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Abstract

We prove new cell-probe lower bounds for dynamic data structures that maintain a subset
of {1, 2, ..., n}, and compute various statistics of the set. The data structure is said to handle
insertions non-adaptively if the locations of memory accessed depend only on the element being
inserted, and not on the contents of the memory. For any such data structure that can compute
the median of the set, we prove that:

tmed ≥ Ω

(
n

1
tins+1

w2 · t2ins

)
,

where tins is the number of memory locations accessed during insertions, tmed is the number of
memory locations accessed to compute the median, and w is the number of bits stored in each
memory location. When the data structure is able to perform deletions non-adaptively and
compute the minimum non-adaptively, we prove

tmin + tdel ≥ Ω

(
log n

logw + log log n

)
,

where tmin is the number of locations accessed to compute the minimum, and tdel is the number
of locations accessed to perform deletions. For the predecessor search problem, where the data
structure is required to compute the predecessor of any element in the set, we prove that if
computing the predecessors can be done non-adaptively, then

either tpred ≥ Ω

(
log n

log log n + logw

)
, or tins ≥ Ω

(
tpred · n

1
2(tpred+1)

log n

)
,

were tpred is the number of locations accessed to compute predecessors.
These bounds are nearly matched by Binary Search Trees in some range of parameters. Our

results follow from using the Sunflower Lemma of Erdős and Rado [ER60] together with several
kinds of encoding arguments.
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1 Introduction

Data structures are algorithmic primitives to efficiently manage data. They are used widely in
computer systems, and not just to maintain large data sets; these primitives play a fundamental
role in many algorithmic tasks. For example, the heap data structure is a crucial component of the
best algorithms for computing shortest paths in weighted graphs, and the union-find data structure
is vital to algorithms for computing minimum spanning trees in graphs. In both of these examples,
the running times of these algorithms depend on the performance of the underlying data structures.
In this paper, we study data structures that maintain a set of numbers S and allow for quickly
computing the minimum, median or predecessors of the set. The median is the middle number of
the set in sorted order, and the predecessor of a number x is the largest element in S that is at
most x. We give new lower bounds on data structures computing these statistics.

The performance of data structures is usually measured with Yao’s cell-probe model [Yao81].
A dynamic data structure in this model is a collection of cells that stores the data, along with an
algorithm that makes changes to the data or retrieves information about it by reading from and
writing to some of the cells. The word-size of the data structure, denoted w throughout this paper,
is the number of bits stored in each cell of the data structure. The time complexity for performing
a particular operation is the number of cells that are accessed when the operation is carried out.
Usually, there is a trade-off between the time for performing different operations. For example, if
we maintain a set S ⊆ {1, 2, . . . , n} by storing its indicator vector (with w = 1), then elements can
be inserted and deleted from the set in time 1, but computing the median of the set could take time
Ω(n) in the worst case. However, if we maintained the set by storing its elements in sorted order
(with w = log n), and the size of the set, then the median can be computed in time 2, but inserting
elements into the set would take time Ω(n). Binary search trees are a well-known data structure
that maintain sets and allow one to compute the median and predecessors in time O(log n), when
w = log n. One can also use a very clever data structure due to van Emde Boas [vEB77] that brings
down the time required for all operations to O(log log n), when w = log n. The Fusion trees data
structure of Fredman and Willard [FW93] takes O(log n/ logw) time for all operations.

Proving lower bounds on the performance of dynamic data structures is usually challenging. In
their landmark paper, Fredman and Saks [FS89] were the first to establish tight lower bounds for
several dynamic data structure problems. They invented the chronogram technique and leveraged it
to prove several lower bounds. Since then, researchers have built on their techniques to prove lower
bounds on many other dynamic data structure problems [PD06, Pǎt07, PT11, Lar12, Yu16, WY16].
Notably, Pǎtraşcu and Thorup [PT11] proved lower bounds on data structures that can compute the
k’th smallest number of the set for every k via a reduction from Parity Sum for which [FS89] used
the chronogram technique to prove a lower bound. This shows that computing the k’th smallest
element takes strictly more time than just computing the median. Some of our own results also
use the chronogram technique of Fredman-Saks.

Lower bounds on data structures for computing single statistics like the median or minimum
have been particularly elusive. Brodal, Chaudhuri and Radhakrishnan [BCR96] showed that if the
data structure is only allowed to compare the contents of cells, and perform no other computation
with the cells, then we must have tmin ≥ Ω

(
n/4tins

)
, where tmin is the number of comparisons used

to compute the minimum, and tins is the number of comparisons used to insert numbers into the
set. Moreover, [BCR96] gave a data structure matching these bounds. The same bounds apply for
computing the median as well. As far as we know, there may be a data structure that maintains a
set and allows for computing the median and the minimum, with all operations taking time O(1)
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when w = log n. We note here that there is a long sequence of works proving lower bounds on
computing the median in the context of branching programs [Cha10, MR96, BLP15, CJP08].

Past work had found more success with understanding the complexity of the predecessor search
problem. A long sequence of works has proved lower bounds here [Ajt88, Mil94, MNSW98,
BF02, SV03, PT06]. In particular, [BF02, SV03] showed that some operation must take time
Ω (log log n/ log log log n), when w = log n, and this was improved to Ω (log log n) by [PT06]. Still,
it remains open to understand the full trade-off between the time complexity of inserting elements
and the time complexity of computing predecessors∗.

In our work, we prove new lower bounds on non-adaptive data structures that allow for com-
puting the median, minimum, and predecessors of elements. A data structure is said to perform an
operation non-adaptively if the locations of memory accessed depend only on the operation being
performed, and not on the contents of the memory that are read while the operation is executing.
Non-adaptive data structures turn out to be simple, and faster in practice. This is because a prac-
tical implementation can load all of the cells required to perform the operation into a local cache
in a single step, rather than having to fetch cells from the memory or storage multiple times.

Several past works have proved lower bounds on various computational models under the as-
sumption of non-adaptivity (see for example [KT00]). In the context of data structures, Brody
and Larsen [BL12] showed polynomial lower bounds for various dynamic problems in the non-
adaptive setting. Among other results, they showed that any data structure for reachability in
directed graphs that non-adaptively checks for reachability between pairs of vertices must take
time Ω(n/w), where n is the size of the underlying graph. Alon and Feige [AF09] proved non-
adaptive lower bounds on static data structures for the dictionary problem.

1.1 Our Results

We prove new lower bounds on non-adaptive data structures computing the minimum, median and
predecessors. Our results are obtained via an application of the famous Sunflower Lemma of Erdős
and Rado [ER60]. The Sunflower Lemma was used in the past to prove lower bounds on dynamic
data structures by Frandsen and Milterson [FMS97] and then again for static data structures by
Gal and Milterson [GM07], and our use of it is similar. However, in the setting of non-adaptive
data structures, we are able to leverage the lemma to get results even when the word size is large.

Our first result proves a lower bound when both deletions and minimum computations are non-
adaptive†. Similar results hold for computing the median and predecessors as well, but they are
subsumed by the theorems to follow.

Theorem 1. Any data structure with non-adaptive deletions and non-adaptive minimum compu-

tations must take time Ω
(

logn
log logn+logw

)
for some operation.

Our second result concerns non-adaptive data structures for computing the median. Here the
lower bound holds even if the median computation is adaptive and the insertion operation is non-
adaptive:

∗We thank Mikkel Thorup for bringing this question to our attention.
†The analogous result for computing the maximum also holds. Its proof is nearly identical to the proof for theorem

about the minimum.
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Theorem 2. Any data structure that computes the median of a subset of {1, 2, . . . , n} while sup-
porting non-adaptive insert operations must satisfy

tmed ≥ Ω

(
n

1
tins+1

w2 · t2ins

)
,

where tmed is the time required to compute the median, tins is the time required to insert elements,
and w is the word size of the cells.

Our last result concerns the predecessor search problem. Here the lower bound holds even if
the insertion operation is adaptive, as long as the predecessor computations are non-adaptive:

Theorem 3. Any data structure that maintains a subset of {1, 2, . . . , n} while supporting non-
adaptive predecessor operations must satisfy

tpred ≥ Ω

(
log n

log log n + logw

)
or tins ≥ Ω

 tpred · n
1

2(tpred+1)

log n

 ,

where tins is the time required for inserts, tpred is the time required for computing predecessors and
w is the word-size of the cells.

Very recently, Boninger, Brody and Kephart [BBK17] independently obtained some lower
bounds on non-adaptive data structures computing predecessors. Among other results, they showed
that any data structure with non-adaptive insertions and non-adaptive predecessor computations
must have‡ tins ≥ Ω(log n), or tpred ≥ logn

logw+log tins
. Our bounds do not require non-adaptivity for

the insertion operations, and are quantitatively better when tpred = o(log n/ log logn).
These theorems are complemented by the observation that a variant of Binary Search trees

gives a data structure that can insert and delete elements non-adaptively, compute predecessors
non-adaptively, and perform all operations in time O(log n), with w = logn. Theorem 2 and
Theorem 3 show that there is a gap between adaptive and non-adaptive data structures computing
the median and predecessors, since we know that the van Emde Boas data structure can compute
both in time O(log log n) with w = log n.

The rest of the paper is organized as follows. After the preliminaries, we begin proving lower
bounds in Section 3, where we give an introduction to our techniques by proving lower bounds for
several problems when all operations are assumed to be non-adaptive. We prove Theorem 1 there.
We then prove Theorem 2 in Section 4, and Theorem 3 in Section 5. We discuss a simple data
structure based on binary search trees for these problems in Appendix A.

2 Preliminaries

Unless otherwise stated, logarithms in this article are computed base two. Given a = a1, a2, . . . , an,
we write a≤i to denote a1, . . . , ai. We define a>i and a≤i similarly. Similarly, we write a−i to denote
a1, · · · , ai−1, ai+1, · · · , an. [`] denotes the set {1, 2, . . . , `}, for ` ∈ N.

‡[BBK17] consider the tradeoff with the size of the set being added, which allows them to prove lower bounds
even when the data structure is only required to maintain small sets. The bound stated here is what they obtain
when the size of the set is allowed to be arbitrary.
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Figure 1: A Flower with 12 petals. X denotes the core of the Flower.

The entropy of a discrete random variable A, is defined to be

H(A) =
∑
a

Pr[A = a] · log
1

Pr[A = a]
.

For two random variables A, B, the entropy of A conditioned on B is defined as

H(A|B) =
∑
a,b

Pr[A = a,B = b] · log
1

Pr[A = a|B = b]
.

The entropy satisfies some useful properties:

Proposition 4 (Chain Rule). H(A1A2|B) = H(A1|B) + H(A2|BA1).

Lemma 5 (Subadditivity). H(A1A2|B) ≤ H(A1|B) + H(A2|B).

Proposition 6. For every a, b, c > 1, if a log ab ≥ c, then a ≥ c
log c+log b .

Proof. Suppose that a < c
log c+log b . We then have,

a log ab <
c

log c + log b
· (log b + log c− log(log c + log b))

< c,

which contradicts the inequality a log ab ≥ c. Therefore, a ≥ c
log c+log b .

2.1 Sunflowers

Our proof relies on a variant§ of the Sunflower lemma [ER60]. The lemma we need is almost
identical to a lemma proved by [AB87], and we use their ideas to prove it.

Definition 7. A sequence of sets X1, · · · , Xp is called a t-flower with p petals if each set in the
sequence is of size t, and there is a set X of size at most t such that for every i, j, Xi ∩Xj ⊆ X.
X is called the core of the flower.

§Using the Sunflower lemma would would give us bounds with the same asymptotics, but the Flower Lemma
(Lemma 8) gives cleaner bounds.
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C

Xi1
Xi2
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Figure 2: C denotes the core of the Flower, and the shaded cells are the only cells accessed when
deleting {i1, i2, · · · , ip} \ S.

See Figure 1 for an illustration of a flower. Next, following [AB87], we show that a long enough
sequence of sets must contain a flower.

Lemma 8 (Flower Lemma). Let X1, · · · , Xn be a sequence of sets each of size at most t. If
n > (p− 1)t+1, then there is a subsequence that is a t-flower with p petals.

Proof. We prove the bound by induction on t, p. When t = 1, if n > (p − 1)2, either there are p
sets that are the same or p sets that are distinct. Either way, we obtain a 1-flower with p petals.
When p = 1 the statement is trivially true.

Suppose that t ≥ 2, and the sequence does not contain a t-flower with p petals. For each set
X ⊆ X1, we get a subsequence by restricting our attention to the sets Xi such that Xi ∩X1 = X
and i > 1. By induction, the length of this subsequence can be at most (p− 2)t+1−|X| since all of
these sets have X in common, and any (t − |X|)-flower with p − 1 petals yields a t-flower with p
petals in our original sequence, by adding X1 to the list of petals. Thus we get,

n ≤ 1 +
∑

X⊆X1

(p− 2)t+1−|X|

= 1 + (p− 2) ·
∑

X⊆X1

(p− 2)t−|X|

≤ 1 + (p− 2) · (p− 2 + 1)t ≤ (p− 1)t+1,

as desired.

3 Lower Bounds when All Operations are Non-Adaptive

As a warm up, we prove some loose lower bounds when all operations in the data structure are
non-adaptive. In the next section, we prove our final theorems where we only assume that some of
the operations are non-adaptive.

We start by proving Theorem 1, which gives a lower bound on the time for any data structure
that computes minimum and deletions non-adaptively.
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C

Xi1

Xip/3
Xi2p/3

Xip

Figure 3: C denotes the core of the Flower, and the shaded cells are the only cells accessed when
inserting S.

Proof of Theorem 1. Consider the sequence of sets X = X1, · · · , Xn where

Xi = {j|cell j is accessed while deleting i, or when computing the minimum} .

If t is the time required for the operations of the data structure, then each set Xi is of size at most
2t. The key observation is that there cannot be a large 2t-flower in X :

Claim 9. If X has a 2t-flower with p petals, then p ≤ 2wt.

Proof. Suppose for the sake of contradiction that the sequence Xi1 , · · · , Xip is a 2t-flower with
i1 < i2 < · · · < ip, and p = 2wt + 1. Then let S be any subset of {i1, i2, · · · , ip} and C denote the
the contents of the core of the 2t-flower after inserting the set {i1, . . . , ip} and then deleting the
elements of {i1, i2, . . . , ip} \ S.

We show that C serves as an encoding of S. This is because C is all we need to reconstruct the
execution of the following sequence of deletion and minimum operations: compute the minimum,
delete the minimum, compute the minimum, delete the minimum, and so on. The answers to these
computations determine the elements in S. The answer to the first minimum computation can be
reconstructed from C, since C contains all cells used in this computation. If we attempt to delete
ij , then the only cells of Xij that were modified by a previous deletion operation are contained in
C. Thus, every such deletion operation can be simulated with access to C (See Figure 2).

C can be described using at most 2t · w bits, yet C encodes an arbitrary subset of p elements.
This proves the claim.

By the Flower-Lemma (Lemma 8), the sequence X has a 2t-flower with n
1

2t+1 petals. So, we
get

t ≥ p

2w
≥ n

1
2t+1

2w
,

where the last inequality follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (log n) .

Proposition 6 implies the desired bound on t.

Next we prove a similar result for computing the median.
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Theorem 10. Any data structure with non-adaptive insertions and median computations must

take time Ω
(

logn
log logn+logw

)
for some operation.

Proof. Consider the sequence of sets X = X1, · · · , Xn where

Xi = {j|cell j is accessed while inserting i, or when computing the median} .

If t is the time required for the operations of the data structure, then each set Xi is of size at most
2t. The key observation is that there cannot be a large 2t-flower in X :

Claim 11. If X has a 2t-flower with p petals, then p ≤ 6wt + 2.

Proof. Suppose for the sake of contradiction that the sequence Xi1 , · · · , Xip is a 2t-flower with
i1 < i2 < · · · < ip, and p = 6wt + 3. Then let S be any subset of {ip/3+1, ip/3+2, · · · , i2p/3} and
C denote the the contents of the core of the 2t-flower after inserting elements of S into the data
structure (see Figure 3).

We show that C serves as an encoding of S. This is because C is all we need to reconstruct the
execution of the following sequence of insert and median operations: insert i1, compute the median,
insert i2, compute the median,· · · , insert ip/3, compute the median. These operations determine
the elements in S between its smallest element and median. By the definition of the flower, the only
cells of Xi1 , . . . , Xip/3 that were accessed when S was inserted are contained in C. Therefore, the
sequence of operations can be simulated using C (see Figure 3). Similarly, executing the following
operations helps retrieve elements in S between its median and largest element: insert i2p/3+1,
compute the median, insert i2p/3+2, compute the median,· · · , insert ip, compute the median.

C can be described using at most 2t ·w bits, yet C encodes a subset of p/3 = (2tw+1) elements.
This proves the claim.

By the Flower-Lemma (Lemma 8), the sequence X has a 2t-flower with n
1

2t+1 petals. Then we
get

t ≥ p− 2

6w
≥ n

1
2t+1 − 2

6w
,

where the last inequality follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (log n) .

Proposition 6 implies the desired bound on t.

Next we prove a lower bound for the predecessor search problem.

Theorem 12. Any data structure for the predecessor problem with non-adaptive insert operations

and non-adaptive predecessor operations must have time Ω
(

logn
log logn+logw

)
.

Proof. Let X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while inserting i or computing the predecessor of i} .

It t is the time required for the operations of the data structure, then each set Xi is of size at
most 2t. We first show that the time complexity can be lower bounded in terms of the the number
of petals in a 2t-flower belonging to X .
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… …

Ab

…

A2

Figure 4: The elements corresponding to petals are partitioned into disjoint intervals
L,A1, . . . , Aq, R. T is the set of black elements. Si is a random subset of the i’th gray elements
from each interval Aj .

Claim 13. If X has a 2t-flower with p petals, then p ≤ 4tw + 1.

Proof. Supposed for the sake of contradiction that the sequence Xi1 , · · · , Xip is a 2t-flower and
i1 < i2 < · · · < ip, and p = 4tw + 2. Let S be any subset of {i1, i3, · · · , ip−1} and C denote the
contents of the cells in the core after inserting the elements of S.

We show that C serves as an encoding of S. To reconstruct S, it suffices to compute the
predecessors of the following elements: i2, i4, · · · , ip. By the definition of the 2t-flower, the only
cells accessed in Xi2 , Xi4 , . . . , Xip during the insertion operations are contained in the core of the
2t-flower. Therefore, the sequence of predecessor operations can be simulated by access only to the
cells in the core.

Hence C encodes S. Since there are 22tw+1 possible sets S, and C can be described using 2tw
bits, we must have 2tw ≥ p/2. This proves the claim.

By the Flower Lemma 8, the sequence X has a 2t-flower with n
1

2t+1 petals. So t ≥ p−1
4w ≥

n
1

2t+1−1
4w , which follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (log n) .

Proposition 6 implies the desired bound on t.

4 Lower Bounds for Median when Insertions are Non-Adaptive

In this section, we prove Theorem 2. Define the sequence of sets X = X1, . . . , Xn, where

Xi = {j|cell j is accessed while inserting i}.

By the flower lemma (Lemma 8), this sequence of sets must contain a tins-flower with p = n1/(tins+1)

petals, and without loss of generality, we assume that the petals are X1, . . . , Xp. Let C denote the
core of the tins-flower.

To carry out the proof, we need to carefully define a sequence of operations that insert a subset of
the elements {1, 2, . . . , p}¶. For parameters a, b, let L,A1, . . . , Ab, R ⊆ {1, 2, . . . , p} be consecutive
disjoint intervals in ascending order, such that L is of size p/3, R is of size p/3 and for each i, Ai

is of size a + ab, and b(a + ab) ≤ p/3. See Figure 4. Let S1, . . . , Sa be independently sampled sets,

¶This sequence of operations is inspired by an argument in [PT14]
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such that Si is a uniformly random subset of {j : j is the i’th element of Ar for some r}. So each
Si is a subset of the gray elements in Figure 4. Finally, let T be the set

T = {j : for some i ∈ [b], j ∈ Ai and j is not one of the first a elements of Ai},

so T is the set of black elements in Figure 4. Let k be a uniformly random element of {a, a + (a +
ab), a + 2(a + ab), . . . , a + (b− 1)(a + ab)}.

Consider the following sequence of operations with the data structure:

1. Phase 1:

(a) Insert the elements of T .

(b) Insert the elements of S1, then the elements of S2, and so on, until Sa has been inserted.

2. Phase 2:

(a) Insert an appropriate number of elements into L or R so that the median of all the
elements inserted is the k’th smallest element of T ∪ S1 ∪ S2 . . . ∪ Sa.

(b) Compute the median of the inserted set.

We shall prove that the expected number of cells accessed to compute the median must be close
to a. In order to prove this, we use ideas inspired by the chronogram apporoach. Consider the cells
accessed during Phase 1. We say that a cell belongs to Sr if it is in the set⋃

j:j is the r’th element of Ar for some r

Xj \ C

So, every cell of the data structure can belong to at most one of the sets S1, . . . , Sa. Moreover,
every cell that is accessed when inserting Sr either belongs to Sr or is in the core of the tins-flower.

Define

Ei =

{
1 if a cell that belongs to Si is accessed in Phase 2,

0 otherwise.

Let Ci denote the contents of the core immediately after Si was inserted. Let Sj
i denote the set

Si∩Aj and S<j
i denote the set S1

i ∪S2
i ∪. . .∪S

j−1
i . Recall that S−i denotes S1, . . . , Si−1, Si+1, . . . , Sa.

Claim 14. The variables S−i, Ci determine the contents, after Phase 1, of all cells that do not
belong to Si.

Proof. If a cell does not belong to Si, then there are three possibilities. If it belongs to a set Si′ for
i′ < i, then its value can be reconstructed from S1, . . . , Si′ . If it belongs to Si′ for i′ > i, its value
can be reconstructed from Ci and Si+1, . . . , Sa. If it does not belong to any set, then if it is in the
core, it is determined by Ci and Si+1, . . . , Sa, and if it is not in the core, its value is fixed.

Let k = a + (j − 1)(a + ab), so j is a uniformly random number from the set {1, 2, . . . , b}.

Claim 15. The k’th smallest element computed in Phase 2 and S−i together determine
∑j

`=1

∣∣S`
i

∣∣.
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Proof. The k’th smallest element of any set is e if and only if the number of elements missing before
e is exactly e−k. Since the number of elements missing from the intervals A1, . . . , Ab is at most ab,
the k’th smallest element must belong to T ∩Aj , and must determine the total number of elements
missing before this point. This proves the claim.

Claim 16.

E [Ei] ≥ E
j

[
H
(
Sj
i |S

<j
i , S−i, Ci, |Si|

)]
.

Proof. In Phase 2, the algorithm starts out knowing only the size of the sets, and learns the k’th
smallest element of the sets after computing the median. The contents of all cells needed to insert
elements in Phase 2 are determined by S−i, Ci, since these variables determine the cells in the core.
By Claim 14, after fixing S<j

i , S−i, Ci, |Si|, all the cells that do not belong to Si are determined.

Thus, after fixing S<j
i , S−i, Ci, |Si|, the value of Ei is determined. Now if Ei = 0, then the k’th

smallest element is determined, which means that H
(
Sj
i |S

<j
i , S−i, Ci, |Si|

)
= 0. If Ei = 1, the

inequality holds trivially.

Observe that the insertions in Phase 2(a) never access a cell that belongs to Si for any i. Since
Ei = 1 whenever a cell that belongs to Si is accessed, all such accesses must come from the median
computation in Phase 2. Thus, tmed ≥

∑a
i=1 E [Ei]. Then by linearity of expectation and the chain

rule for entropy, we have:

tmed ≥
a∑

i=1

E [Ei] ≥
a∑

i=1

E
j

[
H(Sj

i |S
<j
i , Ci, S−i, |Si|)

]
= (1/b)

a∑
i=1

H(Si|Ci, S−i, |Si|)

≥ (1/b)

a∑
i=1

H(Si|S−i)− H(Ci, |Si|)

≥ a ·
(

1− tinsw + log b

b

)
, (1)

where the last inequality follows from the facts that

H(Si|S−i) = H(Si) = b, and H(Ci, |Si|) ≤ H(Ci) + H(|Si|) ≤ wtins + log b.

Set b = 4wtins and a to be the largest integer such that a ≤ p
3b(b+1) . Since b ≥ 4, log b

b ≤
1
2 . Now,

(1) implies that

tmed ≥ a/4 ≥ Ω

(
n1/(tins+1)

w2 · t2ins

)
,

where the last inequality follows from the fact that a ≥ p
3b(b+1) − 1.

5 Lower Bounds for Predecessor Search when Predecessors are
Non-Adaptive

In this section we prove Theorem 3. Consider the sequence X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while computing the predecessor of i} .
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∑3
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Figure 5: S ⊆ {1, 5, 9}. Cells in petal Xi are shaded black when Pred′(i) 6= Pred(i).

By the Flower Lemma (Lemma 8), X contains a tpred-flower with n
1

tpred+1 petals. Let a be the

largest even integer such that a(a + 1) ≤ n
1

tpred+1 . Note that a ≥ n
1

2(tpred+1)

2 . For ease of notation,
we assume that X1, X2 · · · , Xa(a+1) are the promised tpred-flower.

Let S be any subset of {i|i = (j − 1)(a + 1) + 1 for some j ∈ [a]}. Insert all elements of S.
For j ∈ [a(a + 1)], let Pred′(j) be the value obtained by simulating the predecessor computation
assuming that the cells outside the core were never accessed when S was inserted. Note that
Pred′(j) can be computed from the cells in the core. Let Pred(j) be the predecessor of j. For every
i ∈ [a], define

Zi =

{
1,

∣∣{j ∈ {i(a + 1)− a + 1, · · · , i(a + 1)}
∣∣Pred(j) 6= Pred′(j)

}∣∣ > a/2

0, otherwise.

Figure 5 shows an example with a = 3. Since |S| ≤ a and the total number of cells accessed while
inserting S is atleast a

2 ·
∑a

i=1 Zi,

a∑
i=1

Zi · (a/2) ≤ tins · a. (2)

Let C denote the contents of the core after inserting elements of S, the names of the elements i
with Zi = 1, and whether or not i ∈ S for every element with Zi = 1. In other words, C encodes
the core, the set {i : Zi = 1} and the set S ∩ {i : Zi = 1}.

Lemma 17. C encodes S.

Proof. It suffices to come up with a decoding procedure that given C recovers S. The decoding
algorithm first recovers elements of S in {i|Zi = 1} from the description of C. By definition, if i ∈ S
and i /∈ {i|Zi = 1}, then Pred′(j) = i for the majority values of j ∈ {i(a+ 1)− a+ 1, · · · , i(a+ 1)}.
If i /∈ {i|Zi = 1}, then the decoding algorithm computes Pred′(j) for every j ∈ {i(a + 1) − a +
1, · · · , i(a + 1)}. If the majority of the answers equal i, then the decoding algorithm infers that
i ∈ S. Otherwise, it infers that i /∈ S. This determines whether or not i ∈ S.

We now analyze the length of the encoding of C. The contents of the core can be described with
wtpred bits. The number of bits required to encode the rest of C is at most (log a + 1) ·

∑a
i=1 Zi.

12



This is because it takes log a bits to encode each element in {i|Zi = 1} and an extra bit to indicate
its membership in S. Therefore, the length of the encoding is at most wtpred + (log a+ 1) ·

∑a
i=1 Zi.

Since there are 2a possible sets S, we must have

a ≤ wtpred + (log a + 1) ·
a∑

i=1

Zi ≤ wtpred + 2 · (log a + 1) · tins, (3)

where the last inequality follows from Equation 2. After rearranging Equation 3, we get that

tpred ≥
a

w
− 2 · (log a + 1) · tins

w
. (4)

Observe that either tins ≥ a
4·(log a+1) or not. In the former case, since a ≥ n

1
2(tpred+1)

2 , we can

conclude that tins ≥ Ω

(
n

1
2(tpred+1) ·tpred

logn

)
. In the latter case, Equation 4 implies that tpred ≥ a

2w .

Since a ≥ n
1

2(tpred+1)

2 , we can conclude that tpred · log(wtpred) ≥ Ω (log n). Using Proposition 6, we

obtain the desired lower bound of tpred ≥ Ω
(

logn
log logn+logw

)
.
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A A Data Structure based on Binary Search Trees

Here we describe a data structure that maintains a subset of {1, . . . , n} allowing non-adaptive
inserts, non-adaptive predecessor computations and adaptive median computations. The data
structure builds on the well known binary search tree on {1, . . . , n} and is very close to the x-fast
trie (see [Wil83]). This data structure matches many of the lower bounds in our proofs.

Theorem 18. There is a data structure that maintains a subset of {1, 2, . . . , n} and supports
insertions, deletions and computing the median, minimum, and predecessors. All operations take
time O(log n), the word size is log n, and all operations except for the median operation are non-
adaptive.

Proof. Without loss of generality, we may assume that n is a power of 2. We maintain a balanced
binary tree of height log n. Every leaf is assigned an element from the universe.

There is a memory cell associated with every leaf and four memory cells associated with every
internal node of the tree. The cells corresponding to each internal node store the number of elements
in the left subtree rooteed at that node, the number of elements stored in the right subtree, the
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Figure 6: A data structure based on binary search trees storing the set {2, 4, 5, 7, , 9, 10, 12, 13, 16}.

maximum element of the left subtree and the maximum element of the right subtree. Figure 6
shows an example of the data structure.

To insert an element into the set, we only need to access the cells associated with each node on
the path from the root to the corresponding leaf. These are the only cells that need to be modified
to make the data structure consistent with the new set. Deletions can be performed in the same
way. The time required for these operations is O(log n), and they are non-adaptive.

To compute the median or minimum, we read the cells associated with the root to determine if
the desired value belongs to the left or the right sub tree. Accordingly, we read the cells associated
with either the left or the right child and recurse to find the median or minimum. The time required
for this operation is O(log n), but it is adaptive.

To compute the predecessor of an element, we only need to access the cells associated with
every node on the path from the root to the corresponding leaf in the tree. The predecessor is the
maximum of last non-empty left-subtree seen on this path. Again, we see that this operation takes
O(log n) time, and is non-adaptive.
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