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Abstract

An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex s, and
end vertex t and each edge having a weight which is an affine form in F[x1, x2, . . . , xn]. An
ABP computes a polynomial in a natural way, as the sum of weights of all paths from s to t,
where the weight of a path is the product of the weights of the edges in the path. An ABP is
said to be homogeneous if the polynomial computed at every vertex is homogeneous. In this
paper, we show that any homogeneous algebraic branching which computes the polynomial
xn

1 + xn
2 + . . . + xn

n has at least Ω(n2) vertices (and hence edges).
To the best of our knowledge, this seems to be the first non-trivial super-linear lower bound

on the number of vertices for a general homogeneous ABP and slightly improves the known
lower bound of Ω(n log n) on the number of edges of in a general (possibly non-homogeneous)
ABP, which follows from the classical results of Strassen [Str73] and Baur & Strassen [BS83].

On the way, we also get an alternate and unified proof of an Ω(n log n) lower bound on the
size of a homogeneous arithmetic circuit (follows from [Str73, BS83]), and an n/2 lower bound
(n over R) on the determinantal complexity of an explicit polynomial [MR04, CCL10, Yab15].
These are currently the best lower bounds known for these problems for any explicit polyno-
mial, and were originally proved nearly two decades apart using seemingly different proof
techniques.
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1 Introduction

The question of proving superpolynomial lower bounds on the size of arithmetic circuits for an ex-
plicit polynomial family is a fundamental problem in the area of algebraic complexity theory. Un-
fortunately, the state of art for this problem is quite unsatisfying and the best lower bound known
for general arithmetic circuits is an Ω(n log d) lower bound for the polynomial P(n,d) = ∑n

i=1 xd
i ,

proved by Strassen [Str73] and Baur & Strassen [BS83] more than three decades ago. The absence
of substantial progress on the general question has led to focus on the question of proving better
lower bounds for interesting restricted classes of arithmetic circuits. Arithmetic formula, non-
commutative circuits, bounded depth circuits, multilinear formulas and monotone arithmetic cir-
cuits are some restricted classes of arithmetic circuits which have been studied from this point of
view, and for many of these classes substantial progress has been made on the question of proving
lower bounds. We refer the reader to the surveys of Shpilka-Yehudayoff [SY10] and Sapthar-
ishi [Sap15] and the references therein for an overview of these results. One such restricted model
of computation, which will be the primary focus of this paper is the model of algebraic branching
programs (ABP), which we define now.
Definition 1.1 (Algebraic Branching Programs (ABP) ). An algebraic branching program in variables
{x1, x2, . . . , xn} over a field F is a directed acyclic graph with a designated starting vertex s with in degree
zero, a designated end vertex t with out degree zero, and the edge between any two vertices is labeled by an
affine form from F[x1, x2, . . . , xn]. ♦

We say that the ABP is homogeneous, if the polynomial computed at every vertex is a homo-
geneous polynomial.

The weight of any (directed) path in an ABP is the product of labels of the edges in the path.
The polynomial computed at a particular vertex v is the sum of weights of all paths from the
starting vertex s to v. The polynomial computed by the ABP is the polynomial computed at the
end vertex t.

In terms of their power of computation, ABPs lie somewhere between arithmetic formula and
general arithmetic circuits, in the following precise sense. An arithmetic formula can be converted
into an ABP such that the number of vertices in the ABP is at most the number of vertices in the
formula. On the other hand, an ABP can be transformed into an arithmetic circuit such that the
number of vertices in the circuit is at most the sum of the number of edges and the number of
vertices in the ABP1. Since arithmetic formula and ABP seem to be weaker models of computation
than general arithmetic circuits, it is conceivable that proving lower bounds for them could be a
more tractable challenge than proving lower bounds for general arithmetic circuits. In a way, this
reflects in the current state of art where we know almost quadratic lower bounds for arithmetic
formula [Kal85, SY10], whereas the best lower bounds known for arithmetic circuits or even ABPs
continue to be the weakly super-linear [Str73, BS83]. Moreover, to the best of our knowledge,
even for homogeneous ABPs, prior to the results in this paper, no non-trivial super-linear lower
bounds seem to be known on the number of vertices, whereas for the number of edges, the results
in [Str73, BS83] give an Ω(n log n) lower bound 2. We remark that in the setting of boolean circuit

1These transformations also preserve homogeneity.
2Note that if an ABP computes a degree d polynomial, it must have at least d + 1 vertices, since every edge con-

tributes degree at most 1, and there must be a path with at least d edges to push the degree up to d. So, we think of this
lower bound of Ω(d) on an ABP as trivial. Because of this, whenever we mention a (homogeneous) ABP lower bound
for an n variate polynomial of degree d, we think of d ≤ n, so that the trivial lower bound of d is at most linear in n.
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complexity it is possible to extend the formula lower bound of Nechiporuk [Nec66] to show an
Ω(n1+ε) lower bounds for both deterministic and non-deterministic branching programs. How-
ever, such an extension is not known in the algebraic setting. The key difference stems from the
fact that the edge labels for a boolean branching program are just individual literals or constants,
as opposed to arbitrary affine forms as in the case of an algebraic branching program. And, indeed
if we restrict Definition 1.1 so that every edge label is a field constant or an affine form in a single
variable (and not a general affine form), then the formula lower bounds of Kalorkoti [Kal85] do
extend to such special cases and give a super-linear lower bound on the number of edges in an
ABP. However, transforming a general ABP given by Definition 1.1 to this form seems to incur
a blowup of factor n in the number of edges, and it is unclear if something non-trivial can be
recovered via this approach.

We would like to remark that even though not much seems to be known for lower bounds
for general algebraic branching programs, much progress has been made on the understand-
ing of many restricted and more structured variants of algebraic branching programs; both from
the point of view of lower bounds and deterministic polynomial identity testing. For instance,
strongly superpolynomial lower bounds are known for non-commutative ABPs [Nis91] and read
k-oblivious ABPs [AFS+16]. For an overview of known polynomial identity testing results for read
once oblivious algebraic branching programs, we refer the reader to the PhD thesis of Michael
Forbes [For14].

In this paper, we study the question of proving an improved lower bound for general algebraic
branching programs. Our main result is a quadratic lower bound on the number of vertices for a
general homogeneous ABP. To the best of our knowledge, this is the first such non-trivial superlinear
lower bound. Also, this immediately implies a quadratic lower bound on the number of edges,
improving the earlier bound of Ω(n log n) [Str73, BS83]. We now precisely state the theorem.

Theorem 1.2. Let F be a field of characteristic zero or relatively prime to d. Let B be a homogeneous
algebraic branching program over the field F which computes the polynomial P(n,d)(x). Then, the number
of vertices in B is at least Ω(nd).

Remark 1.3. Theorem 1.2 holds for a slightly more general class of branching programs than homogeneous
branching programs. Our proof continues to hold if the number of non-trivial affine linear forms on any
path from the start vertex s to the end vertex t is at most the degree of the polynomial computed. For our
proofs, we consider this slightly more general model. In some sense, this generalization is a more natural
model to study since the model is closed under affine transformations. ♦

Picking d = Θ(n) would give us the desired quadratic lower bound. Based on the known
results, there are two natural approaches to try for ABP lower bounds. The first would be to try
and extend the proof of formula lower bounds in [Kal85] to a general ABP. It is not clear if this
approach can be made to work3. One major obstacle seems to be that the edge labels in the ABP
are general affine forms, which seems to make it tricky to analyse the complexity measure used
in [Kal85] for an ABP. Another approach would be try and use the special structure of an ABP,
and aim to get an improved analysis of the circuit lower bound obtained in [Str73, BS83]. It is
unclear to us if the original proofs in [Str73, BS83] can be used to this end. One of the challenges
with adapting the proofs in [Str73, BS83] to obtain better ABP lower bounds seems to be that in
the obvious conversion of an ABP to a circuit, the number of vertices in the circuit obtained is the

3However, we do not know how to formally show that there is a nearly linear size ABP which has high complexity
in terms of the measure used in [Kal85].
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sum of the number of vertices and the number of edges in the ABP. It seems tricky to extract any
non-trivial bound on the number of vertices of the ABP from this transformation since the degree
of every vertex in an ABP is unbounded in general. Even in the setting of number of edges, it is
not apriori clear if a better lower bound can be proved using the proof in [Str73, BS83].

For our proof in this paper, we essentially follow this high level strategy. On the way, we
give an alternate proof of an Ω(n log n) lower bound for homogeneous arithmetic circuits. The
ideas in this proof turn out to be a bit more malleable and sensitive to the underlying model of
computation than the original one, and indeed for a homogeneous ABP we obtain a better lower
bound by a direct analysis which crucially relies on the structure of the ABP. Formally, we give an
alternate proof of the following result.

Theorem 1.4 ([Str73, BS83]). Let F be a field of characteristic zero or relatively prime to d. Then, any
homogeneous arithmetic circuit which computes the polynomial P(n,d) has at least Ω (n log d) gates.

The statement above is a special case of a classical result [Str73, BS83], where they show a sim-
ilar lower bound for all (not necessarily homogeneous) arithmetic circuits. For the original proof,
Baur & Strassen [BS83] showed that if an n variate polynomial can be computed by an arithmetic
circuit of size s, then all its partial derivatives can be computed by a multi-output circuit of size
O(s). They combined this structural result with an Ω(n log d) lower bound on the size of multi-
output arithmetic circuits, proved by Strassen [Str73]. Strassen’s proof, in turn relies on a beautiful
application of Bezout’s theorem. Our proof does not rely on the Bezout’s theorem directly but uses
some other elementary properties of algebraic varieties. We enumerate the properties used in Sec-
tion 2. It is not clear to us if our proof is any more elementary than the proof in [Str73, BS83] or
vice versa, although as we alluded to, it does seem to be more flexible to the underlying model
than the original proof.

In a short and beautiful paper, Smolensky [Smo97] gave a completely elementary proof of
the Ω(n log n) lower bound for general circuits. Smolensky’s proof uses just elementary linear
algebra, and therefore is definitely simpler than our proof of Theorem 1.4. However, it is not clear
if this proof can be strengthened to show Theorem 1.2.

Determinantal Complexity : Another well known model of computation in algebraic complex-
ity theory, which is relevant to the results in this paper is the notion of determinantal complexity,
defined as follows.
Definition 1.5 (Determinantal complexity). Let P ∈ F[x1, x2, . . . , xn] be a polynomial of degree d. The
determinantal complexity of P is the smallest k such that there is a k× k matrix M with entries being affine
forms in F[x1, x2, . . . , xn] such that Determinant(M) = P. ♦

Perhaps not surprisingly, the state of known lower bounds on determinantal complexity is also
fairly modest, with the best lower bound known being an n

2 lower bound for an n variate polyno-
mial family [MR04, CCL10]. Over the field of real numbers, this bound was recently improved to
n by Yabe [Yab15].

We now state our last result where we give a simple proof of the lower bound for determinantal
complexity of P(n,d).

Theorem 1.6 ([MR04, CCL10]). Let F be a field of characteristic zero or characteristic p 6= 2 such that
2 ≤ d < p. Then, the determinantal complexity of P(n,d) over the field F is at least n/2.
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The original proofs of Theorem 1.6 of an n/2 lower bound on the determinantal complexity of
the permanent of an

√
n×
√

n matrix due to Mignon and Ressayre [MR04] over fields of character-
istic zero, and due to Cai, Chen and Li [CCL10] over all fields of characteristic not equal to 2, both
rely on analysing the rank of the Hessian matrix associated to the permanent. On the other hand,
for our proof, we will formulate a criterion for proving determinantal complexity lower bound
upto n− o(n) for an n variate polynomial using elementary linear algebra. This part of the proof
is completely elementary. We then show that the polynomial P(n,d) satisfies this criterion for some
weaker choice of parameters. Also, our argument essentially remains the same over all fields. In-
terestingly, over the field of real numbers, we get a lower bound of n for P(n,d) as long as d is even.
This matches an improvement of factor 2 shown recently by Yabe [Yab15] for the determinantal
complexity of the permanent over the field of real numbers. For the reals, our proof of an n lower
bound turns out to be extremely simple.

Proof outline : The proofs of all the three theorems crucially rely on a structural property of
the polynomial P(n,d), which we summarize in Lemma 1.7. A special case of this lemma, (see
Corollary 3.4) is already quite interesting and sufficient for the homogeneous ABP and circuit lower
bound proofs and appears to be known [Sap16]4. Our proof is along similar lines, but needs some
more ideas.

Lemma 1.7. Let F be an algebraically closed field of characteristic zero or relatively prime to d. Let
{Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} be a set of polynomials in F[x] such that the set of their common ze-
ros V = V(Q1, Q2, . . . , Qk, R1, R2 . . . , Rk) is non-empty. Let P be any polynomial in F[x] of degree at
most d− 1, such that

P(n,d) = P +
k

∑
i=1

Qi · Ri

Then, k ≥ n/2.

For the proofs of the main theorems, we use the linear algebraic and combinatorial structure
of the models at hand (namely homogeneous ABP, homogeneous circuits and determinantal com-
plexity) to reduce to an application of Lemma 1.7. Proofs of Theorem 1.2,Theorem 1.4 rely on
multiple applications of Lemma 1.7, while the proof of Theorem 1.6 relies on a single application
of a very special case of Lemma 1.7, which in itself has a very simple proof. The proof of Lemma 1.7
requires some properties of the dimension of varieties defined by polynomials of a special form,
and we give a simple (though not completely self contained5) proof in Section 3.1.

Theorem 1.4 and Theorem 1.6 are two fundamental lower bounds in algebraic complexity
theory and have been at the frontier of our understanding of lower bounds for these models for the
past many years. Improving these bounds is perhaps one of the most important open problems
in this line of research. Therefore, it seems desirable to have newer and alternative proofs of these
results. Moreover, the original proofs of Theorem 1.6 and Theorem 1.4 were quite different from
each other and the results themselves were proved almost two decades apart. On the other hand,
it is interesting to note that the proofs in this paper give essentially unified arguments for both
these statements, as well as for homogeneous ABP lower bounds (even though we can show a
super-linear lower bound only for homogeneous arithmetic circuits).

4Saptharishi attributes the proof to Kayal.
5The proof uses some known standard properties of algebraic varieties, which we do not prove here.
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Organization of the paper : We set up some notations and preliminaries in Section 2 and prove
some technical claims needed for the proofs in Section 3.1. We prove Theorem 1.2 and Theorem 1.4
in Section 3.2 and Theorem 1.6 in Section 3.3.

2 Preliminaries

We now list some notations that we follow.

• F denotes a general field, and C denotes the field of complex numbers.

• Without loss of generality, for the results in this paper, we think of the field F to be alge-
braically closed. This is because an arithmetic circuit, a branching program or a matrix over
a field F can be viewed to be over the algebraic closure of F.

• The degree of a monomial xe1
i xe2

2 · · · x
en
n is defined to be equal to ∑n

i=1 ei.

• The degree of a polynomial P is the degree of the highest degree monomial in P with a
non-zero coefficient.

• We denote the set {x1, x2, . . . , xn} by the set x.

• We denote the set {1, 2, 3, . . . , t} by [t].

• An affine form in F[x] is a polynomial of the form α0 +∑n
i=1 αixi, where α0, α1, α2, . . . , αn ∈ F.

• We say that a polynomial P has no constant term if the homogeneous component of degree 0
of P is 0. In particular, for any polynomial P ∈ F[x] with no constant term, P(0, 0, . . . , 0) = 0.

• For a square matrix M, we denote the determinant of M by det(M).

• For every gate (or vertex) g in an arithmetic circuit or an algebraic branching program, we
denote by [g], the polynomial computed at g. For the starting vertex s of an ABP, we define
the polynomial computed at s, denoted by [s] to be 1.

• For any set {Q1, Q2, . . . , Qt} of polynomials in F[x], we denote by V(Q1, Q2, . . . , Qt) the
affine variety (or simply variety) of Q1, Q2, . . . , Qt in Fn, which is defined as follows.

V(Q1, Q2, . . . , Qt) = {a ∈ Fn : ∀i ∈ [t], Qi(a) = 0}

• For any set {Q1, Q2, . . . , Qt} of polynomials in F[x], we define the ideal generated by Q1, Q2, . . . , Qt
defined as follows.

I(Q1, Q2, . . . , Qt) =

{
t

∑
i=1

Ri ·Qi : ∀i ∈ [t], Ri ∈ F[x]

}

• For any variety V ⊆ Fn , we define the ideal associated to this variety, denoted by I(V) as
follows.

I(V) = {R : R ∈ F[x], and ∀a ∈ V, R(a) = 0}
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Algebraic branching programs, arithmetic circuits and determinantal complexity: We have
already defined an algebraic branching program and determinantal complexity in Section 1.

We now recall the definition of an arithmetic circuit.
Definition 2.1 (Arithmetic circuits). An arithmetic circuit on variables x over a field F is a directed
acyclic graph, where the vertices (also called gates) with in-degree zero (called input gates or leaves) are
labeled either by constants over F or with variables in x. The internal vertices all have in-degree (or fan-in)
2 and are labeled by + or ×, which indicate summation and multiplication operations over the field F. The
edges feeding into a + gate can be labeled by field constants. ♦

An arithmetic circuit formally computes a polynomial in the natural way. A circuit is said to
be homogeneous if the polynomial computed at every vertex in the circuit is a homogeneous poly-
nomial. The number of vertices in a circuit is the size of the circuit. Since we restrict ourselves
to fan-in two circuits in this paper, the number of edges and the number of vertices are within a
constant factor of each other. We refer the reader to the excellent survey by Shpilka and Yehu-
dayoff [SY10] for an introduction to arithmetic circuits, and an over view of prior work in this
area.

For an algebraic branching program, we note that the number of vertices and the number of
edges need not be within a constant fraction of each other, since the in-degree and out-degree of
internal vertices is both unrestricted. In this sense, a super-linear lower bound on the number of
edges in an ABP need not necessarily imply a super-linear lower bound on the number of vertices.
We also remark that that without loss of generality, we can assume that the underlying graph of
an ABP is simple, i.e there is at most one edge between any pair of vertices. This follows from the
fact that multiple edges can be combined into a single edge whose weight is the sum of weight
of the original edges. Since edge weights are allowed to be arbitrary affine forms, this is a valid
transformation for an ABP.

Ideals and varieties : A useful notion for our proofs will be that of an affine variety (or simply
variety). For a field F, a variety V ⊆ Fn is simply the set of common zeros of a set of polynomials
in F[x1, x2, . . . , xn]. Another relevant notion is the notion of an ideal. For a variety V, the ideal
associated to V, denoted by I(V) is the set of all polynomials in F[x] which vanish on V.

A fundamental property associated to an affine variety is its dimension, which takes a value
between 0 and n. We do not formally define this, but this can be thought of as an appropriate
generalization of the notion of dimension for linear spaces. We refer the reader to the book by Cox,
Little and O’Shea [CLO07] for more on algebraic varieties and ideals and connections between
them. For the proofs in this paper, we will rely on the following properties of dimension of a
variety.

Lemma 2.2 (Section 2.8 in [Smi14]). Let S be a set of polynomials in n variables over an algebraically
closed field F such that |S| ≤ n. Let V = V(S) be the set of common zeros of polynomials in S.

V = {a ∈ Fn : ∀ f ∈ S, f (a) = 0}

If V is non-empty, then, the dimension of V(S) is at least n− |S|.

The following two facts are basic properties of the dimension of a variety and can be found in
Section 4 of Chapter 9 in [CLO07].
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Lemma 2.3. Let F be an algebraically closed field, and let V1 ⊆ Fn and V2 ⊆ Fn be two affine varieties
such that V1 ⊆ V2. Then, the dimension of V1 is at most the dimension of V2.

Lemma 2.4. Let F be an algebraically closed field and let V ⊆ Fn be an affine variety. Then, the dimension
of V is zero if and only if V is finite.

3 Proofs of main theorems

We now proceed to prove the results. We start with a technical lemma, which proves to be critical
for all our main results. A special case of the lemma where each of the polynomials Qi and Ri is
homogeneous and the polynomial P is identically zero seems to be known [Sap16]. The statement
in Lemma 1.7 is a generalization of this special case. The proof is along very similar lines, but
needs a few more ideas.

3.1 Technical claims

For this section, we work over the field C of complex numbers, but the results continue to hold
over any algebraically closed field of characteristic p such that p does not divide the parameter d.
This ensures that certain partial derivatives which come up in the proofs do not vanish. We start
with the following lemma.

Lemma 3.1 (Restatement of Lemma 1.7 ). Let {Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} be a set of polynomials
in C[x] such that the set of their common zeros V = V(Q1, Q2, . . . , Qk, R1, R2 . . . , Rk) is non-empty. Let
P be any polynomial in C[x] of degree at most d− 1, such that

P(n,d) = P +
k

∑
i=1

Qi · Ri

Then, k ≥ n/2.

Proof. We prove the lemma via contradiction. If possible, let k < n/2. This implies that n− 2k >
0. From the hypothesis of the lemma, V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) is non-empty. Therefore,
by Lemma 2.2, the dimension of V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) is at least n− 2k > 0.

For any variable xj ∈ x, observe that

∂P(n,d)

∂xj
=

∂P
∂xj

+
k

∑
i=1

∂Qi

∂xj
· Ri +

k

∑
i=1

Qi ·
∂Ri

∂xj

This implies that

dxd−1
j − ∂P

∂xj
=

k

∑
i=1

∂Qi

∂xj
· Ri +

k

∑
i=1

Qi ·
∂Ri

∂xj

It is easy to see that for every xj ∈ x, the right hand side in the equality above vanishes on
every point in V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) . Therefore,

V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) ⊆ V

({
dxd−1

j − ∂P
∂xj

: xj ∈ x
})
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In particular, Lemma 2.3 implies that the dimension of V
({

dxd−1
j − ∂P

∂xj
: xj ∈ x

})
is at least n−

2k. Since P is a polynomial of degree at most d − 1, each first order partial derivative of P is of
degree at most d− 2. Now, it follows from Lemma 3.2, (which we prove below) that the dimension

of V
({

dxd−1
j − ∂P

∂xj
: xj ∈ x

})
is zero. Therefore, n − 2k ≤ 0, but this is a contradiction for k <

n/2.

Lemma 3.2. Let d be a positive natural number. For every choice of polynomials g1, g2, . . . , gn ∈ C[x] of
degree at most d− 1, the dimension of the variety V(xd

1 − g1, xd
1 − g2, . . . , xd

n − gn) is zero.

Proof. Let V = V(xd
1 − g1, xd

2 − g2, . . . , xd
n − gn). To prove the lemma, we use Lemma 2.4. We

show that the cardinality of V is at most T = (n+n(d−1)
n ). We prove this via contradiction. If the

cardinality of V is larger than T, then we focus our attention on an arbitrary subset S ⊆ V of size
equal to T + 1. Now, consider the linear space of polynomial functions from S to C. Clearly, the
dimension of this linear space must be at least T + 1, since the indicator function of every point
in S can be expressed as a sufficiently high degree polynomial and these polynomials are linearly
independent. We now argue that the dimension of the linear space of all polynomial functions
from V to C (and therefore from S to C) is upper bounded by T. This completes the proof by
contradiction. To this end, we prove the following claim. Let I = I(V) be the ideal corresponding
to V. Clearly, for every i ∈ [n], xd

i − gi ∈ I.

Claim 3.3. Let P be any polynomial in C[x] of degree ∆ strictly larger than n(d− 1). Then, there exists a
polynomial P′′ of degree at most n(d− 1) and polynomials h1, h2, . . . , hn such that

P = P′′ +
n

∑
i=1

(xd
i − gi) · hi

Proof. Note that for every xi ∈ x, the polynomial P′ obtained from P by replacing every occurrence
of xd

i by gi is equivalent to P mod the ideal I, since P− P′ is divisible by xd
i − gi, which is in the

ideal. So, we can keep performing this replacement while still maintaining equivalence modulo
the ideal I. Note that the process terminates eventually, since xd

i is being replaced by a polynomial
of strictly smaller degree. Let P′′ be the polynomial obtained when the process terminates. It
follows that the individual degree of every variable xi in P′′ is upper bounded by d− 1, and hence
the degree of P′′ is at most n(d− 1). This proves the claim.

Therefore, the space of all polynomial functions from V to C is spanned by a subset of polyno-
mials in C[x] of degree at most n(d− 1). Hence, the dimension of this linear space is at most the
number of monomials of degree at most n(d− 1) in n variables, which is equal to T.

The following corollary of Lemma 1.7 is already interesting and seems to be well known [Sap16].

Corollary 3.4. For every set {Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} of homogeneous polynomials of degree at
least 1, if

P(n,d) =
k

∑
i=1

Qi · Ri

Then, k ≥ n/2.
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3.2 Lower bound for homogeneous algebraic branching programs

In this section, we prove Theorem 1.2. We will in fact show that the theorem is true for a class of
algebraic branching programs which are slightly more general than homogeneous ABPs. We say
that an ABP has formal degree at most d, if the number of non-constant edge weights on any path
from s to t is at most d. In general, we define the formal degree of any vertex v in an ABP to be
the maximum number of non-constant edge weights along any path from s to v. We first argue
that we can convert a homogeneous ABP computing a polynomial of degree d to an ABP of formal
degree d.

Lemma 3.5. Let B be a homogeneous ABP with r vertices which computes a homogeneous polynomial P of
degree d. Then, there is an ABP B′ computing P such that B′ has at most r vertices and has formal degree
at most d.

We defer the proof of this lemma to the end of this section, and use it to complete the proof
of Theorem 1.2. We now prove the following structural lemma for ABPs of formal degree d.

Lemma 3.6. Let B be an algebraic branching program of formal degree at most d with b vertices, which
computes an n-variate polynomial P of degree d. For any i ∈ {1, 2, 3, . . . , d− 1}, let Si = {u1, u2, . . . , um}
be the set of all vertices in B which compute a polynomial of degree equal to i. Then, there exist polynomials
h1, h2, . . . , hm and R of degree at most d− 1 such that

P =
m

∑
j=1

[uj] · hj + R

Proof. Let us consider all paths from the starting vertex s of B to the end vertex t of B which passes
through some uj ∈ Si. The polynomial computed by the sum of weights of only these paths can
be written as [uj] · hj where hj is the polynomial given by the sum of weights of all paths from uj
to t. Now, we claim that the degree of hj is at most d− duj . This follows from the fact that if the
degree of hj was larger than d− duj , then the formal degree of t will be larger than d which would
contradict the hypothesis that B is of formal degree at most d.

We now use this observation to complete the proof of the lemma. Without loss of generality,
let us assume that the vertices u1, u2, . . . , um are ordered in such a way that there is no directed
path from uj to uj′ for any j′ > j. We prove the following claim by a simple induction.

Claim 3.7. Fix any j ∈ {1, 2, 3, . . . , m}. Then, there exists polynomials h1, h2, . . . , hj of degree at most
d − 1 and a polynomial Rj computed by the ABP B′j obtained from B by deleting all the vertices in
{u1, u2, . . . , uj} such that

P =
j

∑
k=1

[uk] · hk + Rj

Proof. For k = 1 the proof follows from the observation above. For the induction step, observe
that in the ABP obtained by deleting the vertices u1, u2, . . . , uk, the polynomial computed by the
vertex uk+1 is the same as the polynomial computed by the vertex uk+1 in the original ABP B. This
is true since by our ordering of vertices u1, u2, . . . , um there are no directed paths from u` to u`′ for
any `′ > ` in B.

10



We now argue that the degree of Rm in Claim 3.7 is at most d − 1. This would complete the
proof of the lemma. Let B′ be the ABP obtained from B by deleting all vertices in the set Si in
B. We know that Rt is the polynomial computed by B′. Let us consider any path s, v1, v2, . . . , vk, t
from s to t in B′. Note that all these vertices appear in the original ABP B. Let us consider the
minimum j such that vj has degree at least i + 1 in B. Observe that the degree of vj−1 in B must be
at most i− 1, since we have deleted the vertices in Si. Therefore, the degree of the monomials in
the weight of the path s, v1, v2, . . . , vk, t is at most i− 1 + `+ 1 where ` is the maximum number of
non-constant edge weights on any path from vj to t in B. Now, observe that ` is at most d− i− 1.
This is true since if ` ≥ d− i, then there would be a path in B from s to t through vj such that there
are at least d + 1 non-constant edge weights on this path, thereby contradicting the hypothesis
that the formal degree of B is at most d.

We are now ready to complete the proof of Theorem 1.2.

Theorem 3.8 (Restatement of Theorem 1.2). Let B be an algebraic branching program of formal degree
at most d over C which computes the polynomial P(n,d)(x). Then, the number of vertices in B is at least
Ω(nd).

Proof. We partition the set of vertices in the ABP B, into Ω(d) many sets based on their degree.
Then, we argue that each of these sets must have at least n/2 vertices. For i ∈ {1, . . . , d− 1}, let
the set Si = {u1, u2, . . . , uti} be the set of all vertices in B which compute a polynomial of degree
equal to i. From Lemma 3.6, we know that there are polynomials hi,1, hi,2, . . . , hi,ti and Ri of degree
at most d− 1 such that

P(n,d) =
ti

∑
j=1

[uj] · hi,j + Ri

Let [uj] and hi,j be written as [uj] = [uj]
′ + α and hi,j = h′i,j + β where α, β are constants and [uj]

′,
h′i,j have no constant terms. Then,

[uj] · hj = [uj]
′ · h′i,j + Qj

where Qj has degree at most d− 1. Therefore, without loss of generality, we get that there polyno-
mials h′i,1, h′i,2, . . . , h′i,ti

and R′i such that

P(n,d) = R′i +
ti

∑
j=1

[uj]
′ · h′i,j

where

• Degree of R′i is most d− 1.

• For every j, the constant term of each of the polynomials [uj]
′ and h′i,j is equal to zero and

they have degree at least 1.

Note that since [uj]
′s and h′i,js have degree at least one and have no constant term, it follows

that they vanish at the all zero point. In particular, V = V([u1]
′, [u2]′, . . . , [uti ]

′, h′i,1, h′i,2, . . . , h′i,ti
) is

non empty. So, by Lemma 1.7, it follows that ti is at least n/2. Since this holds for all the Ω(d)
values of i, and these sets Si are all disjoint, this gives the desired lower bound on the number of
vertices of B.
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We now prove Lemma 3.2.

Proof of Lemma 3.2. . We will start with the ABP B and obtain an ABP B′ by modifying or delet-
ing some of the edge weights in B such that the polynomial computed by B′ is the same as the
polynomial computed by B. Moreover, B′ will have the additional property that the degree of the
homogeneous polynomial computed at every vertex v equals the formal degree of v. The proof
will be via an induction, where we process vertices in the topological order, i.e we process a vertex
v only after processing every vertex u such that (u, v) is an edge in B.

The base case of this induction is trivial as there is nothing to do for the starting vertex s.
For the induction step, we process a vertex v. Let u1, u2, . . . , um be all the vertices such that

(uj, v) is an edge in B. Let the weight of (uj, v) be `j + αj, where `j is a homogeneous linear form
(which could be identically zero) and αj is a constant. Also, let duj be the degree of [uj]. So, we
have the following identity.

[v] =
m

∑
j=1

[uj] · (`j + αj)

We separate out the ujs based on their degree.

[v] = ∑
j:dv<duj

[uj] · (`j + αj) + ∑
j:dv=duj

[uj] · (`j + αj) + ∑
j:dv>duj

[uj] · (`j + αj)

We now observe that since the polynomial computed at v and every uj is homogeneous, and [v]
has degree dv, the following identity is also true.

[v] = ∑
j:dv<duj

[uj] · 0 + ∑
j:dv=duj

[uj] · (αj) + ∑
j:dv>duj

[uj] · (`j + αj)

So, in B′, we replace the edge weights as follows.

• For every vertex uj such that duj > dv, we delete the edge (uj, v), and

• For every vertex uj such that duj = dv with the edge (uj, v) having weight `j + αj, we relabel
it with αj.

3.2.1 Lower bound for homogeneous arithmetic circuits

The proof of Theorem 1.4 is along the lines of the proof of Theorem 1.2 that we described above.
The main difference is that we partition the set of vertices in the circuit into Ω(log d) sets based
on their degrees defined as follows. For i ∈ {1, 2, . . . , log(d)− 1}, we define the set Si to be the set
of all vertices v in a homogeneous circuit C such that the degree dv of the polynomial computed
at v satisfies 2i ≤ dv < 2i+1 − 1. For this definition of the set Si, a structural lemma analogous
to Lemma 3.6 is true, and is easy to prove. Combining this with Lemma 1.7, would imply that the
size of Si is at least Ω(n). Since there are log d such sets, we get a bound of Ω(n log d). We skip the
rest of the details.
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3.3 Lower bound on determinantal complexity

In this section, we complete the proof of Theorem 1.6. We start by proving the following lemma.

Lemma 3.9. Let Q ∈ F[x] be a homogeneous polynomial of degree d. Let M be a t × t matrix, whose
entries are affine forms in the variables x, such that

det[M] = Q

Then, there exists a linear subspace S of dimension at least n− t, such that Q(a) = 0, ∀a ∈ S.

Proof. Since the entries of M are affine functions in the variables in x, we can write M as

M(x) = M0 +
n

∑
i=1

Mixi

Here, M0, M1, . . . , Mn are t× t matrices over F. Since Q is homogeneous, it follows that

Q(0, 0, . . . , 0) = 0,

it follows that det[M0] = 0. Therefore, M0 is not full rank. Hence, there is a non-zero vector v ∈ Ft,
which is in the kernel of v, i.e M0v = 0. Let us consider the set S ⊆ Fn, defined as

S =

{
(a1, a2, . . . , an) ∈ Fn :

(
n

∑
i=1

Miai

)
· v = 0

}

In other words, S is the set of all vectors a in Fn such that the vector v is in the kernel of ∑n
i=1 Miai.

Observe that this implies that v is in the kernel of M(a), since it is already in the kernel of M0, by
choice. Thus, M(a) is rank deficient for a ∈ S. Hence, det(M(a)) = 0 for every a ∈ S. Moreover,
since S is a linear space of dimension at least n− t, it follows that Q is zero on every point on a
subspace of dimension at least n− t.

Observe that from the degree requirements, it follows that the determinantal complexity of
a degree d polynomial is at least d. Hence, if we can construct an explicit polynomial of degree
d = o(n) such that it does not vanish on any linear subspace of dimension larger than k(n, d),
then from Lemma 3.9, we will obtain a lower bound of n− k. It is known that at least over small
fields a random homogeneous polynomial of degree d in n variables does not vanish on any affine
subspace of dimension much larger than nO(1/d) [BK12]. Therefore, in principle, d can be taken as
small as O(log n) and k = O(1) over such fields. The challenge is to construct such polynomial
families explictly. Over small fields constructions of this nature are known, although the param-
eters seem to be far from what would be true for a random polynomial, see for example [BK12].
Even beyond the application to minor improvements in known determinantal complexity lower
bounds, explicit construction of such subspace evasive polynomials is an extremely interesting open
question.

We now observe that the polynomial P(n,d) already lets us recover the n/2 lower bound on
determinantal complexity over the field of complex numbers and any field of characteristic p not
equal to 2. For fields of characteristic equal to p, our proof would work, for instance if we pick d
such that 2 ≤ d < p. In fact, over reals, we get a lower bound of n for P(n,d) for every even d. As
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alluded to in the introduction, such a lower bound of n was proved over reals by Yabe [Yab15] for
the permanent of an

√
n×
√

n matrix via a very different proof.
A useful notion for the rest of proof will be the notion of a formal restriction of a polynomial to

a linear space, which is defined using the following observation.

Observation 3.10. Let S ⊆ Fn be any linear space of co-dimension equal to t and let P be any polynomial
in F[x]. Then, there exists a subset V of variables x of size equal to n− t and a polynomial Qt depending
only on the variables in V such that

• The degree of Qt is at most the degree of P.

• For every a ∈ S, P(a) = Qt(a).

Proof. Since S is a linear space of co-dimension t, it follows that there are coordinates {i1, i2, . . . , it}
and linear forms L1, L2, . . . , Lt depending only on variables outside {i1, i2, . . . , it}, such that

S =
{

a ∈ Fn : ∀j ∈ [t], aij − Lj(a) = 0
}

We define V = x \ {xi1 , xi2 , . . . , xit}. Without loss of generality, we assume that ij = j. Let Qi be
obtained from P by replacing the variables x1, x2, . . . , xi in P by L1, L2, . . . , Li. By induction on i, it
can be observed that

P−Qi =
i

∑
j=1

(xj − Lj) · Rj

where Rj is a polynomial of degree at most d− 1. Moreover, by construction, Qi does not depend
on the variables x1, x2, . . . , xi. Now, from the definitions, we get that for any a ∈ S,

P(a) = Q(a)

Since each Qi is obtained from P by a linear transformation of the set of variables, the degree does
not increase in the process.

We call the polynomial Qt obtained in the proof to be a formal restriction of P on S. We also
get the following useful corollary.

Corollary 3.11. Let F be any field with at least d + 1 elements, and let P ∈ F[x] be any homogeneous
polynomial of degree d. If S is a subspace of Fn of co-dimension t such that P evaluates to zero on S, then,
there exist homogeneous linear forms `1, `2, . . . , `t and homogeneous polynomials R1, R2, . . . , Rt of degree
d− 1 such that

P =
t

∑
i=1

`i · Ri

Proof. The polynomial Qt obtained in Observation 3.10 satisfies

P−Qt =
t

∑
i=1

(xi − Li) · Ri

where each Li is a homogeneous linear form, and each Ri is a homogeneous polynomial of de-
gree d− 1. Moreover, Qt depends only on the un-restricted variables xt+1, xt+2, . . . , xn, and is of
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degree at most d, and for every j ∈ {1, 2, . . . , t} and a ∈ S, aj = Lj(a). Since P evaluates to zero
everywhere on S, it follows that Qt ∈ F[xt+1, xt+2, . . . , xn] evaluates to zero everywhere on the
grid F× F× . . . × F. Since F has at least d + 1 elements and Qt is of degree at most d, by the
Schwartz-Zippel lemma, Qt must be identically zero. So,

P =
t

∑
i=1

(xi − Li) · Ri

We now complete the proof of Theorem 1.6. We present the proof over the field of complex
numbers, but it will be clear from the proof that the statement is true for any finite field of charac-
teristic p 6= 2 such that the degree d of P(n,d) satisfies 2 ≤ d < p.

Proof of Theorem 1.6. Let M be a t× t matrix of affine forms over C[x] such that

P(n,d) = det[M]

From Lemma 3.9, it follows that there is a linear subspace S ∈ Cn of dimension at least n− t
such that

P(n,d)(a) = 0, ∀a ∈ S

From Corollary 3.11, it follows that there exist t homogeneous linear forms `1, `2, . . . , `t and ho-
mogeneous polynomials R1, R2, . . . , Rt of degree equal to d− 1, such that

P(n,d) =
t

∑
i=1

`i · Ri

From Lemma 1.7, we get that t ≥ n/2.

Remark 3.12. Over reals, this argument gives a simple proof of the currently best lower bound of n for the
polynomial x2

1 + x2
2 + . . . + x2

n since this polynomial has exactly one zero in Rn and in particular, is not
zero on any linear subspace of non-trivial dimension. ♦

4 Open problems

We end with some open problems.

• The most interesting question here would be to extend the results here and prove a quadratic
lower bound for general (possibly non-homogeneous) algebraic branching programs. Lemma 3.6
could be false for a general ABP and hence the proofs in this paper do not extend to the non-
homogeneous setting.

• Another question of interest is to construct explicit polynomials of low degree which do
not vanish on very large linear subspaces over all fields. Beyond the application to minor
improvements in the determinantal complexity lower bounds, this seems to be a natural
algebraic question.
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• Of course, improving the lower bounds here is an extremely interesting problem. In fact,
it is known that proving a super-quadratic lower bound for general algebraic branching
programs implies a super-linear lower bound for determinantal complexity (see for example
[Yab15]). Perhaps the first step towards this goal could be to prove super-quadratic lower
bound for homogeneous formulas. Currently, no such bounds are known.
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