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Abstract

We prove new cell-probe lower bounds for data structures that maintain a subset of {1, 2, ..., n},
and compute the median of the set. The data structure is said to handle insertions non-adaptively
if the locations of memory accessed depend only on the element being inserted, and not on the
contents of the memory. We prove that any such data structure must satisfy:

tm ≥ Ω

(
n

1
2(ti+1)

w · ti

)
,

where ti is the number of memory locations accessed during insertions, tm is the number of
memory locations accessed to compute the median, and w is the number of bits stored in each
memory location. Our lower bounds are nearly matched by Binary Search Trees.

For the predecessor search problem, where the algorithm is required to compute the pre-
decessor of any element in the set, we prove that if computing the predecessors can be done
non-adaptively, then

tp ≥ Ω

(
log n

log log n + logw

)
or ti ≥ Ω

(
tp · n

1
2(tp+1)

log n

)
,

were tp is the number of locations accessed to compute predecessors. Again, these bounds
prove that Binary Search Trees have essentially optimal parameters for the predecessor search
problem.

Our results follow from a novel application of the Sunflower Lemma of Erdős and Rado
[ER60] to these questions.

1 Introduction

Data structures are algorithmic primitives to efficiently manage data. They are used widely in
computer systems, and not just to maintain large data sets; these primitives play a fundamental
role in many algorithmic tasks. For example, the heap data structure is a crucial component of the
best algorithms for computing shortest paths in weighted graphs, and the union-find data structure
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is vital to algorithms for computing minimum spanning trees in graphs. In both of these examples,
the running times of these algorithms depend on the performance of the underlying data structures.
In this paper, we study data structures that maintain a set of numbers S and allow for quickly
computing the median of the set or predecessors of the set. The median is the middle number of
the set in sorted order, and the predecessor of a number x is the largest element in S that is at
most x. We give new lower bounds on data structures computing the median and predecessors.

The performance of data structures is usually measured with Yao’s cell-probe model [Yao81].
A dynamic data structure in this model is a collection of cells that stores the data, along with an
algorithm that makes changes to the data or retrieves information about it by reading from and
writing to some of the cells. The word-size of the data structure, denoted w throughout this paper,
is the number of bits stored in each cell of the data structure. The time complexity for performing
a particular operation is the number of cells that are touched when the operation is carried out.
Usually, there is a trade-off between the time for performing different operations. For example, if
we maintain a set S ⊆ {1, 2, . . . , n} by storing its indicator vector (with w = 1), then elements can
be inserted and deleted from the set in time 1, but computing the median of the set could take time
Ω(n) in the worst case. However, if we maintained the set by storing its elements in sorted order
(with w = log n), and the size of the set, then the median can be computed in time 2, but inserting
elements into the set would take time Ω(n). Binary search trees are a well-known data structure
that maintain sets and allow one to compute the median and predecessors in time O(log n), when
w = log n. One can also use a very clever data structure due to van Emde Boas [vEB77] that brings
down the time required for all operations to O(log log n), when w = log n. The Fusion trees data
structure of Fredman and Willard [FW93] takes O(log n/ logw) time for all operations.

Proving lower bounds on the performance of dynamic data structures is usually challenging. In
their landmark paper, Fredman and Saks [FS89] were the first to establish tight lower bounds for
several dynamic data structure problems. They invented the chronogram technique and leveraged it
to prove several lower bounds. Since then, researchers have built on their techniques to prove lower
bounds on many other dynamic data structure problems [PD06, Pǎt07, PT11, Lar12, Yu16, WY16].
Some of our own results also use the chronogram approach of Fredman-Saks.

Lower bounds for the median problem have been particularly elusive. The lone result is due to
Brodal, Chaudhuri and Radhakrishnan [BCR96]∗ who showed that if the algorithm is only allowed
to compare the contents of cells, and perform no other computation with the cells, then we must
have tm ≥ Ω

(
n/4ti

)
, where tm is the number of comparisons used to compute the median, and ti

is the number of comparisons used to insert numbers into the set. Moreover, [BCR96] gave a data
structure matching these bounds. As far as we know, there may be a data structure that maintains
a set and allows for computing the median, with all operations taking time O(1). We note here that
there is a long sequence of works proving lower bounds on computing the median in the context of
branching programs [Cha10, MR96, BLP15, CJP08].

Past work had found more success with understanding the complexity of the predecessor search
problem. A long sequence of works has proved lower bounds here [Ajt88, Mil94, MNSW98,
BF02, SV03, PT06]. In particular, [BF02, SV03] showed that some operation must take time
Ω (log log n/ log log log n), when w = log n, and this was improved to Ω (log log n) by [PT06]. Still,
it remains open to understand the full trade-off between the time complexity of inserting elements

∗They actually discuss the problem of computing the minimum rather than the median, but the ideas can be
extended to prove lower bounds for the median problem.
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and the time complexity of computing predecessors†.
In our work, we prove new lower bounds on non-adaptive data structures for the median and

predecessor search problems. A data structure is said to perform an operation non-adaptively
if the locations of memory accessed depend only on the operation being performed, and not on
the contents of the memory that are read while the operation is executing. Non-adaptive data
structures turn out to be simple, and faster in practice. This is because a practical implementation
can load all of the cells required to perform the operation into a local cache in a single step, rather
than having to fetch cells from the memory or storage multiple times.

Several past works have proved lower bounds on various computational models under the as-
sumption of non-adaptivity (see for example [KT00]). In the context of data structures, Brody
and Larsen [BL12] showed polynomial lower bounds for various dynamic problems in the non-
adaptive setting. Among other results, they showed that any data structure for reachability in
directed graphs that non-adaptively checks for reachability between pairs of vertices must take
time Ω(n/w), where n is the size of the underlying graph. Alon and Feige [AF09] proved non-
adaptive lower bounds on static data structures for the dictionary problem.

1.1 Our Results

We prove new lower bounds on non-adaptive data structures computing the median and predeces-
sors. Our results are obtained via a novel application of the famous Sunflower Lemma of Erdős and
Rado [ER60]. The Sunflower Lemma has been used in the past to prove lower bounds on the size
of monotone Boolean circuits [Raz85, AB87], but this is the first time it has found an application
to understanding data structures.

Our first result concerns non-adaptive data structures for computing the median:

Theorem 1. Any data structure that computes the median of a subset of {1, 2, . . . , n} while sup-
porting non-adaptive insert operations must satisfy

tm ≥ Ω

(
n

1
2(ti+1)

w · ti

)
,

where tm is the time required to compute the median, ti is the time required to insert elements, and
w is the word size of the cells.

Our second result concerns the predecessor search problem:

Theorem 2. Any data structure that maintains a subset of {1, 2, . . . , n} while supporting non-
adaptive predecessor operations must satisfy

tp ≥ Ω

(
log n

log logn + logw

)
or ti ≥ Ω

 tp · n
1

2(tp+1)

log n

 ,

where ti is the time required for inserts, tp is the time required for computing predecessors and w
is the word-size of the cells.

†We thank Mikkel Thorup for bringing this question to our attention.
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These two theorems are complemented by the observation that a variant of Binary Search trees
gives a data structure that can insert and delete elements non-adaptively, compute predecessors
non-adaptively, and perform all operations in time O(log n), with w = log n. Theorem 2 shows
that there is a gap between adaptive and non-adaptive data structures computing the median and
predecessors, since we know that the van Emde Boas data structure can compute predecessors in
time O(log log n) with w = log n.

The rest of the paper is organized as follows. After discussing some preliminaries, we discuss
some simple data structures for the median problem and the predecessor search problem in Section
3. We begin proving lower bounds In Section 4, where we demonstrate the power of our techniques
by giving lower bounds for the median problem and the predecessor search problem when all
operations are assumed to be non-adaptive. We then prove Theorems 1 and 2 in Sections 5 and 6
respectively.

2 Preliminaries

Unless otherwise stated, logarithms in this article are computed base two. Given a = a1, a2, . . . , an,
we write a≤i to denote a1, . . . , ai. We define a>i and a≤i similarly. Similarly, we write a−i to denote
a1, · · · , ai−1, ai+1, · · · , an. [`] denotes the set {1, 2, . . . , `}, for ` ∈ N. If ` is not an integer but a
real number greater than 1, then [`] denotes the set {1, 2, · · · , b`c}, where b`c denotes the largest
integer less than or equal to `. We denote the expected value of a random variable A to be E [A].

We often work with subsets of cells written by the data structure and sequence of insertions.
We often write C to denote the description of the locations and contents of the cells and |C| as the
number of cells. Similarly, when U is a sequence of insertions, we write |U | to denote the number
of insert operations and U to denote the description of every insert operation with the order in
which they were performed.

The entropy of a discrete random variable A, is defined to be

H(A) =
∑
a

Pr[A = a] · log
1

Pr[A = a]
.

For two random variables A, B, the entropy of A conditioned on B is defined as

H(A|B) =
∑
a,b

Pr[A = a,B = b] · log
1

Pr[A = a|B = b]
.

The entropy satisfies some useful properties:

Proposition 3 (Chain Rule). H(A1A2|B) = H(A1|B) + H(A2|BA1).

Lemma 4 (Subadditivity). H(A1A2|B) ≤ H(A1|B) + H(A2|B).

Proposition 5. For every a, b, c > 1, if a log ab ≥ c, then a ≥ c
log c+log b .

Proof. Suppose that a < c
log c+log b . We then have,

a log ab <
c

log c + log b
· (log b + log c− log(log c + log b))

< c,

which contradicts the inequality a log ab ≥ c. Therefore, a ≥ c
log c+log b .
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X

Xi1

Xi5
Xi9

Xi12

Figure 1: A Flower with 12 petals. X denotes the core of the Flower.

2.1 Sunflowers

Our proof relies on a variant‡ of the Sunflower lemma [ER60]. The lemma we need is almost
identical to a lemma proved by [AB87], and we use their ideas to prove it.

Definition 6. A sequence of sets X1, · · · , Xp, each of size at most s is said to be a flower with p
petals if there is a set X of size at most s such that for every i, j, Xi ∩Xj ⊆ X. X is called the
core of the flower (See Figure 1).

Next we show that a long enough sequence of sets must contain a flower.

Lemma 7 (Flower Lemma). Let X1, · · · , Xk be a sequence of sets each of size at most s. If
k > (p− 1)s+1, then there is a subsequence that is a flower with p petals.

Proof. We prove the bound by induction on s, p. When s = 1, if k > (p − 1)2, either there are p
sets that are the same or p sets that are distinct. Either way, we obtain a flower with p petals.
When p = 1 the statement is trivially true.

Suppose that s ≥ 2, and the sequence does not contain a flower with p petals. For each set
X ⊆ X1, we get a subsequence by restricting our attention to the sets Xi such that Xi ∩X1 = X
and i > 1. By induction, the length of this subsequence can be at most (p− 2)s+1−|X| since all of
these sets have X in common, and any flower with p− 1 petals yields a flower with p petals in our
original sequence, by adding X1 to the list of petals. Thus we get,

k ≤ 1 +
∑

X⊆X1

(p− 2)s+1−|X|

= 1 + (p− 2) ·
∑

X⊆X1

(p− 2)s−|X|

≤ 1 + (p− 2) · (p− 2 + 1)s ≤ (p− 1)s+1,

as desired.

‡Using the Sunflower lemma would would give us bounds with the same asymptotics, but the Flower Lemma
(Lemma 7) gives cleaner bounds.
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Figure 2: A data structure based on binary search trees storing the set {2, 4, 5, 7, , 9, 10, 12, 13, 16}.

3 A Data Structure for Median and Predecessor Search based on
Binary Search Trees

Here we describe a data structure that maintains a subset of {1, . . . , n} allowing non-adaptive
inserts, non-adaptive predecessor computations and adaptive median computations. The data
structure builds on the well known binary search tree on {1, . . . , n} and is very close to the x-fast
trie (see [Wil83]). This data structure matches many of the lower bounds in our proofs.

Theorem 8. There is a data structure that maintains a subset of {1, 2, . . . , n} and supports inser-
tions, deletions and computing medians and predecessors. All operations take time O(log n), the
word size is log n, and all operations except for the median operation are non-adaptive.

Proof. Without loss of generality, we may assume that n is a power of 2. We maintain a balanced
binary tree of height log n. Every leaf is assigned an element from the universe.

There is a memory cell associated with every leaf and four memory cells associated with every
internal node of the tree. The cells corresponding to each internal node store the number of elements
in the left subtree rooteed at that node, the number of elements stored in the right subtree, the
maximum element of the left subtree and the maximum element of the right subtree. Figure 2
shows an example of the data structure.

To insert an element into the set, we only need to access the cells associated with each node on
the path from the root to the corresponding leaf. These are the only cells that need to be modified
to make the data structure consistent with the new set. Deletions can be performed in the same
way. The time required for these operations is O(log n), and they are non-adaptive.

To compute the median, we read the cells associated with the root to determine if the median
belongs to the left or the right sub tree. Accordingly, we read the cells associated with either the left
or the right child and recurse to find the median. The time required for this operation is O(log n),
but it is adaptive.

To compute the predecessor of an element, we only need to access the cells associated with
every node on the path from the root to the corresponding leaf in the tree. The predecessor is the
maximum of last non-empty left-subtree seen on this path. Again, we see that this operation takes
O(log n) time, and is non-adaptive.
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Y

Xi1

Xip/3
Xi2p/3

Xip

Figure 3: Y denotes the core of the Flower, and the shaded cells are the only cells accessed when
inserting A.

4 Lower Bounds when Insert, Median and Predecessor Operations
are Non-Adaptive

As a warm up, we prove lower bounds when all operations in the data structure are non-adaptive.

Theorem 9. Any data structure with non-adaptive insertions and median computations must take

time Ω
(

logn
log logn+logw

)
for some operation.

Proof. Consider the sequence of sets X = X1, · · · , Xn where

Xi = {j|cell j is accessed while inserting i, or when computing the median} .

If t is the time required for the operations of the data structure, then each set Xi is of size at most
2t. The key observation is that there cannot be a large flower in X :

Claim 10. If X has a flower with p petals, then p ≤ 6wt + 2.

Proof. Suppose for the sake of contradiction that the sequence Xi1 , · · · , Xip is a flower with i1 <
i2 < · · · < ip, and p = 6wt+3. Then let A be a uniformly random subset of {ip/3+1, ip/3+2, · · · , i2p/3}
and Y denote the the contents of the core of the flower after inserting elements of A into the data
structure (see Figure 3).

We show that Y serves as an encoding of A. This is because Y is all we need to reconstruct the
execution of the following sequence of insert and median operations: insert i1, compute the median,
insert i2, compute the median,· · · , insert ip/3, compute the median. The answers to these median
computations determine the elements in A between its smallest element and median. Every insert
operation requires access to a set of cells within the core and outside of it. By the definition of
the flower, the cells outside of the core remain unchanged after inserting elements of A. Therefore,
the sequence can be simulated by access only to the core (see Figure 3). Similarly, executing the
following operations helps retrieve elements in A between its median and largest element: insert
i2p/3+1, compute the median, insert i2p/3+2, compute the median,· · · , insert ip, compute the median.

Hence H(Y ) ≤ 2t · w. Also, H(Y ) ≥ p/3, which proves the claim.
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By the Flower-Lemma (Lemma 7), the sequence X has a flower with n
1

2t+1 petals. Then we get

t ≥ p− 2

6w
≥ n

1
2t+1 − 2

6w
,

where the last inequality follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (log n) .

Proposition 5 implies the desired bound on t.

Next we prove a similar lower bound for the predecessor search problem.

Theorem 11. Any data structure for the predecessor problem with non-adaptive insert operations

and non-adaptive predecessor operations must have time Ω
(

logn
log logn+logw

)
.

Proof. Let X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while inserting i or computing the predecessor of i} .

It t is the time required for the operations of the data structure, then each set Xi is of size at
most 2t. We first show that the time complexity can be lower bounded in terms of the the number
of petals in a flower belonging to X .

Claim 12. If X has a flower with p petals, then p ≤ 4tw + 1.

Proof. Let Xi1 , · · · , Xip form a flower and i1 < i2 < · · · < ip, and p = 4tw + 2. Let A be a random
subset of {i1, i3, · · · , ip−1} and Y denote the contents of the cells in the core after inserting elements
of A.

We show that Y serves as an encoding of A. This is because to reconstruct Y , it suffices to
compute the predecessors of the following elements: i2, i4, · · · , ip. Every predecessor operation
requires access to the core and the cells outside of it. By the definition of the flower, the cells
outside of the core remain unchanged after inserting the elements of A. Therefore, the sequence of
predecessor operations can be simulated by access only to the core.

Hence H(Y ) ≤ 2t · w. Moreover, H(Y ) ≥ p/2, which implies the claimed inequality.

By the Flower Lemma 7, the sequence X has a flower with n
1

2t+1 petals. So t ≥ p−1
4w ≥ n

1
2t+1−1
4w ,

which follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (log n) .

Proposition 5 implies the desired bound on t.

8



5 Lower Bounds when Insertions are Non-Adaptive and Comput-
ing the Median is Adaptive

In this section, we prove Theorem 1. Consider the sequence X = X1, X2, · · · , Xn, where

Xi = {j|cell j is accessed while inserting i} .

Let p be the largest integer such that p ≤ m
1

ti+1 and p is divisible by 3. Let q be the largest

integer such that q(q + 1) < p/3. By the Flower Lemma 7, X has a flower with m
1

ti+1 petals. Note

that p ≥ m
1

ti+1 −3 and q ≥
√
p

2
√
3
. For ease of notation, we assume that X1, · · · , Xp are the promised

flower.
We start by showing that the data structure gives a data structure for computing the kth

smallest element of S. For any data structure D with non-adaptive inserts, define the sequence
XD = X1, X2, · · · , Xn, where

Xi = {j|cell j is accessed by D while inserting i} .

Lemma 13. Let a = dlogm/we. If there is a data structure D for the median problem on
{1, 2, . . . , p} such that XD is a Flower, and D supports non-adaptive inserts in time ti and computes
the median in time tm, then there is a data structure D′ on [q(q + 1)] such that XD′ is a Flower,
and D′ supports non-adaptive inserts in time ti + a and computes the kth smallest element in time
ti + tm + a.

Proof. Without loss of generality, after renaming, the universe for the median problem can be
assumed to be {−p/3 + 1, · · · , 0, 1, · · · , 2p/3}. Let D′ be the new data structure that maintains a
subset of [q(q + 1)] and computes the kth smallest element. Let c1, c2, · · · , ca be a sequence of cells
not used by D. c1, · · · , ca together store the size of the set. The insert operation of D′ executes
the insert operation of D followed by incrementing the size of the set by accessing c1, · · · , ca. The
time for the new insert operation is ti + a.

Let S be the set that D′ stores. We have, |S| ≤ q · (q + 1) < p/3. We now compare |S| to the
number of elements in {−p/3 + 1, · · · , 0, 1, · · · , 2p/3} that are greater than q(q + 1) and smaller
than 1. We have,

|{q(q + 1) + 1, · · · , 2p/3}| ≥ 2p/3− q(q + 1) > 2p/3 > |S|.

Similarly, |{−p/3+1, · · · , 0}| > |S|. For every k > |S|/2, there exists an integer k′ ≤ |S|, which is a
function of |S|, k, such that the new median after inserting {q(q+1)+1, q(q+1)+2, · · · , q(q+1)+k′}
equals the kth smallest element in S. Similarly, for every k ≤ |S|/2, there exists an integer k′ ≤ |S|,
which is a function of |S|, k, such that the new median after inserting {−p/3+1,−p/3+2, · · · ,−p/3+
k′} equals the kth smallest element in S. Inserting an element from {−p/3 + 1, · · · , 0}∪{q(q+ 1) +
1, · · · 2p/3} requires access to the core and its outside. Since the cells outside the core are yet to be
accessed, all the insertions can be simulated by access only to the core.

Therefore, the time to compute the kth smallest element equals the time to access the core and
c1 · · · , ca, and perform a median operation, which is at most ti + tm + a.

Let a = dlogm/we. By Lemma 13, there exists a data structure on universe [q(q + 1)] that
supports non-adaptive inserts in time ti+a and computes the kth smallest element in time ti+tm+a.
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Figure 4: The figure describes the sets I, I1, I2, I3. The number of insertion batches is 3.

Let I = {i|i = (j − 1)(q + 1) + 1 for some j ∈ [q]} and S0 = [q(q + 1)] \ I.

• Insert the elements of S0.

For i ∈
[ q
4wt

]
, let

Ii = {((j − 1)4wt + i− 1) · (q + 1) + 1 | j ∈ [4wt]} .

• ith batch of insertions correspond to inserting elements from a set Ai ⊆ Ii chosen uniformly
at random. (See Figure 4)

Figure 5: Hard Distribution for median with parameters p, q, S.

We now proceed to lower bound tm + ti + a. For ease of notation, set t = ti + a. We use the
chronogram technique of [FS89] using a distribution suggested in [PT14], but with an improved
analysis that exploits the underlying Flower structure.

In what is to follow, we maintain a set S ⊆ [q(q + 1)]. S is empty to begin with. Figure 5
defines the distribution on the insertions. The sequence of insertions is followed by an operation to
compute the (k · q)th smallest element in S, where k is chosen uniformly at random from [q].

For i ∈
[ q
4wt

]
, let Yi denote the random variable that stores the contents of the core at the end

of the ith batch of insertions.
Let T = (T1, · · · , Tq), where Tk is the parity of the (k · q)th smallest element in S for k ∈ [q].

Recall that Ai denotes the i’th batch of inserts into the set, and A−i denotes all the inserts except
for the i’th batch. We have

H(T |A−iYi) = H(T |A−i)− H(Yi|A−i)
≥ H(T |A−i)− wt, (1)

where the last inequality followed from the fact that H(Yi) ≤ wt. Note that Ai, A−i determine T ,
and Ai is determined by T,A−i. Hence, the chain rule of entropy implies that

H(T |A−i) = H(Ai|A−i) = H(Ai) = 4wt.
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For a uniformly random coordinate L ∈ [q],

H(TL|A−iYiL) =

q∑
l=1

H(Tl|A−iYi)
q

=

q∑
l=i

H(Tl|A−iYi)
q

≥
q−i∑
l=i

H(Tl|A−iYi)
q

. (2)

Observe that for every j, j′ ∈ [q] such that (i− 1) · 4wt+ i− 1 ≤ j < j′ < i · 4wt+ i− 1, conditioned
on A−iYi, we have that Tj determines Tj′ and vice versa. Therefore,

q−i∑
l=i

H(Tl|A−iYi)
q

≥ 1

4wt
· H(Ti · · ·Tq−i|A−iYi)

=
H(Ti · · ·Tq|A−iYi)− H(Tq−i+1 · · ·Tq|T<q−i+1A−iYi)

4wt
, (3)

where the inequality follows from subadditivity of entropy.
Note that H(T |A−iYi) = H(Ti · · ·Tq|A−iYi). Combining equations Equations 2, 3,

H(TL|A−iYiL) ≥ H(Ai)− wt− 1

4wt

≥ 1− 1 + wt

4wt
, (4)

where the first inequality follows from Equation 1 and the fact that

H(Tq−i+1 · · ·Tq|T<q−i+1A−iYi) ≤ 1.

Let Qi be the indicator random variable denoting whether a cell that was last accessed while
inserting elements from the set Ai is accessed when computing the (L · q)th smallest element. Upon
fixing A−i,Yi, we can simulate the updates following the ith batch of insertions. This is because
for every element r ∈ A>i, the cells of Xr outside the core are yet to be accessed. Therefore, Yi is
sufficient to simulate all insertions.

For l ∈ [q], conditioned on A−i, Yi, either Tl is determined or Qi takes the value 1. Therefore
H(Tl|A−iYi) ≤ Qi. We now have,

H(TL|A−iYiL) ≤ E [Qi] . (5)

Combining Equations 4,5 we get that for all i ∈
[ q
4wt

]
, E [Qi] ≥ 1− 1+wt

4wt . Since, wt ≥ 1, E [Qi] ≥ 1
2 .

By Lemma 13, tm + ti + a ≥∑ q
4wt
−1

i=1 E [Qi]. Therefore,

tm + ti + a ≥ Ω
( q

wt

)
,

which implies the desired bound.
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Figure 6: Any petal Xi that is shaded black indicate that Pred′(i) 6= Pred(i). The unshaded petals
indicate that their cells outside the core were not overwritten while inserting the set A. The petals
shaded grey indicate the universe.

6 Lower Bounds when Insertions are Adaptive and Predecessor
Operations are Non-Adaptive

In this section we prove Theorem 2. Consider the sequence X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while computing the predecessor of i} .

By the Flower Lemma (Lemma 7), X contains a Flower with n
1

tp+1 petals. Let q be the largest

even integer such that q(q + 1) ≤ n
1

tp+1 . For ease of notation, we assume that X1, X2 · · · , Xq(q+1)

are the promised Flower. Note that q ≥ n
1

2(tp+1)

2 .
Let A ⊂ {i|i = (j − 1)(q + 1) + 1 for some j ∈ [q]} be a uniformly random subset. Insert all

elements of A. We have,

H(A) = q. (6)

For i ∈ [q(q + 1)], let Pred′(i) be the value obtained by simulating the predecessor computation
assuming that the cells outside the core were never accessed when A was inserted. Note that
Pred′(i) can be computed from the cells in the core. Let Pred(i) be the predecessor of i. For every
i ∈ [q], define

Zi =

{
1,

∣∣{j ∈ {i(q + 1)− q + 1, · · · , i(q + 1)}
∣∣Pred(j) 6= Pred′(j)

}∣∣ > q/2

0, otherwise.

Since the total number of cells accessed while inserting A is atleast
q·
∑q

l=1 Zl

2 ,

q∑
l=1

Zl · (q/2) ≤ ti · q, (7)

where the inequality follows from the fact that |A| ≤ q. Let Y denote the contents of the core after
inserting elements of A, the names of the elements i with Zi = 1, and whether or not i ∈ A for
every element with Zi = 1. In other words, Y encodes the core, the set {i : Zi = 1} and the set
A ∩ {i : Zi = 1}.
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Lemma 14. Y encodes A.

Proof. It suffices to come up with a decoding procedure that given Y recovers A. The decoding
algorithm first recovers elements of A in {i|Zi = 1} from the description of Y . By definition, if i ∈ A
and i /∈ {i|Zi = 1}, then Pred′(j) = i for the majority values of j ∈ {i(q + 1)− q + 1, · · · , i(q + 1)}.
If i /∈ {i|Zi = 1}, then the decoding algorithm computes Pred′(j) for every j ∈ {i(q + 1) − q +
1, · · · , i(q + 1)}. If the majority of the answers equal i, then the decoding algorithm infers that
i ∈ A. Otherwise, it infers that i /∈ A. This determines whether or not i ∈ A.

We now analyze the length of the encoding of Y . The contents of the core can be described
with wtp bits. The number of bits required to encode the rest of Y is at most (log q + 1) ·∑q

l=1 Zl.
This is because it takes log q bits to encode each element in {i|Zi = 1} and an extra bit to indicate
its membership in A. Therefore, the length of the encoding is at most wtp + (log q + 1) ·∑q

l=1 Zl.
We now have the following upper bound on the entropy of A.

H(A) ≤ wtp + (log q + 1) ·
q∑

l=1

Zl ≤ wtp + 2 · (log q + 1) · ti, (8)

where the last inequality follows from Equation 7. Combining Equations 6, 8, we get that

tp ≥
q

w
− 2 · (log q + 1) · ti

w
. (9)

Observe that either ti ≥ q
4·(log q+1) or not. In the former case, since q ≥ n

1
2(tp+1)

2 , we can conclude

that ti ≥ Ω

(
n

1
2(tp+1) ·tp
logn

)
. In the latter case, Equation 9 implies that tp ≥ q

2w . Since q ≥ n
1

2(tp+1)

2 ,

we can conclude that tp log(wtp) ≥ Ω (log n). Using Proposition 5, we obtain the desired bound of

tp ≥ Ω
(

logn
log logn+logw

)
.
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