Pr_{S,x_S}[f(x_S, ___) \text{ is not a 2^{20k}-junta}] \leq O(ps)^k \cdot 2^{6s}. \tag{1}$$

Since every 2^{20k}-junta is fooled by an almost 2^{20k}-wise independent distribution, we will fill the x_S coordinates according to efficient constructions of such distributions due to [AGHP92].

The final distribution involves applying the above process repeatedly over the remaining unset variables (i.e. $x_\overline{S}$) until all the coordinates are set, observing that for every $J \subseteq [n]$ and x_J, $f(__, x_J)$ has sensitivity at most s. The subexponential seed-length is achieved by optimizing the parameters k and p from (1) while making sure that the overall error does not exceed ε.

Discussion

Our overall construction involves a combination of several samples from any k-wise independent distribution for an appropriate k. It is not clear whether simply one sample from a k-wise independent distribution suffices to fool low sensitivity functions (recall that this is a consequence of the sensitivity conjecture with $k = \text{poly}(s)$). If this were true for all k-wise independent distributions, then via LP Duality (see the work of Bazzi [Baz09]) we would get that every Boolean function f with sensitivity s has sandwiching real polynomials f_t, f_u of degree k such that $\forall x : f_t(x) \leq f(x) \leq f_u(x)$ and $E_x[f_u(x) - f_t(x)] \leq \varepsilon$. We ask if a similar characterization can be obtained for the class of functions fooled by our construction.

2 Preliminaries

We denote by $[n] = \{1,\ldots,n\}$. We denote by U_n the uniform distribution over $\{-1,1\}^n$. We denote by \log and \ln the logarithms in bases 2 and e, respectively. For $f : \{-1,1\}^n \rightarrow \mathbb{R}$,
we denote by $\|f\|_p = (E_{x \in \{-1,1\}^n}[|f(x)|^p])^{1/p}$. For $x \in \{-1,1\}^n$, denote by $x \oplus e_i$ the vector obtained from x by changing the sign of x_i.

For a Boolean function $f : \{-1,1\}^n \to \{-1,1\}$, denote by $S(f, y)$, the set of sensitive coordinates of f at y, i.e.,

$$S(f, y) \triangleq \{i \in [n] : f(y) \neq f(y \oplus e_i)\}.$$

The sensitivity of f, denoted $s(f, x)$, is defined to be the number of sensitive coordinates of f, namely $s(f, x) = |S(f, x)|$. For example if $f(x_1, x_2, x_3) = x_1x_2$, then $s(f, 111) = 2$ and $S(f, 111) = \{1, 2\}$. The sensitivity of a Boolean function f, denoted $s(f)$ is the maximum $s(f, x)$ over all choices of x.

2.1 Harper’s Inequality

Theorem 2.1 (Harper’s Inequality). Let $G = (V, E)$ be the n-dimensional hypercube, where $V = \{-1,1\}^n$. Let $A \subseteq V$ be a non-empty set. Then,

$$\frac{|E(A, A^c)|}{|A|} \geq \log_2 \left(\frac{2^n}{|A|} \right).$$

We will use the following simple corollary of Harper’s inequality on multiple occasions:

Corollary 2.2. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a non-constant function with $s^1(f) \leq s$. Then, $|f^{-1}(1)| \geq 2^{n-s}$.

Proof. Let $A = f^{-1}(1)$. Since f is non-constant, $|A| > 0$. By Harper’s inequality the average sensitivity of f on A is at least $\log(2^n/|A|)$. However the average sensitivity of f on A is at most s, hence $\log(2^n/|A|) \leq s$, or equivalently, $|A| \geq 2^{n-s}$.

2.2 Restrictions

Definition 2.3 (Restriction). Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A restriction is a pair (J, z) where $J \subseteq [n]$ and $z \in \{-1,1\}^J$. We denote by $f_{J,z} : \{-1,1\}^n \to \{-1,1\}$ the function f restricted according to (J, z), defined by

$$f_{J,z}(x) = f(y), \quad \text{where} \quad y_i = \begin{cases} x_i, & i \in J \\ z_i, & \text{otherwise} \end{cases}.$$

Definition 2.4 (Random Valued Restriction). Let $n \in \mathbb{N}$. A random variable (J, z), distributed over restrictions of $\{-1,1\}^n$ is called random-valued if conditioned on J, the variable z is uniformly distributed over $\{-1,1\}^J$.

Definition 2.5 ((p,k)-wise Random Selection). A random variable $J \subseteq [n]$ is said to be a (p,k)-wise random selection if the events $\{(1 \in J), (2 \in J), \ldots, (n \in J)\}$ are k-wise independent, and each one of them happens with probability p.

A (k,p)-wise independent restriction is a random-valued restriction in which J is chosen using a (k,p)-wise independent selection.
2.3 Fourier Analysis of Boolean Functions

Any function $f : \{-1, 1\}^n \to \mathbb{R}$ has a unique Fourier representation:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i,$$

where the coefficients $\hat{f}(S) \in \mathbb{R}$ are given by $\hat{f}(S) = \mathbb{E}_x[f(x) \cdot \prod_{i \in S} x_i]$. Parseval’s identity states that $\sum_{S} \hat{f}(S)^2 = \mathbb{E}[f(x)^2] = \|f\|_2^2$, and in the case that f is Boolean (i.e., $f : \{-1, 1\}^n \to \{-1, 1\}$), all are equal to 1. The Fourier representation is the unique multilinear polynomial, which also equals $\max\{|S| : \hat{f}(S) \neq 0\}$. We denote by

$$W^k[f] \triangleq \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^2$$

the Fourier weight at level k of f. Similarly, we denote $W^{\geq k}[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2$. For $k \in \mathbb{N}$ we denote the k-th Fourier moment of f by

$$\text{Inf}^k[f] \triangleq \sum_{S \subseteq [n]} \hat{f}(S)^2 \cdot \binom{|S|}{k} = \sum_{d=1}^{n} W^d[f] \cdot \binom{d}{k}.$$

We will use the following result of Gopalan et al. [GSTW16].

Theorem 2.6 ([GSTW16]). Let f be a Boolean function with sensitivity at most s. Then, for all k, $\text{Inf}^k[f] \leq (16 \cdot s)^k$.

For more about Fourier moments of Boolean functions see [Tal14, GSTW16]. The following fact relates the Fourier coefficients of f and $f_{J,z}$, where (J, z) is a random valued restriction.

Fact 2.7 (Proposition 4.17, [O’D14]). Let $f : \{-1, 1\}^n \to \mathbb{R}$, let $S \subseteq [n]$, and let D be a distribution of random valued restrictions. Then,

$$\mathbb{E}_{(J, z) \sim D} \left[\hat{f}_{J,z}(S) \right] = \hat{f}(S) \cdot \mathbb{Pr}_{(J, z) \sim D}[S \subseteq J]$$

and

$$\mathbb{E}_{(J, z) \sim D} \left[\hat{f}_{J,z}(S)^2 \right] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbb{Pr}_{(J, z) \sim D}[J \cap U = S].$$

We include the proof of this fact for completeness.

Proof. Let $(J, z) \sim D$. Then, by definition of random valued restriction, given J we have that z is a random string in $\{-1, 1\}^J$.

Fix J, and rewrite f’s Fourier expansion by splitting the variables to (J, \bar{J}).

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq \bar{J}} \hat{f}(T \cup T') \cdot \prod_{j \in T'} x_j$$
Hence,
\[f_{J,z}(x) = \sum_{T \subseteq J} \prod_{i \in T} x_i \cdot \sum_{T' \subseteq J} \hat{f}(T \cup T') \cdot \prod_{j \in T'} z_j \]

So the Fourier coefficient of \(S \) on \(f_{J,z} \) is 0 if \(S \not\subseteq J \) and it is \(\sum_{T' \subseteq J} \hat{f}(S \cup T') \cdot \prod_{j \in T'} z_j \) otherwise. In other words,
\[\hat{f}_{J,z}(S) = 1_{S \subseteq J} \cdot \sum_{T' \subseteq J} \hat{f}(S \cup T') \cdot \prod_{j \in T'} z_j , \]
and it’s expectation in \(z \) in the case \(S \subseteq J \) is \(\hat{f}(S) \). As for the second moment,
\[
\mathbb{E}[\hat{f}_{J,z}(S)^2] = \mathbb{E}[\mathbb{E}[\hat{f}_{J,z}(S)^2]] = \mathbb{E}[1_{S \subseteq J} \cdot \mathbb{E}[\sum_{T' \subseteq J} \hat{f}(S \cup T') \prod_{j \in T'} z_j]^2]
\]
\[= \mathbb{E}[1_{S \subseteq J} \cdot \sum_{T' \subseteq J} \hat{f}(T \cup T')^2] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \Pr[J \cap U = S]. \]

\section{PRGs for Low-Sensitivity Functions}

In this section we prove our main theorem.

\textbf{Theorem 1.1.} There is a distribution \(D \) on \(\{-1,1\}^n \) with seed-length \(2^{O(\sqrt{s} \log(1/\varepsilon))} \cdot \log(n) \) that \(\varepsilon \)-fools every \(f : \{-1,1\}^n \to \{-1,1\} \) with \(s(f) = s \).

Our main tool will be the following theorem stating that under \(k \)-wise independent random restrictions every low-sensitivity function becomes a junta with high probability. We postpone the proof of Theorem 3.1 to Section 4.

\textbf{Theorem 3.1.} Let \(f : \{-1,1\}^n \to \{-1,1\} \) with \(s(f) = s \). Let \(1 \leq k \leq s/10 \), and let \(D \) be a distribution of \((k,p)\)-wise independent restrictions. Then,
\[\Pr_{(J,z) \sim D}[f_{J,z} \text{ is not a } (2^{20k})\text{-junta}] \leq O(ps)^k \cdot 2^{6s} \]

Theorem 3.1 allows us to employ the framework of Trevisan and Xue [TX13] who used a derandomized switching lemma to construct pseudorandom generators for AC0 circuits. In what follows we will make the following choices of parameters

i. \(k := O(\sqrt{s + \log(1/\varepsilon)}) \).

ii. \(p := 2^{-k}/s = 2^{-O(\sqrt{s + \log(1/\varepsilon))})} \)

iii. \(m := O(p^{-1} \cdot \log(s \cdot 4^s/\varepsilon)) = 2^{O(\sqrt{s + \log(1/\varepsilon))})} \)

We select a sequence of disjoint sets \(J_1, \ldots, J_m \) as follows. We pick \(J_i \subseteq [n] \setminus (J_1 \cup \cdots \cup J_{i-1}) \) by letting \(J_i := K_i \setminus (J_1 \cup \cdots \cup J_{i-1}) \) where \(K_i \subseteq [n] \) is drawn from a \((p,k)\)-wise independent selection. For each \(i \), we pick \(x_i \in \{-1,1\}^{|J_i|} \) according to an \(\frac{\varepsilon}{4m} \)-almost \(2^{20k} \)-wise independent distribution. Finally, we will fix \(x_i := 0 \) for any \(i \in [n] \setminus (J_1 \cup \cdots \cup J_m) \).

To account for the seed-length:
• By a construction of [AB186] each K_i can be selected using $O(k \cdot \log n)$ random bits, and
• By constructions of [AGHP92] each $x_{J_i} \in \{-1, 1\}^{\left|J_i\right|}$ can be selected using $O(2^{20k} + \log \log(n) + \log(1/\varepsilon))$ random bits.

Thus, the total seed-length is

$$O \left(m \cdot \left(2^{20k} + \log \log(n) + \log(1/\varepsilon) + k \cdot \log(n) \right) \right) \leq 2^{O(\sqrt{s} \log(1/\varepsilon))} \cdot \log(n).$$

To conclude the proof, we show that the above distribution fools sensitivity s Boolean functions. Denote by \mathcal{D} the distribution described above, and suppose $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ satisfies $s(f) = s$. We first note that by a result of Simon [Sim83], f depends on at most $s \cdot 4^s$ variables, denote this set S, so that $|S| \leq s \cdot 4^s$. By our choice of m, with probability at least $1 - \frac{\varepsilon}{2}$, $S \subseteq J_1 \cup \cdots \cup J_m$.

We use x to denote a vector drawn from \mathcal{D} and y to denote a vector drawn according to the uniform distribution over $\{-1, 1\}^n$. Moreover, for every $i = 0, 1, \ldots, m$, we let $z_i := (x_{J_1}, \ldots, x_{J_i}, y_{[n] \setminus (J_1 \cup \cdots \cup J_i)})$. Note that $z_0 = y$. We first prove that for every $i = 0, 1, \ldots, m - 1$,

$$\left| \frac{\mathbb{E}}{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_i) - \frac{\mathbb{E}}{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_{i+1}) \right| \leq \frac{\varepsilon}{2m}. \quad (2)$$

This holds since by Theorem 3.1, for every fixed choice of J_1, \ldots, J_i and x_{J_1}, \ldots, x_{J_i}, we have

$$\Pr_{J_{i+1}, y \sim \mathcal{U}} \left[f(x_{J_1}, \ldots, x_{J_i}, \cdot, y_{[n] \setminus (J_1 \cup \cdots \cup J_{i+1})}) \right. \left. \text{ is not a } 2^{20k}-\text{junta} \right] \leq O(ps)^k \cdot 2^{5s} \leq \frac{\varepsilon}{4m},$$

and that every 2^{20k}-junta is $\varepsilon/4m$-fooled by any $\varepsilon/4m$-almost 2^{20k}-wise independent distribution. By triangle inequality and summing up (2) for all i we get

$$\left| \frac{\mathbb{E}}{y \sim \mathcal{U}} f(y) - \frac{\mathbb{E}}{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_m) \right| \leq \sum_{i=0}^{m-1} \left| \frac{\mathbb{E}}{x \sim \mathcal{D}, y \sim \mathcal{U}} f(z_i) - \frac{\mathbb{E}}{x \sim \mathcal{U}, y \sim \mathcal{D}} f(z_{i+1}) \right| \leq \frac{\varepsilon}{2}. \quad (3)$$

To finish the proof of Theorem 1.1, note that with probability at least $1 - \varepsilon/2$, $f(x_{J_1}, \ldots, x_{J_m}, \cdot)$ is a constant function (which follows from $S \subseteq J_1 \cup \cdots \cup J_m$), and thus $|\mathbb{E}_{x,y} f(z_m) - \mathbb{E}_x f(x)| \leq \varepsilon/2$. Combining this with Eq. (3) gives $|\mathbb{E}_{y \sim \mathcal{U}} f(y) - \mathbb{E}_{x \sim \mathcal{D}} f(x)| \leq \varepsilon/2 + \varepsilon/2$.

4 Measures of Boolean Functions under k-Wise Independent Random Restrictions

Lemma 4.1. Let $t \in \mathbb{R}^+$ and $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$. Let \mathcal{D} be a distribution of (k, p)-wise independent restrictions. Then, for any $d \leq k$ we have

$$\mathbb{E}_{(J,z) \sim \mathcal{D}} \left[W^d[f_{J,z}] \right] \leq p^d \cdot \text{Inf}^d[f]. \quad (4)$$
Theorem 3.1. Let \(S \subseteq \) a given \(y \) where the second to last inequality is due to the following observation. We observe that for \((a distribution of \(k \)-wise independent restrictions. Then, we upper and lower bound the value of \(\text{Pr}_J[S \subseteq J] = p^d \) by the fact that \(J \) is a \(k \)-wise \(p \)-random restriction. We thus have

\[
E_{J,z}[W^{zd}[f|J,z]] \leq \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \left(\frac{|U|}{d} \right) \cdot p^d = \text{Inf}^d[f] \cdot p^d.
\]

Lemma 4.2. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \), with \(s(f) = s \). Let \(D \) be a distribution of \((k, p)\)-wise independent restrictions. Then,

\[
E_{(J,z) \sim D} \left[\text{Pr}_x[s(f|J,z), x] \geq k \right] \leq (ps)^k.
\]

Proof. We expand \(E_{(J,z) \sim D} \left[\text{Pr}_x[s(f|J,z), x] \geq k \right] \):

\[
E_{J,z} \left[\text{Pr}_x[s(f|J,z), x] \geq k \right] = E_{J,z} \left[E_{x \in \{-1, 1\}^n} \left[\text{Pr}_x[s(f(z), x) \geq k] \right] \right]
\]

\[
= E_{J,z} \left[E_{x \in \{-1, 1\}^n} \left[\text{Pr}_y[s(f(y), y) \geq k] \right] \right]
\]

\[
\leq E_{y \in \{-1, 1\}^n} \left[\text{Pr}_J[J \cap S(f, y) \geq k] \right]
\]

\[
\leq (ps)^k
\]

where the second to last inequality is due to the following observation. We observe that for a given \(y \) and a set \(S = \{i_1, \ldots, i_k\} \) of \(k \) sensitive directions of \(f \) at \(y \), the probability that \(S \subseteq J \) is \(p^k \). We then union-bound over all subsets \(S \) of cardinality \(k \) of \(S(f, y) \).

We are now ready to prove the main theorem of this section (restated next).

Theorem 3.1. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) with \(s(f) = s \). Let \(1 \leq k \leq s/10 \), and let \(D \) be a distribution of \((k, p)\)-wise independent restrictions. Then,

\[
\text{Pr}_{(J,z) \sim D}[f|J,z] \text{ is not a } (2^{20k})\text{-junta} \leq O(ps)^k \cdot 2^{6s}
\]

Proof. We upper and lower bound the value of

\[
(*) = E_{(J,z) \sim D} \left[W^{\geq k}[f|J,z] + \text{Pr}_x[s(f|J,z), x] \geq k] \right].
\]

8
For the upper bound we use Lemma 4.2 to get
\[\mathbb{E}_{(J,z) \sim \mathcal{D}} \left[\Pr_x[s(f_{J,z}, x) \geq k] \right] \leq (ps)^k, \]
and Lemma 4.1 and Theorem 2.6 to get
\[\mathbb{E}_{(J,z) \sim \mathcal{D}} \left[W^{\geq k}[f_{J,z}] \right] \leq O(ps)^k, \]
which gives \((*) \leq O(ps)^k\).

For the lower bound we use the following lemma, the proof of which we defer to Section 5.

Lemma 1.2. Let \(f : \{-1,1\}^n \to \{-1,1\} \) with \(s(f) \leq s \). Let \(1 \leq k \leq s/10 \). Assume \(W^{\geq k}[f] \leq 2^{-6s} \), and that at most \(2^{-6s} \) fraction of the points in \(\{-1,1\}^n \) have sensitivity at least \(k \). Then, \(f \) is a \(2^{20k} \)-junta.

Let \(\mathcal{E} \) be the event that \(f_{J,z} \) is not a \(2^{20k} \)-junta. Whenever \(\mathcal{E} \) occurs, Lemma 1.2 implies that either \(\Pr_x[s(f_{J,z}, x) \geq k] \leq 2^{-6s} \) or \(W^{\geq k}[f_{J,z}] \geq 2^{-6s} \). In both cases, \(\Pr_x[s(f_{J,z}, x) \geq k] + W^{\geq k}[f_{J,z}] \geq 2^{-6s} \). Thus, we get the lower bound
\[(*) \geq \Pr[\mathcal{E}] \cdot \mathbb{E}_{(J,z)} \left[W^{\geq k}[f_{J,z}] + \Pr_x[s(f_{J,z}, x) \geq k] \mid \mathcal{E} \right] \geq \Pr[\mathcal{E}] \cdot 2^{-6s} \]

Comparing the upper and lower bound gives
\[\Pr_{(J,z) \sim \mathcal{D}}[f_{J,z} \text{ is not a } K\text{-junta}] = \Pr[\mathcal{E}] \leq 2^{6s} \cdot (*) \leq 2^{6s} \cdot O(ps)^k. \]

5 A Strengthening of Friedgut’s Theorem for Low Sensitivity Functions

Theorem 5.1 (Friedgut’s Junta Theorem - [O’D14, Thm 9.28]). Let \(f : \{-1,1\}^n \to \{-1,1\} \). Let \(0 < \varepsilon \leq 1 \) and \(k \geq 0 \). If \(W^{> k}[f] \leq \varepsilon \), then \(f \) is \(2\varepsilon \)-close to a \((9^k \cdot \inf |f|^2 / \varepsilon^2)\)-junta.

Lemma 1.2. Let \(f : \{-1,1\}^n \to \{-1,1\} \) with \(s(f) \leq s \). Let \(1 \leq k \leq s/10 \). Assume \(W^{\geq k}[f] \leq 2^{-6s} \), and that at most \(2^{-6s} \) fraction of the points in \(\{-1,1\}^n \) have sensitivity at least \(k \). Then, \(f \) is a \(2^{20k} \)-junta.

Proof. We first show that \(\inf |f| \leq k \). By Simon’s work [Sim83], \(f \) depends on at most \(4^s \cdot s \) variables\(^2\). Thus, \(\inf |f| \leq (k - 1) + W^{\geq k}[f] \cdot (4^s \cdot s) \leq (k - 1) + 1 = k \). Apply Friedgut’s theorem with \(\varepsilon = 2^{-6k-1} \geq W^{\geq k}[f] \). We get a \(K \)-junta \(h \), for
\[K = 9^k \cdot \inf |f|^3 / \varepsilon^2 \leq 9^k \cdot k^3 \cdot 2^{12k+2} < 2^{20k}, \]
that \(2\varepsilon = 2^{-6k} \) approximates \(f \). Let \(C_1, \ldots, C_N \) be the subcube corresponding to the \(N = 2^k \) different assignments to the junta variables. Without loss of generality, under each \(C_i \), \(h \)

\(^2\)Note that our final goal will be to show that \(f \) actually depends on \(2^{20k} \) variables, and that \(k \) can be significantly smaller than \(s \).
attains the constant value that is the majority-vote of f on C_i. In other words, f and h agree on at least $1/2$ of the points in each subcube C_i.

Let $p_i = \frac{|\{x \in C_i : f(x) \neq h(x)\}|}{|C_i|}$, for $i \in [N]$. By the above discussion, $0 \leq p_i \leq 1/2$. In addition, since $f|_{C_i}$ has sensitivity at most s, if $p_i > 0$, then $p_i \geq 2^{-s}$ using Corollary 2.2.

Assume towards contradiction that $h \neq f$. We will think of the hamming cube $\{-1, 1\}^n$ as an outer cube of dimension K, and an inner cube of dimension $n-K$. Each subcube C_i is an instance of the inner cube $\{-1, 1\}^{n-K}$. The graph of subcubes is an instance of the outer cube $\{-1, 1\}^K$. Call a subcube C_i:

- **decisive** if $p_i = 0$,
- **confused** if $2^{-s} \leq p_i < 2^{-k-1}$, or
- **indecisive** if $p_i \geq 2^{-k-1}$.

Denote by α, β, γ the fraction of decisive, confused and indecisive subcubes correspondingly.

Since we assumed (towards contradiction) that $h \neq f$, at least one subcube is confused or indecisive. Consider the graph G of subcubes, which is isomorphic to $\{-1, 1\}^K$, in which each vertex represents either a decisive, confused or indecisive subcube, and two vertices are adjacent if and only if their corresponding subcubes are adjacent in $\{-1, 1\}^n$. First, we show that at least 2^{-2s} fraction of the subcubes are confused or indecisive. Assume otherwise, then by Harper’s inequality (Thm. 2.1) there is a confused or indecisive cube C_i with at least $2s+1$ decisive subcubes as neighbors. As there are points with both $\{-1, 1\}$ values in C_i, we may pick a point $x \in C_i$ whose value is the opposite of the majority of the decisive neighbor subcubes of C_i, which gives $s(f, x) \geq s+1$, a contradiction. We thus have

$$\beta + \gamma \geq 2^{-2s} \tag{5}$$

Next, we show that β is very small and in particular much smaller than γ. Towards this end, we shall analyze the sensitivity within confused subcubes. If C_i is confused (i.e., $2^{-s} \leq p_i < 2^{-k-1}$), then by Harper’s inequality (inside C_i) the average sensitivity on the minority of $f|_{C_i}$ is greater than $k+1$. Since sensitivity ranges between 0 to s, at least $1/s$ of the points with minority value in $f|_{C_i}$ have sensitivity at least k (otherwise the average sensitivity among them will be less than $(1/s) \cdot s + k \leq k+1$). As there are at least 2^{-s} points with the minority value on the subcube C_i, we get that at least $2^{-s}/s \geq 2^{-2s}$ fraction of the points in C_i have sensitivity at least k.

If the fraction of confused subcubes is more than $2^{-2s}/(K+1)$, then more than $2^{-4s}/(K+1) \geq 2^{-6s}$ fraction of the points in $\{-1, 1\}^n$ has sensitivity at least k, which contradicts one of the assumptions. Thus,

$$\beta \leq 2^{-2s}/(K+1). \tag{6}$$

Furthermore, combining Eq. (5) and (6), we have that the fraction of indecisive subcubes, γ, is at least

$$\gamma \geq 2^{-2s} \cdot \frac{K}{K+1} \geq K \cdot \beta. \tag{7}$$

Consider again the graph G of subcubes (which is isomorphic to $\{-1, 1\}^K$). Recall that each vertex in the graph G corresponds to a subcube which is either decisive, confused
or indecisive. Call A the set of vertices that correspond to indecisive subcubes. Then, $|A| = \gamma \cdot 2^K$. By the fact that h approximates f with error at most 2^{-6k}, the size of A is at most $2^{-6k} \cdot 2^{k+1} \cdot 2^K \leq 2^{-4k} \cdot 2^K$, i.e., $\gamma \leq 2^{-4k}$. By Harper's inequality, $|E(A, A)| \geq |A| \cdot (4K - 1)$. There are at most $\beta \cdot 2^K \cdot K \leq \gamma \cdot 2^K = |A|$ edges touching confused nodes, hence there are at least $|A| \cdot (4K - 1)$ edges from A to decisive nodes. As before, the maximal number of edges from a node in A to decisive nodes is at most $2s$, otherwise we get a contradiction to $s(f) \leq s$. This implies that at least $1/2s$ fraction of the nodes in A have at least $(4k - 2)/2 \geq 2k - 1 \geq k$, and the fraction of such points in C_i is at least 2^{-k-1}. Using Eq. (7) we get that

$$\gamma \cdot \frac{1}{2s} \cdot 2^{-k-1} \geq 2^{-2s} \cdot \frac{K}{K + 1} \cdot \frac{1}{2s} \cdot 2^{-k-1} \geq 2^{-6s}$$

of the points in $\{-1, 1\}^n$ have sensitivity at least k, which yields a contradiction.

Acknowledgements

We would like to thank Li-Yang Tan for bringing the problem to our attention and for stimulating and helpful discussions.

References

A Does the NW-Generator Fool Low-Sensitivity Functions?

In this section we recall the construction and analysis of the NW-Generator [NW94]. For ease of notation, we treat Boolean functions here as $f : \{0, 1\}^n \to \{0, 1\}$. Suppose we want to construct a pseudorandom generator fooling a class of Boolean functions \mathcal{C}. Nisan and Wigderson provide a generic way to construct such PRGs based on the premise that there is some explicit function f which is average-case hard for a class \mathcal{C}' that slightly extends \mathcal{C}. Recall that $\textbf{Sens}(s)$ is the class of all Boolean functions with sensitivity at most s. In the case $\mathcal{C} = \textbf{Sens}(s)$, the argument may fail, because \mathcal{C}' is not provably similar to \mathcal{C}. The difficulty comes from the fact that low-sensitivity functions are not closed under projections as will be explained later.

Let $f : \{0, 1\}^\ell \to \{0, 1\}$ be a function that is average-case hard for class \mathcal{C}. Let $S_1, \ldots, S_n \subseteq [r]$ be a design over a universe of size r where $|S_i| = \ell$, and $|S_i \cap S_j| \leq \alpha$ for all $i \neq j \in [n]$ (think of α as much smaller than ℓ). The NW-generator $G_f : \{0, 1\}^r \to \{0, 1\}^n$ is defined as

$$G_f(x_1, \ldots, x_r) = (f(x_{S_1}), f(x_{S_2}), \ldots, f(x_{S_n}))$$

where x_{S_i} is the restriction of x to the coordinates in S_i, for any set $S_i \subseteq [n]$.

The proof that the NW-generator fools C goes via a contrapositive argument. We assume that there is a distinguisher $c \in C$ such that

$$\left| \mathbb{E}_{z \in \mathbb{R}^n} \left[c(G_f(z)) \right] - \mathbb{E}_{x \in \mathbb{R}^n} \left[c(x) \right] \right| \geq \varepsilon,$$

and prove that f can be computed on more than $1/2 + \Omega(\varepsilon)/n$ fraction of the inputs by some function c'' which is not much more complicated than c. First, by Yao’s next-bit predictor lemma, there exists an $i \in [n]$ and constants $a_i, \ldots, a_n, b \in \{0, 1\}$ such that

$$\Pr_{x \in \{0, 1\}^n} \left[c(f(x_{i}), f(x_{i+1}), \ldots, f(x_{i+k})), a_i, \ldots, a_n) \oplus b = f(x_{i}) \right] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$

Since the class of function with sensitivity s is closed under restrictions (i.e., fixing the input variables to constant values) and negations we have that $c'(z_1, \ldots, z_{i-1}) := c(z_1, \ldots, z_{i-1}, a_i, \ldots, a_n) \oplus b$ is of sensitivity at most s. We get

$$\Pr_{x \in \{0, 1\}^n} \left[c'(f(x_{i}), f(x_{i+1}), \ldots, f(x_{i+k})) = f(x_{i}) \right] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$

Next, we wish to fix all values in $[r] \setminus S_i$. By averaging there exists an assignment y to the variables in $[r] \setminus S_i$ such that

$$\Pr_{x \in \{0, 1\}^S_i} \left[c'(f((x \circ y)_{S_1}), f((x \circ y)_{S_2}), \ldots, f((x \circ y)_{S_{i-1}})) = f(x_{i}) \right] \geq \frac{1}{2} + \frac{\Omega(\varepsilon)}{n}.$$

Note that for $j = 1, \ldots, i-1$, the value of $f((x \circ y)_{S_j})$ depends only on the variables in $S_j \cap S_i$ and there aren’t too many such variables (at most α). The next step is to consider $c'' : \{0, 1\}^S_i \rightarrow \{0, 1\}$, defined by $c''(x) = c'(f((x \circ y)_{S_1}), f((x \circ y)_{S_2}), \ldots, f((x \circ y)_{S_{i-1}}))$, that have agreement at least $1/2 + \Omega(\varepsilon)/n$ with $f(x_{S_i})$. If c'' is a “simple” function then we get a contradiction as f is average-case hard.

It seems that c'' is simple, since it is the composition of c' with α-juntas. However, the point that we want to make is that even if c' is low-sensitivity and even if $\alpha = 1$, we are not guaranteed that c'' is of low-sensitivity.

To see this, suppose that $\alpha = 1$, i.e., all $|S_j \cap S_i| \leq 1$ for $j < i$. This means that as a function of x, each $f((x \circ y)_{S_j})$ depends on at most one variable, i.e., $f((x \circ y)_{S_j}) = a_j \cdot x_{k_j} \oplus b_j$ for some index $k_j \in S_i$ and some constants $a_j, b_j \in \{0, 1\}$. We get that

$$c''(x) = c'(a_1 \cdot x_{k_1} \oplus b_1, a_2 \cdot x_{k_2} \oplus b_2, \ldots, a_{i-1} \cdot x_{k_{i-1}} \oplus b_{i-1}).$$

Next, we argue that c'' could potentially have very high sensitivity. To see that, observe that flipping one bit x_i in the input to c'' results in changing a block of variables in the input to c', as there may be several j for which $k_j = i$. In the worst-case scenario, the sensitivity of c'' could be as big as the block sensitivity of c'. However, the best known bound is only $bs(f) \leq 2^{s(f) \cdot (1+o(1))}$ for any Boolean function f [ABG+14]. This means that we can only guarantee that $s(c'') \leq bs(c') \leq 2^{s(1+o(1))}$, and we do not have average-case hardness for such high-sensitivity functions.
Remark: The above argument shows that the standard analysis of the Nisan-Wigderson generator applied to low-sensitivity Boolean functions breaks, but it does not mean that the generator does not ultimately fool $\text{Sens}(s)$. Indeed, assuming the sensitivity conjecture, the argument will follow through.