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Abstract

The known proofs of MA ⊆ PP incur a quadratic overhead in the running time. We prove
that this quadratic overhead is necessary for black-box simulations; in particular, we obtain an
oracle relative to which MA-TIME(t) 6⊆ P-TIME(o(t2)). We also show that 2-sided-error Merlin–
Arthur games can be simulated by 1-sided-error Arthur–Merlin games with quadratic overhead.
We also present a simple, query complexity based proof (provided by Mika Göös) that there is
an oracle relative to which MA 6⊆ NPBPP (which was previously known to hold by a proof using
generics).

1 Introduction

There are several complexity class inclusions for which all the known proofs consist of “black-box”
simulations incurring at least a quadratic overhead in the running time. There have also been lower
bounds showing that for some of these inclusions, the quadratic overhead is necessary for black-box
simulations (which also yields corresponding oracle separations). We begin by giving an overview of
this topic. For convenience we abbreviate “quadratic-overhead black-box simulation” as “quadratic
simulation”. (Some relevant complexity class definitions can be found in Appendix A.)

r BPP ⊆ Σ2P [Sip83, Lau83] holds by quadratic simulations, and Viola [Vio09] proved that
the quadratic overhead is necessary. Some known strengthenings of this inclusion include
S2·BPP ⊆ S2P [RS98] and the facts that 2-sided-error Merlin–Arthur and Arthur–Merlin
games are equivalent to their 1-sided-error counterparts: MA2 ⊆ MA1 and AM2 ⊆ AM1. Of
course, the lower bound of [Vio09] also applies to these strengthenings.

r Arthur–Merlin games can simulate Merlin–Arthur games (MA1 ⊆ AM1 and MA2 ⊆ AM2)
quadratically [Bab85]. Diehl [Die07] proved that the quadratic overhead is necessary, even for
MA1 ⊆ AM2. (As a side result, we complement this by giving a quadratic simulation even for
MA2 ⊆ AM1.)

r MA2 ⊆ PP [Ver92] holds by quadratic simulations. As our main result, we prove that the
quadratic overhead is necessary (which was stated as an open problem in [Die07]), even for
the weaker inclusion N·coRP ⊆ PP.1 A strengthening of the latter inclusion is the quadratic
simulation for P·BQP ⊆ PP [FR99].

∗Department of Computer Science, University of Memphis
1We mention that in the world of communication complexity, a nearly quadratic separation between N·coRP-type

complexity and PP-type complexity is witnessed by the inner product mod 2 function—see [AW09] for the N·coRP

upper bound and [KN97, §3.5–3.6 and references therein] for the PP lower bound. However, this is not directly
relevant to our results since the upper bound is really specific to communication complexity.
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r PP is closed under intersection by quadratic simulations [BRS95] (for all L1, L2 ∈ P-TIME(n)
we have L1 ∩ L2 ∈ P-TIME(n2)). Sherstov [She13] proved that the quadratic overhead is
necessary.

1.1 Statement of result

Consider the partial function FN·coR that takes a 2n×2n boolean matrix with the promise that each
row has either all 1’s or at most half 1’s, and evaluates to 1 if there exists an all-1 row, and to 0
otherwise.

Theorem 1. Every randomized unbounded-error decision tree for FN·coR uses either Ω(n) queries
or 2Ω(n) random bits.

For our interpretation about the necessity of a quadratic overhead (see the corollaries below),
it suffices to have Ω(n2) random bits (rather than 2Ω(n)) at the end of the theorem statement. We
actually conjecture that an Ω(n) query lower bound holds regardless of the number of random bits.

Corollary 1. There is an oracle relative to which N·coR-TIME(n) 6⊆ P-TIME(o(n2)).

Corollary 1 holds in the standard model of relativization where the oracle tape is erased after
each query. This forces each query to cost linear time, which makes sense in our context since a
query is intended to correspond to running a simulation of the deterministic algorithm underlying
an N·coR-TIME(n) algorithm. Corollary 1 follows in a completely routine way from Theorem 1 (see
[Vio09, Die07] for examples of how such diagonalization arguments go).

Our result can also be interpreted in terms of what we call “black-box proofs of N·coR-TIME(n) ⊆
P-TIME(t)”. Such a proof consists of a uniform randomized algorithm that takes 1n as input,
computes FN·coR with unbounded error on an instance it has oracle access to, and runs in time
O(t(n)) where each oracle query is charged time n. All known proofs of that inclusion are indeed
black-box.

Corollary 2. There is no black-box proof of N·coR-TIME(n) ⊆ P-TIME(o(n2)).

Corollary 2 follows immediately from Corollary 1 since black-box proofs relativize. Corollary 2
also follows directly from Theorem 1 since such a black-box proof is just a uniform, time-efficient
implementation of a randomized unbounded-error decision tree for FN·coR that uses o(n) queries
and o(n2) random bits.

For convenience, we have focused on time n vs. n2, but our lower bound also works for any
time-constructible t(n) vs. t(n)2.

1.2 Relevance to time-space lower bounds

There is a line of research on time-space lower bounds for problems related to satisfiability [vM06].
It is known that for every constant ǫ > 0,

(i) SAT (which is NP-complete) cannot be solved by a deterministic algorithm running in time
n2 cos(π/7)−ǫ ≈ n1.8019 and space no(1) [Wil08];

(ii) Σ2SAT (which is Σ2P-complete) cannot be solved by a bounded-error randomized algorithm
running in time n2−ǫ and space no(1) [Dv06];
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(iii) MajMajSAT (which is P·PP-complete) cannot be solved by a bounded-error quantum algo-
rithm running in time n1+o(1) and space n1−ǫ [vW12, AKR+01].

It is open to prove a nontrivial randomized time-space lower bound for SAT rather than Σ2SAT
(the first rather than the second level of the polynomial hierarchy). A natural approach to prove this
(following [Dv06]) would involve “swapping Arthur and Merlin” (i.e., using MA2 ⊆ AM2); however,
the quadratic overhead is too inefficient to yield any nontrivial lower bound. Indeed, one of the
motivations for the result of [Die07] is that it implies this approach cannot be made to work via a
subquadratic black-box simulation.

Similarly, it is open to prove a nontrivial quantum time-space lower bound for MajSAT rather
than MajMajSAT (the first rather than the second level of the counting hierarchy). A natural
approach to prove this (following [vW12]) would involve “absorbing quantumness into a majority
quantifier” (i.e., using P·BQP ⊆ PP [FR99]); however, the quadratic overhead is too inefficient to
yield any nontrivial lower bound. Our result implies this approach cannot be made to work via a
subquadratic black-box simulation (since N·coR-TIME(n) ⊆ P·BQ-TIME(n)).

2 Proof of Theorem 1

Suppose for contradiction that FN·coR has a randomized unbounded-error decision tree using ≤ n/6
queries and ≤ 2n/4 uniformly random bits. Such a decision tree can be expressed as a polynomial
threshold function (PTF) with integer coefficients, having degree ≤ n/6 and weight ≤ 22

n/3
(the

weight is the sum of the absolute values of the coefficients). We use a two-step argument: first, we
show that a particular approach for designing such a PTF fails; second, we essentially show that if
that approach fails then every approach fails (by using an adaptation of Vereshchagin’s machinery
from [Ver95]).

If there were a univariate polynomial p of degree ≤ n/6 such that p(2n) > 2n and p(i) ∈ [0, 1]
for all i ∈ {0, 1, 2, . . . , 2n−1}, then we could get a PTF of degree ≤ n/6 for FN·coR by taking the
sum over all rows of p applied to the sum of the bits in that row, and using 2n as the threshold.
(Moreover, if the coefficients of p were all integer multiples of some a > 0 and p had weight ≤ a22

n/4
,

then we could use p/a to get a PTF having weight ≤ 22
n/3

.) However, this approach cannot work:

Claim 1. There is no univariate polynomial p of degree ≤ n/6 such that p(2n) > 2n/2 and p(i) ∈
[0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1}.

Proof. Let us modify p by transforming the input interval [0, 2n−1] to [−1, 1] and shifting the
graph down by 1/2, i.e., define the polynomial q(x) := p

(

(x + 1)2n−2
)

− 1/2. Then we have

q(3) > 2n/2 − 1/2 and q(−1 + i/2n−2) ∈ [−1/2, 1/2] for all i ∈ {0, 1, 2, . . . , 2n−1}. The latter
property implies, by a standard result that has been widely used in the literature and is generally
attributed to [EZ64, RC66], that for all x ∈ [−1, 1] we have |q(x)| ≤ (1/2)/

(

1 − O(deg(q)2/2n)
)

,

which is at most 1 since deg(q) = deg(p) ≤ n/6 ≤ o(2n/2).
In summary, q(3) > 2n/2 − 1/2, |q(x)| ≤ 1 for all x ∈ [−1, 1], and deg(q) ≤ n/6. To show that

this is impossible, we appeal to a classic result stating that Chebyshev polynomials are extremal
in the following sense (see [Riv81, Theorem 1.10] or [Car, Theorem 4.12] for a proof): If Td is the
degree-d Chebyshev polynomial of the first kind (defined by the recurrence T0(x) := 1, T1(x) := x,
and Td+1(x) := 2xTd(x)− Td−1(x) for d ≥ 1) and q is any degree-d polynomial such that |q(x)| ≤ 1
for all x ∈ [−1, 1], then for all x ≥ 1 we have |q(x)| ≤ Td(x). To get a contradiction, note that the
recurrence trivially implies that Td(3) ≤ 6d, and thus q(3) ≤ 6d ≤ 2n/2 − 1/2 for d ≤ n/6.
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Now we begin the bootstrapping.

Claim 2. There exist distributions D0 and D1 over {0, 1, 2, . . . , 2n−1}∪{2n} such that PD0
[2n] = 0,

PD1
[2n] = 2−n/2, and Ei∼D0

[ik] = Ei∼D1
[ik] for all k ∈ {0, 1, 2, . . . , n/6}.

Proof. The claim is equivalent to the feasibility of the following system with variables vi and wi for
i ∈ {0, 1, 2, . . . , 2n−1} (representing PD0

[i] and PD1
[i] respectively), where we define δ := 2−n/2.

∑

i vi = 1
∑

i wi = 1− δ
∑

i vi · i
k −

∑

iwi · i
k = δ · (2n)k for all k ∈ {0, 1, 2, . . . , n/6}

vi, wi ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

By Farkas’s Lemma, this is equivalent to the infeasibility of the following system with variables x,
y, and zk for k ∈ {0, 1, 2, . . . , n/6}.

x+
∑

k zk · i
k ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

y −
∑

k zk · i
k ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

x+ y · (1− δ) +
∑

k zk · δ · (2
n)k < 0

Defining the polynomial Z(i) :=
∑

k zk · i
k, this system can be rewritten as follows.

Z(i) ∈ [−x, y] for all i ∈ {0, 1, 2, . . . , 2n−1} (1)

x+ y · (1− δ) + δ · Z(2n) < 0 (2)

Suppose for contradiction this system is feasible; in particular y ≥ −x. We cannot have y = −x
since then by (1), Z would either be the constant y = −x, thus violating (2), or have degree
> 2n−1 > n/6. Thus we may assume x+y > 0. If we define the polynomial Z∗(i) := (y−Z(i))/(x+y)
then Z∗(i) ∈ [0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1} by (1), and Z∗(2n) > 1/δ = 2n/2 by (2); yet
deg(Z∗) = deg(Z) ≤ n/6, contradicting Claim 1.

For b ∈ {0, 1}, define µb as the distribution over 2n × 2n boolean matrices M obtained by, for
each row independently, sampling i ∼ Db and then taking a uniformly random length-2n bit string
of Hamming weight i. Let “P (M) > t” be the purported PTF for FN·coR (where t is an integer).
The following two claims provide a contradiction.

Claim 3. Eµ1
[P (M)] > Eµ0

[P (M)].

Claim 4. Eµ1
[P (M)] = Eµ0

[P (M)].

Proof of Claim 3. Let us abbreviate FN·coR as F . Observe that Pµ0

[

F−1(0)
]

= 1 and Pµ1

[

F−1(1)
]

=

1−(1−2−n/2)2
n
≥ 1−e−2n/2

. Also, notice that |P (M)| ≤ weight(P ) ≤ 22
n/3

for all M ; in particular,

t < 22
n/3

. Thus,

Eµ1
[P (M)] = Eµ1

[

P (M)
∣

∣F−1(1)
]

· Pµ1

[

F−1(1)
]

+ Eµ1

[

P (M)
∣

∣F−1(0)
]

· Pµ1

[

F−1(0)
]

≥ (t+ 1) ·
(

1− e−2n/2)

− 22
n/3

· e−2n/2

> t

≥ Eµ0
[P (M)].
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Proof of Claim 4. Define Ui to be the uniform distribution over length-2n bit strings of Hamming
weight i. For any C ⊆ [2n], we have Pu∼Ui

[

uC is all 1’s
]

= i(i−1)···(i−|C|+1)
2n(2n−1)···(2n−|C|+1) (most easily seen by

imagining that u is fixed and C is random); this is a polynomial of degree |C| in i, which we write

as Q|C|(i) :=
∑|C|

k=0Q
|C|
k · ik. We also write P (M) :=

∑

S PS
∏

(r,c)∈S Mr,c where the sum ranges

over S ⊆ [2n]× [2n] with |S| ≤ n/6. For a row index r ∈ [2n], let Sr :=
{

c ∈ [2n] : (r, c) ∈ S
}

. For
each b ∈ {0, 1} we have

Eµb
[P (M)] =

∑

S PS Pµb

[

MS is all 1’s
]

=
∑

S PS
∏

r Ei∼Db
Pu∼Ui

[

uSr is all 1’s
]

=
∑

S PS
∏

r Ei∼Db

[

Q|Sr|(i)
]

=
∑

S PS
∏

r

∑

k Q
|Sr|
k Ei∼Db

[ik].

By Claim 2, this value does not depend on b (since k ≤ |Sr| ≤ |S| ≤ n/6 always holds).

3 Quadratic Simulation for MA2 ⊆ AM1

Theorem 2. MA2-TIME(n) ⊆ AM1-TIME(n2).

MA2

MA1

AM2

AM1

For historical context, the four diagonal arrows in the
figure represent known simulations with quadratic overhead:
MA2-TIME(n) ⊆ MA1-TIME(n2 polylog n) and AM2-TIME(n) ⊆
AM1-TIME(n2 polylog n) follow by the “covering by shifts” ar-
gument of [Lau83], while MA2-TIME(n) ⊆ AM2-TIME(n2) and
MA1-TIME(n) ⊆ AM1-TIME(n2) follow by amplification and
swapping the quantifiers, as shown in [Bab85]. All these are
subsumed by Theorem 2, represented by the horizontal arrow.
The dashed vertical arrow represents the lower bound of [Die07]
showing that black-box or relativizing techniques cannot even
yield MA1-TIME(n) ⊆ AM2-TIME(o(n2)).

Of course, a 4th-power simulation for MA2 ⊆ AM1 follows from the previous results, by carrying
out the two steps (swapping the quantifiers and making the error 1-sided) in either order. To prove
Theorem 2 we need a single quadratic simulation that handles both steps at the same time. Our
proof ends up resembling the proof of S2·BPP ⊆ S2P in [RS98], but (similarly to [Dv06]) we start by
doing randomness-efficient amplification with very explicit expanders, and we also set parameters
differently (in particular, using constant numbers of shifts).

Proof of Theorem 2. By randomness-efficient amplification [CW89, IZ89] using the expander graph
of [GG81], we may assume that Arthur has error probability < 2−n while using O(n) random
bits and running in time O(n2). That is, for L ∈ MA2-TIME(n) there is a deterministic O(n2)-time
algorithm M and a constant c such that if x ∈ L then ∃w ∈ {0, 1}cn Pr∈{0,1}cn [M(x,w, r) accepts] >
1− 2−n, and if x 6∈ L then ∀w ∈ {0, 1}cn Pr∈{0,1}cn [M(x,w, r) accepts] < 2−n. Consider the O(n2)-
time algorithm M ′ that, letting a := c2 + c + 1 and b := c, interprets its input as x ∈ {0, 1}n,
r′ := r1 · · · ra ∈ ({0, 1}cn)a, and w′ := ws1 · · · sb ∈ {0, 1}cn× ({0, 1}cn)b, and accepts iff ∀i ∈ [a] ∃j ∈
[b] M(x,w, ri ⊕ sj) accepts. We claim that M ′ witnesses L ∈ AM1-TIME(n2). First suppose x ∈ L,
and fix w ∈ {0, 1}cn such that Pr[M(x,w, r) accepts] > 1 − 2−n. If we pick s1 · · · sb ∈ ({0, 1}cn)b
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uniformly at random, then for each r ∈ {0, 1}cn we have Ps1···sb

[

¬∃j M(x,w, r ⊕ sj) accepts
]

<
(2−n)b = 2−cn. Hence by a union bound, there exists s1 · · · sb such that for all r there exists a j such
that M(x,w, r ⊕ sj) accepts. Letting w′ := ws1 · · · sb, we have ∃w′ ∀r′ M ′(x, r′, w′) accepts, and
thus Pr′

[

∃w′ M ′(x, r′, w′) accepts
]

= 1. Now suppose x 6∈ L. If we pick r′ ∈ ({0, 1}cn)a uniformly
at random, then for each w′ := ws1 · · · sb we have Pr′

[

∀i ∃j M(x,w, ri ⊕ sj) accepts
]

< (b2−n)a ≤
1
2 · 2

−(cn+bcn). By a union bound, Pr′
[

∃w′ M ′(x, r′, w′) accepts
]

≤ 1/2.

4 Relativized MA 6⊆ NP
BPP

The distinction between MA1 and N·coRP is that when Merlin sends a “wrong” witness for a 1-input,
MA1 allows Arthur to accept with arbitrary probability, whereas N·coRP requires Arthur to accept
with a “legal” probability (in [0, 1/2] ∪ {1}). The distinction between MA2 and N·BPP is similar
but where the legal probabilities are [0, 1/3] ∪ [2/3, 1]. Since the relativizing polynomial-time class
equalities MA := MA2 = MA1 and NPBPP = N·BPP = N·coRP hold, the following theorem shows
that the distinction is significant.

Theorem 3. There is an oracle relative to which MA 6⊆ NPBPP.

Theorem 3 was shown in [FFKL03] using the machinery of generics. In contrast, most oracle
separations of pairs of ordinary complexity classes are known to hold directly via separations of the
corresponding query complexity (decision tree) models. When we asked Mika Göös whether a query
complexity style argument could be used to prove Theorem 3, he promptly manufactured such an
argument. He declined coauthorship but graciously gave permission to present the argument for
the sake of recording it in the literature. Furthermore, this argument even yields an oracle relative
to which MA 6⊆ NPBQP (by using a quantum rather than randomized query lower bound for the OR
function in the appropriate places), which appears to be a new result.

We define a q-query N·BPP decision tree for a partial function F : {0, 1}N → {0, 1} to be a set of
probability distributions over depth-q deterministic decision trees, such that for every 0-input, each
distribution in the set accepts with probability ≤ 1/3, and for every 1-input, each distribution in the
set accepts with probability in [0, 1/3] ∪ [2/3, 1] and at least one of them accepts with probability
≥ 2/3.2

Consider the partial function FMA1
that takes a 2n × 2n boolean matrix and evaluates to 1 if

there exists an all-1 row, and to 0 if each row has at most half 1’s. Theorem 3 is a corollary of the
following result.

Lemma 1. Every N·BPP decision tree for FMA1
uses Ω(2n) queries.

Proof. Let us abbreviate FMA1
as F . Suppose for contradiction there exists an N·BPP decision tree

for F using at most 2n−4 queries. Define M (0) to be the 2n × 2n matrix that has all 1’s in its first
row and 0’s everywhere else. Since F (M (0)) = 1, there is a distribution D (which we fix henceforth)
in the set of the N·BPP decision tree, that accepts M (0) with probability ≥ 2/3.

We claim that there exists a sequence of 2n × 2n matrices M (0),M (1), . . . ,M (2n−1) such that for
each i = 1, . . . , 2n−1, M (i) has 2n− i 1’s in its first row and 0’s everywhere else, and the probability

2It would also be natural to charge the log of the size of the set—i.e., the number of nondeterministic guess
bits—to the cost of the decision tree. For Theorem 3 it would suffice to consider this more restricted model, but our
lower bound holds even for the more powerful model that does not charge for guess bits. [RTVV99] explores this
distinction in the context of MA decision trees.
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D accepts M (i) is within 1/8 of the probability D accepts M (i−1). Inductively assuming M (i−1) has
been constructed, there must be a 1-entry that gets queried with probability ≤ 2n−4/(2n−(i−1)) ≤
1/8 under D, so we can obtain M (i) by flipping this entry to a 0. The claim is proved.

Since F (M (2n−1)) = 0, D accepts M (2n−1) with probability ≤ 1/3. Hence there exists an i∗ such
that D accepts M (i∗) with probability within 1/16 of 1/2. This is an illegal probability, but we do
not yet have a contradiction, since M (i∗) is not in the domain of F . Now there must be a row of
M (i∗) such that the probability (under D) that a bit in that row gets queried is ≤ 2n−4/2n = 1/16.
Flipping all the 0’s to 1’s in that row results in a matrix M that D accepts with (illegal) probability
within 1/16 + 1/16 of 1/2. This is a contradiction since F (M) = 1 and so D is supposed to accept
M with probability in [0, 1/3] ∪ [2/3, 1].

A Definitions

In these definitions, we assume any reasonable model of algorithms that have random access to the
input and memory. Probabilities are always over a uniform distribution.

Definition. L ∈ MA1-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y Pz[M(x, y, z) accepts] = 1

x 6∈ L ⇒ ∀y Pz[M(x, y, z) accepts] ≤ 1/2.

Definition. L ∈ MA2-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y Pz[M(x, y, z) accepts] ≥ 2/3

x 6∈ L ⇒ ∀y Pz[M(x, y, z) accepts] ≤ 1/3.

Definition. L ∈ N·coR-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y Pz[M(x, y, z) accepts] = 1 and ∀y Pz[M(x, y, z) accepts] ∈ [0, 1/2] ∪ {1}

x 6∈ L ⇒ ∀y Pz[M(x, y, z) accepts] ≤ 1/2.

Definition. L ∈ N·BP-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y Pz[M(x, y, z) accepts] ≥ 2/3 and ∀y Pz[M(x, y, z) accepts] ∈ [0, 1/3] ∪ [2/3, 1]

x 6∈ L ⇒ ∀y Pz[M(x, y, z) accepts] ≤ 1/3.

Definition. L ∈ AM1-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ Py

[

∃z M(x, y, z) accepts
]

= 1

x 6∈ L ⇒ Py

[

∃z M(x, y, z) accepts
]

≤ 1/2.
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Definition. L ∈ AM2-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ Py

[

∃z M(x, y, z) accepts
]

≥ 2/3

x 6∈ L ⇒ Py

[

∃z M(x, y, z) accepts
]

≤ 1/3.

Definition. L ∈ S2-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y ∀z M(x, y, z) accepts

x 6∈ L ⇒ ∃z ∀y M(x, y, z) rejects.

Definition. L ∈ S2·BP-TIME(t) iff there exists a deterministic algorithm M that takes inputs
x, y, z, w where |y| = |z| = |w| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y ∀z Pw[M(x, y, z, w) accepts] ≥ 2/3

x 6∈ L ⇒ ∃z ∀y Pw[M(x, y, z, w) accepts] ≤ 1/3.

Definition. L ∈ Σ2-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ ∃y ∀z M(x, y, z) accepts

x 6∈ L ⇒ ∀y ∃z M(x, y, z) rejects.

Definition. L ∈ P-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y where
|y| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

x ∈ L ⇒ Py[M(x, y) accepts] > 1/2

x 6∈ L ⇒ Py[M(x, y) accepts] < 1/2.

Definition. L ∈ P·BQ-TIME(t) iff there exists a quantum algorithm M that takes inputs x, y where
|y| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

∀y P[M(x, y) accepts] ∈ [0, 1/3] ∪ [2/3, 1]

x ∈ L ⇒ Py

[

P[M(x, y) accepts] ≥ 2/3
]

> 1/2

x 6∈ L ⇒ Py

[

P[M(x, y) accepts] ≥ 2/3
]

< 1/2.

Definition. L ∈ P·P-TIME(t) iff there exists a deterministic algorithm M that takes inputs x, y, z
where |y| = |z| = O(t(|x|)), runs in time O(t(|x|)), and such that for every x,

∀y Pz[M(x, y, z) accepts] 6= 1/2

x ∈ L ⇒ Py

[

Pz[M(x, y, z) accepts] > 1/2
]

> 1/2

x 6∈ L ⇒ Py

[

Pz[M(x, y, z) accepts] > 1/2
]

< 1/2.

MA1, MA2, N·coRP, N·BPP, AM1, AM2, S2P, S2·BPP, Σ2P, PP, P·BQP, and P·PP are defined as
the corresponding polynomial time bounded classes. It is known that MA2 = MA1, so MA refers to
this common class. Similarly, it is known that NPBPP = N·BPP = N·coRP. Also, AM1-TIME could
be called coR·N-TIME, and AM2-TIME could be called BP·N-TIME. It is known that AM2 = AM1,
so AM refers to this common class.
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