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Abstract

We show a reduction from the existence of explicit t-non-malleable extractors with a small
seed length, to the construction of explicit two-source extractors with small error for sources
with arbitrarily small constant rate. Previously, such a reduction was known either when one
source had entropy rate above half [Raz05] or for general entropy rates but only for large error
[CZ16].

As in previous reductions we start with the Chattopadhyay and Zuckerman approach
[CZ16], where an extractor is applied on one source to create a table, and the second source is
used to sample a sub-table. In previous work, a resilient function was applied on the sub-table
and the use of resilient functions immediately implied large error. In this work we replace the
resilient function with the parity function (that is not resilient). We prove correctness by show-
ing that doing the sampling properly, the sample size can be made so small that it is smaller
then the non-malleability parameter t of the first extractor, which is enough for the correctness.

The parameters we require from the non-malleable construction hold (quite comfortably)
in a non-explicit construction, but currently it is not known how to explicitly construct such
graphs. As a result we do not give an unconditional construction of an explicit low-error two-
source extractor. However, the reduction shows a new connection between non-malleable and
two-source extractors, and also shows resilient functions do not play a crucial role in the two-
source construction framework suggested in [CZ16]. Furthermore, the reduction highlights
a barrier in constructing non-malleable extractors, and reveals its importance. We hope this
work would lead to further developments in explicit constructions of both non-malleable and
two-source extractors.
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1 Introduction

A randomness extractor is a function that purifies crude randomness sources. A crude randomness
source is usually modeled as an (n, k)-source, i.e., a distribution over {0, 1}n with min-entropy
at least k. It is easy to see that extracting from a general (n, k)-source is impossible and thus the
requirement from the extractor needs to be relaxed. Different relaxations lead to different flavors
of extractors. In this paper we focus on two-source extractors. An ((n1, k1), (n2, k2), ε) two-source
extractor is a function E : {0, 1}n1 ×{0, 1}n2 → {0, 1}m that maps any pair of independent (n1, k1)
and (n2, k2) sourcesX,Y to a distributionE(X,Y ) which is ε-close to Um, the uniform distribution
over {0, 1}m. Two-source extractors for small min-entropies having small error is the focal point of
this paper.

A Ramsey graph is a graph that contains neither a large clique nor an independent set. This
notion can be generalized to bipartite graphs; a bipartite Ramsey graph is a bipartite graph without
large bipartite cliques or bipartite independent sets. It is not hard to see that bipartite Ramsey
graphs correspond to two-source extractors that output one bit, with some nontrivial error.

A long line of research was devoted to explicitly constructing Ramsey graphs [Abb72, Nag75,
Fra77, Chu81, FW81, Nao92, Alo98, Gro01, Bar06], bipartite Ramsey graphs [BKS+10, BRSW12,
Coh15], and two-source extractors [CG88, Raz05, Bou05] culminating in the work of Chattopad-
hyay and Zuckerman [CZ16] who constructed a two-source extractor for k = polylog(n). Several
improvements on the [CZ16] construction followed, including [Mek15, Li15a]. Currently, follow-
ing [BADTS16, Coh16d, Li16], the best explicit construction achieves k = O(log n log log n) which
is pretty close to the optimal Ω(log n) bound.

The recent explicit two-source constructions mentioned above (i.e., [CZ16, BADTS16, Coh16d,
Li16]) can only handle high error, in the sense that the running time of the extractor is polynomial
in 1

ε . While this suffices for Ramsey graph constructions, non-explicit constructions may have
exponentially small error in the entropy k of the two sources. Similarly, these constructions usually
output few close-to-uniform bits, while non-explicitly, almost all of the entropy can be extracted.

There are several explicit two-source constructions with exponentially-small error. The inner-
product function gives a simple solution when k > n/2 [CG88]. Bourgain [Bou05] gave a two-
source extractor construction for k = (1

2 − α)n, for some small constant α > 0. Raz [Raz05]
constructed a two-source extractor that has an unbalanced entropy requirement; the first source
should have more than n/2 min-entropy, while the second source’s min-entropy can be as low
as c · log n (for some constant c). All of these constructions have exponentially small (in k) error.
However, in all of these constructions one of the sources is required to have entropy rate close to
half, i.e., the entropy of the source has to be at least (1

2 − α)n > 0.49n.
We also mention that for three sources Li [Li15b] constructed an extractor with exponentially-

small error for min-entropy k = polylog(n). Yet, achieving the same with only two sources, is a
challenging and important open problem.

Central to the work of [CZ16] are non-malleable extractors. These are another variant of extrac-
tors, devised by Dodis and Wiches [DW09], which we now briefly describe. A seeded extractor
is an extractor that purifies (n, k)-sources using a short truly random seed. That is, a function
E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong seeded extractor if for any (n, k)-source X and for
an independent Y ∼ Ud, the distribution (Y,E(X,Y )) is ε-close to (Y,Um). A (k, ε) t-non-malleable
extractor strengthens a strong seeded extractor by requiring that under the same premise the ex-
tractor’s output is close to uniform, even given the evaluation of E on t arbitrarily correlated
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seeds, i.e., the distribution (Y,E(X,Y ), {E(X, fi(Y ))}ti=1) is ε-close to (Y,Um, {E(X, fi(Y ))}ti=1)

for any functions f1, . . . , ft : {0, 1}d → {0, 1}d with no fixed-points.
The main result in this paper is a reduction from the existence of certain non-malleable extrac-

tors to low-error two-source extractors with any constant entropy rate:

Theorem 1.1. There exists a constant c ≥ 1 such that the following holds. Suppose for some constant
α > 0 for every n1, k1, ε1 and t there exists an explicit E : {0, 1}n1 × {0, 1}d → {0, 1}m that is a strong
(k1, ε1) t-n.m. extractor for d ≤ αt

c · log(1
ε ). Then, for every ε > 0 there exists an explicit ((n1, k1), (n2 =

4d/α, k2 = αn2), 2
√
ε1) two-source extractor that outputs m bits.

The parameters here resemble those of Raz’s extractor: one source is long with very low en-
tropy, the other is short with constant entropy rate. The main difference is that in Raz’s extractor
the entropy rate has to be above half, whereas here, assuming the existence of the appropriate
non-malleable extractors, the entropy rate can be an arbitrarily small constant. In particular, we
have:

Corollary 1.2. Given explicit optimal n.m. extractors, for every n1, k1 ≤ n1 and a constant 0 < α <
1, there exists an explicit

(
(n1, k1), (n2 = Ω

(
1
α(log n1 + k1)

)
, k2 = αn2), 2−Ω(k1)

)
two-source extractor

that outputs m = Ω(αk1) bits.

We also mention that the requirement d ≤ αt
c · log(1

ε ) is quite tight. We will show that the
approach cannot work if d ≥ 16t

c · log(1
ε ).

We now explain the ideas behind the reduction, starting with recalling the main ideas in the
construction of the two-source extractor in [CZ16] and the bottleneck for achieving smaller error.
Let X and Y be two independent (n, k)-sources. The starting point of [CZ16] is to use a t-non-
malleable extractor E with error ε1 and seed length d1 to produce a table with D1 = 2d1 entries,
where the i-th entry is E(X, i). Using the property of the non-malleable extractor, one can show
that (1 − √ε1)-fraction of the rows are uniform and almost t-wise independent. The remaining
rows are, however, arbitrarily correlated with these rows. In [CZ16] they then:

• Use the second source to sample a sub-table of length D2, such that a fraction of about ε2 of
its rows are bad, and every t good rows are

√
ε2-close to uniform, and,

• Apply a resilient function f : {0, 1}D2 → {0, 1} on the sub-table. f has to be resilient to√
ε2D2 bad players, and should perform correctly even when the good players are t-wise

independent.

The sub-table is Dt
2t
√
ε1 close to a table where the good players are truly t-wise independent

(as required by f ) and so it is enough to choose ε1 small enough so that Dt
2t
√
ε1 is small.

While this beautiful approach does give an unbiased output bit, it seems that it is inherently
bound to have high error. This is because no matter what the resilient function is, there is always
one player among the D2 players with 1/D2 influence over the result (in fact, [KKL88] showed
there is a player with Ω( logD2

D2
) influence) and so even if there is just a single bad player, this

player can bias the result by 1
D2

. Thus, the running time, which is at least D2, is at least Ω(1
ε ).

In our solution we completely dispense with the use of resilient functions. We also do not try
to achieve a sub-table that is close to a truly t-wise independent distribution, and we strive to work
with the much weaker guarantee that every t good rows are close to uniform. This leads us to the
following two-source extractor:
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Let X and Y be two independent (n, k)-sources. As in [CZ16] we use a t-non-malleable extrac-
torE with error ε1 and seed length d1 to produce a table withD1 = 2d1 entries, where the i-th entry
is E(X, i). Using the property of the non-malleable extractor, one can show that (1−√ε1)-fraction
of the rows are uniform and almost t-wise independent. The remaining rows are arbitrarily corre-
lated with these rows. Then:

• We use the second source to sample t rows from that table, with the property that with high
probability (over the choice of x2 ∈ X2) at least one of the t samples is a good row (in the
table with D1 rows).

• We then take the parity of the t bits written in the t rows we sampled.

Conceptually, what happened is that we take a dramatically smaller sample set than before.
Specifically, in [CZ16, BADTS16] the sample set is much larger than t, whereas in our algorithm
the sample size is t. Accordingly, we replace the requirement that the fraction of bad players in the
sample set is small, with the weaker requirement that not all of the players in the sample set are
bad. If the sample size is t and not all the players in the sample are bad, then the good player is
almost independent of the other t− 1 players, and therefore we can just apply the parity function
on the t bits in the sample. Thus, we can also replace the resilient function f with the parity
function (which is not resilient at all, but is now good for us).

Notice, that by doing so we also get rid of the annoying (and expensive) requirement that
Dt

2ε1 < 1, because we no longer need to convert a table where every t rows are close to uniform,
to a table that is close to being perfectly t-wise independent.

The only question that is left is whether we can find a sampler with such a small sample size,
that except for very few x2-s, always sees at least one good row. This question readily translates to
the existence (or the explicit existence) of dispersers of constant degree that are good against small
tests. Remarkably, Zuckerman [Zuc06] gave a beautiful explicit construction with nearly optimal
bounds.

We are still left with the question of whether these graphs (with nearly optimal parameters) can
support such a construction. The question is non-trivial because there is a circular dependency in
the construction: the sample size of the sampler determines the required t-non-malleability of the
extractor, which then affects the parameters of the extractor, and in particular the number of bad
rows, which, in turn, affects the required degree of the sampler. It is therefore, offhand, not clear
at all whether such a construction is possible at all even assuming the best possible non-malleable
extractors.

The above discussion raises the question of what is the dependence of the seed length of non-
malleable extractors on the non-malleability parameter t. This question was considered before by
several people. In particular, Cohen and Shinkar [CS17] independently investigated this question.
We are grateful to Cohen for discussions regarding this during early stages of our work. It turns
out that in non-explicit constructions the dependence is very mild, and such an approach can be
easily supported.

In the paper we analyze what is the threshold beyond which such an approach cannot work.
Roughly speaking, extractors with seed length below t log(nε ) work well, while extractors with
seed length above it do not. Interestingly, the current constructions of non-malleable extractors
[Coh16a, CGL15, Coh16c, Coh16b, CL16, Coh16d, Li16] for small entropies are above this thresh-
old. This is mainly due to the use of alternating extraction techniques which treat the seed and
the source symmetrically. One consequence of our work is identifying this bottleneck, and the
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importance of overcoming it. We hope this work would lead to further developments in explicit
constructions of both non-malleable and two-source extractors.

2 Preliminaries

Throughout the paper we have the convention that lowercase variables are the logarithm (in base-
2) of their corresponding uppercase variables, e.g., n = logN , d = logD, etc. The density of a set
B ⊆ [D] is ρ(B) = |B|

D .

2.1 Random variables, min-entropy

The statistical distance between two distributions X and Y on the same domain D is defined as
|X − Y | = maxA⊆D(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say that X is ε-close to Y and
denote it by X ≈ε Y . We will denote by Un a random variable distributed uniformly over {0, 1}n
and which is independent of all other variables. We also say that a random variable is flat if it is
uniform over its support.

For a function f : D1 → D2 and a random variable X distributed over D1, f(X) is the random
variable, distributed over D2, which is obtained by choosing x according to X and computing
f(x). For a set A ⊆ D1, we simply denote f(A) = {f(x) | x ∈ A}. It is well-known that for every
f : D1 → D2 and two random variablesX and Y , distributed overD1, it holds that |f(X)−f(Y )| ≤
|X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
.

A random variable X distributed over {0, 1}n with min-entropy at least k is called an (n, k)-
source. Every distribution X with H∞(X) ≥ k can be expressed as a convex combination of flat
distributions, each with min-entropy at least k.

2.2 Extractors

Definition 2.1. A function 2Ext : [N1]×[N2]→ [M ] is an ((N1,K1), (N2,K2), ε)-two-source extractor
if for every two independent sourcesX1 andX2 whereX1 is an (n1, k1)-source andX2 is an (n2, k2)-source,
it holds that 2Ext(X1, X2) ≈ε Um.

Definition 2.2. E : [N ]× [D]→ [M ] is a strong (K, ε) t-non-malleable extractor, if for every (N,K)-
source X and every functions f1, . . . , ft : [D]→ [D] with no fixed-points1 it holds that,∣∣(U,E(X,U), {E(X, fi(U))}ti=1)− (U,Um, {E(X, fi(U))}ti=1)

∣∣ ≤ ε,
where U is the uniform distribution over [D] and Um is the uniform distribution over [M ].

A simple consequence, proved in [CZ16], is:

1That is, for every i and every x, we have fi(x) 6= x.
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Lemma 2.3 ([CZ16], Lemma 3.4). Let E : [N ]× [D]→ [M ] be a strong (K, ε) t-non-malleable extractor.
Let X be any (N,K)-source. Then there exists a set BAD ⊆ [N ] with ρ(BAD) ≤

√
ε such that for every

y 6∈ BAD, and every y′1, . . . , y
′
t ∈ [D] \ y,∣∣∣(E(X, y),
{
E(X, y′i)

}
i∈[t]

)
−
(
UM ,

{
E(X, y′i)

}
i∈[t]

)∣∣∣ ≤ √
ε.

2.3 Dispersers

Definition 2.4. A function Γ : [N ] × [D] → [M ] is a (K,K ′)-disperser if for every A ⊆ [N ] with
|A| ≥ K it holds that

∣∣∣⋃i∈[D] Γ(A, i)
∣∣∣ ≥ K ′.

Zuckerman showed the following remarkable explicit construction:

Theorem 2.5 ([Zuc06], Theorem 1.9). There exists a constant cdisp such that the following holds. Fix
any constants 0 < a, b < 1. Set K = Na, M ≤ K1−b and K ′ < M . Then there exists an efficient family
of (K,K ′)-dispersers

Γ : [N ]× [D]→ [M ]

with degree D = cdisp ·
log N

K

log M
K′

= cdisp · n
log M

K′
.

We remark that the parameters in Theorem 2.5 are tight up to a constant factor.

3 The construction

3.1 The Overall structure

Given:

E : [N1]× [D]→ {0, 1}m

Γ : [N2]× [t+ 1]→ [D]

We define 2Ext : [N1]× [N2]→ {0, 1}m by

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ(x2, i) = y

E(x1, y).

Theorem 3.1. Assume E is a strong (K1, ε1) t-n.m. extractor and Γ is a (B2,
√
ε1D)-disperser. Then for

every K2, 2Ext is a
(

(N1,K1), (N2,K2), B2
K2

+
√
ε1

)
two-source extractor.

Proof: Let X1 be an (N1,K1)-source and X2 an (N2,K2)-source. W.l.o.g. X1 and X2 are flat. As E
is t-n.m., by Lemma 2.3 there exists a set BAD1 ⊆ [D] with ρ(BAD1) ≤ √ε1 such that for every
y 6∈ BAD1 and every y′1, . . . , y

′
t ∈ [D] \ {y},∣∣∣(E(X, y),
{
E(X, y′i)

}
i∈[t]

)
−
(
Um,

{
E(X, y′i)

}
i∈[t]

)∣∣∣ ≤ √
ε1.

Let BAD2 ⊆ [N2] be

BAD2 = {x2 ∈ [N2] | Γ(x2) ⊆ BAD1} .
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Thus, Γ(BAD2) ⊆ BAD1. Since |BAD1| ≤
√
ε1D and Γ2 is a (B2,

√
ε1D)- disperser, it follows

that |BAD2| ≤ B2. However, for any x2 ∈ [N2] \ BAD2, there exists an i ∈ [t + 1] such that
y = Γ(x2, i) 6∈ BAD1. Hence,∣∣∣(E(X, y), {E(X, yj)}yj∈Γ(x2)\{y}

)
−
(
Um, {E(X, yj)}yj 6=Γ(x2)\{y}

)∣∣∣ ≤ √
ε1.

Thus, ∣∣∣∣∣∣∣
⊕

y:∃i s.t. Γ(x2, i) = y

E(x1, y)− Um

∣∣∣∣∣∣∣ ≤
√
ε1.

Altogether, the error is at most |BAD2|
K2

+
√
ε1 and the proof is complete.

3.2 The activation threshold

In the previous subsection we assumed the existence of a (B2,
√
ε1D)-disperser Γ and a t-n.m.

extractor E. However,

• The degree D2 of the disperser Γ affects the non-malleability parameter t of the extractor,
because the argument requires t ≥ D2 − 1,

• The non-malleability parameter t affects the degree D of the extractor, because intuitively,
the greater t is the greater the degree has to be,

• The degree D determines |BAD1| =
√
ε1D, and,

• The size B1 of the set BAD1 determines the degree of the disperser Γ as D2 = O

(
log

N2
B2

log D
B1

)
,

and up to multiplicative factor this is also a lower bound on D2.

Thus we have a circular dependence and it is not clear at all that such a construction is even
possible. Indeed, as we shall see, if the seed length of E is larger than t log( 1

ε1
) such a construc-

tion is impossible. Unfortunately, this is indeed the case with all existing explicit constructions.
However, non-explicitly better non-malleable extractors exist that comfortably suffice for the con-
struction. Our goal in this section is to determine which dependence of the seed length on t and
ε1 suffices for the construction.

Normally, we measure the degree of a t-n.m. (K1, ε1) strong extractor E : [N1] × [D1] → [M ]
as a function of N1 and ε1. For example there are explicit constructions of strong extractors with
degree poly( logN1

ε1
). However, since we are interested in the low-error case where ε1 ≤ 1

logN1
we

can suppress the dependence on N1 and measure D2 as a function of ε1 alone. Say, D1 = ( 1
ε1

)cD(t).

Lemma 3.2. Suppose E : [N1] × [D1] → {0, 1}m having error ε1 ≤ 1
n2
1

and Γ : [N2] × [D2] →
[D1] satisfying the requirements of Theorem 3.1 and suppose that 2Ext : [N1] × [N2] → {0, 1}m is the
((N1,K1), (N2,K2), 2

√
ε1) two-source extractor constructed and analyzed as above with K2 <

√
N2 .

Then, D1 ≤ ( 1
ε1

)cD(t) for cD(t) = t+1
cdisp

+ 1
2 , where cdisp is the constant guaranteed by Theorem 2.5.
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Proof: Since we follow the above analysis, we have 2
√
ε1 = B2

K2
+
√
ε1. In particular, B2 < K2.

Also, Γ : [N2]× [t+ 1]→ [D1] is a (B2, B1 =
√
ε1D1)-disperser. Therefore,

t+ 1 ≥ cdisp ·
log N2

B2

log D1
B1

≥ cdisp ·
logK2

log 1√
ε1

.

However, by the properties of the disperser,K2 > B2 ≥ B1
t (because otherwise we can take a set of

size B1
t on the left hand size, and the size of its neighbor set is at most B1, violating the disperser

property). Also, B1
t ≥

√
B1 because otherwise

√
B1 < t and thus

D1 =
B1√
ε1

<
t2
√
ε1
≤ n2

1√
ε1
≤ 1

ε2
1

,

where the last inequality follows from the assumption on ε1. This contradicts the lower-bound for

extractors [RTS00]. Thus, we have K2 ≥
√
B1. Also, express D1 =

(
1
ε1

)cD(t)
. Then, B1 =

√
ε1D1 =(

1
ε1

)cD(t)− 1
2 . Hence,

t+ 1 ≥ cdisp

(
cD(t)− 1

2

)
.

It therefore follows that cD(t) ≤ t+1
cdisp

+ 1
2 .

The analysis in the above proof is quite tight and we can also prove the converse:

Lemma 3.3. For every constant α > 0 the following holds. Suppose for every N1,K1, ε1 ≤ 1
logN1

and
t, there exists an explicit E : [N1] × [D1] → {0, 1}m that is a strong (K1, ε1) t-n.m. extractor with
D1 = ( 1

ε1
)cD(t) for 1

4 ≤ cD(t) ≤ α
8cdisp

t. Then for every ε ≤ 1
n1

there exists an explicit 2Ext : [N1]×[N2]→

{0, 1}m that is a ((N1,K1), (N2 = D
4/α
1 ,K2 = Nα

2 ), ε) two-source extractor.

Proof: Set ε1 = (ε/2)2. Let D1 = ( 1
ε1

)cD(t), B1 =
√
ε1D1, B2 = D2

1, K2 = B2
2 and N2 = K

1/α
2 .

Let Γ : [N2]× [D2]→ [D1] be the (B2, B1 =
√
ε1D1)-disperser promised to us by Theorem 2.5 (for

a = α/2 and b = 1
2 ). By that theorem, the degree D2 of Γ is

D2 = cdisp ·
log N2

B2

log D1
B1

= cdisp ·
(

1
α −

1
2

)
logK2

log 1√
ε1

= cdisp ·
(

1

α
− 1

2

)
8 logD1

log 1/ε1
= cdisp ·

(
8

α
− 4

)
cD(t),

where the constant hidden in the big-O notation is independent of all other parameters.
Set t = D2 − 1 and let E : [N1]× [D̃]→ {0, 1}m be the explicit, strong (K1, ε1) t-n.m. extractor

with D̃ = ( 1
ε1

)cD(t) promised by the theorem. We also see that D̃ = D1. Let 2Ext : [N1] × [N2] →
{0, 1}m constructed from E and Γ as above.

We see that E is a strong (K1, ε1) t-n.m. extractor and Γ is a (B2,
√
ε1D1)-disperser. Therefore,

by Theorem 3.1, 2Ext is a ((N1,K1), (N2,K2), B2
K2

+
√
ε1) two-source extractor. But B2

K2
+
√
ε1 =

1
D2

1
+ ε

2 = ε
2cD(t)
1 + ε

2 = ( ε2)4cD(t) + ε
2 ≤ ε, where the last inequality follows from the assumption

cD(t) ≥ 1
4 .
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4 The dependence of the seed on the non-malleability degree

The current best explicit construction is due to Li. We cite his result for comparison with the
non-explicit construction.

Theorem 4.1 ([Li16]). There exists a constant c1 such that for any integer t the following holds. For any
integer n and for any ε > 0, there exists an efficiently-computable strong (k = d, tε) t-n.m. extractor
nmEXT : [N ]× [D]→ {0, 1} with seed length d = c1t

2(log n+ log 1
ε · log log 1

ε ).

Non-explicitly, we extend the [DW09] result and prove that

Theorem 4.2. Let n, k, t and ε be such that k ≥ (t+1)m+2 log 1
ε +log d+4 log t+3. There exist a strong

(k, ε) t-n.m. extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ 2 log 1
ε + log(n− k) + 2 log(t+ 1) + 3.

Independently this was proved by Cohen and Shinkar [CS17].

Proof: Choose a functionE : [N ]× [D]→ [M ] uniformly at random. Fix a flat sourceX (which we
identify with a subset X ⊆ [N ] of size K), t functions f1, . . . , ft : [D] → [D] with no fixed-points
and a distinguisher function D : {0, 1}(t+1)m+d → {0, 1}. We want to bound the probability (over
E) that

Pr[D(E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1]−
Pr[D(Um, E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1] > ε.

For every y ∈ [D] and z1, . . . , zt ∈ [M ], define

Count(y, z1, . . . , zt) = |{z ∈ [M ] : D(z, z1, . . . , zt, y) = 1}| .

For every x ∈ X and y ∈ [D], define the following random variables (where the randomness
comes from E):

L(x, y) = D(E(x, y), E(x, f1(y)), . . . , E(x, ft(y)), y)

R(x, y) =
1

M
· Count(y,E(x, f1(y)), . . . , E(x, ft(y)))

Q(x, y) = L(x, y)−R(x, y)

Q =
1

KD

∑
x∈X,y∈[D]

Q(x, y).

As we mentioned above, we want to bound Pr[Q > ε]. Notice that for every x ∈ X and y ∈ [D],
due to the fact that f1, . . . , ft have no fixed points, we have that E[L(x, y)] = E[R(x, y)] and thus
E[Q] = 0. However, the values of Q on different inputs are not independent.

To see why the Q-s are not independent, think for example about the case where t = 2 and y is
such that f2(f1(y)) = y. In such a scenario,

L(x, y) = D(E(x, y), E(x, f1(y)), E(x, f2(y)), y)

L(x, f1(y)) = D(E(x, f1(y)), E(x, f1(f1(y))), E(x, y), f1(y)),

so, depending on D, Q(x, y) and Q(x, f1(y)) may not be independent. Luckily, it is sufficient to
disregard such cycles in order to obtain sufficient “independence”.
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Let G = (V = [D], E) be a directed graph (multiple edges allowed) such that

E = {(y, fk(y)) | y ∈ [D], k ∈ [t]} ,

so the out-degree of every vertex is exactly t.

Lemma 4.3. Assume that there exists a subset V ′ ⊆ V such that the induced subgraph G′ ⊆ G is acyclic.
Then, the set {Q(x, y)}x∈X,y∈V ′ can be enumerated by Q1, . . . ,Qm=K|V ′| such that

E[Qi | Q1, . . . ,Qi−1] = 0

for every i ∈ [m].

Proof: G′ is acyclic so it induces a partial order on V ′. Use this partial order to induce a total order
on {1, . . . ,m} such that if (y, y′) ∈ E and Qj = Q(x, y′), Qi = Q(x, y) then j ≤ i.

Fix some i ∈ [m] and assume Qi = Q(x, y). The key point is that the variables Q1, . . . ,Qi−1

never query E on the input (x, y). Conditioned on any choice of the value of E for all points other
than (x, y), denote them by e1, . . . , et, we have that

E[Qi] = E
[
D(E(x, y), e1, . . . , et, y)− 1

M
· Count(y, e1, . . . , et)

]
= 0,

and as we noted, Q1, . . . ,Qi−1 are deterministic functions of E and independent of E(x, y).

We now need a partition of the vertices of G into acyclic induced subgraphs. The following
lemma shows that such a partition exists with a small number of sets.

Lemma 4.4 ([NL82, Corollary 4]). For any directed graph G = (V,E) with maximum out-degree t
(multiple edges allowed), there exists a partition V = V1 ∪ . . . ∪ Vt+1 such that for every i ∈ [t + 1], the
subgraph of G induced by Vi is acyclic.

In light of the above two lemmas, there exists a partition of {Q(x, y)}x∈X,y∈[D] to t + 1 sets{
Q1

1, . . . ,Q
1
s1

}
, . . . ,

{
Qt

1, . . . ,Q
t
st

}
such that for every k ∈ [t+1] and i ∈ [sk], E[Qk

i | Qk
1, . . . ,Q

k
i−1] =

0. Now, define Ski =
∑i

j=1 Q
k
j and note that every sequence Sk1 , . . . , S

k
sk

is a martingale. Also,
|Ski − Ski−1| = |Qk

i | ≤ 1 with probability 1. Thus, using Azuma’s inequality,

Pr[Q > ε] = Pr

[
t+1∑
k=1

Sksk > εKD

]
≤

t+1∑
k=1

Pr

[
Sksk >

εKD

t+ 1

]

≤
t+1∑
k=1

exp

−
(
εKD
t+1

)2

2 · sk

 ≤ (t+ 1)e
− ε2KD

2(t+1)2 ,

where the last inequality follows from the fact that sk ≤ KD.
To complete our analysis, we require E to work for any X , f1, . . . , ft and D. By the union

bound, the probability for a random E to fail, denote it by pE , is given by

pE ≤
(
N

K

)
DtD2D·M

t+1
(t+ 1)e

− ε2KD
2(t+1)2

≤ 2
K log(Ne

K )+tDd+DMt+1+log(t+1)− ε2KD log e

2(t+1)2

≤ 2
K(n−k+2)+tDd+DMt+1+log(t+1)− ε2KD

2(t+1)2 .

To prove that pE < 1 (in fact this will show pE � 1) it is sufficient to prove that:
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1. K(n− k + 2) ≤ ε2KD
8(t+1)2

.

2. D(td+M t+1) + log(t+ 1) ≤ ε2KD
8(t+1)2

, or alternatively D(2td+M t+1) ≤ ε2KD
8(t+1)2

.

Item (1) is true whenever

D ≥ 8(t+ 1)2(n− k + 2)

ε2
.

Item (2) is true whenever

K ≥ 8(t+ 1)2(2td+M t+1)

ε2
.

The bounds on d and k follow from the above two inequalities.
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