
Small hitting-sets for tiny arithmetic circuits or:

How to turn bad designs into good

Manindra Agrawal ∗ Michael Forbes† Sumanta Ghosh ‡ Nitin Saxena §

Abstract

Research in the last decade has shown that to prove lower bounds or to derandomize
polynomial identity testing (PIT) for general arithmetic circuits it suffices to solve these
questions for restricted circuits. In this work, we study the smallest possibly restricted
class of circuits, in particular depth-4 circuits, which would yield such results for general
circuits (that is, the complexity class VP). We show that if we can design poly(s)-time
hitting-sets for Σ ∧a ΣΠO(log s) circuits of size s, where a = ω(1) is arbitrarily small and
the number of variables, or arity n, is O(log s), then we can derandomize blackbox PIT for
general circuits in quasipolynomial time. Further, this establishes that either E 6⊆#P/poly
or that VP 6=VNP. We call the former model tiny diagonal depth-4. Note that these are
merely polynomials with arity O(log s) and degree ω(log s). In fact, we show that one only
needs a poly(s)-time hitting-set against individual-degree a′ = ω(1) polynomials that are
computable by a size-s arity-(log s) ΣΠΣ circuit (note: Π fanin may be s). Alternatively,
we claim that, to understand VP one only needs to find hitting-sets, for depth-3, that have
a small parameterized complexity.

Another tiny family of interest is when we restrict the arity n = ω(1) to be arbitrarily
small. In parameterized complexity terms: We show that if we can design poly(s, µ(n))-time
hitting-sets for size-s arity-n ΣΠΣ∧ circuits (resp. Σ ∧a ΣΠ), where function µ is arbitrary,
then we can solve PIT for VP in quasipoly-time, and prove the corresponding lower bounds.

Our methods are strong enough to prove a surprising arity reduction for PIT– to solve
the general problem completely it suffices to find a blackbox PIT with time-complexity
sd2O(n). This suggests that, in algebraic-geometry terms, PIT is inherently an ‘extremely
low’-dimensional (or ‘extremely low’ individual-degree) problem.

One expects that with this severe restriction on n, a and the semantic individual-degree,
it should be at least “exponentially” easier to design hitting-sets. Indeed, we give several
examples of (log s)-variate circuits where a new measure (called cone-size) helps in devising
poly-time hitting-sets, but the same question for their s-variate versions is open till date:
For eg., diagonal depth-3 circuits, and in general, models that have a small partial derivative
space. The latter models are very well studied, following (Nisan & Wigderson, FOCS’95
[NW95]), but no sd2O(n)-time PIT algorithm was known for them.

We also introduce a new concept, called cone-closed basis isolation, and provide example
models where it occurs, or can be achieved by a small shift. This refines the previously
studied notions of low-support (resp. low-cone) rank concentration and least basis isolation
in certain ABP models. Cone-closure holds special relevance in the low-arity regime.

1998 ACM Subject Classification: F.1.1 Models of Computation, I.1.2 Algorithms, F.1.3
Complexity Measures and Classes
Keywords: hitting-set, tiny, arity, depth-3, depth-4, derandomization, identity testing, lower
bound, VP, E, #P/poly, circuit, concentration.

∗Department of Computer Science & Engineering, IIT Kanpur, India, manindra@cse.iitk.ac.in
†Simons Institute for the Theory of Computing, University of California, Berkeley, USA,

miforbes@csail.mit.edu
‡CSE, IITK, sumghosh@cse.iitk.ac.in
§CSE, IITK, nitin@cse.iitk.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 35 (2017)

1 Introduction

The Polynomial Identity Testing (PIT) problem is to decide whether a multivariate polynomial
is zero, where the input is given as an arithmetic circuit. An arithmetic circuit over a field F is
a layered acyclic directed graph with one sink node called output node; source nodes are called
input nodes and are labeled by variables or field constants; non-input nodes are labeled by ×
(multiplication gate) and + (addition gate) in alternate layers. Sometimes edges may be labeled
by field constants. The computation is defined in a natural way. The complexity parameters
of a circuit are: 1) size- maximum number of edges and vertices, 2) depth- maximum number
of layers, and 3) degree- maximum degree among all polynomials computed at each node. This
is sometimes called the syntactic degree, to distinguish from the (semantic) degree of the final
polynomial computed. The families of circuits, that are n-variate poly(n)-size and poly(n)-
degree, define the class VP [Val79]; also see [Bür13] for interesting variants of this algebraic
computing model.

In this work we study n-variate polynomials computable by circuits of size ≤ s of individual
degree ≤ a, where one of the parameter is tiny as compared to the others. For example, we
study such polynomials where the number of variables n is very small, such as n ≤ O(log s).
When a ≤ O(1) this model is equivalent to that of poly(s)-size depth-2 circuits, which are
well-understood even in the blackbox model [BOT88], and thus we probe these polynomials
when a ≥ ω(1). We can even approach this question when n is ω(1) but arbitrarily small, in
which case we now consider polynomials of individual degree O(s) to again avoid collapsing to
poly(s)-size depth-2 circuits. Basically, we need to allow the number of monomials an to grow
as sω(1) for the model to be nontrivial, and we demonstrate that this is precisely the chasm to
be crossed to get a fundamentally new understanding of VP.

The polynomial computed by a circuit may have, in the worst-case, an exponential number
of monomials compared to its size. So, by computing the explicit polynomial from input circuit,
we cannot solve PIT problem in polynomial time. However, evaluation of the polynomial at a
point can be done, in time polynomial in the circuit size, by assigning the values at input nodes.
This helps us to get a polynomial time randomized algorithm for PIT by evaluating the circuit
at a random point, since any nonzero polynomial evaluated at a random point gives a nonzero
value with high probability [DL78, Zip79, Sch80]. However, finding a deterministic polynomial
time algorithm for PIT is a long-standing open question in arithmetic complexity theory. It
naturally appears in the algebraic approaches to the P 6=NP question, eg. [GMQ16, Gro15,
Mul12b, Mul12a]. The famous algebraic analog is the VP 6=VNP question [Val79]. The PIT
problem has applications both in proving circuit lower bounds [KI03, Agr05] and in algorithm
design [MVV87, AKS04, KSS14, DdOS14]. For more details on PIT, see the surveys [Sax09,
Sax13, SY10].

PIT algorithms are of two kinds: 1) whitebox - allowed to see the internal structure of the
circuit, and 2) blackbox - only evaluation of the circuit is allowed at points in a small field
extension. Blackbox PIT is equivalent to efficiently finding a set of points, called a hitting-set
H, such that for any circuit C, in a family C, computing a nonzero polynomial, the set H must
contain a point where C 6= 0. For us a more functional approach would be convenient. We think
in terms of an n-tuple of univariates f(y) = (f1(y), . . . , fn(y)) whose set of evaluations contain
H. Such an f(y) can be efficiently obtained from a given H (using interpolation) and vice-versa.
Clearly, if H is a hitting-set for C then C(f(y)) 6= 0, for any nonzero C ∈ C. This tuple of
univariates is called a hitting-set generator (Sec.2) and we will freely exploit this connection in
all the proofs or theorem statements.

Existing deterministic algorithms solving PIT for restricted classes have been developed by
leveraging insight into the weaknesses of these models. For example, deterministic PIT algo-

2

rithms are known for subclasses of depth-3 circuits [KS07, Sax08, SS12], subclasses of depth-4
circuits [ASSS12, BMS13, SSS13, For15, KS16a, KS16b, PSS16], read-once arithmetic branch-
ing programs (ROABP) and related models [FS12, ASS13, FSS14, AGKS15, GKST16, GKS16],
certain types of symbolic determinants [FGT16, GT16], as well as non-commutative models
[GGOW16]. An equally large number of special models have been used to prove lower bound
results, see for example the ongoing survey of Saptharishi [Sap16].

While studying such restricted models may at first seem to give limited insight into general
circuits, various works (discussed below) have shown this not to be the case as full derandom-
ization of PIT for depth-4 (resp. depth-3) circuits would imply derandomization of PIT for
general circuits. The goal of this work is to sharpen this connection by additionally limiting
the number of variables (resp. semantic individual-degree) in the depth-4 circuit, and showing
that such a connection still holds. In doing so we establish new concepts for studying this small-
variable regime, and show how to derive polynomial-size hitting sets for some small-variable
circuit classes where only quasipolynomial-size, but not poly-sized, hitting-sets were previously
known.

1.1 Main results

Arithmetic circuits were defined with the hope that they would have better structure than
boolean circuits. Indeed, unlike boolean circuits, any VP circuit of arbitrary depth can be
reduced nontrivially to depth-4 [AV08, Koi12, Tav15, CKSV16] or depth-3 [GKKS13]. As a
consequence, the lower bound questions against VP reduce to the lower bound questions for
depth-4 (or to depth-3 for selected fields). In circuit complexity the base field F of interest is
either Q or Fq (for a prime-p-power q). Other popular fields, eg. number field, function field or
p-adic field, are dealt with using similar computational methods. In this paper, unless stated
otherwise, we assume F = Q. (Though many of our ideas would generalize to other base rings.)

The PIT question for VP circuits reduces even more drastically. The reason is that now one
invokes circuit factorization results [Kal89] that use algebra in a way heavier than the depth-
reduction results. So we will invoke that VP is closed under factorization, in addition to the
fact that it affords depth-reduction. Recall the ΣΠΣΠ (resp. Σ ∧ ΣΠ) model that computes a
polynomial by summing products (resp. powers) of sparse polynomials (see Defn.12). In 2008,
Agrawal and Vinay [AV08, Thm.3.2] showed that solving blackbox PIT in poly(s)-time for size-
s s-variate depth-4 circuits of the form ΣΠaΣΠO(log s) (Defn.12), where a is any unbounded
function, gives an (sd)O(log sd)-time hitting-set for VP (size-s degree-d). Here, we weaken the
hypothesis further. We show that solving blackbox PIT in poly(s)-time for size-s O(log s)-
variate Σ∧aΣΠO(log s) circuits, where a is an arbitrarily small unbounded function and semantic
individual-degree a′ is also arbitrarily small, is sufficient to get an (sd)O(log sd)-time hitting-set
for VP. We note that the brute-force deterministic algorithm would run here in time a′O(log s) =
sO(log a′), and thus we show that reducing this runtime to polynomial would have dramatic
consequences. We call such depth-4 circuits as tiny diagonal depth-4 (a better definition is
Defn.12). Compared to the previous result, one advantage in our model is that an exponential
running time, wrt the number of variables (arity n), is allowed. Formally, we design an efficient
arity reducing polynomial-map (the polynomials designed have individual-degree O(1)). Clearly,
the map can be used to also deduce about the quasipoly-time blackbox PIT for VP.

Theorem 1. Suppose we have poly-time hitting-sets for a tiny diagonal depth-4 model. Then,
we design a poly(sd)-time arity reducing (n 7→ O(log sd)) polynomial-map of constant individual-
degree that preserves the nonzeroness of any n-variate size-s degree-d arithmetic circuit.

By the known depth-3 chasm [GKKS13], the hypothesis in Thm.1 can be weakened to:
if, for an arbitrary function µ′, we have a poly(s, 2n, µ′(a′))-time hitting-set for size-s arity-n

3

depth-3 circuits that compute polynomials of semantic individual-degree ≤ a′, then· · · . The proof
sketch is given in Sec.A (Thm.14), where also the case of a tiny width-2 ABP (Thm.15) and a
‘multilinear tiny’ depth-3 variant (Thm.16) are discussed. Note that the sparsity of a polynomial
computed by tiny diagonal depth-4 is a′n = sO(log a′) which gives us a brute-force hitting-set of
similar complexity [BOT88]. We want to bring it down to sO(1); leaving us with an arbitrarily
small gap to close algorithmically. Our methods show that any of these hitting-set designs
will establish: Either E 6⊆#P/poly or VNP has polynomials of arithmetic circuit complexity
2Ω(n) (Lem.13, Cor.7). Note that these are long-standing open questions [NW94, Val79]. Their
connection with PIT, in our results, is a significant strengthening of [KI03] who had first proved:
PIT in poly-time implies that either NEXP 6⊆ P/poly or VNP 6= VP.

Moreover, we get the following curious property of PIT. (In some sense, it signifies: tiny-VP
PIT implies VP PIT.)

Theorem 2 (PIT arity reduction). If we have poly(sd2n)-time hitting-set for size-s degree-d
arity-n circuits, then for general circuits we have a poly(sd)-time hitting-set (and we get an
E-computable polynomial with exponential arithmetic complexity).

One now wonders whether the hypothesis, in the theorem above, can be further weakened.
We give a partial answer by studying the model ΣΠΣ∧ (i.e. a sum of products, where each
factor is a sum of univariate polynomials).

Theorem 3 (Tinier arity). Fix a function µ = µ(s). If we have poly(s, µ(n))-time hitting-set
for size-s arity-n ΣΠΣ∧ circuits, then for VP circuits we have a poly(sd)-time arity reduction
(n 7→ O(log sd)) that preserves nonzeroness (and proves an exponential lower bound).

The PIT algorithms in current literature always try to achieve a subexponential dependence
on n, the number of variables. Our results demonstrate that all we need is a poly(sd2n)-
time algorithm to completely solve VP PIT. Or, a poly(sµ(n))-time algorithm (for ΣΠΣ∧) to
partially solve VP PIT and to prove “either E 6⊆#P/poly or VP 6=VNP”. For example, even a
poly(s,A(n))-time hitting-set for ΣΠΣ∧, where A is an Ackermann function [Ack28], would be
tremendous progress. A similar case can be made for Σ ∧a ΣΠ(n) circuits, where both a and n
are arbitrarily small unbounded functions, see Thm.17 (i.e. time-complexity may be arbitrary
in terms of both a and n).

Obviously, we should now discover techniques and measures that are specialized to this tiny
regime. Many previous works use support size of a monomial as a measure to achieve rank
concentration [ASS13, FSS14, GKST16]. For a monomial m, its support is the set of variables
whose exponents are positive. We introduce a different measure: cone-size (see Defn.18) which
is the number of monomials that divide m (also see [ASS13, For14]). It has two advantages in
the tiny regime. First, the number of monomials with cone-size at most s is poly(s) (Lem.20).
Second, for any circuit C and a monomialm, we devise (in blackbox) a circuit C ′ which computes
the coefficient of m in C and has size polynomial in that of C and the cone-size of m (Lem.19).
Using this measure we can define a new concept of rank concentration [ASS13]– ‘low’-cone
concentration –and we are able to give poly-time hitting-sets for a large class of tiny circuits
(i.e. n is logarithmic wrt size). We prove our result in a general form (Thm.4) and as a corollary
(Cor.21) we get our claim. This gives us a poly-time hitting-set for depth-3 diagonal circuits
where the rank of the linear forms is logarithmic wrt the size (Thm.22).

Theorem 4. Let C be a set of arity-n degree-d circuits with size-s s.t. for all C ∈ C, the
dimension of the partial derivative space of C is at most k. Then, blackbox PIT for C can be
solved in (sdk)O(1) · (3n/ log k)O(log k) time.

4

Note that for n = O(log k) = O(log sd), the above bound is poly-time and such a PIT result
was not known before. For instance, general diagonal depth-3 is a prominent model with low
partial derivative space; it has a whitebox poly-time PIT [Sax08] but no poly-time hitting-set is
known (though [FSS14] gave an sO(log log s)-time hitting-set.). Even for O(log k)-variate diagonal
depth-3 no poly-time hitting-sets were known before our work.

We investigate another structural property useful in the tiny regime. Consider a polynomial
f(x) with coefficients over Fk. Let sp(f) be the subspace spanned by its coefficients. We say
that f has a cone-closed basis if there is a set of monomials B whose coefficients form a basis
of sp(f) and if B is closed under submonomials. We prove that this notion is a strengthening
of both low-support [ASS13] and low-cone concentration ideas [For15] (see Lem.23). Recently,
this notion of closure has also appeared as an abstract simplicial complex in [GKPT16].

Interestingly, we show that a general polynomial f , when shifted by a ‘random’ amount (or
by ‘formal’ variables), becomes cone-closed. More generally, we prove the following theorem
relating this concept to that of basis isolating weight assignment [AGKS15].

Theorem 5. Let f(x) ∈ F[x]k be an arity-n degree-d polynomial over Fk. Let w be a basis
isolating weight assignment of f(x). Then f(x+ tw) has a cone-closed basis over F(t).

1.2 Proof ideas

The proof of Thm.1 is a technical refinement of the strategy of [AV08, Thm.3.2] in at least three
ways. First, we get a polynomial g that is hard for tiny diagonal depth-4 circuits C from the
hitting-set for C (Lem.6). Essentially, g will be an annihilating polynomial of the hitting-set
generator. The novelty here is that we have to allow g to be non-multilinear (unlike [AV08,
Lem.3.3]), for it to exist, as the arity of C in our case is logarithmically small. We show that
a multi-δ-ic g suffices (i.e. g has individual degree bounded by a constant δ). By VP depth-
reduction, and Fischer’s trick (that is ‘cheap’ to apply in the tiny regime), this polynomial
remains hard for VP. Next by Lem.10, where we use Nisan-Wigderson design [NW94] and
Kaltofen’s factorization [Kal89], we get a poly-time arity-reducing polynomial-map based on g
that keeps any nonzero VP circuit nonzero and reduces its arity from n to O(log sd). This gives
the theorem.

The ‘log’ function in our method comes from the use of Nisan-Wigderson design and because
we want the δ to be constant in depth-reduction; reducing the arity further would need a
new idea. Moreover, we observe that the annihilator g is an E-computable polynomial with
exponential arithmetic circuit complexity. This means that: Either E 6⊆#P/poly or VNP has
a polynomial with exponential arithmetic complexity (Lem.13). It is not clear whether we
can strengthen the connection all the way to the (conjectured) VNP 6=VP. Perhaps, this will
require starting with a more structured hitting-set generator for C, so that its annihilator g is
a polynomial whose coefficient bits are (#P/poly)-computable (see Valiant’s criterion [Bür13,
Prop.2.20]).

The proof of Thm.3 requires one to move in a different regime where the arity is n = a log s =
ω(log s), the semantic individual-degree is one and the circuit is depth-3 (Thm.16). We reach
there in a sequence of steps, and then apply the Kronecker map (xi 7→ y2

i
) locally in blocks of

size log s. This leads to an arity reduction a log s 7→ a in the PIT problem.
The proof of Thm.4 has two steps. In the first step, we show that with respect to any

monomial ordering, the dimension k of the partial derivative space of a polynomial is lower
bounded by the cone-size of its leading monomial. So, for every nonzero C ∈ C there is a
monomial with nonzero coefficient and cone-size ≤ k. The second step is to check whether the
coefficients of all the monomials in C, with cone-size ≤ k, are zero. Lem.19 describes the time

5

required to check whether the coefficient of a monomial is zero. Lem.20 gives us an optimal
upper bound on the number of monomials with cone-size ≤ k.

Thm.5 unfolds an interesting combinatorial interaction between variable shift and cones of
resulting monomials. Let a set of monomials B be the least basis, wrt to the basis isolating
weight assignment, of f . We consider the set of all submonomials of those in B and identify a
subset A that is cone-closed. We define A in an algorithmic way, as described in Algo.1. The
fact that A is exactly a basis of the shifted f is proved in Lem.28 by studying the action of
the shift on the coefficient vectors. This has an immediate (nontrivial) consequence that any
polynomial f over Fk, when shifted by formal variables, becomes cone-closed.

2 Tiny diagonal depth-4 circuits– Proof of Theorems 1-3

In this section we will revisit the techniques that have appeared in some form in [NW94, KI03,
Agr05, AV08, GKKS13] and strengthen them to derive our results. First, we show how to get
a hard polynomial from a hitting-set.

Hitting-set generator. Let C be a set of arity-n circuits. We call an n-tuple of univariates
f(y) = (f1(y), . . . , fn(y)) a (t, d)-hsg (hitting-set generator) for C if: (1) for any nonzero C ∈ C,
C(f(y)) 6= 0, and (2) f has time-complexity t and the degree of each fi is at most d.

From this, we get a hard polynomial simply by looking at an annihilating polynomial of
f(y).

Lemma 6 (Hitting-set to hardness). Let f(y) = (f1(y), . . . , fn(y)) be a (t, d)-hsg for C. Then,
there exists an arity-n polynomial g(x) that is not in C, is computable in poly(tdn)-time, and
has individual degree less than 2δ := 2⌈(dn+1)1/(n−1)⌉. Moreover, we can ensure that its degree
is exactly δn.

Proof. A natural candidate for g(x) is any annihilating polynomial of the n polynomials f(y) =
(f1(y), . . . , fn(y)), since for every nonzero h ∈ C, h(f) is nonzero. Define δ as the smallest integer
such that δn−1 > dn ≥ (δ−1)n−1. Consider g(x) as an arity-n polynomial with individual degree
less than δ. Then, g(x) can be written as:

g(x) =
∑

e : 0≤ei<δ

cex
e (1)

where, ce’s are unknown to us. We can set all these ce’s to zero except the ones corresponding to
an index-set I of size δ0 := (dnδ+1). This way we have only δ0 unknowns. To be an annihilating
polynomial of f(y), we need g(f) = 0. By comparing the coefficients of the monomials, in y,
both sides we get a linear system in the unknowns.

Suppose that δ1 is the degree of y in g(f). Then, g(f) can be written as g(f) =
∑δ1

i=0 pi · y
i,

where pi’s are linear polynomials in ce’s. The constraint g(f) = 0 gives us a system of linear
equations with the number of unknowns δ0 and the number of equations δ1. The value of δ1 can
be at most d · n · δ, which means that the number of unknowns δ0 is greater than the number
of equations δ1. So, our system of linear equations always has a nontrivial solution, which gives
us a nonzero g. In case its degree is < δn, we can multiply by an appropriate monomial xe to
make the degree = δn. Note that g /∈ C holds, as g(f) is still nonzero (since f1(y), . . . , fn(y) are
nonzero wlog).

Computing f(y) takes t time and a solution of the linear equations can be computed in
poly(tdn)-time. So, g(x) can be computed in poly(tdn)-time.

Corollary 7 (E-computable). In the proof of Lem.6, if td = 2O(n) then the polynomial fam-
ily gn := g, indexed by the arity, is E-computable (i.e. all the formal monomials and their
coefficients can be produced in poly(2n)-time given unary n).

6

Proof. The linear system that we got can be solved in poly(tdn)-time. As it is homogeneous we
can even get an integral solution in the same time-complexity. Thus, assuming td = 2O(n), the
time-complexity of computing a bit of coefxe(g) is poly(tdn)=poly(2n), the coefficient bitsize is
poly(2n) and so is the number of monomials in g (∵ δ = O(1)). In other words, if we consider
the polynomials gn := g, indexed by the arity, then the family {gn}n is E-computable.

Towards a converse of the above lemma, a crucial ingredient is the Nisan-Wigderson design
[NW94].

Definition 8. Let ℓ > n > d. A family of subsets F = {I1, . . . , Im} on [ℓ] is called an (ℓ, n, d)-
design, if |Ii| = n and for all i 6= j ∈ [m], |Ii ∩ Ij | ≤ d.

Lemma 9 (Nisan-Wigderson design, Chap.16 [AB09]). There exists an algorithm which takes

(ℓ, n, d) and a base set S of size ℓ > 10n2

d as input, and outputs an (ℓ, n, d)-design F having

≥ 2
d
10 subsets, in time 2O(ℓ).

Next, we use a hard polynomial qm on a small design to get a poly-time computable arity-
reducing polynomial-map for VP that preserves nonzeroness.

Lemma 10 (Hardness to VP reduction). Let {qm}m≥1 be a family of multi-(δ−1)-ic polynomials
such that it can be computed in δO(m) time, but has no δo(m)-size arithmetic circuit. Then there
is a δO(log sd)-time arity reduction, from n to O(log sd), for VP circuits.

Proof. Note that there is a constant c0 > 0 such that qm requires Ω(δc0m)-size arithmetic circuits.
Otherwise {qm}m≥1 will be in ∩c>0Size(δ

cm), and hence in Size(δo(m)).
Let C be a set of arity-n degree-d VP circuits with size≤ s. Let n′ := sd ≥ n. Let F =

{S1, . . . , Sn′} be a (c2 logn
′, c1 logn

′, 10 log n′)-design on the variable set Z = {z1, . . . , zc2 log n′}.
Constants c2 > c1 > 10 will be fixed later. Our hitting-set generator for C is defined as: for
all i ∈ [n], xi = qc1 logn′(Si) =: pi. Then, we show that for any nonzero polynomial C(x) ∈ C,
C(p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that C(p1, . . . , pn) is zero. Since C(x) is nonzero,
we can find the smallest j ∈ [n] such that C(p1, . . . , pj−1, xj , . . . , xn) =: C1 is nonzero, but
C1(xj = pj) is zero. Thus, (xj − pj) divides C1. Let a be an assignment on all the variables
in C1, except xj and the variables Sj in pj , with the property: C1 at a is nonzero. Since C1 is
nonzero, we can find such an assignment. Now our new polynomial C2 on the variables Sj is of
the form:

C2(Sj) = C(p′1, . . . , p
′
j−1, xj , aj+1, . . . , an)

where, for each i ∈ [j−1], p′i is the polynomial on the variables Si∩Sj , and ai’s are field constants
decided by our assignment a. By the design, for each i ∈ [j − 1], |Si ∩ Sj | ≤ 10 log n′. Since p′i
are polynomials on variables Si∩Sj of individual degree< δ, each p′i has a circuit of size at most
nδ10 logn

′
≤ δ11 logn

′
. Then we have a circuit for C2 of size at most s1 := s + n · δ11 logn

′
, and

degree at most d1 := d ·δc1 log n
′. Since (xj−pj) divides C2, we can invoke the VP factorization

algorithm [Kal89] (see [Bür13, Thm.2.21] for the arithmetic circuit complexity of factors) and
get an arithmetic circuit for pj of size (s1d1)

c3 , for some absolute constant c3 (independent of
c1, c2).

Now we fix constants c1, c2. Pick c1 such that δc0·c1 logn
′
is asympotically larger than

(2snδ11 logn
′
· dδc1 logn

′)c3 > (s1d1)
c3 . Since sd = n′ and δ ≥ 2, the absolute constant

c1 := 15c3/c0 (independent of c2) satisfies the above condition.
Pick c2, following Lem.9, such that c2 log n

′ > 10 · (c1 log n
′)2/(10 log n′). So, c2 := 1 + c21

works. With these values of c1, c2, we have a design that ‘stretches’ c2 log n
′ variables to n

subsets with the required ‘low’ intersection property. It is computable in poly(n′)-time.

7

Moreover, if C(p1, . . . , pn) is zero then, by the above discussion, pj = qc1 log n′(Sj) has a circuit
of size (s1d1)

c3 = o(δc0·c1 logn
′
). This violates the lower bound hypothesis. Thus, C(p1, . . . , pn)

is nonzero.
The time for computing (p1, . . . , pn) depends on: (1) computing the design (i.e. poly(n′)-

time), and (2) computing qc1 logn′ (i.e. δO(logn′)-time). Thus, the arity reduction map for VP is
computable in δO(logn′) time.

Once we have a polynomial that is hard for a tiny model, to apply the above lemma, we
need to show that it is also hard for VP. This is done by depth-reduction results. First, we
need a lemma that converts a monomial into a sum of powers. This was used in [GKKS13]. (It
requires char F = 0 or large.)

Lemma 11 (Fischer’s Trick [Fis94]). Over a field F of char(F) = 0 or > r, any expression
of the form g =

∑

i∈[k]

∏

j∈[r] gij with deg(gij) ≤ δ, can be rewritten as g =
∑

i∈[k′] cig
r
i where

k′ := k2r, deg(gi) ≤ δ and ci ∈ F.

Motivated by this transformation (when 2r is ‘small’), we define a tiny subclass of VP.

Definition 12. The diagonal depth-4 circuits compute polynomials of the form
∑

i∈[k] cif
a
i

where fi’s are sparse polynomials in F[x1, . . . , xn] of degree ≤ b and ci’s in F. A standard
notation to denote this class is Σ ∧a ΣΠb(n). This is a special case of the depth-4 ΣΠaΣΠb(n)
model that computes polynomials of the form

∑

i∈[k]

∏

j∈[a] fi,j where fi,j’s are sparse polynomials
in F[x1, . . . , xn] of degree ≤ b.

Given a constant c > 1, computable functions µ(a) = Ω(a) and µ′, we define the class
Tµ,µ′,c , called tiny diagonal depth-4, containing Σ ∧a ΣΠb(n) circuits of size ≤ s that compute
polynomials of semantic individual-degree ≤ a′ and 2n + 2b + µ(a) + µ′(a′) < sc.

Analogously, we define the class T ′
µ′,c , called tiny depth-3, containing ΣΠΣ(n) circuits of

size ≤ s that compute polynomials of semantic individual-degree ≤ a′, and 2n + µ′(a′) < sc.

Remark. Note that n, b = O(log s) and by picking the function µ(·) (resp. µ′) arbitrarily
large we can make a = a(s) = ω(1) (resp. a′) an arbitrarily small computable function. Also,
in this regime the number of monomials in the bottom ΣΠb layer is

(

n+b
b

)

< 2n+b < s2c, so
the fi’s can be thought of as given in the dense representation. Analogously, in tiny depth-3,
n = O(log s) and the semantic individual-degree bound a′ = ω(1) can be picked arbitrarily
small.

An alternative interpretation of the tiny models can be given using the parameterized com-
plexity [DF13] of PIT. Essentially, we are interested in hitting-sets for the diagonal depth-4
model that are fixed parameter tractable wrt n, b, a and a′ (input size is s). Analogously, we are
interested in hitting-sets for the depth-3 model that are fixed parameter tractable wrt n and a′,
where a′ is the semantic individual-degree bound (input size is s).

Now we invoke VP depth-reduction to get to the tiny model, and finish our proof.

Proof of Thm.1. The proof is along the lines of [AV08, Thm.3.2]. Using Lem.6, from poly-time
hitting-set generator for tiny diagonal depth-4, we get a hard polynomial for this model. Then
we show that it is also hard for VP and invoke Lem.10 to get the VP arity reduction.

Now we provide the details. Let constant c > 1, functions µ(a) = Ω(a) and µ′ be given
in the hypothesis. Let C ⊂ Tµ,µ′,c be the set of tiny diagonal depth-4 circuits of size ≤ s and
arity m := log s. Assume that C has a (se, se)-hsg f(y) for some constant e ≥ 1. Then using
Lem.6, we have an m-variate polynomial qm with individual degree less than some constant
2δ, δm−1 = δlog s−1 > se log s, and qm is computable in sO(1) = δO(m) time. It has degree
= δm. Importantly, qm /∈ Tµ,µ′,c , thus, no tiny diagonal depth-4 circuit of size ≤ s = δΘ(m) can

8

compute it (otherwise, qm(f(y)) 6= 0 which contradicts its definition as an annihilator). Next
we show that it is also not computable by any δo(m)-size arithmetic circuit.

For the sake of contradiction, assume that qm has a δo(m)-size circuit. From depth-reduction
results [Sap16] we get a circuit C, of Θ(log δm)-depth and sm = δo(m) size, with the additional
properties:

1. alternative layers of addition/multiplication gates with the top-gate (root) being addition.

2. below each multiplication layer the polynomial degree at least halves.

3. fan-in of each multiplication gate is at most 5.

Now we cut the circuit C at the t-th layer of multiplication gates from the top, where
t = t(sm) will be fixed later, to get the two parts:

Top part: the top part computes a polynomial of degree at most 5t and the number of variables

is at most sm. So it can be reduced to a ΣΠ circuit of size
(

sm+5t

5t

)

= s
O(5t)
m (Stirling’s

approximation, see [Sap16, Prop.4.4]).

Bottom part: in the bottom part, we can have at most sm many top-multiplication gates that
feed into the top part as input. Each multiplication gate computes a polynomial of degree
at most δm/2t and the number of variables is at most m. So each multiplication gate can

be reduced to a ΣΠ circuit of size
(m+δm/2t

δm/2t

)

= 2O(δmt/2t).

From the above discussion, we have a ΣΠ5tΣΠδm/2t circuit C ′, computing qm, that has size

s
O(5t)
m + sm · 2

O(δmt/2t).
The second summand becomes 2o(m log δ) if we pick t = ω(1) (recall that sm = δo(m) and

δ = O(1)). To get a similar upper bound on the first summand we need to pick 5t log sm =
o(m log δ). Finally, we also want µ(5t) = o(m). A function t = t(sm) = t(s), satisfying the three
conditions, exists as log sm = o(m log δ) and µ(·) is an increasing function. Let us fix such a
function t. (As C has super-constant depth, we can also assume that the cut at depth t will be
possible.) Thus the circuit C ′, computing qm, has size s′m = δo(m).

Let a := 5t and b := δm/2t. Consider the measure E := 2m + 2b + µ(a) + µ′(2δ). We have
the estimate E = s+2o(m) + o(m) +O(1) = s+ o(s) = o(sc). So now we have a shallow circuit
for qm of the form ΣΠaΣΠb. Applying Lem.11, we get a tiny diagonal depth-4 circuit, in Tµ,µ′,c,
computing qm of the form Σ∧aΣΠb and size s′m ·2

a = δo(m) ·2O(µ(a)) = δo(m) which is < s. This
contradicts the hardness of qm. Thus, there is no arithmetic circuit for qm of size δo(m).

Now invoking Lem.10 on the hard family {qm}m≥1, we get our claim.

Proof of Thm.2. Suppose we have a poly(sd2n)-time hitting-set Hs,d,n for size-s degree-d arity-
n circuits. Then, in particular, we have a poly(s)-time blackbox PIT for tiny diagonal depth-4.
Thus, Thm.1 gives a poly(sd)-time arity-reducing polynomial-map (n 7→ O(log sd)) for VP
that preserves nonzeroness. Let n′ := sd correspond to a given VP circuit C. Now, using
Hn′O(1),O(d logn′),O(logn′) we get a poly(n′)-time hitting-set for C.

In the proof of Thm.1 we get the hard polynomial qm, which by Cor.7 gives us an E-
computable polynomial family {qm}m, indexed by the arity, that has arithmetic circuit com-
plexity 2Ω(m).

The existence of such a family {qm}m has interesting complexity consequences.

Lemma 13 (Class separation). If we have an E-computable polynomial family {fn}n with
individual-degree O(1) and arithmetic circuit complexity 2Ω(n), then either E 6⊆#P/poly or VNP
has polynomials of arithmetic complexity 2Ω(n).

9

Proof. Say, for a constant δ ≥ 1, we have an E-computable multi-δ-ic polynomial family {fn}n
with arithmetic circuit complexity 2Ω(n). Clearly, the coefficients in fn have bitsize 2Ω(n). By
using a simple transformation, given in [KP09, Lem.3.9], we get a multi-δ-ic polynomial family
{hn}n, that is E-computable and has arithmetic complexity 2Ω(n), such that its coefficients are
{0,±1}.

Assume E⊆#P/poly. Since each coefficient of hn is a signed-bit that is computable in E, we
deduce that the coefficient-function of hn is in #P/poly. Thus, by [Bür13, Prop.2.20], {hn}n is
in VNP and has arithmetic complexity 2Ω(n).

Our techniques could handle many other ‘tiny’ models. The proofs are given in Sec.A.

Theorem 14 (Tiny depth-3). If we have poly-time hitting-sets for a tiny depth-3 model, then for
VP circuits we have a poly(sd)-time arity reduction (n 7→ O(log sd)) that preserves nonzeroness
(and proves an exponential lower bound).

Theorem 15 (Width-2 ABP). If we have poly(s2n)-time hitting-sets for size-s arity-n width-
2 upper-triangular ABP, then for VP circuits we have a poly(sd)-time arity reduction (n 7→
O(log sd)) that preserves nonzeroness (and proves an exponential lower bound).

Our method could also handle individual-degree a′ = O(1) (eg. multilinear polynomials),
but then we have to allow arity ω(log s) (clearly, arity O(log s) trivializes the model [BOT88]).
We state our result below in parameterized complexity terms. (Proof in Sec.A.)

Multilinear tiny depth-3. Given a constant c > 1 and an arbitrary function µ′(a′) = Ω(a′),
we define the class Mµ′,c , called multilinear tiny depth-3, containing ΣΠΣ(n) circuits of size
≤ s that compute multilinear polynomials, and µ′(n/ log s) < sc.

Theorem 16 (Multilinear tiny depth-3). If we have poly-time hitting-sets for a multilinear tiny
depth-3 model, then for VP circuits we have a poly(sd)-time arity reduction (n 7→ O(log sd))
that preserves nonzeroness (and proves an exponential lower bound).

2.1 Arbitrarily small arity suffices

Using the previous result we can now reduce the arity, for PIT purposes, arbitrarily.

Proof of Thm.3. Suppose we have a poly(s, µ(n))-time hitting-set Hs,n for size-s arity-n ΣΠΣ∧
circuits. Wlog we can assume that µ(n) = Ω(n). Let a = a(s) be a function satisfying µ(a) ≤ s,
and define n = n(s) := a log s. Consider a size-s ΣΠΣ(n) circuit C 6= 0 computing a multilinear
polynomial. We intend to design a hitting-set for C.

Partition the variable set {x1, . . . , xn} into a blocks Bj , j ∈ [a], each of size log s. Let Bj =
{xu(j)+1, xu(j)+2, . . . , xu(j)+log s}, for all j ∈ [a] (pick u to be an appropriate function). Consider

the arity-reducing “local Kronecker” map ϕ : xu(j)+i 7→ y2
i

j . Note that ϕ(C) ∈ F[y1, . . . , ya],
and its semantic individual-degree is at most 2s.

It is easy to see that ϕ(C) 6= 0 (basically, use the fact that C computes a nonzero multilinear
polynomial and ϕ keeps the multilinear monomials distinct). Finally, ϕ(C) becomes an arity-a
ΣΠΣ∧ circuit of size at most s + s · 2log s = O(s2). Thus, using HO(s2),a we get a hitting-set
for ϕ(C) of time-complexity poly(s2, µ(a))= poly(s). In turn, we get a poly-time hitting-set for
multilinear tiny depth-3 modelMµ,2. By invoking Thm.16 we finish the argument.

We can also work with a version of diagonal depth-4 with arbitrarily small n & a.

Theorem 17 (Tinier n, a). Fix functions µ = µ(s) and µ′. If we have poly(s, µ(a), µ′(n))-time
hitting-set for size-s Σ ∧a ΣΠ(n) circuits, then for VP circuits we have a poly(sd)-time arity
reduction (n 7→ O(log sd)) that preserves nonzeroness (and proves an exponential lower bound).

(Proved in Sec.A.)

10

3 Low-cone concentration and hitting-sets– Proof of Thm.4

In this section we initiate a study of properties that are relevant for tiny circuits (or the log-arity
regime).

Definition 18 (Cone of a monomial). A monomial xe is called a submonomial of xf , if e ≤ f

(i.e. coordinate-wise). We say that xe is a proper submonomial of xf , if e ≤ f and e 6= f .
For a monomial xe, the cone of xe is the set of all submonomials of xe. The cardinality of

this set is called cone-size of xe. It equals
∏

(e+ 1) :=
∏

i∈[n](ei + 1), where e = (e1, . . . , en).
A set S of monomials is called cone-closed if for every monomial in S all its submonomials

are also in S.

Lemma 19 (Coef. extraction). Let C be a circuit which computes an arity-n degree-d polyno-
mial. Then for any monomial m =

∏

i∈[n] x
ei
i , we have blackbox access to a poly(|C|d, cs(m))-size

circuit computing the coefficient of m in C, where cs(m) denotes the cone-size of m.

Proof. Our proof is in two steps. First, we inductively build a circuit computing a polynomial
which has two parts; one is coefm(C) ·m and the other one is a “junk” polynomial where every
monomial is a proper super-monomial of m. Second, we construct a circuit which extracts the
coefficient of m. In both these steps the key is a classic interpolation trick.

We induct on the variables. For each i ∈ [n], let m[i] denote
∏

j∈[i] x
ej
j . We will construct a

circuit C(i) which computes a polynomial of the form,

C(i)(x) = coefm[i]
(C) ·m[i] + C

(i)
junk (2)

where, for every monomial m′ in the support of C
(i)
junk, m[i] is a proper submonomial of m′

[i].

Base case: Since C =: C(0) computes an arity-n degree-d polynomial, C(x) can be written
as C(x) =

∑d
j=0 cjx

j
1 where, cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1 be some e1 + 1 distinct

elements in F. For every αj , let Cαjx1 denote the circuit C(αjx1, x2, . . . , xn) which computes
c0 + c1αjx1 + . . .+ ce1α

e1
j xe11 + · · ·+ cdα

d
jx

d
1 . Since

M =







1 α0 . . . αe1
0

...
...

...
...

1 αe1 . . . αe1
e1







is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1] ∈ Fe1+1, a · M =

[0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=
∑e1

j=0 ajC
(0)
αjx1 . Its least monomial wrt

x1 has degx1
≥ e1, which is the property that we wanted.

Induction step (i → i + 1): From induction hypothesis, we have the circuit C(i) with the
properties mentioned in Eqn.2. The polynomial can also be written as b0 + b1xi+1 + . . . +
bei+1x

ei+1

i+1 + . . . bdx
d
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn]. Like the proof of the base

case, for ei+1+1 distinct elements α0, . . . , αei+1 ∈ F, we get C(i+1) =
∑ei+1

j=0 ajC
(i)
αjxi+1 , for some

a = [a0, . . . , aei+1] ∈ Fei+1+1 and the structural constraint of C(i+1) is easy to verify, completing
the induction.

Now we describe the second step of the proof. After first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C
(n)
junk , m is a proper submonomial of m′.

Consider the polynomial C(n)(x1t, . . . , xnt) for a fresh variable t. Then, using interpolation wrt

11

t we can construct a O(|C(n)| · d)-size circuit for coefm(C) ·m, by extracting the coefficient of

tdeg(m), since the degree of every monomial appearing in C
(n)
junk is > deg(m). Now evaluating at

1, we get coefm(C). The size, or time, constraint of the final circuit clearly depends polynomially
on |C|, d and cs(m).

But, how many low-cone monomials can there be? Fortunately, in the log-arity regime they
are not too many [Sap13]. Though, in general, they are quasipolynomially many.

Lemma 20 (Counting low-cones). The number of arity-n monomials with cone-size at most k
is O(sk2), where s := (3n/ log k)log k.

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials
is less than k2. Next, we multiply by the number of possible support sets to get the estimate.

Let T (k, ℓ) denote the number of cone-size≤ k monomials m with support set, say, exactly
{x1, . . . , xℓ}. Since the exponent of xℓ in such an m is at least 1 and at most k − 1, we have
the following by the disjoint-sum rule: T (k, ℓ) ≤

∑k
i=2 T (k/i, ℓ− 1). This recurrence affords an

easy inductive proof as, T (k, ℓ) <
∑k

i=2(k/i)
2 < k2 ·

∑k
i=2

(

1
i−1 −

1
i

)

< k2.

From the definition of cone, a cone-size ≤ k monomial can have support size at most ℓ :=
⌊log k⌋. The number of possible support sets, thus, is

∑ℓ
i=0

(

n
i

)

. Using the binomial estimates

[Juk10, Chap.1], we get
∑ℓ

i=0

(

n
i

)

≤ (3n/ℓ)ℓ.

The partial derivative space of arithmetic circuits has been defined, and mined, in various
works [CKW11]. Even when this space is small we do not have efficient hitting-sets known
(though [FSS14] gave an sO(log log s)-time hitting-set.). Below we give a poly-time solution in the
log-arity regime. (It requires char F = 0 or large.)

Proof of Thm.4. The proof has two steps. First, we show that with respect to any monomial
ordering ≺, for all nonzero C ∈ C, the dimension of the partial derivative space of C is lower
bounded by the cone-size of the leading monomial (that nontrivially occurs) in C. Using this,
we can get a blackbox PIT algorithm for C by testing the coefficients of all the monomials of C
of cone-size ≤ k for zeroness. Next, we estimate the time complexity to do this.

The first part is the same as the proof of [For14, Cor.8.4.14] (with origins in [FS13]). Here, we
give a brief outline. Let LM(·) be the leading monomial operator wrt the monomial ordering
≺. It can be shown that for any polynomial f(x), the dimension of its partial derivative
space ∂x<∞(f) is the same as D := # {LM(g) | g ∈ ∂x<∞(f)} (see [For14, Lem.8.4.12]). This
means that dim ∂x<∞(f) is lower-bounded by the cone-size of LM(f) [For14, Cor.8.4.13], which
completes the proof of our first part.

Next, we apply Lem.19, on the circuit C and a monomial m of cone-size ≤ k, to get the
coefficient of m in C in poly(sdk)-time. Finally, Lem.20 tells that we have to access at most
k2 · (3n/ log k)log k many monomials m. Multiplying these two expressions gives us the time
bound.

This gives us immediately,

Corollary 21. Let C be a set of arity-n degree-d size-s circuits with n = O(log sd). Suppose
that, for all C ∈ C, the dimension of the partial derivative space of C is poly(sd). Then, the
blackbox PIT for C can be solved in poly(sd)-time.

A depth-3 diagonal circuit [Sax08] is of the form C(x) =
∑

i∈[k] ciℓ
di
i , where ℓi’s are linear

polynomials over F and ci’s in F. We use rk(C) to denote the linear rank of the polynomials
{ℓi}i.

12

Theorem 22. Let C be the set of all arity-n degree-d size-s depth-3 diagonal circuits. Suppose
that, for all C ∈ C, rk(C) = O(log sd). Then, the blackbox PIT for C can be solved in poly(sd)-
time.

(Proved in Sec.B)

4 Cone-closed basis after shifting– Proof of Thm.5

In this section we will consider polynomials over a vector space, say Fk. This viewpoint has
been useful in studying arithmetic branching programs (ABP), eg. [ASS13, FSS14, AGKS15,
GKST16]. Let D ∈ Fk[x] and let sp(D) be the span of its coefficients. We say that D has a
cone-closed basis if there is a cone-closed set of monomials B whose coefficients in D form a
basis of sp(D).

This definition is motivated by the fact that there are some models which have this property
naturally, for eg. see Lem.30. In general, this concept subsumes some of the well-known notions
of rank concentration [ASS13, FSS14, For15, For14], i.e. ensuring a basis of sp(D) in a set of
monomials that have a small measure in some sense (eg. cone-size or support-size.).

Lemma 23. Let D(x) be a polynomial in Fk[x]. Suppose that D(x) has a cone-closed basis.
Then, D(x) has (k + 1)-cone concentration and (lg 2k)-support concentration.

Proof. Let B be a cone-closed set of monomials forming the basis of sp(D). Clearly, |B| ≤ k.
Thus, each m ∈ B has cone-size ≤ k. In other words, D is (k + 1)-cone concentrated.

Moreover, each m ∈ B has support-size ≤ lg k. In other words, D is (lg 2k)-support concen-
trated.

Ideally, we would want to modify a given tiny circuit to get a cone-closed basis. This would
solve the PIT problem as shown in the previous section. What are the possible ways to get this?
We will show that the concept of basis isolating weight assignment, introduced in [AGKS15],
leads to a cone-closed basis.

Basis & weights. Consider a weight assignment w on the variables x. It extends to monomials
m = xe as w(m) := 〈e,w〉 =

∑n
i=1 eiwi. Sometimes, we also use w(e) to denote w(m).

Similarly, for a set of monomials B, the weight of B is w(B) :=
∑

m∈B w(m).
Let B = {m1, . . . ,mℓ} resp. B′ = {m′

1, . . . ,m
′
ℓ} be an ordered set of monomials (non-

decreasing wrt w) that forms a basis of the span of coefficients of f ∈ Fk[x]. Wrt w, we say
that B < B′ if there exists i ∈ [ℓ] such that ∀j < i, w(mj) = w(m′

j) but w(mi) < w(m′
i). We

say that B ≤ B′ if either B < B′ or if ∀i ∈ [ℓ], w(mi) ≤ w(m′
i). A basis B is called a least

basis, if for any other basis B′, B ≤ B′. When is it unique?
A weight assignment w is called a basis isolating weight assignment for a polynomial f(x) ∈

Fk[x] if there exists a basis B such that:

1. weights of all monomials in B are distinct, and

2. the coefficient of every m ∈ supp(f) \ B is in the linear span of {coefm′(f) | m′ ∈ B,
w(m′) < w(m)}.

Lemma 24. If w is a basis isolating weight assignment for f , then f has a unique least basis
B wrt w. In particular, for any other basis B′ of f , we have w(B) < w(B′).

Proof. Let ℓ be the dimension of sp(f). Since w is a basis isolating weight assignment, we get
a basis B that satisfies the two conditions in the definition of w. We will show that B is the
unique least basis. Let B = {m1, . . . ,mℓ} with w(m1) < . . . < w(mℓ).

13

Consider any other basis B′ = {m′
1, . . . ,m

′
ℓ}, with w(m′

1) ≤ . . . ≤ w(m′
ℓ). Let j be the

minimum number such that mj 6= m′
j (it exists as B 6= B′). Suppose w(mj) ≥ w(m′

j). Since
m′

j /∈ B, the coefficient of m′
j can be written as a linear combination of the coefficients of mi’s

for i < j. From the definition of j, for all i < j, mi = m′
i. So the coefficient of m′

j can also be
written as a linear combination of the coefficients of m′

i’s for i < j. This contradicts that B′ is
a basis and proves that w(mj) < w(m′

j).
Now we move beyond j. First, we prove that for all i ∈ [ℓ], w(mi) ≤ w(m′

i). For the
sake of contradiction assume that there exists a number a such that w(ma) > w(m′

a). Pick
the least such a. Let V be the span of the coefficients of monomials in f whose weights are
≤ w(m′

a). Since, for all i ∈ [a], the coefficient of m′
i is in V and all of them are linearly

independent, we know that dim(V) ≥ a. On the other hand, for every monomial m in f of
w(m) ≤ w(m′

a) < w(ma), the coefficient of m can be written as a linear combination of the
coefficients of mi’s where i < a. This implies that dim(V) < a, which yields a contradiction.
Thus, for all i ∈ [ℓ], w(mi) ≤ w(m′

i). In other words, B ≤ B′.
Togetherwith w(mj) < w(m′

j), we get that B < B′ and w(B) < w(B′).

Next we want to study the effect of shifting f by a basis isolating weight assignment. To do
that we require an elaborate notation. As before f(x) is an arity-n degree-d polynomial over Fk.
For a weight assignment w, by f(x + tw) we denote the polynomial f(x1 + tw1 , . . . , xn + twn).
Let M = {a ∈ Nn : |a|1 ≤ d} correspond to the relevant monomials. For every a ∈ M ,
coefxa(f(x+ tw)) can be expanded using the binomial expansion, and we get:

∑

b∈M

(

b

a

)

· tw(b)−w(a) · coefxb(f(x)) . (3)

We express this data in matrix form as F ′ = D−1TD · F , where the matrices involved are,

1. F and F ′: rows are indexed by the elements of M and columns are indexed by [k]. In F
resp. F ′ the a-th row is coefxa(f(x)) resp. coefxa(f(x+ tw)).

2. D: is a diagonal matrix with both the rows and columns indexed by M . For a ∈ M ,
Da,a := tw(xa) .

3. T : both the rows and columns are indexed by M . For a,b ∈M , Ta,b :=
(

b
a

)

.

We will prove the following combinatorial property of T : For any B ⊆ M , there is a
cone-closed A ⊆ M such that the submatrix TA,B has full rank. Our proof is an involved
double-induction, so we describe the construction of A as Algorithm 1.

Lemma 25 (Comparison). Let B and B′ be two nonempty subsets of M such that B ⊆ B′. Let
A = Find-Cone-closed(B, n) and A′ = Find-Cone-closed(B′, n) in Algo.1. Then A ⊆ A′.
Moreover, |A| = |B|.

Proof. We prove the lemma using induction on n.
Base case (n = 1): For n = 1, the set A is {0, . . . , |B| − 1} and the other one A′ is

{0, . . . , |B′| − 1}. Since B is a subset of B′, |B| ≤ |B′|. So A is also a subset of A′.
Induction step (n − 1 → n): Let ℓ resp. ℓ′ be the bounds on the size of preimages of πn

in B resp. B′. To denote the set of all elements in Img(πn) whose preimage size ≥ i, we use
Fi resp. F ′

i . Since B ⊆ B′ we have ℓ ≤ ℓ′, and for all i ∈ [ℓ′], Fi ⊆ F ′
i . So from induction

hypothesis, Si ⊆ S′
i. Since A =

⋃ℓ
i=1 Si × {i − 1} and A′ =

⋃ℓ′

i=1 S
′
i × {i − 1}, we deduce that

A ⊆ A′.

14

Algorithm 1 Finding cone-closed set

Input: A subset B of the n-tuples M .
Output: A cone-closed A ⊆M with full rank TA,B.
function Find-Cone-closed(B, n)

if n = 1 then

s← |B|;
return {0. . . . , s− 1};
else

Let πn be the map which projects the set of monomials B on the first n− 1 variables;
Let ℓ be the maximum number of preimages under πn;
∀i ∈ [ℓ], Fi collects those elements in Img(πn) whose preimage size≥ i;
A0 ← ∅;
for i← 1 to ℓ do

Si ← Find-Cone-closed(Fi, n− 1);
Ai ← Ai−1

⋃

Si × {i− 1};
end for

return A;
end if

end function

Note that |A| = |B| is true when n = 1. Let us prove the induction step from n−1 to n. Since
|A| =

∑

i∈[ℓ] |Si|, and by induction hypothesis |Si| = |Fi|, we deduce that |A| =
∑

i∈[ℓ] |Fi|. From
the definition of Fi’s we get that Img(πn) = F1 ⊇ F2 ⊇ · · · ⊇ Fℓ. A monomial m ∈ πn(B) that
has preimage size j, is counted exactly j times in

∑

i∈[ℓ] |Fi|. Thus, |A| =
∑

i∈[ℓ] |Fi| = |B|.

Lemma 26 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-closed(B, n)
in Algo.1, then A is cone-closed.

(Proved in Sec.C)

We recall a fact that has been used for ROABP PIT. (It requires char F = 0 or large.)

Lemma 27. [GKS16, Clm.3.3] Let a1, . . . , an be distinct non-negative integers. Let A be an
n× n matrix with, i, j ∈ [n], Ai,j :=

(aj
i−1

)

. Then, A is full rank.

Lemma 28 (Full rank). If A = Find-Cone-Closed(B, n) then TA,B has full rank.
(Proved in Sec.C)

Now we are ready to prove our main theorem using the transfer matrix equation.

Proof of Thm.5. As we mentioned in Eqn.3, the shifted polynomial f(x + tw) yields a matrix
equation F ′ = D−1TD · F . Let k′ be the rank of F . We consider the following two cases.

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a subset of k′

columns such that FM,S has rank k′. The matrix FM,S denotes the polynomial fS(x) ∈ F[x]k
′
,

where fS(x) is the projection of the ‘vector’ f(x) on the coordinates indexed by S. So, any
linear dependence relation among the coefficients of f(x) is also valid for fS(x). So w is also a
basis isolating weight assignment for fS(x). Now from our Case 2, we can claim that fS(x+ tw)
has a cone-closed basis A. Thus, coefficients of the monomials, corresponding to A, in f(x)
form a basis of sp(f). This implies that f(x+ tw) has a cone-closed basis A.

Case 2 (k′ = k): Let B be the least basis of f(x) wrt w and A = Find-Cone-closed(B, n).
We prove that the coefficients of monomials in A form a basis of the coefficient space of f(x+tw).

15

To prove this, we show that det(F ′
A,[k]) 6= 0. Define T ′ := TDF so that F ′ = D−1T ′. Using

Cauchy-Binet formula [Zen93], we get that

det(F ′
A,[k]) =

∑

C∈(Mk)

det(D−1
A,C) · det(T

′
C,[k]) .

Since for all C ∈
(

M
k

)

\ {A}, the matrix D−1
A,C is singular, we have det(F ′

A,[k]) = det(D−1
A,A) ·

det(T ′
A,[k]). Again applying Cauchy-Binet formula for det(T ′

A,[k]), we get

det(F ′
A,[k]) = det(D−1

A,A) ·
∑

C∈(Mk)

tw(C) det(TA,C) · det(FC,[k]) .

From Lem.24, we have that for all basis C ∈
(

M
k

)

\ {B}, w(C) > w(B). The matrix TA,B

is nonsingular by Lem.28, and the other one FB,[k] is nonsingular since B is a basis. Hence,
the sum is a nonzero polynomial in t. In particular, det(F ′

A,[k]) 6= 0, which ensures that the

coefficients of the monomials corresponding to A form a basis of spF(t)(f(x+tw)). Since Lem.26
says that A is also cone-closed, we get that f(x+ tw) has a cone-closed basis.

5 Conclusion

We introduce the tiny diagonal depth-4 (resp. tiny variants of depth-3, width-2 ABP and ex-
tremely low-arity ΣΠΣ∧ or Σ ∧a ΣΠ) model with the motivation that its poly-time hitting-set
would: (1) solve VP PIT (in quasipoly-time) via a poly-time arity reduction (n 7→ log sd), and
(2) prove that either E 6⊆#P/poly or VNP has polynomials of arithmetic complexity 2Ω(n). Since
now we could focus solely on the PIT of log-arity VP circuits, we initiate a study of properties
that are useful in that regime. These are low-cone concentration and cone-closed basis. Using
these concepts we solve a special case of diagonal depth-3 circuits. This work throws up a host
of tantalizing models and poses several interesting questions:

Could the arity reduction phenomenon in Thm.2 be improved (say, to 22
n
)?

Could we show that the g in Lem.6 is in VNP and not merely E-computable? This would
strongly relate PIT to VNP 6=VP.

Could we prove nontrivial lower bounds against the tiny models?

Could we solve PIT for size-s ΣΠΣ ∧ (n) in poly(s, µ(n))-time, for some function µ?

Could we solve PIT for size-s semantic individual-degree-a′ ΣΠΣ(n) circuits in poly(s2n, µ′(a′))-
time, for some function µ′?

Could we solve PIT for size-s ΣΠΣ(n) in poly(s, µ(n))-time, for some function µ?

Could we do blackbox PIT for ROABP when n = ω(1)? For instance, given oracle C =
∑

i∈[k]

∏

j∈[n] fi,j(xj) of size≤ s, we want a hitting-set in poly(s, µ(n))-time, for some function
µ. It is known that diagonal depth-3 blackbox PIT reduces to this problem if we demand
µ(n) = 2O(n) [FSS14].

Could we do blackbox PIT for size-s arity-(log s) individual-degree-(log log s) ROABPs?

Could we do blackbox PIT for size-s arity ω(log s) multilinear ROABPs?

Acknowledgements

We thank Ramprasad Saptharishi for many useful discussions. M.F. & N.S. thank the organizers
of algebraic complexity workshops in 2014 (MPI Saarbrücken & TIFR Mumbai) that initiated
the early discussions. N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-14).

16

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[Ack28] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische
Annalen, 99(1):118–133, 1928.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets
for ROABP and sum of set-multilinear circuits. SIAM Journal on Computing,
44(3):669–697, 2015.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, pages 92–105, 2005.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of
mathematics, pages 781–793, 2004.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-
set for set-depth-∆ formulas. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 321–330, 2013.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Ja-
cobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas &
depth-3 transcendence degree-k circuits. In STOC, pages 599–614, 2012.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA, pages 67–75, 2008.

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic Independence and Blackbox
Identity Testing. Inf. Comput., 222:2–19, 2013. (Conference version in ICALP
2011).

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse mul-
tivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 301–309, 1988.

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, vol-
ume 7. Springer Science & Business Media, 2013.

[CKSV16] Suryajith Chillara, Mrinal Kumar, Ramprasad Saptharishi, and V. Vinay. The
chasm at depth four, and tensor rank : Old results, new insights. CoRR,
abs/1606.04200, 2016.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic com-
plexity and beyond. Foundations and Trends in Theoretical Computer Science,
6(1-2):1–138, 2011.

[DdOS14] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence of
Polynomials under Shifts. In Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 417–428. Springer International Publishing, 2014.

17

[DF13] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized com-
plexity, volume 4. Springer, 2013.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching
is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
754–763, 2016.

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics
Magazine, 67(1):59–61, 1994.

[For14] Michael A. Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branching Programs. PhD thesis, Massachusetts Institute of Technology, 2014.

[For15] Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 451–465. IEEE, 2015.

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank
recovery and compressed sensing. In STOC, pages 163–172, 2012.

[FS13] Michael A Forbes and Amir Shpilka. Explicit noether normalization for simulta-
neous conjugation via polynomial identity testing. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, pages 527–542.
Springer, 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for
multilinear read-once algebraic branching programs, in any order. In Symposium
on Theory of Computing (STOC), New York, NY, USA, May 31 - June 03, 2014,
pages 867–875, 2014.

[GGOW16] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic
polynomial time algorithm for non-commutative rational identity testing. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, pages 109–117, 2016.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arith-
metic circuits: A chasm at depth three. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 578–587, 2013.

[GKPT16] Ignacio Garćıa-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé.
On the complexity of partial derivatives. CoRR, abs/1607.05494, 2016. (To appear
in STACS’17).

[GKS16] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width,
and commutative, read-once oblivious abps. In 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 29:1–29:16,
2016.

18

[GKST16] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Determinis-
tic identity testing for sum of read-once oblivious arithmetic branching programs.
Computational Complexity, pages 1–46, 2016. (Conference version in CCC 2015).

[GMQ16] Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of VP and
VNP. In 43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 34:1–34:14, 2016.

[Gro15] Joshua A Grochow. Unifying known lower bounds via geometric complexity theory.
computational complexity, 24(2):393–475, 2015.

[GT16] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-NC.
Electronic Colloquium on Computational Complexity (ECCC), 23:182, 2016.

[Juk10] Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science.
Springer Publishing Company, Incorporated, 1st edition, 2010.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Ran-
domness and Computation, 5:375–412, 1989.

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. In Proceedings of the Thirty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’03, pages 355–364, 2003.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical
Computer Science, 448:56–65, 2012.

[KP09] Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the reals.
Computational Complexity, 18(4):551–575, 2009.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits.
Computational Complexity, 16(2):115–138, 2007.

[KS16a] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic
rank. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 34:1–34:27, 2016.

[KS16b] Mrinal Kumar and Shubhangi Saraf. Sums of products of polynomials in few vari-
ables: Lower bounds and polynomial identity testing. In 31st Conference on Com-
putational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
35:1–35:29, 2016.

[KSS14] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polyno-
mial identity testing and deterministic multivariate polynomial factorization. In
IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC,
Canada, June 11-13, 2014, pages 169–180, 2014.

[Mul12a] Ketan D. Mulmuley. The GCT program toward the P vs. NP problem. Commun.
ACM, 55(6):98–107, June 2012.

[Mul12b] Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between blackbox
derandomization of polynomial identity testing and derandomization of Noether’s
normalization lemma. In FOCS, pages 629–638, 2012.

19

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy
as matrix inversion. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 345–354, 1987.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[NW95] Noam Nisan and Avi Wigderson. Lower bounds for arithmetic circuits via partial
serivatives (preliminary version). In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pages 16–25, 1995.

[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over
positive characteristic: New criterion and applications to locally low algebraic rank
circuits. In 41st International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 74:1–74:15,
2016.

[Sap13] Ramprasad Saptharishi. personal communication, 2013.

[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Technical report, https://github.com/dasarpmar/lowerbounds-survey/, 2016.

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP, volume
5125 of Lecture Notes in Computer Science, pages 60–71. Springer, 2008.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS,
99:49–79, 2009.

[Sax13] Nitin Saxena. Progress on polynomial identity testing - II. Electronic Colloquium
on Computational Complexity (ECCC), 20:186, 2013.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

[SS12] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-
fanin depth-3 circuits: The field doesn’t matter. SIAM Journal on Computing,
41(5):1285–1298, 2012.

[SSS09] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth
2 circuits over algebras. In IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2009, December 15-
17, 2009, IIT Kanpur, India, pages 371–382, 2009.

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 iden-
tity testing, sparse factorization and duality. Computational Complexity, 22(1):39–
69, 2013.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science,
5(3-4):207–388, 2010.

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Infor-
mation and Computation, 240:2–11, 2015.

20

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta,
Georgia, USA, pages 249–261, 1979.

[Zen93] Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula.
Linear Algebra and its Applications, 184:79–82, 1993.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation, EUROSAM
’79, pages 216–226, 1979.

A Proofs from Sec.2: Other tiny models

If a circuit C computes a polynomial of individual-degree ≤ d0 then we say that the semantic
individual-degree bound of C is d0. Recall the definition of the tiny depth-3 model (Defn.12).

Theorem 14 (restated). [Tiny depth-3] If we have poly-time hitting-sets for a tiny depth-
3 model, then for VP circuits we have a poly(sd)-time arity reduction (n 7→ O(log sd)) that
preserves nonzeroness (and proves an exponential lower bound).

Proof. The proof strategy is identical to that of Thm.1. So, we will only sketch the main points
here.

Let constant c > 1, and function µ′ be given in the hypothesis. Let C ⊂ T ′
µ′,c be the set

of tiny depth-3 circuits of size ≤ s and arity m := log s. Assume that C has a (se, se)-hsg
f(y) for some constant e ≥ 1. Then using Lem.6, we have an m-variate polynomial qm with
individual-degree less than some constant 2δ, δm−1 = δlog s−1 > se log s, and qm is computable in
sO(1) = δO(m) time. It has degree = δm. Importantly, qm /∈ T ′

µ′,c , thus, no tiny depth-3 circuit

of size ≤ s = δΘ(m) can compute it (otherwise, qm(f(y)) 6= 0 which contradicts its definition
as an annihilator). Next we show that it is also not computable by any δo(m)-size arithmetic
circuit.

For the sake of contradiction, assume that qm has a δo(m)-size circuit. Repeat the depth-
reduction arguments, as in the proof of Thm.1. Let a := 5t and b := δm/2t. Note that we can
ensure a, b = o(log s), a = ω(1), and we have a shallow circuit for qm of the form ΣΠaΣΠb.

It was shown in [GKKS13] that any size-s′ ΣΠaΣΠb(n) circuit can be transformed to a
poly(s′2a+b)-size ΣΠΣb(n) circuit. Applying it here, we get a depth-3 circuit C ′, computing qm,
of the form ΣΠΣ and size δo(m) ·2a+b = δo(m). Moreover, the measure 2m+µ′(2δ) = s+O(1) =
o(sc). Thus, C ′ is a tiny depth-3 circuit in T ′

µ′,c , of size δo(m) which is < s. This contradicts

the hardness of qm. Thus, there is no arithmetic circuit for qm of size δo(m).
Now invoking Lem.10 on the hard family {qm}m≥1, we get our claim. Moreover, by Cor.7

{qm}m is an E-computable polynomial family that has arithmetic circuit complexity 2Ω(m).

We will now consider the polynomials that can be computed by upper-triangular width-2
arithmetic branching programs (ABP).

Theorem 15 (restated). [Width-2 ABP] If we have poly(s2n)-time hitting-sets for size-
s arity-n width-2 upper-triangular ABP, then for VP circuits we have a poly(sd)-time arity
reduction (n 7→ O(log sd)) that preserves nonzeroness (and proves an exponential lower bound).

Proof. In [SSS09, Thm.3] an efficient transformation was given that rewrites a size-s arity-n
depth-3 circuit, times a special product of a linear polynomials, as a poly(s)-size arity-n width-2
upper-triangular ABP. Thus, a poly(s2n)-time hitting-set for the latter model gives a poly(s2n)-
time hitting-set for the former. This by Thm.14 gives us the exponentially hard polynomial

21

family {qm}m≥1 that is E-computable. Now invoking Lem.10 on the hard family, we get the
arity reduction.

Theorem 16 (restated). [Multilinear tiny depth-3] If we have poly-time hitting-sets for
a multilinear tiny depth-3 model, then for VP circuits we have a poly(sd)-time arity reduction
(n 7→ O(log sd)) that preserves nonzeroness (and proves an exponential lower bound).

Proof. The proof strategy is identical to that of Thm.1. So, we will only sketch the main points
here. Let constant c > 1, and function µ′ be given in the hypothesis. Let a′ = a′(s) be a ‘small’
unbounded function determined by the constraint µ′(a′) ≤ s. Assume that size-s arity-(a′ log s)
polynomials inMµ′,c have a (se, se)-hsg f(y) for some constant e ≥ 1.

Let C ⊂ Mµ′,c be the set of multilinear tiny depth-3 circuits of size ≤ s and arity m :=
(e + 2) log s < a′ log s. Since C has the (se, se)-hsg f(y), so using Lem.6, we have an arity
m′ := (e + 1) log s multilinear annihilating polynomial q′m′(x1, . . . , xm′) , which is computable
in sO(1) time (note: 2m

′
= 2(e+1) log s = se+1 > se · m′ = se · (e + 1) log s). Consider its

multiple qm := q′m′ · (xm′+1 · · ·xm) which is also multilinear and an annihilator. It has degree
≥ (m−m′) = log s. Importantly, qm /∈ Mµ′,c , thus, no multilinear tiny depth-3 circuit of size
≤ s = 2Θ(m) can compute it (otherwise, qm(f(y)) 6= 0 which contradicts its definition as an
annihilator). Next we show that it is also not computable by any 2o(m)-size arithmetic circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size circuit. Repeat the depth-
reduction arguments, as in the proof of Thm.1, after cutting at depth t = ω(1). Let a := 5t and
b := m/2t. Note that we can ensure a, b = o(m) = o(log s), a = ω(1), and we have a shallow
circuit for qm of the form ΣΠaΣΠb.

It was shown in [GKKS13] that any size-s′ ΣΠaΣΠb(n) circuit can be transformed to a
poly(s′2a+b)-size ΣΠΣb(n) circuit. Applying it here, we get a depth-3 circuit C ′, computing qm,
of the form ΣΠΣ and size 2o(m) ·2a+b = 2o(m). Moreover, the measure µ′(m/ log s) = µ′(e+2) =
O(1) = o(sc). Thus, C ′ is a multilinear tiny depth-3 circuit inMµ′,c , of size 2

o(m) which is < s.
This contradicts the hardness of qm. Thus, there is no arithmetic circuit for qm of size 2o(m).

Now invoking Lem.10 on the hard family {qm}m≥1, we get our claim. Moreover, by Cor.7
{qm}m is an E-computable polynomial family that has arithmetic circuit complexity 2Ω(m).

Theorem 17 (restated). [Tinier n, a] Fix functions µ = µ(s) and µ′. If we have
poly(s, µ(a), µ′(n))-time hitting-set for size-s Σ∧a ΣΠ(n) circuits, then for VP circuits we have
a poly(sd)-time arity reduction (n 7→ O(log sd)) that preserves nonzeroness (and proves an
exponential lower bound).

Proof. Suppose we have a poly(s, µ(a), µ′(n))-time hitting-set Hs,a,n for size-s Σ ∧a ΣΠ(n) cir-
cuits. Wlog we can assume that µ′(n) = Ω(n). Let a′ = a′(s) = ω(1) be a function satisfying
µ′(a′) ≤ s, and define n′ = n′(s) := a′ log s. Consider a size-s Σ ∧a ΣΠ(n′) circuit C 6= 0
computing a multilinear polynomial. We intend to design a hitting-set for C.

Partition the variable set {x1, . . . , xn′} into a′ blocks Bj , j ∈ [a′], each of size log s. Recall
the map ϕ designed in the proof of Thm.3. We have ϕ(C) 6= 0 (basically, use the fact that
C computes a nonzero multilinear polynomial and ϕ keeps the multilinear monomials distinct).
Finally, ϕ(C) becomes an arity-a′ Σ∧aΣΠ circuit of size at most s+s·2log s = O(s2). Thus, using
HO(s2),a,a′ we get a hitting-set for ϕ(C) of time-complexity poly(s2, µ(a), µ′(a′))= poly(s, µ(a)).

In turn, we get a poly(s, µ(a))-time hitting-set for Σ∧aΣΠ circuits that compute multilinear
polynomials of arity a′ log s = ω(log s). Using an argument identical to that in the proof of
Thm.16, we will get the usual E-computable polynomial family {qm}m that has no arithmetic
circuit of size 2o(m). This finishes the proof by invoking Lem.10 and Cor.7.

22

B Proofs from Sec.3

An arity-n depth-3 diagonal circuit over F can be written as C(x) =
∑k

i=1 cif̃
di
i , where f̃i’s

are linear polynomials. Let fi be the non-constant part of f̃i for all i ∈ [k]. Suppose that
rkF{f1, . . . fk} =: r. Wlog, we can assume that f1, . . . , fr is a basis of the space spanned by fi’s.
Then there exists an r-variate polynomial A(z) such that C(x) = A(f1, . . . , fr). Let LF[x], where
x = (x1, . . . , xn), resp. LF[y], where y = (y1, . . . , yr), be the vector space of linear polynomials
over F.

Using the construction of [SS12, Sec.3.2], in poly(knd)-time, we can find a linear transfor-
mation Ψ : LF[x] → LF[y] such that rkF{Ψ(f1), . . . ,Ψ(fr)} = r and gi := Ψ(fi) are linear forms
(i.e. homogeneous and degree one). Now we prove the following fact which will ensure the
non-zeroness of C(Ψ(x)).

Lemma 29. If A(g1, . . . , gr) = 0 then A is the zero polynomial.

Proof. Since g1, . . . , gr are r linearly independent linear forms on (y1, . . . , yr), we have an in-
vertible linear map τ from LF[y] to itself such that τ(gi) = yi, equivalently, τ

−1(yi) = gi. Thus,
τ−1 induces an F-automorphism τ̃ on F[y].

Suppose that A(g1, . . . , gr) = 0. Then, applying τ̃ on A(g1, . . . , gr), we get A(y1, . . . , yr) = 0,
thus A(z) = 0.

Theorem 22 (restated). Let C be the set of all arity-n degree-d size-s depth-3 diagonal
circuits. Suppose that, for all C ∈ C, rk(C) = O(log sd). Then, the blackbox PIT for C can be
solved in poly(sd)-time.

Proof. The above description gives us a nonzeroness preserving arity reduction (n 7→ rk(C))
method that reduces C to an O(log(sd))-variate degree-d poly(s)-size depth-3 diagonal circuit
C ′.

Clearly the dimension of the partial derivative space of C ′ is poly(sd) [For14, Lem.8.4.8].
Hence, Cor.21 gives us a poly(sd)-time hitting-set for C ′.

C Proofs from Sec.4

Lemma 26 (restated). Let B be a nonempty subset of M . If A = Find-Cone-closed(B, n)
in Algo.1, then A is cone-closed.

Proof. We prove it by induction on n.
Base case (n = 1): For n = 1, A = {0, . . . , |B| − 1}. So A is cone-closed.
Induction step (n − 1 → n): Now A =

⋃ℓ
i=1 Si × {i − 1} . Let f be an element in A and

xe be a submonomial of xf . We will show that e ∈ A. Let f =: (f ′, k) and e =: (e′, t), so that
t ≤ k. We divide our proof into the following two cases.

Case 1 (t = k): We have f ′ ∈ Sk+1 = Find-Cone-closed(Fk+1, n − 1). By induction
hypothesis, Sk+1 is cone-closed. Since e′ ≤ f ′, we get e′ ∈ Sk+1. So, e = (e′, k) ∈ Sk+1 × {k},
which implies that it is also in A.

Case 2 (t < k): We have Fk+1 ⊆ Ft+1. By Lem.25, we get Sk+1 ⊆ St+1. So f ′ ∈ St+1. From
induction hypothesis, St+1 is a cone-closed set. This implies that e′ ∈ St+1 and e ∈ St+1 × {t}.
Thus, e is also in A.

Since e was arbitrary, we deduce that A is cone-closed.

Lemma 28 (restated). If A = Find-Cone-Closed(B, n) then TA,B has full rank.

23

Proof. The proof will be by double-induction– outer induction on n and an inner induction on
iteration i of the ‘for’ loop (Algo.1).

Base case: For n = 1, the claim is true due to Lem.27.
Induction step (n− 1→ n): To show TA,B full rank, we prove that for any vector b ∈ F|B|:

if TA,B · b = 0 then b = 0. For this we show that the following invariant holds at the end of
each iteration i of the ‘for’ loop (Algo.1).

Invariant (arity-n & i-th iteration): For each f ∈ B such that the preimage size of πn(f) is
at most i, the product TAi,B · b = 0 implies that bf = 0.

At the end of iteration i = 1, we have the vector TA1,B · b. Recall that A1 = S1 × {0} and

F1 = πn(B). So TA1,B · b = TS1,F1 · c, where for e ∈ F1, ce :=
∑

(e,k) ∈ π−1
n (e)

(

k
0

)

b(e,k). Thus,

TA1,B ·b = 0 implies TS1,F1 · c = 0. Since S1 = Find-Cone-closed(F1, n− 1), using induction
hypothesis, we get that c = 0. This means that for e ∈ B such that the preimage size of πn(e)
is at most 1, we have ce = 0. This proves our invariant at the end of the iteration i = 1.

(i − 1 → i): Suppose that at the end of (i − 1)-th iteration, the invariant holds. We show
that it also holds at the end of the i-th iteration. For each j ∈ [i], let vj denote the projection
of TAi,B ·b on the coordinates indexed by Sj ×{j− 1}. By focusing on the latter rows of TAi,B,
we can see that vj = TSj ,F1 · cj where the vector cj is defined as, for e ∈ F1,

(cj)e :=
∑

(e,k) ∈ π−1
n (e)

(

k

j − 1

)

· b(e,k) . (4)

Suppose that TAi,B ·b = 0. All we have to argue is that for every f ∈ B such that the preimage
size of e := πn(f) is i, the coordinate bf = 0.

Since TAi,B · b = 0, its projection vj = TSj ,F1 · cj is zero too. By induction hypothesis (on
i − 1), for each e ∈ F1 with preimage size < i, the coordinate (cj)e = 0. Thus, the vector
TSj ,F1 · cj = TSj ,Fj

· c′j where the vector c′j is defined as, for e ∈ Fj , (c
′
j)e := cje. Consequently,

TSj ,Fj
· c′j = 0, for j ∈ [i]. By induction hypothesis (on n− 1), we know that TSj ,Fj

is full rank.
So c′j = 0, which tells us that cj = 0, for j ∈ [i].

Fix an e ∈ F1, with preimage size = i, and let the preimages be {(e, k1), . . . , (e, ki)} where
kj ’s are distinct nonnegative integers. Since cj = 0, for j ∈ [i], we get from Eqn.4 and Lem.27
that: b(e,kj) = 0 for all j ∈ [i]. In other words, for any f ∈ B such that the preimage size of
πn(f) is i, the coordinate bf = 0.

(i = ℓ): Since A = Aℓ, the output of Find-Cone-closed(B, n), using our invariant at the
end of ℓ-th iteration we deduce that TA,B · b = 0 implies b = 0. Thus, TA,B has full rank.

D Models with a cone-closed basis

We give a simple proof showing that a typical diagonal depth-3 circuit is already cone-closed.
Consider the polynomial D(x) = (1 + a1x1 + . . . + anxn)

d in Fk[x], where Fk is seen as an
F-algebra with coordinate-wise multiplication.

Lemma 30. D(x) has a cone-closed basis.

Proof. Consider the n-tuple L := (a1, . . . ,an). Then for every monomial xe, the coefficient
of xe in D is Le :=

∏n
i=1 a

ei
i , with some nonzero scalar factor (note: here we seem to need

char(F) zero or large). We ignore this constant factor, since it does not affect linear dependence
relations. Consider any proper monomial ordering ≺ (eg. deg-lex). Now we prove that the ‘least
basis’ of D(x) with respect to this monomial ordering is cone-closed.

24

We incrementally devise a monomial set B as follows: Arrange all the monomials in as-
cending order. Starting from least monomial, put a monomial in B if its coefficient can not be
written as a linear combination of its previous (thus, smaller) monomials. From construction,
the coefficients of monomials in B form the least basis for the coefficient space of D(x). Now
we show that B is cone-closed. We prove it by contradiction.

Let xf ∈ B and let xe be its submonomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbL
b with cb’s in F .

Multiplying by Lf−e on both sides, we get

Lf =
∑

xb≺xe

cbL
b+f−e =

∑

xb′
≺xf

c′b′Lb′

.

Note that xb′
≺ xf holds true by the way a monomial ordering is defined. This equation

contradicts the fact that xf ∈ B, and completes the proof.

25

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

