
The independence number of the Birkhoff polytope
graph, and applications to maximally recoverable codes

Daniel Kane∗ Shachar Lovett† Sankeerth Rao‡

Department of Computer Science
University of California, San Diego

March 27, 2017

Abstract

Maximally recoverable codes are codes designed for distributed storage which com-
bine quick recovery from single node failure and optimal recovery from catastrophic
failure. Gopalan et al [SODA 2017] studied the alphabet size needed for such codes in
grid topologies and gave a combinatorial characterization for it.

Consider a labeling of the edges of the complete bipartite graph Kn,n with labels
coming from Fd2, that satisfies the following condition: for any simple cycle, the sum
of the labels over its edges is nonzero. The minimal d where this is possible controls
the alphabet size needed for maximally recoverable codes in n× n grid topologies.

Prior to the current work, it was known that d is between log(n)2 and n log n. We
improve both bounds and show that d is linear in n. The upper bound is a recursive
construction which beats the random construction. The lower bound follows by first
relating the problem to the independence number of the Birkhoff polytope graph, and
then providing tight bounds for it using the representation theory of the symmetric
group.

1 Introduction

The Birkhoff polytope is the convex hull of n× n doubly stochastic matrices. The Birkhoff
polytope graph is the graph associated with its 1-skeleton. This graph is well studied as
it plays an important role in combinatorics and optimization, see for example the book of
Barvinok [2]. For us, this graph arose naturally in the study of certain maximally recoverable
codes. Our main technical results are tight bounds on the independence number of the
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Birkhoff polytope graph, which translate to tight bounds on the alphabet size needed for
maximally recoverable codes in grid topologies.

We start by describing the coding theory question that motivated the current work.

1.1 Maximally recoverable codes

Maximally recoverable codes, first introduced by Gopalan, Huang, Jenkins and Yekhanin [6],
are codes designed for distributed storage which combine quick recovery from single node
failure and optimal recovery from catastrophic failure. More precisely, they are systematic
linear codes which combine two types of redundancy symbols: local parity symbols, which
allow for fast recovery from single symbol erasure; and global parity symbols, which allow
for recovery from the maximal information theoretic number of erasures. This was further
studied in [1, 7, 9, 11, 12].

The present paper is motivated by a recent work of Gopalan, Hu, Kopparty, Saraf, Wang
and Yekhanin [5], which studied the effect of the topology of the network on the code design.
Concretely, they studied grid like topologies. In the simplest setting, a codeword is viewed
as an n× n array, with entries in a finite field F2d , where there is a single parity constraint
for each row and each column, and an additional global parity constraint. More generally, a
Tn×m(a, b, h) maximally recoverable code has codewords viewed as an n×m matrix over Fd2,
with a parity constraints per row, b parity constraints per column, and h additional global
parity constraints. An important problem in this context is, how small can we choose the
alphabet size 2d and still achieve information theoretical optimal resiliency against erausers.

Gopalan et al. [5] gave a combinatorial characterization for this problem, in the simplest
setting of m = n and a = b = h = 1. Their characterization is in terms of labeling the edges
of the complete bipartite graph Kn,n by elements of Fd2, which satisfy the property that in
every simple cycle, the sum is nonzero.

Let [n] = {1, . . . , n}. Let γ : [n] × [n] → Fd2 be a labeling of the edges of the complete
bipartite graph Kn,n by bit vectors of length d.

Definition 1.1. A labeling γ : [n]× [n]→ Fd2 is simple cycle free if for any simple cycle C
in Kn,n it holds that ∑

e∈C

γ(e) 6= 0.

Gopalan et al. [5] showed that the question on the minimal alphabet size needed for
maximally recoverable codes, reduces to the question of how small can we take d = d(n) so
that a simple cycle free labeling exists. Concretely:

• The alphabet size needed for Tn×n(1, 1, 1) codes is 2d(n).

• The alphabet size needed for Tn×m(a, b, h) codes is at least 2min(d(n−a+1),d(m−b+1))/h.

Before the current work, there were large gaps between upper and lower bounds on d(n).
For upper bounds, as the number of simple cycles inKn,n is nO(n), a random construction with
d = O(n log n) succeeds with high probability. There are also simple explicit constructions
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matching the same bounds, see e.g. [6]. In terms of lower bounds, it is simple to see that
d ≥ log n is necessary. The main technical lemma of Gopalan et al. [5] in this context is
that in fact d ≥ Ω(log2 n) is necessary. This implies a super-polynomial lower bound on the
alphabet size 2d in terms of n, which is one of their main results.

We improve on both upper and lower bounds and show that d is linear in n. We note
that our construction improves upon the random construction, which for us was somewhat
surprising. For convenience we describe it when n is a power of two, but note that it holds
for any n with minimal modifications.

Theorem 1.2 (Explicit construction). Let n be a power of two. There exists γ : [n]×[n]→ Fd2
for d = 3n which is simple cycle free.

Our main technical result is a nearly matching lower bound.

Theorem 1.3 (Lower bound). Let γ : [n]× [n]→ Fd2 be simple cycle free. Then d ≥ n/2−2.

1.2 Labeling by general Abelian groups

The definition of simple cycles free labeling can be extended to labeling by general Abelian
groups, not just Fd2. Let H be an Abelian group, and let γ : [n] × [n] → H. We say that γ
is simple cycle free if for any simple cycle C,∑

e∈C

sign(e)γ(e) 6= 0.

where sign(e) ∈ {−1, 1} is an alternating sign assignment to the edges of C (these are
sometimes called circulations). We note that the analysis of Gopalan et al. [5] can be
extended to non-binary alphabets Fp, in which case their combinatorial characterization
extends to the one above with H = Fp.

Theorem 1.4. Let H be an Abelian group. Let γ : [n]× [n]→ H be simple cycle free. Then
|H| ≥ 2n/2−2.

As a side remark, we note that the study of graphs with nonzero circulations was instru-
mental in the recent construction of a deterministic quasi-polynomial algorithm for perfect
matching in NC [4]. However, beyond some superficial similarities, the setup seems inher-
ently different than ours. For starters, they study general bipartite graphs, while we study
the complete graphs. Moreover, they need to handle certain families of cycles, not necessarily
simple, while in this work we focus on simple cycles.

The proofs of Theorem 1.3 and Theorem 1.4 rely on the study of a certain Cayley graph of
the permutation group, which encodes the property of simple cycle free labeling. Surprisingly,
the corresponding graph is the Birkhoff polytope graph.
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1.3 The Birkhoff polytope graph

Let Sn denote the symmetric group of permutations on [n]. A permutation τ ∈ Sn is said to
be a cycle if, except for its fixed points, it contains a single non-trivial cycle (in particular,
the identity is not a cycle). We denote by Cn ⊂ Sn the set of cycles. The Cayley graph
Bn = Cay(Sn, Cn) is a graph with vertex set Sn and edge set {(π, τπ) : π ∈ Sn, τ ∈ Cn}. Note
that this graph is undirected, as if τ ∈ Cn then also τ−1 ∈ Cn.

The graph Bn turns out to be widely studied: it is the graph of the Birkhoff polytope,
which is the convex hull of all n× n permutation matrices. See for example [3] for a proof.
Our analysis does not use this connection; we use the description of the graph as a Cayley
graph.

The following claim shows that Theorem 1.4 reduces to bounding the size of the largest
independent set in the Birkhoff polytope graph.

Claim 1.5. Let H be an Abelian group. Assume that γ : [n]× [n]→ H is simple cycle free.
Then Bn contains an independent set of size ≥ n!/|H|.

Proof. Define

A =

{
π ∈ Sn :

n∑
i=1

γ(i, π(i)) = h

}
,

where h ∈ H is chosen to maximize the size of A. Thus |A| ≥ n!/|H|. We claim that A is
an independent set in Bn.

Assume not. Then there are two permutations π, π′ ∈ A such that τ = π(π′)−1 ∈ Cn.
Let Mπ = {(i, π(i)) : i ∈ [n]} denote the matching in Kn,n associated with π, and define Mπ′

analogously. Let C = Mπ⊕Mπ′ denote their symmetric difference. The fact that τ ∈ Cn has
exactly one cycle, is equivalent to C being a simple cycle. Let sign(·) be an alternating sign
assignment to the edges of C. Then∑

e∈C

sign(e)γ(e) =
∑
e∈Mπ

γ(e)−
∑
e∈Mπ′

γ(e) = h− h = 0.

This violates the assumption that γ is simple cycle free.

The construction of a simple cycle free labeling in Theorem 1.2, combined with Claim 1.5,
implies that the Birkhoff polytope graph contains a large independent set.

Corollary 1.6. Let n be a power of two. Then Bn contains an independent set of size
≥ n!/9n.

We also give in the appendix a construction of a larger independent set in the Birkhoff
polytope graph, not based on a simple cycle free labeling.

Theorem 1.7. Let n be a power of two. Then Bn contains an independent set of size
≥ n!/4n.
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The best previous bounds we are aware of are by Onn [8] who proved that Bn contains
an independent set of size ≥ nΩ(

√
n).

Our main technical result is an upper bound on the largest size of an independent set in
the Birkhoff polytope graph.

Theorem 1.8. The largest independent set in Bn has size ≤ n!/2(n−4)/2.

As a side remark, we note that general bounds on the independence number of graphs,
such as the Hoffman bound, give much weaker bounds. A standard application of the Hoff-
man bound gives a much weaker bound for the independence number of Bn of O(n!); and
if we restrict all permutations to have the same sign, the bound improves to O((n − 1)!).
The reason is that the Hoffman bounds (at least in its simplest form) directly relates to the
minimal eigenvalues of the graph. However, in our case the eigenvalues are controlled by
the irreducible representations of Sn, and the extreme eigenvalues are given by low dimen-
sional representations. This prohibits obtaining strong bounds on the independence number
directly.

In order to overcome this barrier, our analysis circumvents the effect of the low dimen-
sional representations by appealing to a structure vs. randomness dichotomy specialized for
our setting. It allows us to either reduce the dimension of the ambient group, or restrict to
pseudo-random assumptions about the actions of the low dimensional representations.

Organization. We prove Theorem 1.2 in Section 2 and Theorem 1.8 in Section 3. Theo-
rem 1.7 is proved in Appendix A.

Acknowledgements. We thank Ran Gelles and Sergey Yekhanin for useful discussions
on the problem and comments on a preliminary version of this paper. We thank Igor Pak
for bringing to our attention that the Cayley graph which we study is the Birkhoff polytope
graph.

2 A construction of a simple cycle free labeling

We prove Theorem 1.2 in this section. We first introduce some notation. For x ∈ [n] denote
by enx ∈ Fn2 the unit vector with 1 in coordinate x and 0 in all other coordinates. We let
0n ∈ Fn2 denote the all zero vector.

Let n be a power of two. We define recursively a labeling γn : [n]× [n]→ F3n
2 . For n = 2

set (for example)

γ2(0, 0) = e6
1, γ2(0, 1) = e6

2, γ2(1, 0) = e6
3, γ2(1, 1) = e6

4.

Assume n > 2. Let x′ = x mod (n/2) and y′ = y mod (n/2), where x′, y′ ∈ [n/2]. Define
γn(x, y) ∈ F3n

2 recursively as

(i) The first n bits of γn(x, y) are enx if y ≤ n/2, and otherwise they are 0n.
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(ii) The next n/2 bits of γn(x, y) are e
n/2
y′ if x ≤ n/2, and otherwise they are 0n/2.

(iii) The last 3n/2 bits of γn(x, y) are defined recursively to be γn/2(x′, y′).

We claim that γn is indeed simple cycle free. For n = 2 it is simple to verify this directly,
so assume n > 2.

Let C be a simple cycle in Kn,n, and assume towards a contradiction that
∑

e∈C γn(e) =
0. Assume C has 2k nodes, for some 2 ≤ k ≤ n, and let these be C =
(x1, y1, x2, y2, . . . , xk, yk, x1). We denote X = {x1, . . . , xk} and Y = {y1, . . . , yk}. Define
furthermore L = {1, . . . , n/2} and U = {n/2 + 1, . . . , n}.

Claim 2.1. Either Y ⊂ L or Y ⊂ U .

Proof. Assume that both Y ∩L and Y ∩U are nonempty. Then there must exist i ∈ [k] with
yi ∈ L and yi+1 ∈ U , where if i = k then we take the subscript modulo k. Recall that xi+1

is the neighbour of yi, yi+1 in C. Its contribution to the first n bits of the sum is enxi+1
, since

yi ≤ n/2 and yi+1 > n/2. Note that no other edge in C has a nonzero value in coordinate
xi+1. Thus the xi+1 coordinate in the sum over C is 1, which contradicts the assumption
that the sum over C is zero.

Thus we can assume from now on that either Y ⊂ L or Y ⊂ U .

Claim 2.2. Either X ⊂ L or X ⊂ U .

Proof. Assume that Y ⊂ L, and the case of Y ⊂ U is identical. Assume that both X ∩ L
and X ∩ U are both nonempty. Then there must exist i ∈ [k] with xi ∈ L and xi+1 ∈ U .
Recall that yi is the neighbour of xi, xi+1 in C. Its contribution to the 2nd batch (of n/2

bits) of the sum is e
n/2

y′i
, since xi ≤ n/2 and xi+1 > n/2. Note that no other edge in C has

a nonzero value in coordinate n+ y′i, where we here we need the assumption that Y ⊂ L or
Y ⊂ U . Thus the n+y′i coordinate in the sum over C is 1, which contradicts the assumption
that the sum over C is zero.

Thus we have that X ⊂ U or X ⊂ L, and similarly Y ⊂ U or Y ⊂ L. Thus, C is a
simple cycle in Kn/2,n/2 embedded in Kn,n in one of four disjoint ways: L×L, L×U , U ×L
or U × U . Observe that in each of these copies, the last 3n/2 coordinates of the sum are
precisely γn/2, so by induction C cannot have zero sum.

3 The independence number of the Birkhoff polytope

graph

We prove Theorem 1.8 in this section. Let A be an independent set in Bn. We prove an
upper bound on the size of A. Concretely, we will show that |A| ≤ a

cn
n! for some absolute

constants a, c > 1. As we will see at the end, the choice of a = 4, c =
√

2 works.
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The proof relies on representation theory, in particular representation theory of the sym-
metric group. We refer readers to the excellent book of Sagan [10], which provides a thorough
introduction to the topic. We will try to adhere to the notations in that book whenever pos-
sible.

Overall Strategy. Our basic plan will be to break our analysis into two cases based on
whether or not the action of A on m-tuples is nearly uniform for all m. This will be in
analogy with standard structure vs. randomness arguments. If the action on m-tuples is
highly non-uniform, this will allow us to take advantage of this non-uniformity to reduce to
a lower-dimensional case. On the other hand, if A acts nearly uniformly on m-tuples, this
suggests that it behaves somewhat randomly. This intuition can be cashed out usefully by
considering the Fourier-analytic considerations of this condition, which will allow us to prove
that some pair of elements of A differ by a simple cycle using Fourier analysis on Sn.

Non-Uniform Action on Tuples. Let [n]m = {(i1, . . . , im) : i1, . . . , im ∈ [n] distinct}
denote the family of ordered m-tuples of distinct elements of [n]. Its size is (n)m = n(n −
1) · · · (n − m + 1). A permutation π ∈ Sn acts on [n]m by sending I = (i1, . . . , im) to
π(I) = (π(i1), . . . , π(im)). Below when we write Prπ∈A[·] we always mean the probability of
an event under a uniform choice of π ∈ A.

Notice that if Prπ∈A[π(I) = J ] ≥ cm/(n)m for some pair I, J ∈ [n]m, this will allow us
to reduce to a lower dimensional version of the problem. In particular, if we let A′ = {π ∈
A : π(I) = J}, we note that |A| ≤ |A′|(n)m/c

m. On the other hand, after multiplying on
the left and right by appropriate permutations (an operation which doesn’t impact our final
problem), we can assume that I = J = {n−m+ 1, . . . , n}. Then, if A were an independent
set for Bn, A′ would correspond to an independent set for Cay(Sn−m, Cn−m). Then, if we
could prove the bound that |A′| ≤ a

cn−m
(n−m)!, we could inductively prove that |A| ≤ a

cn
n!.

Uniform Action on Tuples. When the action of A on m-tuples is near uniform for all
m, we will attempt to show that two elements of A differ by a simple cycle using techniques
from the Fourier analysis of Sn. In fact, we will show the stronger statement that some pair
of elements of A differ by a single cycle of length n.

Some slight complications arise here when parity of the permutations here is considered.
In particular, all n-cycles have the same parity. This is actually a problem for n even, as all
such cycles will be odd, and thus our statement will fail if A consists only of permutations
with the same parity. Thus, we will have to consider our statement only in the case of n odd.
Even in this case though, parity will still be relevant. In particular, note that the difference
between two permutations in A can be a cycle of length n only if the initial permutations
had the same parity. Thus, we lose very little by restricting our attention to only elements
of A with the more common parity. This will lose us a factor of 2 in the size of A, but
will make our analysis somewhat easier. We are now prepared to state our main technical
proposition:
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Proposition 3.1. Let n be an odd integer and let c > 1 be a sufficiently small constant. Let
A ⊂ Sn be a set of permutations satisfying:

(i) All elements of A are of the same sign.

(ii) For any even m < n and any I, J ∈ [n]m, Prπ∈A[π(I) = J ] < cm

(n)m
.

Then there exist two elements of A that differ by a cycle of length n. In particular, we can
take c =

√
2.

Remark. In the second condition above, we consider only even m. This is because if this
condition fails, we are going to use our other analysis to recursively consider permutations
of [n−m], and would like n−m to also be odd.

We prove Proposition 3.1 below, and then show that it implies Theorem 1.8.

Proof. First, note that by replacing all π ∈ A by πσ for some odd permutation σ if necessary,
it suffices to assume that all π ∈ A are even. We will assume this henceforth.

Rephrasing the problem using class functions. Let C ′n denote the set of n-cycles in
Sn. Define two class functions ϕ, ψ ∈ R[Sn] as

ϕ =
1

|Sn||A|2
∑

σ∈Sn,π,π′∈A

σπ(π′)−1σ−1, ψ =
1

|C ′n|
∑
τ∈C′n

τ.

It is easy to see that our conclusion is equivalent to showing that 〈ϕ, ψ〉 > 0.
Let λ ` n denote a partition of n, namely λ = (λ1, . . . , λk) where λ1 ≥ . . . ≥ λk ≥ 1 and∑
λi = n. The irreducible representations of Sn are the Specht modules, which are indexed

by partitions {Sλ : λ ` n}. Let χλ : Sn → R denote their corresponding characters. Their
action extends linearly to R[Sn]. Namely, if ζ ∈ R[Sn] is given by ζ =

∑
π∈Sn ζππ ∈ R[Sn]

where ζπ ∈ R then χλ(ζ) =
∑

π∈Sn ζπχ
λ(π).

As ϕ, ψ ∈ R[Sn] are class functions, their inner product equals

〈ϕ, ψ〉 =
∑
λ`n

χλ(ϕ)χλ(ψ). (1)

Let (n) ∈ C ′n be a fixed cycle of length n. As all elements in ψ are conjugate to (n), we have
χλ(ψ) = χλ((n)) and we can simplify Equation (1) to

〈ϕ, ψ〉 =
∑
λ`n

χλ(ϕ)χλ((n)). (2)

Thus, we are lead to explore the action of the irreducible characters on the full cycle (n).
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Characters action on the full cycle. The Murnaghan-Nakayama rule is a combinatorial
method to compute the value of a character χλ on a conjugacy class, which in our case is (n).
In this special case it is very simple. It equals zero unless λ is a hook, e.g. its corresponding
tableaux has only one row and one column, and otherwise its either −1 or 1. Concretely, let
hm = (n −m, 1, 1, . . . , 1) for 0 ≤ m ≤ n − 1 denote the partition corresponding to a hook.
Then

χλ((n)) =

{
(−1)m if λ = hm
0 otherwise

. (3)

Thus we can simplify Equation (2) to

〈ϕ, ψ〉 =
n−1∑
m=0

(−1)mχhm(ϕ). (4)

Bounding the characters on ϕ. The character h0 corresponds to the trivial representa-
tion, and by our definition of ϕ it equals χh0(ϕ) = 1. Observe that we can simplify χλ(ϕ)
as

χλ(ϕ) =
1

|A|2|Sn|
∑

π,π′∈A,σ∈Sn

χλ(σπ(π′)−1σ−1) =
1

|A|2
∑
π,π′∈A

χλ(π(π′)−1). (5)

First, we argue that the evaluation of characters on ϕ is always nonnegative.

Claim 3.2. χλ(ϕ) ≥ 0 for all λ ` n.

Proof. Let ζ ∈ R[Sn] be given by ζ = 1
|A|
∑

π∈A π. Then

χλ(ϕ) =
1

|A|2
∑
π,π′∈A

Tr
(
Sλ(π)Sλ((π′)−1)

)
= Tr

(
Sλ(ζ)Sλ(ζ)T

)
= ‖Sλ(ζ)‖2

F ,

where for a matrix M its Frobenius norm is given by ‖M‖2
F =

∑
|Mi,j|2. In particular it is

always nonnegative.

The following lemma bounds χhm(ϕ). Observe that in particular for c = 1 it gives
χhm(ϕ) = 0. However, we would use it to obtain effective bounds when c > 1.

Lemma 3.3. Let m ∈ {1, . . . , n− 1}. For any even k ∈ {m, . . . , n} it holds that χhm(ϕ) ≤
ck−1

( km)
.

Proof. Let Mµ denote the (not irreducible) Young module associated with a partition µ ` n.
In the case of µ = hk it corresponds to the action of Sn on [n]k. That is, for any π ∈ Sn we
have that Mhk(π) is a matrix whose rows and columns are indexed by I, J ∈ [n]k respectively,

where Mhk(π)I,J = 1π(I)=J . Observe that Mhk(π−1) =
(
Mhk(π)

)T
. We extend this action to

R[Sn] linearly.
Recall that ζ = 1

|A|
∑

π∈A π ∈ R[Sn]. By assumption (ii) in Proposition 3.1 we have

(
Mhk(ζ)

)
I,J

= Pr
π∈A

[π(I) = J ] ≤ ck

(n)k
.
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Thus, we can bound the Frobenius norm of Mhk(ζ) by

‖Mhk(ζ)‖2
F =

∑
I,J

|
(
Mhk(ζ)

)
I,J
|2 ≤

(
ck

(n)k

)∑
I,J

|
(
Mhk(ζ)

)
I,J
| = ck.

This is useful as

Tr(Mhk(ϕ)) = Tr
(
Mhk(ζ)

(
Mhk(ζ)

)T)
= ‖Mhk(ζ)‖2

F ≤ ck.

The Kostka numbers Kλ,µ denote the multiplicity of the Specht module Sλ in the Young
module Mµ. We can thus decompose

Tr(Mµ(ϕ)) =
∑
λ

Kλ,µχ
λ(ϕ).

We saw that χλ(ϕ) ≥ 0 for all λ. By Young’s rule, Kλ,µ equals the number of semistandard
tableaux of shape λ and content µ. In particular, it is always a nonnegative integer. In the
special case of λ = hm and µ = hk for k ≥ m, Young’s rule is simple to compute and gives

Khm,hk =

(
k

m

)
.

Recall that χh0 is the trivial representation, for which Kh0,hk = 1 and χh0(ϕ) = 1. Thus

1 +

(
k

m

)
χhm(ϕ) ≤

∑
λ

Kλ,hkχ
λ(ϕ) = Tr(Mhk(ϕ)) ≤ ck.

We next apply Lemma 3.3 to bound χhm(ϕ) for all 1 ≤ m ≤ n− 1. If m ≤ n/2 then we
can apply Lemma 3.3 for k = 2m and obtain the bound

χhm(ϕ) ≤ c2m − 1(
2m
m

) .

For m > n/2 we need the following claim, relating χhm to χhn−1−m .

Claim 3.4. For any 1 ≤ m ≤ n− 1 it holds that χhm(ϕ) = χhn−1−m(ϕ).

Proof. For any partition λ let λ′ denote the transpose (also known as conjugate) partition.
It satisfies χλ

′
(π) = χλ(π)sign(π) for all π ∈ Sn, where sign : Sn → {−1, 1} is the sign

representation. As all elements in A are even permutations, it holds by the definition of ϕ
that

χλ
′
(ϕ) =

1

|A|2
∑
π,π′∈A

χλ
′
(π(π′)−1) =

1

|A|2
∑
π,π′∈A

χλ(π(π′)−1) = χλ(ϕ).

In particular if λ = hm then λ′ = hn−1−m.
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Next, we lower bound 〈ϕ, ψ′〉 as follows. The dominant terms are χh0(ϕ) = χhn−1(ϕ) = 1.
For any 1 ≤ m ≤ (n − 1)/2 − 1, the corresponding term in Equation (4) appears twice,
once as (−1)mχhm(ϕ) and once as (−1)n−1−mχhn−1−m(ϕ) = (−1)mχhm(ϕ). The term for
m = (n− 1)/2 appears once.

Furthermore, as χhm(ϕ) ≥ 0 for all m by Claim 3.2, the only negative terms correspond
to odd 1 ≤ m ≤ (n− 1)/2. Thus we can lower bound

1

2
〈ϕ, ψ′〉 ≥ 1−

∑
m≥1, m odd

c2m − 1(
2m
m

) . (6)

It is not hard to show that this is positive if c > 1 is small enough. If we take c =
√

2, the
right hand side of Equation (6) is slightly negative for large enough m (the limit as m→∞
is −0.02451...). However, when n ≥ 8, the second term can be replaced by c8−1

(8
3)

rather than

c6−1

(6
3)

, making our lower bound on 1
2
〈ϕ, ψ′〉 at least 0.057. This completes our proof.

We are now prepared to prove Theorem 1.8.

Proof. We first prove that if n is odd and if all permutations in A have the same sign, then
|A| ≤ n!

2(n−1)/2 .
We proceed by induction on n. Firstly, we note that if n = 1, the bound follows trivially.
For odd n > 1, we note that unless there is some even m < n and some I, J ∈ [n]m

with Prπ∈A[π(I) = J ] ≥ 2m/2/(n)m, then our result follows immediately from Proposition
3.1. Otherwise, we may assume without loss of generality that I = J = (n−m+ 1, . . . , n).
It then follows that letting A′ = {π ∈ A : π(I) = J}, we can think of A′ as a set of
permutations on [n −m]. Also, note that A being an independent set for Bn, implies that
A′ is an independent set for Cay(Sn−m, Cn−m). Therefore, by the inductive hypothesis:

|A| ≤ (n)m2−m/2|A′| ≤ (n)m2−m/2(n−m)!/2(n−m−1)/2 = n!/2(n−1)/2.

We now need to reduce to the case of n odd and A consisting only of permutations of
the same sign. First, restricting A to only permutations of the most common sign, we can
assume that all permutations in A have the same sign, losing only a factor of 2 in |A|. Now,
if n is odd, we are done. otherwise, let j be the most likely value of π(n) for π taken from
A. We have that Prπ∈A[π(n) = j] ≥ 1/n. Without loss of generality, j = n and we can let
A′ = {π ∈ A : π(n) = n}. Since A′ is an independent set in Cay(Sn−1, Cn−1), and since n− 1
is odd, we have

|A| ≤ n|A′| ≤ n(n− 1)!/2(n−2)/2 = n!/2n/2−1.
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A A construction of a larger independent set

We prove Theorem 1.7 in this section. Assume that n = 2m. We construct A ⊂ Sn of size
|A| ≥ n!/4n, such that A is an independent set in Bn.

Let Ti,j = {2m−i(j−1)+1, . . . , 2m−ij} for 0 ≤ i ≤ m, 1 ≤ j ≤ 2i. Note that {Ti,j : j ∈ [2i]}
is a partition of [n] for every i, that |Ti,j| = 2m−i and that Ti,2j−1 ∪ Ti,2j is a partition of
Ti−1,j.

We define a sequence of subsets of Sn. For 1 ≤ i ≤ m let Mi =
(

2m−i+1

2m−i

)
. For any set R

of size |R| = 2m−i+1 let indi(R, ·) be a bijection between subsets of R of size 2m−i and ZMi
.

Define A0 = Sn and

Ai =

π ∈ Ai−1 :
2i−1∑
j=1

indi(π(Ti−1,j), π(Ti,2j−1)) ≡ 0 mod Mi

 .

Since each value mod Mi occurs equally often as a indi(π(Ti−1,j), π(Ti,2j−1)) for each j, and
since these values are independent of one another, |Ai| = |Ai−1|/Mi. Finally set A = Am.
The following claim (applied for i = m) shows that A is an independent set in Bn.

Claim A.1. Let 1 ≤ i ≤ m. Let π, π′ ∈ Ai be such that τ = π(π′)−1 ∈ Cn. Then there exists
ji ∈ [2i] such that

1. τ(Ti,ji) = Ti,ji.

2. τ(x) = x for all x ∈ Ti,j, j 6= ji.

Proof. We prove the claim by induction on i. The case of i = 1 follows from the definition of
A1. By assumption π, π′ fix both T1,1 and T1,2. However, as τ = π(π′)−1 is a cycle, it must
be contained in either T1,1 or T1,2. This implies that τ(x) = x for all x ∈ T1,1 or all x ∈ T1,2.

Consider next the case of i > 1. By induction π(Ti−1,j) = π′(Ti−1,j) for all j ∈ [2i−1].
Moreover, there exists j′ = ji−1 such that π(x) = π′(x) for all x ∈ Ti−1,j, j 6= j′. This implies
that π(Ti,j) = π′(Ti,j) for all j 6∈ {2j′ − 1, 2j′}.

Next, the assumption that π, π′ ∈ Ai guarantees that

2i−1∑
j=1

indi(π(Ti−1,j), π(Ti,2j−1)) ≡
2i−1∑
j=1

indi(π
′(Ti−1,j), π

′(Ti,2j−1)) ≡ 0 mod Mi.

For any j 6= j′ we know that π(Ti−1,j) = π′(Ti−1,j) and π(Ti,2j−1) = π′(Ti,2j−1),
so indi(π(Ti−1,j), π(Ti,2j−1)) = indi(π

′(Ti−1,j), π
′(Ti,2j−1)). Thus we obtain that also

indi(π(Ti−1,j′), π(Ti,2j′−1)) = indi(π
′(Ti−1,j′), π

′(Ti,2j′−1)). Moreover, as we also know that
π(Ti−1,j′) = π′(Ti−1,j′) and that indi(π(Ti−1,j′), ·) is a bijection to ZMi

, it must be the case
that π(Ti,2j′−1) = π′(Ti,2j′−1) and hence also π(Ti,2j′) = π′(Ti,2j′). Thus we conclude that
π(Ti,j) = π′(Ti,j) for all j ∈ [2i].

To conclude, as τ = π(π′)−1 is a cycle, it must be contained in either Ti,2j′−1 or Ti,2j′ .
Thus, τ must fix all points in Ti,2j′−1 or all points in Ti,2j′ . We set ji ∈ {2j′ − 1, 2j′}
accordingly.
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Finally, we compute the size of A. As |Ai| = |Ai−1|/Mi and Mi =
(

2m−i+1

2m−i

)
≤ 22m−i+1

we
obtain that

|A| ≥ n!∏m
i=1 22i

≥ n!

22m+1 =
n!

4n
.
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