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Abstract

A recent series of breakthroughs initiated by Spielman and Teng culminated in the con-
struction of nearly linear time Laplacian solvers, approximating the solution of a linear system
Lz = b, where L is the normalized Laplacian of an undirected graph. In this paper we study
the space complexity of the problem. Surprisingly we are able to show a probabilistic, logspace
algorithm solving the problem. We further extend the algorithm to other families of graphs
like Eulerian graphs (and directed regular graphs) and graphs that mix in polynomial time.

Our approach is to pseudo-invert the Laplacian, by first “peeling-off” the problematic ker-
nel of the operator, and then to approximate the inverse of the remaining part by using a Taylor
series. We approximate the Taylor series using a previous work and the special structure of the
problem. For directed graphs we exploit in the analysis the Jordan normal form and results
from matrix functions.
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1 Introduction

Approximating the solution of a linear system Lz = b, where L is the normalized Laplacian
of a graph G, is an important algorithmic challenge with multitude of algorithmic applications
(see [38] and references therein). In the time-bounded setting this problem has drawn a lot of
attention over the past decade. A series of breakthroughs initiated by Spielman and Teng culmi-
nated in the construction of almost linear-time algorithms [23, 28, 32, 33, 34, 35].

We are interested in studying the space complexity of this problem, and specifically achieving
a probabilistic logspace algorithm that approximates a solution to such a system. We show that
the class BPL is powerful enough to approximate the solution to a linear system of equations for
a wide and important variety of linear operators, and in particular for Laplacians of undirected
graph (which is the focus of the work of Spielman and Teng). In fact we do more and approximate
a generalized inverse of the Laplacian, i.e., a matrix £* such that LL£*L = L, which is sufficient for
solving such a set of equations. In essence this means that we invert the matrix on the subspace
defined by its image, leaving the kernel unchanged. We prove:

Theorem 1.1. There exists a probabilistic algorithm that gets as input an n x n stochastic matrix S that is
the transition matrix of an undirected graph and desired accuracy and confidence parameters €, > 0, and
outputs with probability at least 1 — 6 an approximation of the generalized inverse L* = (I — S)* to within
an e-accuracy, using

1
0] <log n + log log )
€ 4]
space.

We are not aware of any previous space bounded algorithm approximating the solution of
Laplacian systems.

It is commonly believed that BPL = L.! There are not too many natural, non-trivial problems
in L, with the exception of undirected st-connectivity (and the problems that reduce to it [25, 2])
that was solved by Reingold with an intricate and beautiful algorithm [29] (see also [37]). The
situation is similar with BPL. Thus the fact that probabilistic logspace algorithms are capable of
approximating a solution to a large class of linear-algebra problems comes as a surprise.?

We now proceed to discuss our technique. Our goal is to approximate f(S) where f is the
function corresponding to the generalized inverse of 7 — S. We begin by considering the simpler
case where f has a Taylor expansion.

Let G be a regular undirected graph with an associated transition matrix S. As G is undirected
and regular, S is normal and we can represent it as S = VEVT where ¥ is a diagonal matrix
with the eigenvalues of S lying on the diagonal. Consider a function f with a Taylor expansion
f(z) = 3, ciz’. We would like to approximate f(S) = >, ¢S" = Vf(X)V13 Using Taylor

!Some support for this conjecture is given by the following results. Nisan [26] constructed a pseudorandom gener-
ator against logspace-bounded non-uniform algorithms that uses seed length O(log® n). Using that he showed BPL is
contained in the class having simultaneously polynomial time and O(log® n) space [27]. Saks and Zhou [30] showed
that BPL is contained in DSPACE(log"'-® n). Reingold [29] showed undirected st-connectivity can be solved in deter-
ministic logspace. BPL = L is also implied by the conjectured existence of certain circuit lower bounds [24].

*Note that finding the exact inverse of a matrix, as well as many other important problems in linear algebra, is
complete for the class DET C NC? - the class of languages that are NC* Turing-reducible to computing the determinant
of an integer matrix [5, 7, 13].

3The fact that > ¢:S" = VF(Z)VTis a theorem, see, e.g. [22].



expansion in the space-bounded setting is appealing, as in BPL we can approximate powers of
stochastic matrices (in fact, even matrices with induced /., norm of at most 1 [16]). Hence, if the
series expansion of f behaves “nicely”, we can also approximate f(S) in BPL. Using this approach
we can, e.g., approximate the matrix e using the Taylor expansion e? = Y 70 £

We now consider the real problem which is approximating a generalized inverse of the Lapla-
cian £ = Z — S. This means that we want to invert £ = Z — S on its image, leaving the kernel
unchanged. Thus, the function f we want to compute is 12— when z # 1 and 1 otherwise (think
of = here as an eigenvalue of S). The function f is not continuous and so does not have a Taylor
series around 1. Also notice that the operator £ always has a non-trivial kernel (1 is always an
eigenvalue of S). Thus, we cannot directly employ the Taylor series approach.

Our solution to the problem is to first “peel-off” the 1-eigenspace using the stationary distri-
bution of the corresponding random walk on G. We are then left with an invertible operator 7 — A
whose eigenvalues are bounded away from 0. We now wish to use the Taylor series approach and
approximate (Z — A)~! by >°, A, which corresponds to the Taylor series -1~ = >~ 2?. There
is yet one obstacle we need to overcome, which is that the operator A that we get after peeling
off the stationary distribution of G, is not stochastic, and in fact has /., norm larger than 1. Thus,
offhand, we do not necessarily know how to simulate high powers of it in BPL. Nevertheless,
we exploit its unique structure and show it can be simulated in BPL. Finally, by recovering the
peeled-off layer, we essentially recover the required operator £*.

We now take a step further, and consider directed graphs. The directed case poses major chal-
lenges, even if just for the mere fact that directed graphs are not necessarily diagonalizable. In
fact, even directed graphs with a favorable structure such as vertex-transitive graphs can be non
diagonalizable [19]. The directed Laplacian and its application were studied in, e.g., [6, 11, 3].
Recently, Cohen et al. [12] gave faster algorithms for computing fundamental quantities associ-
ated with random walks on directed graphs by improving the running time of solving directed
Laplacian systems.

Any operator A can be represented by its singular value decomposition (SVD) A = UXV,
where U and V are unitary, and X is diagonal with the singular values on the diagonal. Another
representation of A is by its Jordan normal form, A = VAV~! where V is a basis and A is the
matrix of Jordan blocks. The elements on the diagonals of the Jordan blocks are the eigenvalues
of A (with multiplicity as the multiplicity of the roots of its characteristic polynomial). The SVD
is the usual representation of choice as it is stable, whereas the Jordan normal form is notoriously
unstable to compute (see, e.g., [21, Chapter 7], [14, Chapter 4] and [18]). However, the SVD rep-
resentation is not convenient when considering BPL algorithms, as A does not share the same
singular vectors with powers of A. Thus, in this paper, we choose to analyze our algorithm us-
ing the Jordan normal form. Admittedly, one should expect severe stability problems using such
an approach. Surprisingly, we show that under mild conditions we manage to overcome these
stability problems.

As before, we would like to approximate the generalized inverse £*. There are two main issues
to consider:

1. Peeling-off the 1-subspace. To do so, we need a good approximation of the stationary distri-
bution of the corresponding random walk. In the undirected case, it can be easily inferred
(i.e., in L) from the input. Here, we require it as an input to our algorithm.

2. Analyzing the convergence of the Taylor series of (Z — A)~! for a non diagonalizable A.



Recall that when a function f acts on a diagonalizable matrix 4, it acts on its eigenvalues
in the natural way. In the non diagonalizable case, f acts on a Jordan block, which might
have a large dimension, and although an eigenvalue X on the diagonal is still mapped to an
eigenvalue f(\), the structure of the rest of the block is no longer maintained, so we need to
give this issue further consideration.

To address the second issue above, we use the theory of matrix functions that tells us exactly
what f(A) is. It turns out that there is a direct connection between f(A), the dimension of the Jor-
dan block, and the derivatives of f on the corresponding eigenvalue. Exploiting this connection,
we manage to bound the number of terms in the Taylor series that is sufficient for convergence.
The caveat here is that two “stability” parameters enter the picture. First, the spectral gap (whose
formal definition we defer), which for directed graphs may no longer be at most polynomially-
small and naturally affect the performance of our algorithm. Second, we also need the Jordan
basis matrix V of £ to be well-conditioned. We prove:

Theorem 1.2 (Informal). There exists a probabilistic algorithm that gets as input an n x n stochastic
matrix S, desired accuracy and confidence parameters €,6 > 0, v > 0 which is a lower-bound on the
spectral gap of S, k which is an upper bound on the condition number of the Jordan basis of S, and outputs
with probability at least 1 — & an approximation of L* = (Z — S)* to within an e-accuracy, using

O <log i + log log K)
ve )
space.

Remarkably, the dependency of the space complexity on the condition number of the Jordan
basis matrix is doubly-logarithmic. This also allows us to show our algorithm operates well on
operators for which the eigenvalues are polynomially far apart (see Theorem 5.6).

Having this theorem we show that in addition to undirected graphs, our approximation al-
gorithm works for well-conditioned regular and Eulerian directed graph (which we know have
a non-negligible spectral gap and their stationary distribution is fully-explicit) and general well-
conditioned rapidly-mixing directed graphs. We thus see that the algorithm manages to approxi-
mate the solution of Laplacian systems over a large (and natural) class of directed graphs.

We conclude with a more philosophical note. In recent years we have seen several results
showing that some natural linear-algebraic tasks capture the strength of various space-bounded
models of computation. Results along this line are:

1. Ta-Shma [36] showed that it is possible to approximate the SVD of any matrix, and in par-
ticular to approximate its inverse, in BQL, with polynomially-small accuracy.4 As no classical
analogue is known, this result is one of the very few cases where a natural problem is known
to lie in BQL but is not known to be in BPL.

2. Doron et al. [15] gave a BPL algorithm that computes the eigenvalues of stochastic matrices
having real eigenvalues with constant accuracy. Moreover, they gave a linear-algebraic prob-
lem which is complete for BPL — roughly speaking, approximating, to polynomially-small
accuracy, the second eigenvalue of a stochastic matrix (whose eigenvalues are not necessar-
ily real).

*Roughly, BQL stands for the class of languages for which there exists an L-uniform family of quantum circuits
solving it with only O(log n) qubits. It is known that BQL € NC? [39].
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3. Fefferman and Lin [17] gave two complete problems for BQL — approximating the inverse
and the minimum eigenvalue of positive semi-definite matrices (both to polynomially-small
accuracy).

We hence see that the deterministic, probabilistic and quantum space-bounded complexity
classes can be roughly characterized by linear-algebraic promise problems, where the difference
between the classes lies in the family of operators they can handle, being Hermitian, stochastic or
general operators. The exact computation can be done in DET € NC? C DSPACE(O(log?n)). Our
result is in line with the above, showing that approximating with polynomially-small accuracy the
generalized inverse of a large class of stochastic matrices is in BPL.

2 Preliminaries

2.1 Basic facts from linear algebra

For a matrix A € C"*", Al is its conjugate transpose. When it might not be clear from the context,
for a vector v € C", we denote |v) as the column vector and (v| as the row vector, so (u|v) is a
scalar and |v) (u| is a rank-one matrix.

Every matrix A has a singular value decomposition (SVD) A = UXVT, where U and V' are unitary
and X is a diagonal matrix with non-negative entries, known as the singular values of A.

The spectrum of a matrix A, denoted Spec(A), is its set of (complex or real) eigenvalues. The
spectral radius p(A) of A is the largest absolute value of its eigenvalues. The operator norm || A is
max||;|,=1 [[Az||, which is also the largest singular value of .A. Notice that it is possible for ||A]
to be strictly larger than p(A). The operator norm is sub-multiplicative. When A is invertible,
k(A) = || A] HA‘l | is its condition number. Also, we denote ||A[| , as the induced /o norm, that is
Al = masicqy 3ep |G, 1l It holds that Al < v/ [lA].

For an eigenvalue A of A, a A\-right-eigenvector (or simply an eigenvector with eigenvalue \)
is a vector v such that Av = \v. A \-left-eigenvector is a vector v such that vT.A = Avf. We define
the spectral gap 7(A) = 1 — max)cspec(4),a1 |A|- Note that v(A) < minyespec(aya1 |1 — Al-

We denote by 1 the column vector of all ones and similarly 0 the column vector of all zeros.

2.2 The Perron-Frobenius theorem

The underlying graph of a matrix A has an edge (¢, j) iff A[i, j] # 0. A matrix A is irreducible if its
underlying directed graph is strongly connected. When A is irreducible, its period is the greatest
common divisor of the lengths of the closed directed paths in the underlying directed graph of
A. We say that A is aperiodic if its period is 1. A matrix A is non-negative if all its entries are
non-negative, and it is stochastic if it is non-negative and every row sums to 1. We will need the
Perron-Frobenius theorem for irreducible non-negative matrices (see, e.g., [20, Chapter 8]).

Theorem 2.1. Let A be an irreducible non-negative n x n matrix with a period h and spectral radius
p(A) = r. Then:

1. There exists an r-right-eigenvector vy and an r-left-eigenvector u, whose components are all positive.

2. A has exactly h complex eigenvalues with absolute value r and each one of them is a product of r with
a different h-th root of unity. Consequently, if A is aperiodic then r is a simple eigenvalue, and all
other eigenvalues have absolute value strictly smaller than r.
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3. It holds that limy, o, A* /1% = |v1)(u1|, where vi and uy are normalized so that (vy|u;) = 1.

If A is stochastic then r = 1. Furthermore, if A is stochastic, irreducible and aperiodic then v, is the
all-ones vector 1 and wy = 7 is the stationary distribution of the corresponding random walk (all up to
normalizations).

2.3 Jordan normal form

Fact 2.2. Every complex n x n matrix A can be expressed in a Jordan normal form A = VAV ! where
A =diag(Aq4,...,Ap),

c Cdlmb X dimb’
1
Ab

and dim; + . .. + dimy, = n. The Jordan matrix A has the eigenvalues of A on its diagonal, and is unique
up to the ordering of the blocks Ay,. For an eigenvalue Xy, its algebraic multiplicity is the number of times
it appears on the diagonal A and its geometric multiplicity is the number of blocks having X\, on their
diagonal. We say an eigenvalue is simple if its algebraic multiplicity is one.

Claim 2.3. [9, Chapter 3] Let A be an n x n complex matrix and let A = VAV ~! be the Jordan normal
form of A, where A = diag(A1,...,Ap). Then, every Jordan block A, corresponds to an A-invariant
subspace Ey, = Ker ((\Z — A)4m) of dimension dimy. This gives a decomposition C™ = DL By

For a Jordan decomposition A = VAV 1, we will often write A = Zle VAU, where Ay is
the b-th Jordan block, V;, are the columns of V' that correspond to this block and similarly U, are
the rows of V! that correspond to this block.

When the operator is irreducible, aperiodic and stochastic, we can express the Perron-Frobenius
theorem in the Jordan terminology and get:

Claim 2.4. Let S be an irreducible, aperiodic and stochastic matrix with a stationary distribution m so that
(1|7) = 1andlet S = 37, VsSyUy be a Jordan decomposition of S. Then,

e S; = (1), the 1 x 1 matrix with an entry 1.
e Forallb>2, UV = Uy|1) = 0and U, Vj, = (7| V;, = OF. Also, S ViUy = T.
o ViS1Uy = [1) (x| 50 S = |1) (x| + 32, ViSyUs,

Proof. If v is a (right) eigenvector of S with eigenvalue A then v € Im(Up.x,=1V}). Similarly, if w
is a left eigenvector of S, then its eigenvalue is an eigenvalue of S and w € Im(Up.y,=AUp) (this is
because A and A have the same spectrum, see, e.g., [8, Chapter 9]).

Now, since S is stochastic, 1 is a 1-eigenvector. Also, there is a 1-left-eigenvector that we denote
by 7, and we normalize 7 such that (7| 1) = 1. Furthermore, by the Perron-Frobenius theorem, the
1-eigenvalue is simple, so S; = (1), U is a 1 xn matrix and V; is a n x 1 matrix. Furthermore, by the
above, 7 € Im(U;), and since the dimension of the image is 1, we must have Im(U;) = Span({r}).
Similarly, Im(V1) = Span({1}). This completes the proof of the first item.



For the second item, let U = V~! and observe that since UV = Z, (u;] vj) = 6;;j (Where w; is
the i-th row of U and vj is the j-th column of V). Now, consider b # b’ and the product P = UV}, .
Every entry of P is of the form (uy;|vy ;) where i € [dim;] and j € [dimy]. By the previous
observation, they are all zeros. Also, 7 has a Jordan decomposition VIU, so immediately it is clear
that >0, VU, = Z.

For the third item, Suppose Vi = al and U; = f (7| for some nonzero «, 3 € C. We see that
V1S1U; = af|1)(r|. We want to determine a3. Since (w| S = (r| we have that

B
(r] = (x|8 = 'S = BT Y _ VSl
b=1
B
= BUWILUL + 871 T ViSyUy = B 'BaB (n]1) (x| = aB(x],
b=2
so af = 1. Hence, V1S1U; = ViU = [1)(7|. O

2.4 Functions of matrices

This subsection follows the book of Higham [22]. In the Jordan basis, each Jordan block is a matrix
with some complex value A over the main diagonal and 1 in the diagonal above it. We want
to distinguish upper triangular matrices in which elements on the same diagonal have the same
value. We note that this class D of matrices is closed under matrix addition and multiplication.
We denote:

Definition 2.5. For 0 < ¢ < n — 1 let Dy, ; be the n x n matrix that has 1 over the i-th diagonal and
0 otherwise, where the 0-th diagonal is the main diagonal and the i-th diagonal is the diagonal i elements
above it.

Clearly D = Span{D,,, ..., Dy n—1} is closed under matrix addition. Also, since
Dn,i ) Dn,j = Dn,i+ja

D is also closed under matrix multiplication.
Suppose p € C[z] is a polynomial p(z) = 3% ;2. We can evaluate the polynomial over the
ring M,,(C), i.e., given an n x n matrix A we let

d

p(A) = Z CZ.AZ

1=0

Note that if A = VAV ! then p(A) = Vp(A)V L Also, if A = diag(A1,...,Ap) then p(A) =
diag(p(A1),...,p(Ap)). In the extreme case where A is diagonalizable and all Jordan blocks have
dimension 1, we see that p acts on the eigenvalues of A. In the general case, we need to understand
how p acts on a Jordan block Ay = A\ + Dgim,,1- The answer is quite surprising and holds for
arbitrary differentiable functions.



Lemma 2.6. [22, Section 1.2.1] Let f : C — C and suppose it is differentiable n times on Spec(.A). Let
A € C™" be a Jordan block A = \XI + Dy, 1. Then,

o rey L
HA) = FO) : = f90 5
£ =
ey

2.5 The generalized inverse

Let A be any complex linear operator. A generalized (reflexive) inverse AT of A is a matrix that
satisfies both AATA = A and ATAAT = A". A generalized inverse is not unique, however
if we further demand that both AA" and A" A are Hermitian, then such an operator is unique,
and is called the Moore-Penrose pseudo-inverse and can be computed using the singular values
decomposition (SVD). If A = UXVT is the SVD of A then the pseudo-inverse is AT = VETUT
where 31 = inv(X) and inv(z) is the univariate function that is 1/z when z # 0 and 0 otherwise.

We will not work with the SVD but rather with the Jordan canonical form. Let A = VAV ! be
a Jordan decomposition of a singular matrix .A. When the algebraic multiplicity of the eigenvalue
0 is one, the matrix A* = inv(A), according to Subsection 2.4, is well defined. Namely, inv(4) =
VA™V~! where A™ is obtained by inverting every Jordan block that does not correspond to the
zero eigenvalue. It is immediate that A* is a generalized inverse, although it does not generally
coincide with the pseudo-inverse. From here onward, we denote A* as the generalized inverse
inv(A).

Any generalized inverse A* can be used to determine if a system of linear equations has any
solution (and if so, to give them all). More concretely, if the system Az = b has a solution then all
its solution are given by « = A*b + (I — A*A)w for an arbitrary w. All of the above claims can be
found, e.g., in [4].

It will later be evident that when A = £ = 7 — S is a Laplacian corresponding to an irreducible,
aperiodic and stochastic matrix S with a stationary distribution 7, the expression Z—.A* A is simply
|1)(7|. Thus, if we find £* we can solve any set of equations Lz = b that has a solution. In fact, this
also works when we try to solve the system Lz = b for b that does not admit any perfect solution,
but is close to a vector in Im(L). To see that, say b is arbitrary, and on input b and £ we output
z = L*b. Then ||[Lz — b|| = ||(LL* —D)b|| = |||1){x]b]| = V/n - |{m,b)|, and so if b is ¢ close to being
perpendicular to 7 (and so close to being in Im(£)) then the solution z = £*bis such that £z is \/nd
close to the desired value b.

2.6 Space-bounded probabilistic computation

2.6.1 The model of computation

A space-bounded probabilistic Turing machine has four semi-infinite tapes: a read-only input tape,
a work tape, a read-only uni-directional random-coins tape and a write-only uni-directional output
tape. We say a language is accepted by a probabilistic TM if for every input in the language the
acceptance probability is at least 2/3 and for every input not in the language it is at most 1/3.



As usual, the acceptance probability can be amplified as long as there is some non-negligible gap
between the acceptance probability of yes and no instances.

The complexity class BPL comprises all languages accepted by a space-bounded probabilistic
TM with space complexity O(logn) and polynomial time.

2.6.2 Simulatable matrices

We are often interested in approximating a value (e.g., a matrix entry) with probabilistic machines.
Assume that for an input = € {0, 1}" there exists a value u = u(x) € C. We say a probabilistic TM
(e, 6)-approximates u(x) if

Vee{o,1}" f;r[‘M(%y) —u(z)| >¢] <4
If w is multi-valued (say, a vector) we say a TM (e, 6)-approximates u if given an index i it (¢,0)-
approximates u[i].

Definition 2.7. We say that a family of matrices 2 is simulatable if there exists a probabilistic algorithm
that on input A € A of dimension n, k € N, s,t € [n], €,6 > 0 runs in space O(log % + loglog %) and
(e, 0)-approximates A¥[s, ).

Probabilistic logspace machines can approximate random walks well. In [16], it is shown that:
Lemma 2.8. The family of stochastic matrices is simulatable.
We can also conclude:

Lemma 2.9 ([16]). Let A € C™*" be a stochastic matrix and let p = E;j:o ciz" be a complex polynomial
such that:

e For every i, |c;| < M, and,
o The coefficients c; are explicit in the sense that there exists an algorithm that given k < d, e, § outputs

nMdlog%

an (e, 0)-approximation of c, using O(log ——

) space.

1
Then the entries of p(A) can be (e, 0)-approximated using O(log %) space.

3 Approximating (Z — A)~! by the Taylor series

We start with the simple case of normal matrices, and consider general functions.

Theorem 3.1. Let f,p: C — Cand e > 0. Suppose A is a normal matrix such that for every X\ € Spec(A),
[F(A) =p(N)| < & Then, [|f(A) = p(A)]| < e

Proof. Ais normal, so it is diagonalizable by a unitary matrix, A = UDUT. Also, f(A) = U f(D)U"
and p(A) = Up(D)U'. Thus, we have that

1F(A) =) < IUIHITHIFD) = D) = 1(D) —pD)I,
and [| /(D) = p(D)| is simply maxyespec(a) [/(A) = p(A)| <& =

8



With that we can easily see that when A is normal, .7, A’ approximates (Z — A)~" pretty
well. Formally,

Corollary 3.2. Let A be a normal matrix and suppose Spec(A) C [0,1) and in particular T — A is
invertible. Then,

) ZT: , e—TA(A)
Z-A)"7" =) A < — .
= AA)
Proof. For A € [0,1), it holds that
T ]
1 ) ) )\T+1
- 1 < [
DB D
=0 T+1

The above expression is maximized where A = 1 — 7(.A), so we have:

(1= A(A)T _ T
ST S A

and the corollary follows. O

We would like to extend this result to arbitrary operators A. As a first attempt we begin with
generalizing Theorem 3.1 to arbitrary operators. For that we need the representation of A in its
Jordan normal form, and we also need the function p and its derivatives to approximate the target
function f and its derivatives well. We prove:

Theorem 3.3. Let f,p: C — C. Suppose A is an n x n matrix such that for every A € Spec(A) and every
k<mn, |[fBN) —p*(N)| < k! eg. Furthermore, assume A has a Jordan decomgosition A=VAV
and the largest Jordan block has dimension D. Then, | f(A) — p(A)|| < &(V) - k:_ol Ek-

Proof. Let A = A1 @...® Ay, corresponding to the different Jordan blocks. By Lemma 2.6, f(A) =
VF(A)V ! where f(A) = f(A1) D ... f(As),

FO FO) e TG
f(Az) = f(Al) . = N f(k)()\l) dim;,k >
f/(>\z') k=0 k! 7
f()

and ); is the eigenvalue corresponding to the block A; of dimension dim;. The same of course
holds for p. Thus,

1£(A) —p(A] = [[V(f(A) —pA)V | < &(V)-[If(A) —p(A)].
To bound the latter expression, note that
I5(A) = p(A)] = max|[f(A) ~p(A))
dim; —1 D-1
=P8 = p™ () ,
< Izlé%)}f A ||Dd1mi,k|| < kzzoek“




When A is normal, x(V) = 1 and the maximal block length is 1, so we recover Theorem 3.1.
We now check what we get for (Z — A)~! and an arbitrary operator .A:

Corollary 3.4. Suppose A is an n x n matrix that has a Jordan decomposition A = VAV L. Suppose
every eigenvalue \ of A satisfies |\| < 1 and in particular T — A is invertible. Let T € N such that

T > %, let f(A) = (T — A) " and p(A) = 3T ) A%, Then,

e~ TV(A)/4

7(A)
Proof. Let Abe an n x n matrix and suppose every eigenvalue ) of A satisfies |\| < 1. We consider,
again, inverting 7 — A by considering the function f(\) = 125 and its power-series expansion
p(\) = X1_, A For k < n, one can verify that 2 f")(\) = W and Zp®(\) = S ()N
Also, P (N) =32, (kzl) A¥ 50 we see that

1F(A) = p(Al < 2nk(V)

[e.9]

1=T—k+1

L =

AsT >4n, T —k+12>T/2. Also, (V) < (k+i)F < (20)F, s0ex < 372,5(20)*X". Now, we
have that (2i)* < |A\|~"/2, since

@i A[/2 = /20 . e%(%ln(%)—ilnﬁ) < e%(n i—i )
< ( Vi %) i( mln 1—w1(A)) < 6%(’”_\/7%'7(«4))
< (n 2n) 1.

Plugging it to the above bound for ¢, we obtain:

o0 T/4
>N P
i=T/2 1=V
To bound ’?ﬁ ,
’ 1 _ VA2
1-VA T=Al = (A
Altogether,
2 2¢—Tv(A)/4
e < ——(1—A(A)/* < &=
The Corollary follows by applying Theorem 3.3 and using the fact that D < n. O

10



4 Computing the generalized inverse of the Laplacian

In this section we approximate the generalized inverse of the Laplacian of directed graphs as long
as we have a good approximation of its stationary distribution. Formally,

Theorem 4.1. There exists a probabilistic algorithm that gets as input:

o Ann x nirreducible, aperiodic stochastic matrix S,
o Two parameters, r and -y, which describe how stable the input S is:

— Suppose k > k(V), where S = VSV 1 is any Jordan decomposition of S, and,
-8 =7
o Desired accuracy and confidence parameters €, > 0.

e An approximation 7 of the stationary distribution 7 of S, where |7 — 7| < T and 7 < T for

_ 8n? nk
Let L denote the Laplacian, L = T — S. Then, the algorithm outputs a (3¢, 6)-approximation of L*
using

O <log i + log log K)
e )
space.

Intuitively, we would like to employ the following approach. Given a stochastic operator &
with a unique stationary distribution 7, we would like to “peel off” the 1 x 1 Jordan block with
eigenvalue 1, so that we are left with an operator A such that Z — A is invertible. Then, we
would like to use Corollary 3.4 to approximate (Z — A)~ by 3.~ A?, using the fact that we can
approximate A’ well with a BPL algorithm.

There are two obstacles that we need to overcome:

e First, when § in not normal, we do not have an orthonormal basis, so we need to explain
what “peeling off” the stationary distribution means. It turns out that A = S — |1) (.

e Second, while § is stochastic, A = S — |1)(n| is not, and furthermore, its ¢, norm is usually
greater than 1. In particular, we cannot immediately assume that we can approximate high
powers of it in BPL. We will show that A is still simulatable because |1) (7| commutes with
both S and A.

We also need to check that the fact 7 is only close to 7 and not exactly it, does not affect the
parameters by too much.
We start the formal exposition with a precise description of the algorithm.

11



4.1 The Algorithm

The algorithm first computes the parameter

=[5 o)

The algorithm then computes an (¢, ¢)-approximation of the matrix

<ZS> 1) [1)(x|

using Lemma 2.9 (note that since 7 is given, we approximate the power series and compute (7" +
1) |1) (7| exactly).
We first argue that the algorithm runs in small space and then analyze correctness.

4.2 Efficiency

We observe:

Lemma 4.2. For every ,6 > 0 and integer T, and any n x n stochastic matrix S, the entries of Qr(S)

can be (e, 6)-approximated using O (log ﬂ) space.

Proof. The claim follows directly from Lemma 2.9 since S is stochastic. O

4.3 Correctness

We first do the analysis in the ideal situation that # = 7 and see that in this case the algorithm
(2¢, 0)-approximates L*. We then show that when || — 7| < 7 the algorithm (3¢, §)-approximates
L.

4.3.1 Peeling off the 1-eigenspace

Throughout the proof we use the representation of S guaranteed by Claim 2.4. Namely, S can be
written as S = Zszl V4, SpUp, where

e Sjisal x 1 matrixand S; = (1). Also, ViU; = |1) (n| and (1| 7) =1,
e Forallb>2,U,|1) = 0and (x| V}, = 0f, and
« TiL Vil =1

Our goal is to find the generalized inverse of £L = 7 — S. As explained before, our first step is
to “peel-off” from S the 1-eigenspace, and the correct way to do that is by annihilating the 1 x 1
Jordan block with eigenvalue 1. We therefore define:

A=8—|1) (x|

12



We notice that S, A, £ and £* share the same Jordan basis, therefore, if we express S = Zle U,Sp V)
then

B
L = Z Vb(Ib — Sb)Ub, and,
b=2

B
A = D VSl
b=2

We denote L, = I, — Sy, for b > 2 (and L; is the zero matrix). The big advantage of A over § is
that in A all eigenvalues have magnitude smaller than 1, as A = 25:2 V,SpUp, and therefore 7 — A
is invertible. We still need, however, to relate £* to (Z — A)~!. We prove:

Lemmad4.3. £* = (Z — A)~! —[1) (x].
Proof. Recall that S = [1) (7| + 2522 VeSpUp, A = ZbBZQ VpSpUp and Z = Zle VyUyp. Hence,

B B B
T-A = > W~ VSl = ViUi + Y Vi(Iy — Sp)Us
b=1 b=2 b=2
B
= |[(r|+ > VL.
b=2

The inverse is thus given by

B
(Z-A7" = 1)@+ WL Uy = 1) (x| + L,
b=2

as desired. O

Intuitively, this means that approximating (Z — A)~! suffices for approximating £*, and we
next consider approximating (Z — .A) L.

4.3.2 Approximating (Z — A)~!
Since all eigenvalues of A have magnitude smaller than 1, we can apply Corollary 3.4 and get:

Lemma 4.4.
T

Z-A) =) Ak

k=0

< e.

Proof. We saw that A = 25:2 VsSpUs, and by the Perron-Frobenius theorem the eigenvalues that
are written on Sy, for b > 2, are at most 1 —y < 1 in absolute value. Thus, all eigenvalues of A have

absolute value at most v(S). By Corollary 3.4, for T' > —82; ,

7
T —Tv(S)/4
T-A) =S A < 2me(V)
=470 ()
Substituting T = [ﬁg; In 2:7’?59‘;)—‘ , the desired bound holds. O
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Thus, the problem now reduces to simulating A’ in small space. As mentioned before, A is not
stochastic and its /o, norm is often larger than 1. However A = S — |1) (x| has a very special form
that conforms with the Jordan basis structure, which we now employ:

Claim 4.5. The matrices S and |1) (w| commute, and furthermore S - |1) (x| = |1) (x| - S = |1) (7|
Proof.

B
S 1) (x| = 1) (x| + > ViSyUs- 1) (x| = [1) (],
b=2
and,
B
1) (x-S = [1) (x| + > 11) (x| - uSpUp = [1) (x].
b=2

Claim 4.6. For every k > 1, A¥ = S* —[1) (n|.
Proof. The proof is by induction on k. For k£ = 1 the claim follows by the definition. Assume the
statement holds for k& € N, and consider A**1, so By Claim 4.5:
AT = (S (1) (a]) - (8"~ 1) ()
= S-S [1) (n| = [1) (x| - S + 1) (x| 1) (x|
S — 1) (| = 1) (m| + [1) (x| = S*H —[1) (a].

O
Thus, A is simulatable and we can approximate (Z — .A)~! in small space.
4.3.3 Putting everything together
Define the ideal polynomial Qr by:
T .
Qr(S) = <ZS ) (T + 1) [1)(7]
i=0
Lemma4.7. [|£* — Qr(S)| <e.
Proof.
1= Qe = [[T=A" =1 - Qr(S)]
< (Z AZ) ~Qr(S)|[ +
= A0+Z = [1)(a]) = [1)(7] - Qr(S)| + ¢
= (Zs¢> D)7 = Qr(S)|| +¢ = .
O
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Finally, we check how the fact that 7 is only close to 7, affects our accuracy. We see that:
Claim 4.8. H@T(S) - QT(S)H <e.

Proof. Notice that Qr(S) — Q7 (S) = (T + 1) [1)(# — 7. Therefore, ‘ Or(S) — QT(S)H <(T+1)-

| 1] - || — =||. The proof follows because ||1|| = y/nand |7 — 7| < 7 < W O

Now, since we (e, §)-approximate Q7(S), then except for probability § what we output is e-

close to @T(S ), and therefore it is 2e-close to Q7 (S) and 3e-close to £*, which completes the proof
of Theorem 4.1.

5 Some specific families of graphs

Ultimately, we would like to solve in BPL any set of equations Lz = b, where b is close to Im(L),
and where L is the Laplacian of a stochastic matrix S. Theorem 4.1 is a step towards this goal, but
it works only when:

e S isirreducible, namely, its underlying graph is strongly connected,

S is aperiodic,

We can approximate well the unique stationary distribution ,

7(8) > % for some constant g, i.e., all eigenvalues except the largest one, are at most 1 — v
in absolute value, and,

k(V) < 2" for some constant b, where S = VSV ! is a Jordan decomposition and (V') =
VI - HV‘lH. Notice that here we may tolerate exponential «(V') as the space complexity
dependency on & is doubly-logarithmic.

In this section we want to examine which requirements can be relaxed. The section is organized
as follows. First, we note that we can get rid of the aperiodicity requirement and we can somewhat
relax the spectral gap requirement. Then we show that in some cases we can get rid of the x(V)
requirement (when the eigenvalues are polynomially separated). Finally, we give specific results
for:

e Undirected graphs,
e Directed Eulerian graphs (which generalize directed regular graphs), and,

e Directed rapidly-mixing graphs.

5.1 Omitting the aperiodicity requirement using lazy walks

Given a stochastic matrix S we can convert it to the corresponding lazy walk 8’ = 1(Z + S), that
stays in place with probability half. Define:

'(S8) = 1—RN).
7(S) )\eSpgzl(%}’{),)qél( ()

15



The conversion has two benefits. First, the walk is clearly aperiodic. Also, we will be able to
replace the condition v < ~(S), with the milder condition v < 4/(S). We will also show that
we can recover the generalized inverse of the Laplacian of a graph G from that of the lazy walk
variant of G. We prove:

Theorem 5.1. There exists a probabilistic algorithm that gets as input:

o An n x nirreducible, stochastic matrix S,
o Two parameters, x and -y, which describe how stable the input S is:

— Suppose k > k(V), where S = VSV 1 is any Jordan decomposition of S, and,
- 7'(8) =7,
o Desired accuracy and confidence parameters €, > 0.

e An approximation T of the stationary distribution 7 of S, where ||7 — x| < 7 and T < T +1 for
_ 8n?
T= 7% <1 —|—log’;—$).

Let L denote the Laplacian, L = T — S. Then, the algorithm outputs a (3¢, d)-approximation of L*
using

O (log a + log log ﬁ)
ve 1)
space.

Proof. We run the algorithm of Theorem 4.1 over S’ = 3(Z + S). It is clear that &' is stochastic
and aperiodic. By assumption, &' is irreducible (since S is). Also, S and S’ have the same V' and
by assumption (V) < k. They also share the same stationary distribution 7, and we are given 7’
which is close to 7.

We will soon prove that v(S') > Z El ). Therefore, by Theorem 4.1, we get a (3¢, §)-approximation
of (Z — &')*. Finally, we will see that (Z — §')* = 2(Z — 8)* and so we easily get an approximation
for (Z — S)*.

To see that indeed (Z — S8')* = 2(Z — S)*, notice that Z and S share the same Jordan basis V.
The first block in S’ and S is the same, and for b > 2, if the b-th block in S is S, then the b-th block
in (Z—8")*is (Z—3(I+Sp))~! =2(I —Sp) ! and the b-th block of (Z — S)*is (I — S;)~!

Thus, all that is left is to prove:

. (S
Claim 5.2. If y(S') > 751 ),

Proof. Fix A € Spec(S), |A| < 1, and write A = a + bi for a,b € R. Also, let \' =  + 1) = 1f2 4 4j)
which is the corresponding eigenvalue in S’. Thus:

N \

NP = a?+b*+2a+1 o 142041 14+RM
4 = 4 2

Thus, 1 — N[ <1 - %W. The claim follows since for every R such that |[R| < 1,1 — % >
1(1—R). O

O]
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5.2 Undirected graphs

Given an undirected graph we can easily partition it to its connected components using the fact
that st-connectivity of undirected graphs is in BPL [1] (in fact, Reingold showed it is in L [29]).
Therefore, we can solve the system of equation on each connected component separately.

Now, say we are given an undirected graph G and A is its adjacency matrix. The stochastic
matrix associated with G is D~!.A, where D is a diagonal matrix with the degree deg; of the i-
th vertex on the i-th element of the diagonal. While A is Hermitian, S is usually not. Still, S
is similar to a Hermitian matrix in the following form: Express D~Y/2AD~1/2 = VAV ~! where
V is unitary and A diagonal with real entries (because D~'/24AD~'/2 is Hermitian), then S =
(D~-'2V)A(D~'/2V)~1. Thus, S has Jordan normal form WAW ! with W = D=2V, We see
that

a0 = o] = ol

/\max (D

< - <
)\minD

We can therefore always take x = y/n in Theorem 5.1 when we deal with undirected graphs, even
when the graph is irregular.

The above discussion shows that S is similar to the diagonal matrix A which has a set of real
eigenvalues, and therefore so does S. Chung proved that:

Lemma 5.3 ([10], Lemma 1.9). Let S be a transition matrix of an undirected connected graph with diam-
eter T'. Then +/(S) > ﬁ.

Finally, we need the stationary distribution 7. However, for an undirected graph G(V, E) the

stationary distribution = is fully explicit and gives weight 2 ‘dgi‘;i to the vertex i. Altogether, we get

the theorem for undirected graphs that was stated in the introduction:

Theorem 5.4. There exists a probabilistic algorithm that gets as input an n x n stochastic matrix S that
is the transition matrix of an undirected graph and desired accuracy and confidence parameters €,5 > 0,
outputs a (e, 0)-approximation of L* = (Z — S)* using
1
0] <log n + log log )
€ o
space.

When G is undirected we can also approximate in BPL the often used symmetric normalized
Laplacian , which is
LYM — 7 _ D_1/2.AD_1/2,

where A is the graph’s adjacency matrix and D is the diagonal degrees matrix. We have seen that
we can approximate £* = (Z — D' A)* in BPL, and

(Esym)* — (DI/QLD_1/2>* _ DI/QE*D_I/Q
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5.3 On the parameter ~ (1)

Our algorithm’s space complexity has a doubly-logarithmic dependency on (V') — the minimal
condition number of all Jordan bases. When the matrix S has well-separated eigenvalues (namely,
the minimal distance between every two eigenvalues is at least polynomially-small), the depen-
dency can be omitted. This is implied by the following theorem:

Theorem 5.5 ([31]). Let A be an n x n matrix with eigenvalues A1, ..., A\, and suppose A > 0 is such
that min, z; [\, — \;| > A. Also, let 4 be the minimal value of (V') over all V such that A = VAV 1
LAl

is a Jordan decomposition of A. Then, ka < n - e 227,
We can thus conclude:

Theorem 5.6. There exists a probabilistic algorithm that gets as input:

o Ann x nirreducible, stochastic matrix S and a real parameter A > 0 so that it is guaranteed that all
the eigenvalues of S are A-separated (that is, |\; — A\;| > A for every distinct \;, \; € Spec(S)).

o A parameter ~ such that ~'(S) > ~.

o An approximation 7 of the stationary distribution 7 of S, where |7 — 7| < T and 7 < T for
_ 8n? ne
T =2 (1+10g ).

Let L denote the Laplacian, L = T — S. Then, the algorithm outputs a (3¢, 6)-approximation of L*

using
n 1
0] (log Arve + log log 6)

space.

5.4 Eulerian directed graphs

Eulerian graphs are directed graphs where the in-degree and out-degree of each vertex are the
same, and so they generalize both regular directed graphs, and general undirected graphs. The
stationary distribution is fully explicit (as in undirected graphs that we mentioned before). In this
section we note that for Eulerian graphs +' is always non-negligible.

Claim 5.7. Let S be a transition matrix of a strongly connected Eulerian directed graph with m edges.
Then, v'(S) > 2.

Proof. Chung [11] proved that 4/(S) is at least the second smallest eigenvalue fi,,—; (the smallest
eigenvalue is 0) of
H1/2SH—1/2 + H—1/25TH1/2

Le=1 :
“ 2
where II is a diagonal matrix with the stationary distribution 7 on the diagonal. Also, in the same
paper it is proven that p,,—; > %, which completes the proof. ]
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5.5 Rapidly-mixing graphs

Finally, one way to approximate the stationary distribution is by taking a random walk on G
until it converges. This follows directly from Lemma 2.9 and the fact that limy_,oo Pf = |1)(n|
(see Theorem 2.1). For undirected graphs (and also Eulerian directed graphs) the walk converges
in polynomial time, hence, we can approximate the stationary distribution in logarithmic space,
except that there is no need to do that because we have an explicit formula for the stationary
distribution anyway.

For general directed graphs (even with bounded degree) the convergence rate can be expo-
nentially small and the approach does not work. Nevertheless, there is a whole class of directed
graphs, called rapidly-mixing graphs, that converge rapidly even though, usually, there is no ex-
plicit formula for the stationary distribution. Clearly, for graphs where the walk converges in
polynomial time we can approximate the stationary distribution 7 in logarithmic space.
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