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Abstract. We devise a new technique to prove lower bounds for the proof size in resolution-
type calculi for quantified Boolean formulas (QBF). The new technique applies to the strong
expansion system IR-calc and thereby also to the most studied QBF system Q-Resolution.

Our technique exploits a clear semantic paradigm, showing the hardness of a QBF family by
demonstrating that (1) the formulas require large witnessing functions for the universal variables,
and (2) in the game semantics of QBF, the universal player is forced to make many responses on
a set of variables that we identify as critical.

Based on these two conditions, our technique yields a weight for a QBF formula, which provides
an absolute lower bound for the size of its IR-calc proofs (and hence also its Q-Resolution proofs).

We exemplify our technique on a couple of known and new instances, among them the prominent
formulas of Kleine Büning et al. [33], for which our method provides a hardness proof that is
considerably simpler than previous approaches.

Our technique also provides the first separations for QBF dependency calculi. In particular, we
construct a simple class of formulas that are hard for Q-Resolution, but easy in Q-Resolution
parameterized by the reflexive resolution path dependency scheme, thus answering a question
posed by Slivovsky and Szeider [49].

1 Introduction

Proof complexity is a subfield of computational complexity investigating the complexity of
theorem proving. Its central problem is to determine the size of the smallest proof for a
given formula in a specified proof system, typically defined through a set of axioms and
inference rules. By placing a non-deterministic computational model (the existence of short
proofs) into the centre of investigation, proof complexity closely relates to central questions in
computational complexity (such as NP vs co-NP, or NP vs PSPACE, cf. [20,24]). In addition,
proof complexity is tightly linked to and inspired by first-order logic (bounded arithmetic
[23, 34]) and developments in practical solving. In particular, the exciting developments in
SAT solving during the past 15 years have been a main driver for the field.

SAT solvers have emerged as a universal tool for the solution of computationally hard
problems. From a theoretical perspective, this success of solving is currently insufficiently
understood. What makes huge industrial instances easy for SAT solvers, while even the best
modern solvers fail on tiny instances of hand-crafted combinatorial problems?

The main theoretical approach towards understanding the power and limitations of SAT
solving comes from proof complexity. Traces of runs of SAT solvers on unsatisfiable instances
yield proofs for unsatisfiability, whereby each SAT solver implicitly defines a proof system.
In particular, SAT solvers based on the DPLL procedure, and contemporary SAT solvers
using conflict-driven clause learning (CDCL), are based on resolution, which is arguably the
most studied proof system in proof complexity. Therefore proof lengths in resolution and its
fragments correspond to the running time of SAT solvers on unsatisfiable instances (cf. [20]).

In the past decade the success of SAT solving has been extended to the more complex
setting of quantified Boolean formulas (QBF). Due to its PSPACE completeness (even for
restricted versions [1]), QBF is far more succinct than SAT and thus applies to further fields
such as formal verification or planning [7, 26, 43]. As for SAT solvers, runs of QBF solvers
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produce witnesses of unsatisfiability, and there has been intense research activity to provide
appealing proof-theoretic models for QBF solvers and to analyse their strength.

Modern QBF solvers are mainly modelled by resolution-type systems. However, due to
a number of conceptually different approaches in QBF solving, the situation is somewhat
more complex than in SAT (cf. [5, 11]). One of the central paradigms is to lift the CDCL
approach to QBF [29]. The main corresponding proof system for this is Q-Resolution (Q-
Res), defined in [33], together with various extensions such as long-distance Q-Resolution [3],
universal Q-Resolution (QU-Res) [28], and their combinations [5]. Q-Res incorporates the
classical resolution rule on existential variables. Additionally, under certain conditions it allows
to eliminate universal variables from clauses by a universal reduction rule.

Another QBF solving paradigm comes from expansion, where universal variables are grad-
ually replaced by constants 0/1 until a purely existentially quantified formula is obtained,
which can be passed to a SAT solver. While in general the expansion yields an exponen-
tial increase in the formula size, careful (partial) expansion – as implemented in the solver
RaREQs – yields a powerful approach [31]. The base system to model expansion-based solv-
ing is ∀Exp+Res [32], where proofs are clearly decomposed into an expansion phase and a
subsequent propositional resolution phase. A more flexible model is provided by the system
IR-calc [10], where expansion and resolution are mixed.

Exponential separations obtained in [11, 32] show that the base systems Q-Res for CDCL
solving and ∀Exp+Res for expansion solving are incomparable in strength. However, they are
both simulated1 by the system IR-calc [10]. A host of stronger QBF proof systems have also
been investigated recently , in the form of sequent systems [19,22,25,36], Frege systems [9,19],
cutting planes [15], and the proof checking format QRAT [30].

In this paper we concentrate our investigation on QBF resolution, and on IR-calc in par-
ticular, as it combines the two base systems for CDCL and expansion solving.

1.1 Lower bound techniques

The strength of a proof system (and hence of the corresponding solving approach) is measured
by which formulas admit short (i.e. polynomial-size) proofs in the system and for which
formulas absolute lower bounds can be obtained. As is typical in computational complexity,
it is the latter task of showing lower bounds that turns out to be the most challenging.
In particular, proving lower bounds for strong systems such as Frege constitutes a major
challenge, and in the QBF setting this task is intimately linked to progress in lower bounds
for circuit complexity [19].

Arguably, what is even more important than the actual lower bounds, is to devise generally
applicable lower bound techniques. For propositional resolution we have a number of such
techniques (cf. [20,45]) and it is illuminating to review their applicability in the QBF context.
The most widely used classical technique is the size-width technique of [6], which shows lower
bounds for size via lower bounds for the width in resolution. However, as shown in [14], this
technique drastically fails even in the base system Q-Res.

On the positive side, feasible interpolation [35] is a propositional technique that also works
for QBF resolution systems [13]. However, feasible interpolation only applies to a quite re-
stricted class of formulas, as it imports lower bounds for monotone Boolean circuits (of which
we only have very few). A further general approach is through games. While this is effective
in both propositional resolution [18, 42] as well as in Q-Res [17], it only applies to the weak
tree-like versions of these systems.

It is therefore fair to say that, at present, ideas from the propositional world have limited
impact to the QBF framework. Moreover, there is a general feeling in the QBF community

1 Proof system A simulates proof system B if A-proofs and be transformed into B-proofs with at most
polynomial increase in proof size.
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that lower bounds just lifted from classical propositional proof complexity are not particularly
interesting. On purely existentially quantified formulas, all QBF resolution systems degrade
to propositional resolution, hence every classically hard formula gives rise to a hard QBF.
However, this is not the phenomenon we want to study (cf. also [21] for an elaboration). We
are interested only in ‘genuine’ QBF lower bounds.

One approach in this direction is via strategy extraction, which originates from the game
semantics of QBF. For this we consider a two-player game between an existential and a
universal player, who in turn choose 0/1 values for the variables in the QBF in the order of
the quantifier prefix, starting from the leftmost quantifier. The universal player wins as soon
as one of the clauses in the QBF matrix gets falsified, otherwise the existential player wins. A
fully quantified QBF is false if and only if the universal player has a winning strategy; likewise
it is true if and only if the existential player has a winning strategy.

Strategy extraction computes a strategy from a proof of the formula. In particular, from
a refutation of a false QBF in a QBF resolution system, a winning strategy for the universal
player can be efficiently extracted [4, 10]. This is practically important, as strategies witness
the answers of QBF solvers [3], but it can also be exploited for a lower bound technique
[9, 11]. Namely, Q-Res allows strategy extraction even with bounded-depth circuits [3, 11],
and therefore any AC0 lower bound, suitably coded into a QBF, gives rise to a Q-Res lower
bound [9,11].

This is conceptually quite interesting, as it establishes a tight connection between circuit
lower bounds and QBF proof size lower bounds [9,19]. At the same time it also limits the ap-
plicability of the technique, as circuit lower bounds are very rare [51] and the QBFs expressing
them of a rather special syntactic form.

2 Our contributions

In this section we explain our main results. We also outline the key technical ideas and provide
pointers to later sections where these are fully elaborated.

2.1 A genuine lower bound technique for QBF

The need for new technique. Our main contribution is a new lower bound technique for
the proof size in IR-calc that yields genuine QBF lower bounds. Before giving details on the
technique, let us try to explain what we mean by that qualification.

For strong QBF Frege systems we can precisely classify the reasons for hardness: they either
stem from a classical Frege lower bound (on an existentially quantified formula as explained
above) or from a circuit lower bound via the strategy extraction technique [19]. Intriguingly,
in QBF resolution a third case comes into play, where the hardness of the formula neither
comes from propositional resolution nor from the hardness of the Herbrand functions that
witness the universal quantifiers.

We currently do not understand this case very well, but we believe it to be crucial to
assess the proof complexity of QBF resolution. In fact, the only example we are aware of are
the formulas of Kleine Büning et al. [33], which have been proposed as the historically first
formulas hard for Q-Res and form a recurring theme in QBF proof complexity [5,11,25,27,39].
Quite clearly, the hardness of these formulas does not stem from propositional resolution, and
the witnessing functions for the winning strategy of the universal player are trivial.

Here we develop a general technique that applies to the formulas of [33] and opens the
door for an understanding of the mysterious third case mentioned above, also providing further
examples for that case.
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Outline of the technique. Our technique has a clear semantic appeal grounded on the two-
player game for QBF explained above. In the game, a winning strategy for the universal player
determines responses to the choices made by the existential player. While the responses are
possibly easy to compute, our lower bound method focuses on formulas where many responses
are necessary, i.e., the range of each witnessing function for the collection of all universal
quantifiers is large. For a QBF Φ let us refer to this condition as Φ requiring large witnessing
functions. An easy example for such a formula is ∃x1, . . . , xn∀u1, . . . , un.

∨n
i=1(xi 6≡ un), where

the unique witnessing function for u1, . . . , un has full range {0, 1}n.

This condition alone does not suffice for lower bounds (cf. Example 6). We therefore
identify a second condition, which guarantees that many of the universal responses must
actually appear in the proof.

For this, we define the concept of a restrictor (Definition 7), which is an assignment to all
existential variables, except for the rightmost existential block.2 After applying a restrictor δ
to a QBF Φ, it becomes a Πb

2-formula of the form Φ|δ = ∃X∀U. φ|δ. We now consider IR-calc
refutations of Φ|δ. We call a universal variable u from U critical (Definition 10) if it must
appear in each refutation of Φ|δ, i.e., every minimally unsatisfiable subset of φ|δ contains u.

Let us now fix an IR-calc refutation π of Φ and consider the winning strategy S extracted
from that proof via the strategy extraction method of [10]. As we assume that Φ requires large
witnessing functions, we know that S needs to contain many responses on universal variables.
Our central argument establishes that all responses on critical variables must appear in each
proof of Φ|δ (Lemma 13) and therefore also in the proof π of Φ (Proposition 2).

Thus, ranging over all different restrictors δ, we can collect all responses to S on critical
variables. We include all such responses as nodes in a critical response graph G(S, Φ) (Defi-
nition 14), with edges connecting inconsistent responses. The proof π must then be at least
as large as the clique number of G(S, Φ). We define the weight of Φ as the minimum clique
number of all response graphs G(S, Φ) for all winning strategies S of the universal player
(Definition 16). By this weight of Φ we obtain a precise lower bound to the IR-calc proof size
for Φ.

Theorem 17 (Weight Theorem). The size of any IR-calc refutation of a QBF Φ is at least
the weight of Φ.

A graphical representation of the idea behind our technique is given in Figure 6.

We remark that for the IR-calc lower bound method to take effect for Φ, we crucially need
both conditions that

1. Φ requires large witnessing functions, and

2. for sufficiently many restrictors δ, the formula Φ|δ contains many critical variables.

While condition (1) alone yields a lower bound for the weaker expansion system ∀Exp+Res
(Proposition 5), it is not difficult to find formulas fulfilling (1), but failing (2), which have
short proofs in IR-calc (Example 6). On the other hand, a variation of the parity formulas
from [11] provides an example for formulas fulfilling (2), but failing (1) (cf. Part A of the
appendix). Interestingly, these parity formulas are hard for Q-Res, but easy in ∀Exp+Res and
therefore also in IR-calc [11].

We emphasise that our lower bound technique directly applies to Q-Res, which is arguably
the best-studied QBF resolution system. We have chosen to present it for IR-calc as this
calculus simulates Q-Res [10], but is strictly stronger than Q-Res [11]. At the same time, the
presentation of the lower bound appears technically easier for IR-calc, because IR-calc has a
very neat way to deal with universal variables.

2 W.l.o.g. we assume in the following that the rightmost quantifier block is existential.
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2.2 Applications of the new technique

Applying our technique to show the hardness of specific formulas turns out to be rather
straightforward: all one needs to do is to compute the weight of the formula by verifying
conditions (1) and (2) above. We illustrate this with three examples.

Our first example is the formula family KBKF(n) of Kleine Büning et al. [33], mentioned
above. Originally suggested as hard formulas for Q-Res [33], they have since appeared promi-
nently in the QBF literature (e.g. [5,11,25,27,39]). A formal proof of their hardness for IR-calc
(and hence for Q-Res) has been given in [11]3, where the rather technically involved argument
is tailored towards the specific syntactic structure of the formulas.

We give a much easier proof of hardness for IR-calc (and hence for Q-Res) via our technique
(Subsection 6.1). Exploiting semantic properties of the formulas, we prove that their weight
is exponentially large.

Theorem 19. For each n ∈ N, KBKF(n) has weight 2n.

The proof-size lower bound is then obtained by applying the Weight Theorem. We believe
that our argument sheds new light on KBKF(n), and provides the first clear appreciation of
their hardness.

Our second example is a modification of formulas by Janota and Marques-Silva [32]. While
these formulas are hard for the base expansion system ∀Exp+Res, they are easy for Q-Res (and
thus also IR-calc), and hence separate these systems [32]. Whereas the weight of the original
formulas is constant, we show that a simple reordering of the quantifier prefix yields modified
formulas with exponential weight (Theorem 22), to which our technique is applicable. We
therefore obtain a new lower bound for IR-calc. Interestingly, the original formulas have a
linear number of quantifier alternations, while our new versions are just Σb

3.

Our final example is perhaps the most important. We introduce the following new class of
QBFs.

Definition 24. The equality formulas are the formula family

Ψ(n) = ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn .ψ(n)

where the matrix ψ(n) consists of the clauses

Bn = {¬t1, . . . ,¬tn},
Ci = {xi, ui, ti}, Di = {¬xi,¬ui, ti}, for i ∈ [n].

We call these QBFs the equality formulas because the unique winning strategy of the universal
player is to choose ui ≡ xi for each i. As in our previous two examples, semantic properties
necessitate that the formulas require large weight.

Theorem 25. For each n ∈ N, the equality formula Ψ(n) has weight 2n.

The equality formulas have been designed with the aim of providing simple and easily acces-
sible formulas with exponential weight, and they are arguably the simplest formulas to which
our technique applies. As such they form a welcome addition to the QBF portfolio of hard
instances (which, unfortunately, remains rather limited at present). Additionally, they have
an important application in the area of dependency calculi, which we describe next.

3 the full proof is contained in the report [12]
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2.3 Separation of QBF dependency calculi

The analysis of the equality formulas introduced in the previous subsection provides the first
results in the proof complexity of QBF dependency calculi. To put these results into context,
we provide a brief summary of the field.

SAT solvers can freely assign variables in an arbitrary order, and the ability to determine
a ‘good’ order can yield an exponential improvement on running time. Indeed, the imple-
mentation of sophisticated decision heuristics – algorithms that decide the order of variable
assignments – is a cornerstone of SAT solving, and there is a large volume of literature on the
topic (e.g. [37, 40,46,47]).

QBF solvers, however, are not granted the same freedom; nested quantifier scopes entail
variable dependencies that must be respected by the assignment order. As a result, the power
of decision heuristics is greatly reduced, thus presenting a major challenge for practitioners.

Pioneered by the leading solver DepQBF [38], a recent development at the cutting edge
of QBF solving is the introduction of dependency schemes [44]. A dependency scheme is an
efficient algorithm that attempts to identify so-called spurious dependencies, thereby relaxing
the restrictions on the assignment order and improving the power of decision heuristics.

The theoretical model for dependency-aware solving employs existing QBF systems pa-
rameterized by dependency scheme. For example, whereas a basic CDCL-based solver cor-
responds to Q-Res, the same solver augmented with dependency scheme D corresponds to
Q(D)-Res [50], the parameterization of Q-Res by D. In principle, any QBF proof system P can
be parametrised by any dependency scheme D, yielding the system P(D). Parameterizations
of further CDCL-based systems have been studied in [8, 41]. (Prior to the present paper, a
similar treatment of expansion-based systems had not been investigated.)

The reflexive resolution path dependency scheme (Drrs) [50] has assumed a prominent place
in the literature, being the strongest known dependency scheme for which the parameterized
CDCL systems are sound. However, as far as we are aware, nothing at all is known regarding
the proof-theoretic strength of using this scheme.

Applying our lower bound technique, we provide the first separations for dependency
calculi and initiate the study of expansion-based dependency systems. A clear picture emerges
that demonstrates strong potential for dependency-aware solving in both major paradigms.

On the CDCL side, we show that Q(Drrs)-Res is exponentially stronger than Q-Res, thereby
answering a question first posed in 2014 by Slivovsky and Szeider [49]. In fact, we prove a
stronger result, namely that Q-Res does not simulate tree-like Q(Drrs)-Res, from which it
follows that these two calculi are incomparable (the reverse separation lifts from propositional
resolution). We also show that the same results hold when resolution over universal pivots is
allowed; that is, we prove the analogous separations for QU-Res.

In fact, we also show the analogous results for both expansion-based calculi IR-calc and
∀Exp+Res, which we believe to be of particular practical relevance (cf. Section 8). Technically
all these separations are achieved by our new equality formulas or a slight modification thereof.

Our results, stated in the following theorem, are depicted in Figure 1.

Theorem 29. Let P be any of the proof systems IR-calc, ∀Exp+Res, Q-Res, and QU-Res.
Then P simulates neither P(Drrs) nor tree-like P(Drrs).

Organisation

The remainder of this paper is organised as follows. We start with relevant background infor-
mation on QBFs, Q-Res, and strategies in Section 3 and on the system IR-calc in Section 4.
The description of our new lower bound technique is then given in Section 5, followed by ap-
plications on known formulas, including the formulas of Kleine Büning et al. [33], (Section 6)
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Fig. 1. Proof complexity of QBF dependency calculi. Here the proof system P is any one of IR-calc, ∀Exp+Res,
Q-Res or QU-Res.

and on the new equality formulas and the separations between dependency calculi (Section 7).
We conclude in Section 8 with a discussion on further research avenues opened by our results.

3 Preliminaries

Quantified Boolean formulas. We consider quantified Boolean formulas (QBFs) Φ over a
set vars(Φ) = {z1, . . . , zn} of variables ranging over {0, 1}. Throughout we use only formulas
in prenex conjunctive normal form (PCNF), denoted Φ = Q .φ, in which all variables are
quantified either existentially or universally in the quantifier prefix Q = Q1z1 · · · Qnzn, Qi ∈
{∃, ∀} for i ∈ [n], and φ is a propositional conjunctive normal form (CNF) formula called the
matrix. The prefix Q imposes a linear ordering <Φ on the variables of Φ, such that zi <Φ zj
holds whenever i < j, in which case we say that zj is right of zi.

A literal is a variable or its negation, a clause is a disjunction of literals, and a CNF is a
conjunction of clauses. Throughout, we refer to a clause as a set of literals and to a CNF as a
set of clauses. We typically write x for existential variables, u for universals, and z for either.

We assume w.l.o.g. that the rightmost literal in a clause is not universal (all such literals
may be removed from clauses in polynomial time, while preserving the truth value of the
formula).

For a literal l, we write var(l) = z iff l = z or l = ¬z, for a clause C we write vars(C) =
{var(l) | l ∈ C}, and for a PCNF Φ we write vars(Φ) for the variables in the prefix of Φ. For
any clause C, C∃ (C∀) denotes the existential (universal) literals of C. For any set of variables
V , V∃ (V∀) denotes the existential (universal) variables of V . As is conventional, we represent
assignments as sets of literals, where literal z (resp. ¬z) represents the assignment z 7→ 1
(resp. z 7→ 0).

QBF resolution. Resolution is a well-studied refutational proof system for propositional
CNF formulas with a single inference rule: the resolvent C1 ∪C2 may be derived from clauses
C1 ∪ {x} and C2 ∪ {¬x} (variable x is the pivot). Resolution is refutationally sound and
complete: that is, the empty clause can be derived from a CNF iff it is unsatisfiable.

There exist a host of resolution-based QBF proof systems – see [11] for a detailed account.
Q-resolution (Q-Res, Fig. 2) introduced in [33] is the standard refutational calculus for PCNF.
In addition to resolution over existential pivots, the calculus has a universal reduction rule
which allows a clause C to be derived from C ∪ {l}, where var(l) is a universal variable right
of all existentials in C. Universal tautologies are explicitly forbidden; one may not derive a
clause containing both l and ¬l if var(l) is universal.
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(axiom)
C C is a clause in the matrix of Φ.

C ∪ {l}
(∀-red)

C

Literal l is universal.
Every existential literal in C is left of l.

C1 ∪ {x} C2 ∪ {¬x}
(res)

C1 ∪ C2

Variable x is existential.
If l ∈ C1 and var(l) is universal, then ¬l /∈ C2.

Fig. 2. The rules of Q-Res [33]. Note that Φ = Q .φ ∈ PCNF.

For a QBF resolution system P, a P derivation of a clause C from a PCNF Φ is a sequence
C1, . . . , Cm of clauses in which C = Cm, and each clause is either an axiom or is derived from
previous clauses in the sequence using an inference rule. We insist that a derivation must have
a unique conclusion; that is, Cm is the unique clause that is not the antecedent of another
clause in the sequence. The subderivation of clause Ci is obtained by removing all such clauses
from the subsequence C1, . . . , Ci. A refutation of Φ is a derivation of the empty clause from Φ.

Strategies. Semantics for PCNF are described neatly by the two-player game. Over the
course of a game on a PCNF, the variables are assigned 0/1 values in the order of the prefix,
with the ∃-player (∀-player) choosing the values for the existential (universal) variables. When
the game concludes, the players have constructed a total assignment α to the variables. The
∀-player wins if and only if α falsifies some clause of the matrix. A PCNF is false if and only
if there exists a winning strategy for the universal player in the two-player game.

A strategy dictates how the ∀-player should respond to every possible choice of the ∃-
player. Let Φ = Q .φ be a PCNF over variables V and let Q = ∃X1∀U1 · · · ∃Xn∀Un∃Xn+1.
A ∀-strategy S for Φ is a mapping from total assignments to V∃ to total assignments to V∀,
such that, for each i ∈ [n], S(α) and S(α′) agree on the first i universal blocks whenever α
and α′ agree on the first i existential blocks. For any α in the domain of S, α∪S(α) is a total
assignment to V referred to as a game of S. A strategy S is winning if and only if every game
falsifies φ. Every winning ∀-strategy is equivalent to some witnessing function, and vice versa.

A strategy can be depicted naturally as a tree, as shown in Figure 4. Every game of the
strategy is written on a unique path from the root of the tree to some leaf.

4 IR-calc fundamentals

In this section, we recall the definition of IR-calc [10] and discuss the underlying concepts of
the calculus, including its use of annotations. We also cover restrictions of IR-calc proofs, and
strategy extraction, both of which are central to the following section.

4.1 The calculus

To explain the concept of expansion, we consider an example. Let ∃x∀u∃y. φ(x, u, y) be a
PCNF. The formula is semantically equivalent to ∃x∃y0∃y1. φ(x, 0, y0)∧ φ(x, 1, y1), where we
have ‘expanded’ the universal variable u. (In our example this already leads to a purely exis-
tentially quantified formula.) Note that the variable x, which is left of u, remains unchanged,
while we have to create two duplicate copies y0 and y1 for the variable y, which is right of
u. To keep track of why we created these copies of y, we will annotate them with the reason
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[axiom(C)]
{lτ(l) | l ∈ C∃}

C is a clause in the matrix of Φ.
τ(l) consists of the negations of the universal literals in
C that are left of l.

C [inst(C, τ)]
{lσ◦τ(l) | lσ ∈ C}

τ is a partial assignment to the universal variables.
τ(l) consists of the literals in τ that are left of l.

C1 ∪ {xτ} C2 ∪ {¬xτ}
[res(C1, C2, x

τ )]
C1 ∪ C2

Fig. 3. The rules of IR-calc [10]. Note that Φ = Q .φ ∈ PCNF.

for their creation, i.e., we will use y¬u instead of y0 (where ¬u corresponds to the assign-
ment u 7→ 0) and likewise yu instead of y1. Syntactically, y¬u and yu are just new, distinct
existential variables.

Since a single expansion doubles the formula size in the worst case, the naive complete
expansion of a PCNF is at the expense of a possible exponential blow-up. For example,
given a formula with n universal variables, complete expansion produces a purely existentially
quantified formula with 2n conjuncts. Moreover, any existential in the scope of all n universals
will require 2n duplicate copies. As in our introductory example, we can keep track of all the
duplicate variables with superscript annotations, but the annotations here are the appropriate
assignments to sets of universal variables.

The study of expansion-based proof systems for QBF is motivated by developments in
practice, most notably with the expansion-based QBF solver RaREQs [31]. In practice, it is
frequently possible to maintain the falsity of a QBF by carefully expanding some universal
variables only in one polarity, thus avoiding an exponential blow-up. The resulting (purely
existential) formula is simply dispatched to a SAT solver.

In the basic theoretical model, exemplified by the fundamental system ∀Exp+Res [32], each
existential x is first annotated with a fixed, complete assignment to the preceding universals
on which it depends. The proof then proceeds exactly as a propositional resolution proof, with
clauses in annotated variables. (Details on ∀Exp+Res are contained in the appendix.)

IR-calc, defined in [10], improves on this approach by working instead with partial assign-
ments. In addition to resolution, the calculus is equipped with an instantiation rule by which
partial annotations are grown throughout the course of the proof.

To facilitate instantiation, the ◦ operator describes how partial assignments are combined.
Formally, for each PCNF Φ, we define the set of IR-calc annotations to be the set of partial
assignments to the universal variables of Φ. For any such annotations τ and σ, we define
τ ◦ σ = τ ∪ {l ∈ σ | ¬l /∈ τ}.

The rules of IR-calc are given in Figure 3. Due to space restriction in the superscript, it
is beneficial to write partial assignments not as sets, but as literal strings, e.g. u1¬u3¬u6u7.
We explain the IR-calc rules and illustrate them with some simple examples.

Axiom clauses are introduced into the proof, or downloaded, by selecting a clause C from
the matrix φ and applying the download assignment to the existential literals. By design,
the download assignment σ for C is the smallest partial assignment that falsifies every uni-
versal literal in C. Represented as a set of literals, then, σ = {¬l | l ∈ C∀}. When apply-
ing the download assignment, existentials are annotated only with universals to their left
(i.e., those on which they depend). Consider the PCNF with prefix ∀u∃x∀v∃y and matrix
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Line IR-calc clause Application of IR-calc rule

C1 {¬x1,¬xu1
2 } axiom({¬x1,¬u1,¬x2})

C2 {¬x1, xu1
2 } axiom({¬x1,¬u1, x2})

C3 {¬x1} res(C1, C2, x1)

C4 {x1, x¬u1
3 } axiom({x1, u1, x3})

C5 {x1, x¬u1u2
3 } inst(C4, u2)

C6 {x1,¬xu2
3 } axiom({x1,¬u2,¬x3})

C7 {x1,¬x¬u1u2
3 } inst(C6,¬u1)

C8 {x1} res(C5, C7, x
¬u1u2
3 )

C9 ⊥ res(C3, C8, x1)

x1¬x1

u1¬u1

x2¬x2x2¬x2

¬u2¬u2u2u2

x3¬x3x3¬x3x3¬x3x3¬x3

Fig. 4. An IR-calc refutation of a PCNF Φ (left) and the winning ∀-strategy extracted from it (right). The
formula Φ has prefix ∃x1∀u1∃x2∀u2∃x3 and clauses {¬x1,¬u1,¬x2},{¬x1,¬u1, x2},{x1, u1, x3}, {x1,¬u2,¬x3}.

clauses {u,¬x,¬v, y} and {¬u, x,¬y}. Downloading the two matrix clauses gives rise to ax-
ioms {¬x¬u, y¬uv} and {xu,¬yu}. The matrix clause that gave rise to the IR-calc axiom C is
referred to as the download clause for C.

Instantiation allows partial assignments to be combined during the course of the proof. A
single partial assignment, called the instantiation assignment τ , is applied to all the literals
in the clause. As in the axiom rule, universal variables to the right are omitted from the
annotation. For example, given the prefix ∀u1u2∃x∀u3u4∃y, and some clause {xu1 , y¬u4} in an
IR-calc derivation, instantiation by τ = ¬u2u3u4 derives {xu1¬u2 , y¬u2u3¬u4}. Note that u3 and
u4, which are right of x, do not appear in that variable’s annotation after the instantiation.
Also note that u4 does not appear in the annotation to y, which is already annotated with
the negated literal ¬u4 before the instantiation takes place (see the earlier definition of ◦).

Resolution in IR-calc is identical to propositional resolution. We emphasize that annota-
tions are labelling distinct variables (e.g., xu and xv are different variables), so that a resolution
step is only valid if the annotations of the pivot literals match.

A complete IR-calc refutation is shown in Figure 4. We point out that the annotation to
variable x never features a universal variable to the right of x. Hence, whenever xτ is written,
it is considered implicit that each variable in τ is left of x.

4.2 IR-calc restrictions and strategy extraction

Restrictions. In the sequel, we make frequent use of PCNF and IR-calc restrictions, that
derive from their propositional counterparts.

The restriction of a PCNF is performed similarly as for a propositional formula. For
any literal l (representing an assignment to a variable), the restricted QBF Φ|l is obtained
by removing var(l) from the quantifier prefix, removing the literal ¬l from all clauses, and
replacing all clauses containing l with the placeholder C> (representing a satisfied clause).
Restriction of Φ by a partial assignment ρ comprises successive restriction by the literals in ρ.
In contrast to the propositional case, it is important to note that PCNF restrictions do not
preserve falsity in general.

The purpose of restricting a refutation π by a partial assignment ρ is to obtain a refutation
of the restricted formula Φ|ρ. Naturally, one applies the assignment to the refutation and
simplifies the result, eliminating the satisfied clauses C>. The procedure differs depending on
the quantification of the assigned variable.

For an existential literal l, the restricted refutation π|l is obtained as follows. First, define
any download or instantiation of C> to be C> itself. Replace the axioms of π with axioms
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downloaded from (the matrix of) Φ|l, and proceed as in the propositional case, repeating the
steps of π where possible. If a resolution step is not possible, modify it as follows: select as
the resolvent the unique antecedent that is not C> and does not contain the pivot variable, if
this antecedent exists; otherwise, mark the resolvent as C>. In the resulting sequence, taking
the subderivation of the first empty clause and removing all occurrences of C> yields the
restricted refutation π|l.

For a universal literal l that is unopposed in π (meaning that ¬l does not appear in the
annotations), the restricted derivation π|l is obtained from π simply by removing l from the
annotations. Restriction is not defined here for opposed universal literals.

Finally, for restriction by a partial assignment ρ = {l1, . . . , ln} with var(li) <Φ var(li+1)
for each i ∈ [n − 1], we define π|ρ := πn, where π0 = π and πi = πi−1|li for each i ∈ [n],
provided that each intermediate restriction is defined.

Restrictions of IR-calc refutations feature heavily in Section 5, for which the following two
propositions are needed. For self-containment of the present work, we provide a proof for each
in the appendix.

Proposition 1 ([10]). Let π be an IR-calc refutation of a PCNF Φ and let l be a literal
with var(l) ∈ vars(Φ). Then π|l is an IR-calc refutation of Φ|l if (a) l is existential or (b) l is
universal and unopposed in π.

Proposition 2. Let π be an IR-calc derivation from a PCNF Φ, and let ρ and ρ′ be partial
assignments to the existential variables of Φ. If ρ ⊆ ρ′, then every annotation of π|ρ′ is an
annotation of π|ρ.

IR-calc strategy extraction. Strategy extraction is a well-known paradigm in QBF proof
complexity [4,9,27,41], and has already been studied for IR-calc [10]. In summary, there exists
an algorithm that takes a refutation and returns a winning ∀-strategy that we call the extracted
strategy.

Starting with an IR-calc refutation π of a PCNF Φ = ∃X1∀U1 · · · ∃Xn∀Un∃Xn+1 .φ, we
build a winning ∀-strategy S, viewing Φ as a game of n rounds. In round one, the ∃-player
chooses some total assignment α1 toX1, and we determine the ∀-player’s response β1 simply by
collecting the U1 literals appearing in the annotations of π|α1 (all such variables are unopposed
in π|α1 by Proposition 3 below). Any absent variables are assigned to 0, so that β1 is a total
assignment to U1. Now, π|α1∪β1 is a refutation of ∃X2∀U2 · · · ∃Xn∀Un∃Xn+1 .φ|α1∪β1 , so we
repeat the process to obtain the ∀-player’s response for the next round.

In this way, one can obtain a response S(α) to each total assignment α to the existentials,
such that α ∪ S(α) falsifies φ. Moreover, S(α) and S(α′) must agree up to block Ui if α and
α′ agree up to block Xi. This serves as a proof sketch for the following proposition. A formal
proof is provided in the appendix.

Proposition 3 ([10]). If π is an IR-calc refutation of a PCNF Φ, then the strategy extracted
from π is a winning ∀-strategy for Φ.

5 A new lower-bound technique

In this section, we provide the details of our new lower-bound technique for IR-calc. We begin
in Subsection 5.1 with a high-level overview, intended to illuminate some of the technical
details. This is followed in Subsection 5.2 by the proof of the Weight Theorem, the main
result at the heart of our technique.
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5.1 High-level description of the technique

The technique that we present exploits a fundamental relationship between strategies and
refutations.

A winning ∀-strategy S details precisely how the ∀-player should respond to any possible
choice of the ∃-player. Indeed, in each game of S, a total assignment to the existential variables
(the ∃-player’s choice) is associated with a total assignment to the universals (the ∀-player’s
response).

Our lower-bound technique works by proving that parts of the responses of the extracted
strategy must appear within the annotations of the refutation, providing a lower bound on
the number of annotations (and therefore on refutation size). For that reason, the technique
applies to formulas that require large witnessing functions, that is, every winning strategy
contains 2Ω(n) different responses. As we noted in Section 2, this alone necessitates a large
proof in the basic expansion calculus ∀Exp+Res, but it is not enough to yield a lower-bound
for IR-calc. Consider the following definition of the response size of a strategy.4

Definition 4 (Response size). The response size of a ∀-strategy S is the number of distinct
responses in S.

It is very easy to prove that large response size implies a ∀Exp+Res lower bound.

Proposition 5. The size of a ∀Exp+Res refutation of a false PCNF Φ is at least the minimum
response size of a winning ∀-strategy for Φ.

To prove this statement, it is enough to observe that we can extract a strategy from an
∀Exp+Res refutation even if the response is collected from the download assignment, rather
than the annotations. Hence, there is at least one axiom per response in the extracted strategy.
Indeed, large response size is the only genuine reason for QBF hardness in ∀Exp+Res; QBFs
admitting small (i.e. polynomial) response sizes can be fully expanded out into a succinct
propositional formula, and the hardness is (at least in part) due to a classical resolution lower
bound.

The following example illustrates that the situation for IR-calc is more complex.

Example 6. Consider the formulas Q(n) .φ(n) with quantifier prefixes Q(n) = ∃x1∀u1∃t1 · · ·
∃xn∀un∃tn and matrices φ(n) consisting of the clauses {xi, ui, ti} and {¬xi,¬ui, ti} (for i ∈ [n])
along with the clause {¬t1, . . . ,¬tn}. These formulas have a unique winning ∀-strategy, in
which each ui must be assigned the same truth value as xi. As such, there are exactly 2n

responses (namely, the total assignments to the universal variables), implying an ∀Exp+Res
lower bound by Proposition 5. However, the formulas have linear size IR-calc refutations. A
section of the refutation is shown in Fig. 5.

It is natural to seek an understanding of the interplay between semantics and hardness
for IR-calc, analogous to Proposition 5. In light of the preceding example, which illustrates
that responses do not necessarily appear as IR-calc annotations, our principal insight is the
identification of parts of the responses that must appear in an IR-calc refutation. For this,
we consider instead the annotations in restricted refutations. We show that some universal
variables are in some sense critical in the restricted formula, and that the response on critical
variables – the critical response – is what must appear in the IR-calc annotations. Central to
the method are restrictions by total assignments to all existentials except those in the final
block (which is existential by convention). We call such assignments restrictors.

Definition 7 (restrictor). Let Φ be a PCNF over variables V and let T ⊆ V ∃ be the right-
most quantifier block of Φ. Any total assignment to the variables V∃ \ T is a restrictor of Φ.

4 The response size of a strategy S is equal to the size of the range of the equivalent witnessing function.
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{¬t1, . . . ,¬tn}

axiom
download

{¬xn,¬un, tn} {xn, un, tn}

axiom
download

axiom
download

{¬t1, . . . ,¬tn}

inst(un) inst(¬un)

{¬t1, . . . ,¬tunn } {¬t1, . . . ,¬t¬unn }{¬xn, tunn } {xn, t¬unn }

{¬t1, . . . ,¬tn−1,¬xn} {¬t1, . . . ,¬tn−1, xn}

{¬t1, . . . ,¬tn−1}

Fig. 5. The formulas from Example 6 have linear size IR-calc refutations. Here, the literal ¬tn is removed from
the clause {¬t1, . . . ,¬tn} in seven steps. After n repetitions, the empty clause is derived. Hence the nth formula
has a refutation of size 7n+ 1.

We refer to the annotation of the pivot variable of the final step of a refutation as the final
annotation.

Definition 8 (final annotation). Let π be an IR-calc refutation of a PCNF Φ, in which the
empty clause is derived by resolution from the clauses {xτ} and {¬xτ}. Then τ is the final
annotation of π.

We may now provide a high-level summary of the technique. Given a refutation π of a
PCNF Φ, we first select a restrictor δ. On the one hand, we apply strategy extraction to π to
obtain the extracted strategy S, and take the response to δ, denoted R(δ, S). On the other
hand, we restrict π by δ, and take the final annotation τδ of the restricted refutation π|δ. Now,
we compare the response with the annotation. The definition of strategy extraction ensures
that the literals in τδ are a subset of the response R(δ, S). We combine this with a proof that
certain critical variables must occur in τδ. As a result, we obtain a subset of the response to
δ, called the critical response, that must be contained in the annotation τδ. Since τδ appears
as an annotation in the original refutation (Proposition 2), the critical response to a restrictor
must always occur within some annotation in π. This is the central observation of our method,
depicted in Figure 6.

Whereas some lower bound is always obtained by means of our technique, the magnitude
of the bound is determined by the variation in the critical response as δ ranges through the
restrictors of Φ. We introduce a measure of this variation that we call weight. In the next
subsection we prove the Weight Theorem, that states that the size of an IR-calc refutation is
lower-bounded by the weight of the formula.

5.2 Proof of the weight theorem

Following on from the discussion in the previous subsection, we work towards the definition
of the critical response.
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Refutation of Φ

π

S

R(δ, S)

π|δ

{xτδ} {¬xτδ}

∅

critical response to δ ⊆ τδ

apply strategy
extraction

restrict by
restrictor δ

get the response
to restrictor δ

get the final
pivot variable

take only the
critical variables

take the
annotation

Fig. 6. Overview of the central observation of our lower-bound technique. The final statement is proved in
Lemma 13.

We begin by proving a useful lemma that highlights a particular property of IR-calc deriva-
tions. Given a PCNF Φ whose first block U is universal, and an IR-calc derivation π from Φ,
for a given clause C the U -literals are the same in each annotation. Moreover, the U -literals
appearing in the annotations of C contain all those appearing in the subderivation of C.

Lemma 9. Let π be an IR-calc derivation from a PCNF Φ whose first block U is universal.
There exists a function f such that, for each clause C in π, (a) f(C) = {l ∈ τ | var(l) ∈ U}
for each annotation τ in C, and (b) f(C ′) ⊆ f(C) for each C ′ in the subderivation of C.

Proof. We prove the lemma by induction on subderivation depth. Let Φ = Q .φ and let C be
a clause in π with subderivation depth d.

For the base case d = 1, clause C is an axiom and was downloaded from some clause
D ∈ φ. Since every existential variable in D is right of block U , every literal in C is annotated
with the negation of every U -literal in D. Hence, setting f(C) = {¬l | l ∈ D, var(l) ∈ U}
satisfies both conditions (a) and (b).

For the inductive step, let d ≥ 2, and assume that the lemma holds for all clauses with
subderivation depth d − 1. There are two cases. (1) If C = inst(C ′, τ), then f(C ′) satisfies
both conditions by the inductive hypothesis. Instantiation by any U -literal therefore applies
identically to each annotation in C ′, so setting f(C) = f(C ′) ◦ {l ∈ τ | l ∈ vars(U)} satisfies
both conditions. (2) If C = res(C ′, C ′′, xτ ), then the U -literals of any annotation in C ′ ∪ C ′′
are those of the pivot annotation, by the inductive hypothesis. Hence, setting f(C) = f(C ′) =
f(C ′′) satisfies both conditions.
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This concludes the inductive step and the proof. ut

We continue by identifying the set of universal variables, called the critical variables, that
occur in every minimally unsatisfiable subformula of a QBF Φ. This is a useful notion in the
present context, precisely because PCNF restrictions do not preserve minimal unsatisfiability.
From the point of view of IR-calc, the critical variables of a formula are exactly the universal
variables appearing in the annotations of every refutation.

Definition 10 (critical variables). Let Φ = Q .φ be a false PCNF. The critical variables of
Φ are the universal variables appearing in every matrix φ′ for which (a) φ′ ⊆ φ and (b) Q .φ′

is false.

We use the phrases ‘u is a critical variable of Φ’ and ‘u is critical in Φ’ synonymously. With
the following corollary to Lemma 9, we prove that the critical variables of a Π2-prefix PCNF
must occur in the final annotation of any IR-calc refutation. This is a particularly useful result
in the sequel, since restricting a formula by any restrictor yields a Π2-prefix PCNF.

Corollary 11. Let π be an IR-calc refutation of a PCNF Φ = ∀U∃T .φ, and let τ be the final
annotation of π. Then vars(τ) contains every critical variable of Φ.

Proof. Let the conclusion of π, which is the empty clause, be derived from clauses C and
C ′. Every critical variable of Φ must appear in a download clause of π, for otherwise the
download clauses are true under the prefix ∀U∃T by definition of the critical variables. Hence,
assuming w.l.o.g. that there are no trailing universal literals in the download clauses, every
critical variable appears in some annotation of some axiom clause. Since every axiom clause
of π is in the subderivation of at least one of C and C ′, the final annotation contains the
U -literals of every annotation in every axiom, by Lemma 9. The corollary follows since every
critical variable of Φ is in block U . ut

We may now define the critical response for a restrictor δ, with respect to a strategy S
and a PCNF Φ. We call a literal l in the response to δ ‘critical’ if and only if var(l) is a critical
variable of the restricted formula Φ|δ.

Definition 12 (critical response). Let S be a winning ∀-strategy for a PCNF Φ, let δ be
a restrictor of Φ and let R(δ, S) be the response to δ in S. The critical response to δ with
respect to S and Φ is the set of literals {l ∈ R(δ, S) | var(l) is critical in Φ|δ}.

Now we prove that the critical response to δ, with respect to the strategy extracted from
a refutation π, satisfies the desired property: it is a subset of the final annotation of the
restricted refutation π|δ.

Lemma 13. Let π be an IR-calc refutation of a PCNF Φ and let S be the strategy extracted
from π. Then, for each restrictor δ of Φ, the final annotation of π|δ contains the critical
response to δ with respect to S and Φ.

Proof. If Φ contains no universal variables, then Φ has no restrictors and the lemma is vacu-
ously true, so we assume otherwise.

Let δ be a restrictor of Φ, let τδ be the final annotation of π|δ, and let R(δ, S) be the
response to δ in S. Observe that Φ|δ has a Π2 prefix, and hence vars(τδ) contains the critical
variables of Φ|δ, by Corollary 11. We claim that τδ ⊆ R(δ, S). From this claim it follows that
every literal in R(δ, S) whose variable is critical in the restricted formula Φ|δ must appear in
the final annotation; that is, it follows that τδ contains the critical response {l ∈ R(δ, S) |
var(l) is critical in Φ|δ}.

To prove the claim, we first introduce some notation. Let Φ = Q .φ where Q = ∃X1∀U1 · · ·
∃Xn∀Un∃Xn+1 (if the first block of Φ is universal, take X1 as the empty set). Then, for each
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i ∈ [n], let αi be the literals of δ from the first i existential blocks, and let βi be the literals
of R(δ, S) from the first i universal blocks. Finally, let β0 be empty.

At the ith stage of the strategy extraction process, the universal literals collected from
the annotations of the restricted refutation are unopposed (this follows from Lemma 9). By
Proposition 2, existential restrictions cannot introduce new literals into the annotations. It
follows that, for each i ∈ [n], the literals in βi−1 are unopposed in π|αi . Hence, π|αi∪βi−1

may
be obtained from π|αi simply by removing the literals βi−1 from the annotations.

Now, let l ∈ τδ with var(l) ∈ Ui. Since αi ⊆ δ, τδ is an annotation in π|αi , by Proposition 2.
Then, since l /∈ βi−1, it follows that l appears in some annotation in π|αi∪βi−1

. Hence l ∈
R(δ, S). ut

Our lower bound technique is concerned with identifying a certain amount of variation in
the critical responses as δ ranges through the restrictors of Φ. More precisely, we are interested
in the case where two critical responses are inconsistent with one another; that is, a literal l
appears in one critical response and ¬l appears in the other. For that reason, given a winning
∀-strategy S, we define the critical response graph that has a vertex for each critical response
and an edge between each inconsistent pair.

Definition 14 (critical response graph). Let S be a winning ∀-stragegy for a PCNF Φ.
The critical response graph of S with respect to Φ is the undirected graph G(S, Φ) defined as
follows:

– For each restrictor δ of Φ, G(S, Φ) has a vertex labelled with the critical response to δ with
respect to S and Φ.

– G(S, Φ) has an edge between two vertices if and only if their labels are inconsistent with
one another.

The following lemma states that the number of annotations in a refutation is lower bounded
by the clique number of the critical response graph for the extracted strategy. The clique
number ω(G) of a graph G is the size of the largest clique in the graph.

Lemma 15. Let S be the strategy extracted from an IR-calc refutation π of a PCNF Φ. Then
there are at least ω(G(S, Φ)) distinct annotations in π.

Proof. Let k = ω(G(S, Φ)), and let δ1, . . . , δk be restrictors of Φ whose critical responses (with
respect to S and Φ) are pairwise inconsistent. For each i ∈ [k], the final annotation τδi of
π|δi contains the critical response to δi, by Lemma 13, and τδi appears as an annotation in
π, by Proposition 2. Hence, for each i, j ∈ [k] with i 6= j, τδi and τδj are distinct annotations
appearing in π. Therefore π contains at least k distinct annotations. ut

Lemma 15 leads to a natural proof-size measure for IR-calc, since the proof is at least as
large as the number of distinct annotations. Hence, the minimal clique number of a critical
response graph for a winning ∀-strategy of a PCNF Φ yields a size lower bound for an arbitrary
refutation. This motivates the following definition, in which we define the weight of a PCNF,
denoted µ(Φ), to be equal to this minimal clique number.

Definition 16 (weight). Let Φ be a false PCNF. The weight of Φ is µ(Φ) = min{ω(G(S, Φ)) |
S is a winning ∀-strategy for Φ}.

We can now show the main theorem for our lower bound technique, stating that the weight
provides a precise lower bound for the proof size in IR-calc.

Theorem 17 (Weight Theorem). The size of any IR-calc refutation of a QBF Φ is at
least the weight of Φ.
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Proof. Let S be the strategy extracted from a refutation π of Φ. By Lemma 15, there are at
least ω(G(S, Φ)) distinct annotations appearing in π. A new annotation can be introduced
into the refutation only by application of an IR-calc rule, so the size of π is at least ω(G(S, Φ)).
Since S is a winning ∀-strategy by Proposition 3, the weight of Φ is at most ω(G(S, Φ)). ut

6 Two applications to existing formulas

In this section, we apply the Weight Theorem to obtain hardness proofs for two formula
families from the QBF literature. In Subsection 6.1, we show that our approach yields a
much-simplified proof of a known result. In Subsection 6.2 we modify the prefix order of a
known formula family to prove a new IR-calc lower bound.

6.1 An improved proof of hardness for the formulas of Kleine Büning et al.

We apply the Weight Theorem to a well-studied formula family KBKF(n) introduced by
Kleine Büning et al. [33]. By showing that the formulas have large weight, we produce an
alternative proof of their IR-calc hardness that is a great deal shorter than the original proof
in [11]; moreover, we believe that the content of the Weight Theorem provides the first clear
intuition for the lower bound. We recall the formulas below.

Definition 18. We define the formula family

KBKF(n) = ∃x1y1∀u1 · · · ∃xnyn∀un∃t1 · · · tn . ξ(n) ,

where the matrix ξ(n) consists of the clauses

C0 = {¬x1,¬y1},
Ci = {xi, ui,¬xi+1,¬yi+1}, C ′i = {yi,¬ui,¬xi+1,¬yi+1} , for i ∈ [n− 1],

Cn = {xn, un,¬t1, . . . ,¬tn}, C ′n = {yn,¬un,¬t1, . . . ,¬tn} ,
Di = {ui, ti}, D′i = {¬ui, ti} for i ∈ [n] .

We pause to demonstrate that the formulas are indeed false, and, at the same time, provide
some intuition about them. In the two-player game interpretation, KBKF(n) comprises n
‘rounds’, with variables xi, yi, ui assigned in the ith round. In round one, to avoid immediate
loss on clause C0, the ∃-player must assign either x1 or y1 false. If x1 (resp. y1) is assigned
false, then y1 (resp. x1) is a pure literal and should be assigned true. In return, the ∀-player
must assign u1 false if and only if x1 was assigned false, or otherwise allow the ∃-player to
win by assigning all remaining existentials true. When round two begins, the formula on the
board is syntactically equivalent to KBKF(n−1), and hence best play dictates that the pattern
repeats for n rounds. Immediately after round n, the board comprises the unsatisfiable clauses
{t1}, . . . , {tn} and {¬t1, . . . ,¬tn}, and hence the ∃-player loses.

With best play, in round i the ∃-player has a choice of falsifying either xi or yi, and hence
determines the winning assignment of ui one way or the other. As such, even though ∃ cannot
win the game, she can force ∀ to play any given assignment in order to win. As we noted in
Subsection 5.1, this alone is not enough for an IR-calc lower bound; for that, we must show
that the formulas have large weight.

Theorem 19. For each n ∈ N, KBKF(n) has weight 2n.

Proof. Let n ∈ N, let S be a winning ∀-strategy for KBKF(n), let Q(n) denote the quantifier
prefix of KBKF(n), and put X = {x1, . . . , xn}, Y = {y1, . . . , yn} and U = {u1, . . . , un}.
Further, let Γ be the set containing exactly the games γ of S satisfying the following condition:
either ¬xi ∈ γ or ¬yi ∈ γ but not both, for each i ∈ [n]. Finally, let γ ∈ Γ .
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We first observe that we must have ¬ui ∈ γ ⇔ ¬xi ∈ γ and ui ∈ γ ⇔ ¬yi ∈ γ for each
i ∈ [n], for otherwise both Ci and C ′i are satisfied at the end of round i, and the ∃-player can win
by assigning all remaining existential variables positively. Now, let δ = {l ∈ γ | var(l) ∈ X∪Y },
and observe that δ is a restrictor of Φ. It is readily verified that

(i) ξ(n)|δ = {C,D1, D
′
1, . . . , Dn, D

′
n} where C = {l,¬t1, . . . ,¬tn} and l ∈ {un,¬un}, and

(ii) if ξ′ ⊆ ξ(n)|δ and Q(n) . ξ′ is false, then ξ′ must contain C and some Ei ∈ {Di, D
′
i} for

each i ∈ [n].

It follows that the critical variables of KBKF(n)|δ are exactly U , and therefore that the critical
response to δ (w.r.t. S and Φ) is {l ∈ γ | var(l) ∈ U}.

Finally, we observe that {{l ∈ γ | var(l) ∈ U} | γ ∈ Γ} is the set of total assignments
to U , hence each total assignment to U is a critical response to some restrictor w.r.t. S and
Φ. Since there are 2n possible critical responses that are all pairwise inconsistent, we have
ω(G(S,KBKF(n))) = 2n. Therefore µ(KBKF(n)) = 2n. ut

The IR-calc hardness is immediate from Theorem 17 and Theorem 19.

Corollary 20 ([11]). The size of an IR-calc refutation of KBKF(n) is at least 2n.

6.2 An adaptation of the formulas of Janota and Marques-Silva

As our second example we consider a formula family introduced by Janota and Marques-
Silva [32]. In that paper, the authors showed that the formulas require exponential-size refu-
tations in the basic expansion calculus ∀Exp+Res, which is simulated by IR-calc. Here we show
that a simple adaptation, namely a reordering of the quantifier prefix5, yields a formula family
with large weight that is hard even for the stronger system IR-calc.

Definition 21 (adapted from [32]). We define the formula family

Φ(n) = ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · t2n .φ(n),

where the matrix φ(n) consists of the clauses

Bn = {¬t1, . . . ,¬t2n} ,
Ci = {¬xi, t2i−1}, C ′i = {¬ui, t2i−1}, for i ∈ [n] ,

Di = {xi, t2i}, D′i = {ui, t2i}, for i ∈ [n].

A useful property of these formulas is that there exists a unique winning ∀-strategy. In
assigning variable xi, the ∃-player leaves exactly one of the unit clauses {t2i−1} or {t2i} on
the board, and the ∀-player can only win the game by bringing in the other. There is only
one way to do this: by assigning each ui the opposite truth value to that of xi. We use this
fact to prove that the formulas have large weight.

Theorem 22. For each n ∈ N, Φ(n) has weight 2n.

Proof. Let n ∈ N, let Q(n) denote the quantifier prefix of Φ(n), and put X = {x1, . . . , xn},
U = {u1, . . . , un} and T = {t1, . . . , t2n}. Further, let S be a winning ∀-strategy for Φ and let
γ be a game of S.

We observe that S must be the unique strategy satisfying ui ∈ γ ⇔ ¬xi ∈ γ and ¬ui ∈
γ ⇔ xi ∈ γ for each i ∈ [n]. Now, let δ = {l ∈ γ | var(l) ∈ X}, and observe that δ is a
restrictor of Φ. It is readily verified that

(i) φ(n)|δ = {Bn, C ′1, D′1, E1, . . . , C
′
n, D

′
n, En} where Ei ∈ {{t2i−1}, {t2i}} for each i ∈ [n], and

5 The original formulas in [32] have the quantifier prefix ∃x1∀u1∃t1 · · · ∃xn∀un∃tn.
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(ii) if φ′ ⊆ φ(n)|δ and Q(n) .φ′ is false, then either C ′i or D′i is in φ′, for each i ∈ [n].

It follows that the critical variables of Φ|δ are exactly U , and therefore that the critical response
to δ w.r.t. S and Φ is {l ∈ γ | var(l) ∈ U}. This implies that {{l ∈ γ | var(l) ∈ U} | γ ∈ S}
is the set of total assignments to U , and the conclusion of the proof is identical to that of
Theorem 19. ut

The IR-calc hardness is again immediate from Theorems 17 and 22.

Corollary 23. The size of an IR-calc refutation of Φ(n) is at least 2n.

7 Application to proof complexity of QBF dependency calculi

In this section, we introduce the QBF family of equality formulas and apply the Weight
Theorem to obtain a new IR-calc lower bound. By proving contrasting linear upper bounds
in QBF dependency calculi, we present the first proof complexity results for QBF calculi
parametrised by dependency scheme. Our results cover both expansion- and CDCL-based
calculi. In particular, we answer the open problem of the relative complexities of Q-Res and
Q(Drrs)-Res, first posed in [49] (the conference version of [50]), by proving an exponential
separation.

7.1 New hard equality formulas

Defined below, our new equality formulas Ψ(n) are superficially similar to the adapted formulas
Φ(n) from the previous section, yet they are simpler, using fewer variables and clauses. Indeed,
from the content of the Weight Theorem, we have distilled precisely what is needed to obtain
an IR-calc lower bound; as a result, Ψ(n) is arguably the simplest and most concise PCNF
family with exponential weight.

Definition 24. The equality formulas are the formula family

Ψ(n) = ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn .ψ(n)

where the matrix ψ(n) consists of the clauses

Bn = {¬t1, . . . ,¬tn},
Ci = {xi, ui, ti}, Di = {¬xi,¬ui, ti}, for i ∈ [n].

Proving the exponential weight of Ψ(n) is aided by the fact that the ∀-player is forced to
play ui ≡ xi for each i ∈ [n].

Theorem 25. For each n ∈ N, the equality formula Ψ(n) has weight 2n.

Proof. Let n ∈ N, let Q(n) denote the quantifier prefix of Ψ(n), and put X = {x1, . . . , xn},
U = {u1, . . . , un} and T = {t1, . . . , tn}. Further, let S be a winning ∀-strategy for Ψ(n) and
let γ ∈ games(S).

Observe that S must be the unique strategy satisfying ui ∈ γ ⇔ xi ∈ γ and ¬ui ∈ γ ⇔
¬xi ∈ γ for each i ∈ [n], for otherwise the ∃-player could win by assigning ti false and all
variables in T \ {ti} true. Now, let δ = {l ∈ γ | var(l) ∈ X}, and observe that δ is a restrictor
of Ψ . It is readily verified that

(i) ψ(n)|δ = {Bn, E1, . . . , En} where Ei ∈ {{ui, ti}, {¬ui, ti}} for each i ∈ [n], and
(ii) Q(n) .ψ′ is true for any proper subset ψ′ ( ψ(n)|δ.

It follows that the critical variables of Ψ |δ, once again, are exactly those in the set U . The
proof concludes identically to that of Theorem 19. ut

Corollary 26. The size of an IR-calc refutation of Ψ(n) is at least 2n.

Proof. Immediate from Theorem 17 and Theorem 25. ut
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7.2 Dependency schemes and QBF dependency calculi

In this subsection, we complement the high-level overview of QBF dependency schemes from
Section 2.3 by giving the definitions for dependency schemes and QBF dependency calculi,
required to put our proof complexity results into context.

In summary, some of the dependencies implied by the quantifier prefix of a PCNF may be
ignored, while preserving the truth value of the formula. Identification of so-called spurious
dependencies is the role of the dependency scheme.

Dependency schemes. For each PCNF Φ, we define the trivial dependency relation Dtrv(Φ) =
{(u, x) ∈ vars∀(Φ) × vars∃(Φ) | u <Φ x}. A proto-dependency scheme (PDS) D is a mapping
from the set of all PCNFs, satisfiying D(Φ) ⊆ Dtrv(Φ) for each PCNF Φ.

Defined by Slivovsky and Szeider [49], the reflexive resolution path dependency scheme
Drrs is arguably the most important6 PDS. The scheme works by appeal to the syntactic
form of an instance, and uses connections via the clauses of the matrix to identify dependent
variables. Variable independence is therefore identified by the absence of such connections.
We recall Drrs with the following definition.

Definition 27 (Reflexive resolution path dependency scheme [50]). Let Φ = Q .φ be
a PCNF, and let (u, x) ∈ Dtrv(Φ). Then (u, x) ∈ Drrs(Φ) if and only if there is a sequence of
clauses C1, . . . , Cn ∈ φ and a sequence of existential literals l1, . . . , ln−1 for which the following
four conditions hold:

(a) u ∈ C1 and ¬u ∈ Cn,

(b) x = var(li), for some i ∈ [n− 1],

(c) u <Φ var(li), li ∈ Ci and ¬li ∈ Ci+1, for each i ∈ [n− 1],

(d) var(li) 6= var(li+1) for each i ∈ [n− 2].

Dependency calculi. Due to variable dependencies implied by the quantifier prefix, a QBF
calculus must use implicit references to the trivial dependency scheme Dtrv. The parameteri-
sation of a QBF calculus P by a general PDS D yields the corresponding dependency calculus
P(D), in which the implicit references to the trivial dependencies are replaced by explicit
references to the stronger scheme D.

In Fig. 7, we introduce the dependency calculus IR(D)-calc. The effect of the parame-
terisation by D is that literals are annotated only by the universal variables on which they
depend according to D. This is consistent with the observation that any existential x that is
independent of a universal u need not be duplicated in the expansion by u.

The fact that IR(Drrs)-calc is a sound and complete proof system is a non-trivial conse-
quence of existing results, involving the related field of DQBF (cf. [8, 16]). Since proofs of
soundness are off-topic for the current paper, we provide a proof sketch in the appendix.
Definitions of the other dependency calculi we refer to (namely Q(D)-Res, QU(D)-Res and
∀Exp(D)+Res) are also given in the appendix.

7.3 Proof complexity results for dependency calculi

We first prove a linear upper bound for the equality formulas in the tree-like versions of two
dependency calculi.

Lemma 28. There exist tree-like linear size Q(D)-Res and ∀Exp(D)+Res refutations of Ψ(n).

6 Drrs is currently the strongest known PDS D for which Q(D)-Res is sound.
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(axiom(C))
{aτ(a) | a ∈ C∃}

C is a clause in the matrix of Φ.
τ(a) = {¬l | l ∈ C∀, (var(l), var(a)) ∈ D(Φ)}.

C (inst(τ))
{aσ◦τ(a) | aσ ∈ C}

τ is a partial assignment to the universal variables.
τ(a) = {l ∈ τ | (var(l), var(a)) ∈ D(Φ)}.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(res(xτ ))

C1 ∪ C2

Fig. 7. The rules of IR(D)-calc. Note that Φ = Q .φ ∈ PCNF.

Proof. We first show that Drrs(Ψ(n)) = ∅; that is, for each i, j ∈ [n], we show that (ui, tj) /∈
Drrs(Ψ(n)). Let u and t be variables from the second and third block of Ψ(n), respectively. For
the sake of contradiction, suppose that there exists a sequence of clauses E1, . . . , Em ∈ ψ(n)
and a sequence of existentials literals l1, . . . , lm−1 satisfying the following four conditions:

(a) u ∈ E1 and ¬u ∈ Em,
(b) t = var(li), for some i ∈ [m− 1].
(c) u <Φ var(li), li ∈ Ei and ¬li ∈ Ei+1, for each i ∈ [m− 1],
(d) var(li) 6= var(li+1) for each i ∈ [m− 2].

By (a), E1 must be the clause Ca from ψ(n) for some a ∈ [n], and it follows from (c) that l1
is the positive literal ta. Then, again by (c), we have ¬ta ∈ E2, so E2 must be the clause Bn
from ψ(n). Then, by (d), l2 = ¬tb for some b ∈ [n] with b 6= a. Then, by (c), we have tb ∈ E3,
so E3 must be the clause Db from ψ(n). Observe that the only existential variable right of u
in Db is tb. We reach a contradiction, since so no suitable literal l3 exists, and neither of E2

nor E3 contains ¬u.
It remains to construct the refutations. In Q(Drrs)-Res one can ∀-reduce any universal

literal in any input clause, and hence one may derive in 2n steps all the clauses C ′i = Ci \{ui}
and D′i = Di \ {¬ui} for i ∈ [n]. In further n steps, one derives the n clauses {t1}, . . . , {tn}
by resolution of each pair C ′i, D

′
i over pivot xi. In a further n steps, one can obtain the empty

clause by resolving every negative literal out of Bn. The complete refutation comprises O(n)
clauses and is a tree. The ∀Exp(D)+Res proof is identical. ut

We may now pool our results and prove the following theorem. Part of the simulation
order of dependency calculi is depicted in Figure 1 (in Section 2).

Theorem 29. Let P be any of the proof systems IR-calc, ∀Exp+Res, Q-Res, and QU-Res.
Then P simulates neither P(Drrs) nor tree-like P(Drrs).

Proof. We note that, for any PDS D, (i) IR(D)-calc trivially simulates ∀Exp(D)+Res and
(ii) QU(D)-Res trivially simulates Q(D)-Res.

The theorem is proved easily for the first three proof systems: for IR-calc, the theo-
rem is immediate from Corollary 26, Lemma 28 and the fact that IR(Drrs)-calc simulates
∀Exp(Drrs)+Res; for ∀Exp+Res, it is immediate from Corollary 26, Lemma 28 and the fact
that IR-calc simulates ∀Exp+Res; and for Q-Res, it follows from Corollary 26, Lemma 28 and
the fact that IR-calc simulates Q-Res [10].

Since QU-Res is incomparable with IR-calc [11], Corollary 26 does not immediately imply
a lower-bound for QU-Res. However, we can use the trick of doubling universal variables,
introduced in [5], to produce one.
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Let X = {x1, . . . , xn} and define U = {u1, . . . , un}, U ′ = {u′1, . . . , u′n} and T similarly. Let
Ψ ′(n) be the formula family with quantifier prefixes ∃X∀(U ∪ U ′)∃T and matrices consisting
of the clauses {C1, D1, . . . , Cn, Dn, Bn}, where Bn = {¬t1, . . . ,¬tn} and Ci = {xi, ui, u′i, ti},
Di = {¬xi,¬ui,¬u′i, ti} for each i ∈ [n]. Since universal tautologies are disallowed, universal
resolution steps can be performed on variable ui only after variable u′i has been removed
from both antecedent clauses by ∀-reduction. However, under such circumstances variable ui
could also be removed from either antecedent clause by ∀-reduction. It follows that QU-Res
refutations of Ψ ′(n) are at least as large as Q-Res refutations of Ψ(n).

Finally, we observe that the doubling of universal variables does not adversely affect the
dependency scheme; in fact, (ui, tj) ∈ Drrs(Ψ ′)⇔ (u′i, tj) ∈ Drrs(Ψ ′), for each i, j ∈ [n]. Hence,
Ψ ′(n) have linear size tree-like QU(Drrs)-Res refutations.

The theorem then follows from Corollary 26, Lemma 28, the fact that IR-calc simulates
Q-Res [10] and the fact that QU(Drrs)-Res simulates Q(Drrs)-Res. ut

We conclude this section by showing that Theorem 29 can in fact be improved, delivering
a stronger practical import. The following proposition states that the standard dependency
scheme Dstd [44] is unable to identify any non-trivial independencies in the formulas Ψ(n).
We omit the proof as the proposition is immediate from the definition of Dstd.

Definition 30 (Standard dependency scheme [44]). Let Φ = Q .φ be a PCNF. The pair
(u, x) ∈ Dtrv(Φ) is in Dstd(Φ) if and only if there exists a sequence of clauses C1, . . . , Cn ∈ φ
with u ∈ vars(C1), x ∈ vars(Cn), such that, for each i ∈ [n−1], vars(Ci)∩vars(Ci+1) contains
an existential variable right of u.

Proposition 31. For each n ∈ N, Dstd(Ψ(n)) = Dtrv(Ψ(n)).

Immediate from this proposition is the fact that every P(Dstd) refutation of Ψ(n) is a P
refutation, yielding the following corollaries.

Corollary 32. The size of an IR(Dstd)-calc refutation of Ψ(n) is at least 2n.

Corollary 33. Let P be any of the proof systems IR-calc, ∀Exp+Res, Q-Res, and QU-Res.
Then P(Dstd) simulates neither P(Drrs) nor tree-like P(Drrs).

Given that the state-of-the-art dependency-aware solver DepQBF is currently using depen-
dency analysis based on the standard dependency scheme [38], Corollary 33 illustrates that
an implementation based on the reflexive resolution path dependency scheme would be expo-
nentially stronger. Whereas Drrs is tractable [48], the cubic algorithm computing the exact
scheme is prohibitively complex for use in practice. Corollary 33 therefore supports the notion
that there is untapped potential in the development of better algorithms for QBF.

8 Conclusion

Our use of the Weight Theorem in Sections 6 and 7 reveals a further unification of the
three formula families we consider there, namely that the critical literal sets of any winning
strategy include all total assignments to the universal variables. The weight of such formulas
is exponential in the number of universal variables.

Due to the semantic flavour of the weight measure, we believe that our new technique
will have further applications beyond these initial examples we present here. As we identify
a general reason for hardness in QBF, our method has the clear potential to guide the search
for new formulas or even classes of formulas hard in IR-calc (and Q-Res) and possibly even in
further QBF (resolution-type) systems.
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The importance of constructing new hard QBF instances is already demonstrated through
our newly established separations of QBF calculi with dependency schemes, and by these
results our work also gains a practical impact.

Our separations between the expansion-based calculi IR-calc and ∀Exp+Res and their new
dependency versions should be a particularly welcome discovery for practitioners, since de-
pendency schemes are yet to be implemented in expansion-based solvers, and the authors of
RaREQs plan to incorporate them [31]. Our results suggest that a move in that direction
would be beneficial, and could promote advances in line with the those made by DepQBF on
the CDCL side [38].
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Appendix

The appendix contains supplementary material, mainly already contained elsewhere in the
literature, but restated here for convenience and coherence of presentation.

A. Modified Q-parity formulas

In Section 2, we explained that the following two conditions must be fulfilled in order for our
lower bound technique to be applicable to a formula family Φ(n):

1. Φ(n) requires large witnessing functions, and
2. for sufficiently many restrictors δ, the formula Φ(n)|δ contains many critical variables.

We show that there exists a family of PCNFs Φ(n) fulfilling (2) and failing (1) that admit
short IR-calc refutations. We obtain such formulas by taking the Q-parity formulas of [11] and
replacing the single universal variable u with a block of n universals u1, . . . , un.

For variables z1, z2 and z3, let xor(z1, z2, z3) denote the set containing the four clauses
{z1, z2,¬z3},{z1,¬z2, z3},{¬z1, z2, z3} and {¬z1,¬z2,¬z3} (these clauses are satisfied if and
only if z3 is equal to z1 ⊕ z2). The modified formulas Φ(n) = Q(n) .φ(n) have quantifier
prefixes Q(n) = ∃x1 · · ·xn∀u1 · · ·un∃t2 · · · tn and matrices

φ(n) = {{u1, . . . , un, tn}, {¬u1, . . . ,¬un,¬tn}} ∪ xor(x1, x2, t2) ∪
n⋃
i=3

xor(ti−1, xi, ti).

Similarly as in [11], the only strategy for the ∀-player is to set each ui equal to the parity
of the xi variables; that is, she must play ui ≡ x1 ⊕ · · · ⊕ xn for each i ∈ [n]. As a result, the
range of the unique witnessing function for Φ(n) has size exactly 2, hence failing condition (1).

It is simple to verify that condition (2) is fulfilled. Observe that Φ(n) has 2n restrictors,
each of which is a total assignment to {x1, . . . , xn}. We show that, for any restrictor δ, all n
universal variables are critical in Φ|δ. Note that φ|δ consists of the clauses

{{l2}, {l2,¬l3}, {¬l2, l3}, . . . , {ln−1,¬ln}, {¬ln−1, ln}, {u1, . . . , un, tn}, {¬u1, . . . ,¬un,¬tn}}

for some literals l2, . . . , ln, with var(li) = ti for i ∈ {2, . . . , n}. Removing both clauses
{u1, . . . , un, tn} and {¬u1, . . . ,¬un,¬tn} from φ|δ yields a satisfiable set ({l2, . . . , ln} is a
satisfying assignment). Hence each ui is critical in Φ|δ, by Definition 10.

Syntactically, the only difference from the original formulas is that the single occurrence
of the negative universal literal ¬u is replaced by the n negative literals ¬u1, . . . ,¬un, and
similarly for the positive literal u. It is easy to see that duplicating universal literals in this
way cannot affect the complexity of refutations in IR-calc or Q-Res. Therefore, the fact that
Φ(n) is hard for Q-Res and easy for ∀Exp+Res (and therefore also for IR-calc) follows from the
corresponding results for Q-parity in [11].

B. The base expansion calculus ∀Exp+Res

The calculus ∀Exp+Res [32] is the base theoretical model for expansion-based QBF solving.
The central observation is that a universal variable need not necessarily be expanded in both
polarities to produce a false propositional formula. As a result, careful selection of assignments
can considerably reduce the size increase due to expansion.
∀Exp+Res is weaker than IR-calc for the following reason: the download assignments are

total assignments to the universals. This means that, throughout the course of a proof, any
given literal has for its annotation a fixed, total assignment to the universals to its left. (As
in IR-calc, no literal is ever annotated with an assignment to a universal to its right.)

25



An ∀Exp+Res derivation, therefore, is clearly separated into two distinct phases: a down-
load phase in which matrix clauses are introduced, and a resolution phase, which is nothing
more than propositional resolution on duplicate variables.

Given a PCNF Φ = Q .φ, the act of downloading clause C ∈ φ with total assignment τ to
the universal variables should be viewed as follows: It is the introduction of the axiom C|τ ,
which is the corresponding clause from the conjunct φ|τ in the complete universal expansion
of Φ. The annotations in C|τ are simply recording the duplicate variables introduced by the
expansion. Hence, ∀Exp+Res permits one to pick and choose single clauses from the complete
expansion. This explains the strength of ∀Exp+Res over naive complete expansion followed
by propositional resolution, and thereby models the principal feature of expansion solving.

The rules of ∀Exp+Res are given in Fig. 8

[axiom(C)]
{lτ(l) | l ∈ C∃}

C is a clause in the matrix of Φ.
τ is a total assignment to the universal variables
that falsifies every universal literal in C.
τ(l) consists of the literals in τ that are left of l.

C1 ∪ {xτ} C2 ∪ {¬xτ}
[res(C1, C2, x

τ )]
C1 ∪ C2

Fig. 8. The rules of ∀Exp+Res [32]. Note that Φ = Q .φ is a PCNF.

C. Proofs of propositions from Section 4

We provide proofs of Propositions 1, 2 and 3. Propositions 1 and 3 have existing proofs in the
literature, namely those of [10, Thm. 4] and [10, Lem. 2 and 3] respectively. The results in
that paper apply to stronger QBF calculi; we provide tight proofs consistent with the notation
of this paper.

Proposition 1 ([10]). Let π be an IR-calc refutation of a PCNF Φ and let l be a literal with
var(l) ∈ vars(Φ). Then π|l is an IR-calc refutation of Φ|l if (a) l is existential or (b) l is
universal and unopposed in π.

Proof. Let Φ = Q .φ.
For case (a), let l be existential. We first give a formal definition of π|l. Let π = C1, . . . , Cm =

∅ and let π′ = C ′1, . . . , C
′
m, where

C ′i =

{
C>, if lτ ∈ Ci for some annotation τ,

Ci \ L, otherwise,

where L = {¬lτ | τ is an annotation}. Noting that C ′m is the empty clause, let e = min{i ∈
[m] | C ′e = ∅}. Then the restricted derivation π|l is the subderivation of C ′e.

We prove by induction on the depth of the subderivation of Ci that, if C ′i 6= C>, then the
subderivation of C ′i is a valid IR-calc derivation from Φ|l. We hence prove the lemma, since
the subderivation of C ′e is therefore a refutation of Φ|l.

For the base case, let Ci be an axiom downloaded from D ∈ φ. If C ′i 6= C>, then l /∈ D,
and it follows that C ′i is the axiom downloaded from D|l ∈ φ|l. The inductive step follows

26



trivially if Ci was derived by instantiation. Hence, suppose that Ci = res(Cj , Ck, x
σ) and that

C ′i 6= C>, so that ¬lτ /∈ C ′i for all annotations τ . There are two cases.

(1) Suppose that var(l) 6= x. Then lτ /∈ Cj ∪Ck for all annotations τ , and hence neither C ′j
nor C ′k is C>. Moreover, we have xσ ∈ C ′j and ¬xσ ∈ C ′k so that C ′i = Ci\L = res(Cj , Ck, x

σ)\
L = res(C ′j , C

′
k, x

σ) is a valid IR-calc inference.

(2) On the other hand, suppose w.l.o.g. that l = x. Then lσ ∈ Cj , so C ′j = C> and
C ′k 6= C>. Moreover, ¬lσ /∈ C ′k, and it follows that C ′i = (C ′j \ {lσ}) ∪C ′k. That is, C ′i is just a

weakening7 of C ′k.

For case (b), let l be universal and unopposed in π, and for each axiom Ci let Di ∈ φ be
the matrix clause from which Ci was downloaded. Observe that l /∈ Di (for otherwise ¬l would
appear in the annotations of Ci), and therefore that Di|l = Di \ {¬l} for each downloaded
matrix clause Di. Moreover, Φ|l is a false PCNF, and π|l is obtained from π simply by removing
the literal l from all annotations. It follows immediately that every step in the restricted proof
is valid, and that the conclusion is unique. ut

Proposition 2. Let π be an IR-calc derivation from a PCNF Φ, and let ρ and ρ′ be partial
assignments to the existential variables of Φ. If ρ ⊆ ρ′, then every annotation of π|ρ′ is an
annotation of π|ρ.

Proof. Restricting π by an existential literal l may remove clauses from π and may remove
literals from the clauses that remain. However, the annotations themselves are never changed.
Therefore any annotation that appears in the restricted refutation π|l must appear in π. ut

Proposition 3 ([10]). If π is an IR-calc refutation of a PCNF Φ, then the strategy extracted
from π is a winning ∀-strategy for Φ.

Proof. Let Φ = Q .φ, where Q = ∃X1∀U1 · · · ∃Xn∀Un∃Xn+1, and let V = vars(Φ).

Let α1 be an arbitrary total assignment to X1. Then π|α1 is a refutation of Φ|α1 , by
Proposition 1. Since U1 is the first block of Φ|α1 , every U1 literal in π|α1 is unopposed, by
Lemma 9, so the U1 literals of π|α1 form a partial assignment β′1. The total assignment β1 to
U1 extending β′1 with zero assignments must falsify Φ|α1 , since the annotations in π|α1 contain
the negation of every U1 literal in the download clauses. Thus Φ|α1∪β1 is false.

After n iterations of this argument, we observe that φ is unsatisfiable under the restriction⋃n
i=1(αi ∪ βi). Ranging over all suitable assignments α1 ∪ · · · ∪ αn+1, we obtain a function S

from total assignments to V∃ into total assignments to V∀. Moreover, by construction, if α and
α′ agree on the first i existential blocks, then S(α) and S(α′) agree on the first i universal
blocks. Hence S is a ∀-strategy for Φ in which every game falsifies φ.

In fact, the equivalent statement, that every U1 literal appearing in an annotation of π|α
is unopposed, follows from Lemma 9. ut

D. QBF dependency calculi

The rules of Q(D)-Res and QU(D)-Res are presented in Fig. 9. The rules of ∀Exp(D)+Res are
presented in Fig. 10.

Finally, we provide a proof sketch for the soundness of IR(Drrs)-calc. The proof refers
to a class of formulas called dependency quantified Boolean formulas (DQBF) in which the
allowable dependencies between variables are given explicitly – see [2] for an introduction.

Proposition 34. IR(Drrs)-calc is a sound proof system.

7 We can add weakening as a valid inference rule to IR-calc without affecting the complexity of proofs.
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(Axiom)
C C is a clause in the matrix of Φ.

C ∪ {l}
(∀-Red)

C

Literal l is universal.
If l ∈ C∃ then (u, var(l)) /∈ D(Φ).

C1 ∪ {z} C2 ∪ {¬z}
(Res)

C1 ∪ C2

In Q(D)-Res, z ∈ vars∃(Φ).
In QU(D)-Res, z ∈ vars(Φ).
If l ∈ C1 and var(l) is universal, then ¬l /∈ C2.

Fig. 9. The rules of Q(D)-Res [50] and QU(D)-Res [8]. Note that Φ = Q .φ is a PCNF.

(axiom(C))
{aτ(a) | a ∈ C∃}

C is a clause in the matrix of Φ.
τ is a total assignment to the universal variables
that falsifies every universal literal in C.
τ(a) = {l ∈ τ | (var(l), var(a)) ∈ D(Φ)}.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(res(xτ ))

C1 ∪ C2

Fig. 10. The rules of ∀Exp(D)+Res. Note that Φ = Q .φ is a PCNF.

Proof (sketch). In [16] it was shown that D-IR-calc, the DQBF version of IR-calc, is sound,
and in [8] it was shown that Drrs is fully exhibited. The proposition is proved from these two
results as follows.

A dependency scheme D can be interpreted naturally as a mapping fD from QBF into
DQBF, in which the dependencies for Φ ∈ PCNF are given explicitly in the quantifier prefix
of fD(Φ). Under this interpretation, we make two observations:

(1) A refutation of Φ in IR(D)-calc is also a refutation of fD(Φ) in D-IR-calc.
(2) For a fully exhibited scheme D, Φ is true implies fD(Φ) is true.

Hence, if there existed an IR(Drrs)-calc refutation of a true PCNF Φ we would have a D-IR-calc
refutation of a true DQBF fD(Φ), contradicting the soundness of that calculus. ut
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