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Abstract

We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system,
using a concept that we call unsatisfiability certificate. This approach is, essentially,
equivalent to the well-known feasible interpolation method, but is applicable to CNF
formulas that do not seem suitable for interpolation. Specifically, we prove exponential
lower bounds for random k-CNFs, where k the logarithm of the number of variables,
and for the Weak Bit Pigeon Hole Principle. Furthermore, we prove a monotone variant
of a hypothesis of Feige [12]. We give a superpolynomial lower bound on monotone
real circuits that approximately decide the satisfiability of k-CNFs, where k = ω(1).
For k ≈ log n, the lower bound is exponential.

1 Introduction

In proof complexity, we want to identify tautologies which are hard to prove in a given proof
system. For most proof system, the Frege system for example, it is not even known whether
such hard tautologies exist. In others, the known hard instances have very specific form
tailored to beat the system – this is the case of bounded depth Frege or Cutting Planes.
There is a general consensus among researchers in computational complexity that random
k-CNF formulas are hard instances both for decision procedures and for propositional proofs.
The seminal paper of Chvátal and Szemerédi [9] gives exponential lower bounds on Resolution
refutations of random formulas of suitable density. This was simplified in [6]; similar results
have been proven for a few other proof systems, such as Polynomial Calculus [5, 1]. There
are proof systems for which we do have lower bound methods (the aforementioned Cutting
Planes and bounded depth Frege), yet no superpolynomial lower bounds are known for
random formulas. Thus one of the central problems in proof complexity is to prove lower
bounds on the refutations of random k-CNFs in stronger systems, ideally for k = 3. In this
paper we make some progress by proving an exponential lower bound for random k-CNFs
in Cutting Planes, with k ≈ log n.
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Cutting Planes is a proof system designed to show that a given set of linear inequalities
has no 0, 1-solution. This is achieved by simple syntactic operations, namely, we can add two
inequalities, multiply by a positive constant, and round fractional constants if the coefficients
are integers. A system of inequalities has no 0, 1-solution iff we can thus obtain the inequality
0 ≥ 1. As a decision procedure for integer linear programming, Cutting Planes was defined
by Gomory and Chvátal [15, 8]. As a proof system, Cutting Planes was later proposed
in [11]. An exponential lower-bounds for this system were proved by Haken and Cook [17],
and Pudlák [24]. In [13], it was noted that in this lower bound, the structure of the inference
rules is irrelevant: it works also for the so-called Semantic Cutting Planes, where we can
derive from two inequalities any inequality which is their valid consequence. The hard
tautologies in [24] have a very specific form, and it seems impossible to extend the technique
to random k-CNFs. Nevertheless, we will prove:

Theorem 1. For every constant c > 1, if C is a random k-CNF with n variables and
m = O(n2k) clauses, where k ≥ c log n, then, with high probability, every Cutting Planes (or

Semantic Cutting Planes) refutation of C has size 2n
Ω(1)

.

The theorem is most interesting for k small, such as k ≈ log n; if k is very large, it
becomes trivial. Concerning the parameter m, one can easily show that for m ≥ cn2k, where
c is a sufficiently large constant, a random CNF is unsatisfiable with high probability.1

A general technique for proving proof complexity lower bounds is the so-called feasible
interpolation. On a high level, given a tautology A of certain form, we can associate with
it a computational problem P so that if A has a short proof (in our proof system) then P
is easy to compute (in a specific model). Hence, it is a method to reduce hardness of proof
to hardness of computation. This strategy was first used by Kraj́ıček [22] to obtain lower-
bounds for Resolution from monotone Boolean circuit lower bounds, proved by Razborov
[27] and improved by Alona and Boppana [2]. Feasible interpolation is also the only known
technique to obtain the lower bounds for Cutting Planes. In order to implement the method,
Pudlák considered a stronger computational model, monotone real circuit, and proved an
exponential lower-bound for this model. This illustrates one limitation of the interpolation
technique: stronger proof systems lead to stronger models of computation, for which it may
be hard or impossible to prove lower bounds (and strong systems like Frege are believed not
to have interpolation even by general, non-monotone, Boolean circuits). Another limitation
is that interpolation is applicable to formulas of a very specific form, a form that random
formulas do not have. This apparently strictly limits the range of applications of this method.

In this paper, we modify the interpolation technique so that it is applicable it to a wider
range of tautologies/contradictions. Our approach is based on the concept of unsatisfiability
certificate, which we now define. Let

C = {C1, . . . , Cm} (1)

1For small m, when a random CNF is satisfiable, the meaning of the theorem is: for almost all formulas
C, either C is satisfiable (and thus does not have any refutation), or all refutations of C are of exponential
size.

2



be a CNF with m clauses. Let X0, X1 be a partition of its variables into two disjoint sets.
Hence, every clause Ci in C can be written as Ci = C0

i ∪C1
i , where C0

i depends on variables
from X0 and C1

i on variables from X1 only.

Definition. A monotone Boolean function F : {0, 1}m → {0, 1} will be called an X0, X1-
unsatisfiability certificate for C (or simply certificate for C), if for every A ⊆ [m] the following
hold:

if {C1
i : i ∈ [m] \ A} is satisfiable then F (A) = 1 , (2)

if {C0
i : i ∈ A} is satisfiable then F (A) = 0 . (3)

One can easily see that an unsatisfiability certificate exists iff C is unsatisfiable, hence
the name. The importance of this concept stems from the fact that lower bounds on circuit
complexity of unsatisfiability certificates imply lower bounds on the size refutations of C.
This depends on the type of circuits and proofs; here we are interested in monotone real
circuits and Cutting Planes proofs. Hence Theorem 1 is a corollary of the following lower
bound on the complexity of certificates.

Theorem 2. Let c > 1 be a constant and let n ≥ 1 be given. Let X0, X1 be a partition
of 2n variables into two sets of equal size. If C is a random k-CNF with O(n2k)-clauses,
variables X0∪X1, and k ≥ c log n, then, with high probability, every certificate for C requires
monotone real circuits of size 2n

Ω(1)
.

Another proof complexity technique, intimately related to interpolation, is based on
communication complexity. Consider a CNF as in (1), and consider the associated two-
player game: Player I has an assignment α1 to the variables X1, Player II an assignment
α0 to the variables X0, and they are supposed to agree on a clause Ci ∈ C which is false
in the assignment α0 ∪ α1. In some systems, we can obtain super-polynomial lower bounds
on proof size from super-logarithmic lower bounds on the communication complexity of the
associated game. This strategy works for the tree-like versions of Resolution, Cutting Planes
[18], and Lovász-Schrijver and similar systems [4]. Note that the paper of Impagliazzo et
al. [18] uses randomized communication, and Beame et al. [4] uses, in addition, multi-party
communication; a key ingredient of both are communication lower-bounds for Disjointness
[26, 23, 29]. The advantage of the communication approach is that no specific form of the
CNF is required; the disadvantage, that it applies only to tree-like proofs. In some sense,
our notion of unsatisfiability certificate mimics the game-theoretic viewpoint: the definition
of F is set up so that the monotone Karchmer-Wigderson game for F (cf. [21]) solves the
associated two-player game. Hence, communication lower bounds can be seen as bounds on
monotone circuit depth of F . However, talking about the circuit size of F has the advantage
of being applicable to general, non-tree-like, proofs. This holds at least in Cutting Planes –
it is an interesting challenge to develop reasonable notions of interpolation or unsatisfiability
certificate for other systems, corresponding to randomized/multiparty communication.

We will give another example of an interesting hard formula for Cutting Planes, the
weak Bit Pigeon Hole Principle, BPHPM

N . The usual Pigeon Hole Principle, PHPm
n , is a
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contradictory CNF which asserts that there is a total injective map from [m] to [n], m > n.
The variables of PHP indicate whether the i-th pigeon is mapped to the j-th hole. A classical
result of Haken [16] says that PHPn+1

n requires exponential Resolution refutations – this was
later improved for weak PHP by Raz [25], to show that PHPm

n requires Resolution refutation
of size exponential in n, no matter how large m is. However, PHPn+1

n does have polynomial
size Cutting Planes proofs. The Bit Pigeon Hole Principle is formulated differently. It asserts
that there is a one-to-one function f : [M ]→ [N ], but the variables of BPHP correspond to
the bit representation of the graph of the alleged function f . We show:

Theorem 3. Every Cutting Planes refutation of the Weak Bit Pigeon Hole Principle BPHPM
N ,

M > N , has size 2Ω(N1/8).

Prior to this paper, no lower bounds were known even for the strong version where
M = N + 1.

Finally, we will consider a purely computational problem of approximately deciding the
satisfiability of random k-CNFs. While deciding satisfiability of 3-CNFs is a well-known NP-
complete problem, it is not known if the problem is NP-hard when we only want to decide
it for most formulas. In [12] Feige proposed the conjecture that there is no polynomial time
algorithm that accepts all satisfiable 3-CNFs and rejects almost all unsatisfiable 3-CNFs
of a particular density. (The clause density of interest is such that almost all 3-CNFs are
unsatisfiable.) It would be interesting to give a piece of evidence for the conjecture by
proving a superpolynomial lower bound at least for monotone Boolean circuits. We cannot
prove this, but we can prove such a result for k-CNFs where k is a function of the number
of variables that goes to infinity. In fact, our lower bound is for a more general kind of
monotone circuits, the real monotone circuits.

In more detail, for a given n and k, let C1, . . . , CN be the set of all k-clauses in n variables,
where N :=

(
n
k

)
2k. Note that k-satisfiability problem can be viewed as a monotone Boolean

function in N variables: identifying the variables with k-clauses, the function which accepts
all unsatisfiable k-CNFs and rejects satisfiable k-CNFs is clearly monotone.Let us denote
this function UNSATk,n. Note that exponential lower bounds on the monotone circuit size
of UNSAT3,n (hence also UNSATk,n, k ≥ 3), follow from the known monotone circuit lower
bounds. A Boolean function f : {0, 1}N → {0, 1} is said to δ-approximate UNSATk,n on(

[N ]
t

)
, if the following hold:

(i). for every A ⊆ [N ], if {Ci : i ∈ A} is satisfiable then f(A) = 0;

(ii). f(A) = 1 for at least δ-fraction of t-element subsets A of [N ].

Theorem 4. Let 0 < δ, ε ≤ 1 be constants. Let N =
(
n
k

)
2k, n ≤ t ≤ N1−ε, and k ≤ log n.

Assume that f is a monotone function which δ-approximates UNSATk,n on
(

[N ]
t

)
. Then for

all k and n sufficiently large, f requires monotone real circuits of size n2Ω(k)
. Moreover, if

k ≥ log n, the bound becomes 2n
Ω(1)

.
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The lower bound is super-polynomial in N if k → ∞. Note that we cannot add the
condition |A| = t to (i) because monotone Boolean circuits for slice functions are as powerful
as general Boolean circuits, cf. [30].2

2 Preliminaries

CNFs, random k-CNFs A literal is a variable or its negation. A clause is a set of literals,
not containing a variable and its negation; k-clause is a clause of size k. A CNF is a set of
clauses; k-CNF is a set of k-clauses. An assignment satisfies a clause C, if it satisfies some
literal in C, and it satisfies a CNF C if it satisfies every clause in C. C(α) will denote the
Boolean value of C in the assignment α.

A random k-CNF C in n variables and m clauses is obtained by picking k-clauses
C1, . . . , Cm uniformly and independently at random from the

(
n
k

)
2k possible k-clauses. We

choose clauses with repetition so |C| may be smaller than m.
Throughout, we use the following notation. For a clause C, let Var(C) be the set of

variables that appear in C, positively or negatively. For a set of variables X, let C � X
be the part of C depending on X, namely, C � X := C ∩ {x,¬x : x ∈ X}. If C is a
CNF {C1, . . . Cm}, C � X denotes the CNF {C1 � X, . . . , Cm � X}. For a sequence of
events E(1), E(2), . . . indexed by n, we say that E(n) holds with high probability (w.h.p.) if
limn→∞ Pr[E(n)] = 1.

The satisfiability threshold It is well-known that as the number of clauses m increases
there is a transition from the case when almost all formulas are satisfiable to case when almost
all unsatisfiable. The transition occurs on a very short interval [14]. This phenomenon is
well understood for constant k (although it is still open if the threshold really exists, i.e.,
the interval converges to a point), see [10] and the references therein. We do not know if
this problem has also been studied for k as an increasing function of n. In this paper, we
only need a lower bound that guarantees that a random formula is unsatisfiable w.h.p. By
the union bound, the probability that a random k-CNF with m clauses is satisfied is upper-
bounded by (1 − 2−k)m2n < em2−k2n. Hence if m ≥ (ln 2 + ε)2kn, for some constant ε > 0,
then a random formula is unsatisfiable with high probability. Note that if k = O(log n), this
bound is polynomial in n and the number of k-CNFs is quasi-polynomial.

Monotone functions and circuits, monotone real circuits Let f : {0, 1}n → {0, 1}
be a Boolean function. Identifying a subset of [n] with its characteristic function, we will
view inputs of f as subsets of [n]. We say that f is monotone, if A ⊆ B implies F (A) ≤
F (B) for every A,B ⊆ [n]. A Boolean function f(x1, . . . , xm) is a monotone projection of
g(x1, . . . , xm), if f = g(z1, . . . , zm) where z1, . . . , zm ∈ {0, 1, x1, . . . , xm}. A monotone circuit
is a Boolean circuit which uses only the binary gates ∧,∨ and constants 0, 1. A monotone
real circuit (defined in [24]) computes a Boolean function, but the intermediary steps in the

2We could fix the size of A in (i), but it must a value essentially larger than t.
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computation can be real numbers. The only restriction is that the gates consist of binary
monotone real functions. (A function g : R × R → R is monotone if x1 ≤ y1, x2 ≤ y2

implies g(x1, x2) ≤ g(y1, y2)). The size of a circuit is the number of its gates. A monotone
Boolean circuit can be viewed as a special case of a monotone real circuit. It was shown by
Rosenbloom in [28] that monotone real circuits are strictly more powerful.

Cutting Planes Cutting Planes is a proof system designed to show that a given set of
linear inequalities L has no 0, 1-solution. A Cutting Planes refutation starts from the in-
equalities in L, produces new inequalities by means of simple syntactic rules (namely, adding
two inequalities and the “rounding-up” rule), until it reaches the contradictory inequality
0 ≥ 1. Since all our results hold true for a stronger version, the Semantic Cutting Planes
system, we only define the latter one. (The semantic version is properly stronger, as shown
in [13].) For a linear inequality L of the form

∑n
i=1 aixi ≥ a0, where a0, . . . , an ∈ R, we

say that a Boolean assignment α ∈ {0, 1}n satisfies L, if
∑n

i=1 aiαi ≥ a0. We say that an
inequality L3 semantically follows from L1, L2, if every assignment which satisfies both L1

and L2 satisfies also L3. Let L be a set of linear inequalities. A Semantic Cutting Planes
refutation of L is a sequence L1, . . . , Ls such that: (1) every Li is either an element of L,
or it semantically follows from (at most) two previous inequalities, (2) Ls is the inequality
0 ≥ 1. The size of the refutation is s. A clause can be identified with a linear inequality, and
a CNF with a set of linear equalities. For example, the clause {x, y,¬z} would be written
as x + y + (1 − z) ≥ 1. Hence, we can talk about Semantic Cutting Planes refutations of
CNFs.

Organization The paper is organized as follows. In Section 3 we discuss the concept of
unsatisfiability certificate, its connection with interpolation and communication complexity.
In Section 3.3, we prove Theorem 3. In Section 4, we outline the proof techniques needed to
prove Theorems 2 and 4. The proofs themselves are left to the Appendix.

3 Monotone functions as certificates of unsatisfiability

In this section, we give some comments about unsatisfiability certificates, as defined in the
Introduction. The first observation is:

Proposition 5. A CNF C is unsatisfiable if and only if a monotone certificate for C exists
(for every partition X0, X1 of the variables).

Proof. Let C be as in (1). Note that C is satisfiable iff there exist A ⊆ [m] such that both
A0 := {C0

i : i ∈ A} and A1 := {C1
i : i ∈ [m]\A} are satisfiable. If C is satisfiable, a certificate

for F would have to have F (A) = 0 (by (3)) and F (A) = 1 (by (2)). If C is unsatisfiable,
define F as follows: F (A) = 0, if A0 is satisfiable, and F (A) = 1 otherwise. Then the
condition (3) holds. Condition (2): if A1 is satisfiable then A0 is not, and so F (A) = 1.
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In the proof, we have shown that F , defined by:

F (A) = 0 iff {C0
i : i ∈ A} is satisfiable, (4)

is an X0, X1-certificate for C. This function is a restriction of the function UNSATk,n.
We note that the definition of unsatisfiability certificate can be more succinctly stated

as follows. For C as in (1), an X0, X1-certificate for C is a monotone Boolean function such
that, for every assignment α0 to X0 and α1 to X1:

F (C0
1(α0), . . . , C0

m(α0)) = 0 , F (¬C1
1(α1), . . . ,¬C1

m(α1)) = 1 . (5)

3.1 Communication complexity

The function F can be more easily understood in terms of its Karchmer-Wigderson game.
For a monotone function f : {0, 1}m → {0, 1}, recall its monotone KW-game: Player I has
input A ⊆ [m] such that f(A) = 1, Player II an input B with f(B) = 0, and they are
supposed to find a coordinate i ∈ A \ B. For an unsatisfiability certificate for C, this boils
down to the following game.

X0, X1-game for C Player I on has an assignment α1 to the variables X1, Player II an
assignment α0 to the variables X0, and they are supposed to agree on a clause Ci ∈ C which
is false in the assignment α0 ∪ α1.

Assume that we have an X0, X1-unsatisfiability certificate F for C, and a protocol P
for its monotone KW game. Then the protocol also solves the X0, X1-game for C. For,
given α0 and α1, Player I and II can each first generate the input A := {i : C1

i (α1) = 0}
and B := {i : C0

1(α0) = 1}. By definition of F , F (A) = 1 and F (B) = 0. Running the
protocol P on A, B, the players find i ∈ A \ B which corresponds to an unsatisfied clause.
Conversely, given a protocol for the X0, X1-game, it can be modified to a protocol for some
X0, X1-certificate for C.

These observations give:

Remark 6. Let D(C) be the smallest depth of a monotone Boolean circuit computing an
X0, X1-certificate for C. Let CC(C) be the deterministic communication complexity of the
X0, X1-game for C. Then, up to a constant factor, log(D(C)) and CC(C) are the same.

We can also point out that randomized communication complexity is a lower bound on
monotone real circuit depth of F . Since we are interested in the size of proofs and circuits,
rather than depth, we will not use either fact in the sequel. However, the game theoretic
viewpoint is especially useful when considering upper-bounds. For example, for Tseitin’s
formulas, or any system of unsatisfiable inequalities over GF2 presented as a polynomial
size CNF, there is a simple communication protocol of depth O(log n). Hence, unsatisfia-
bility certificates for such formulas can be computed by circuits of logarithmic depth (and
polynomial size).
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3.2 Proof complexity; a comparison with interpolation

The notion of unsatisfiability certificate is closely related to feasible interpolation, a concept
introduced by Kraj́ıček [22]. In the interpolation setting, we have a partition of the variables
into three parts Y,X0, X1 and an unsatisfiable CNF

D = D0(Y,X0) ∪ D1(Y,X1) , (6)

where the formulas De may only contain variables from the displayed sets. We want to find
a function f : {0, 1}|Y | → {0, 1} such that, for every α ∈ {0, 1}|Y |,

(i). If D0(α,X0) is satisfiable then f(α) = 0,

(ii). If D1(α,X1) is satisfiable then f(α) = 1.

The function f is called an interpolant of D0 and D1.
To have a specific example in mind, a classical choice is the Clique-Coloring Princi-

ple. Think of the common variables Y as representing edges of n-vertex graph. Then
Cliquekn(Y,X1) is a CNF formula asserting that X1 defines a clique of size k in Y . This
can be written as a polynomial-size CNF, which is monotone in Y (i.e., no variable in Y
is negated). Similarly Colorkn(Y,X0) is a small CNF formula asserting that X0 defines a
k-coloring of Y . Then Colorkn(Y,X0) ∧Cliquek+1

n (Y,X1) is unsatisfiable. An interpolant is a
function which accepts graphs with (k+ 1)-clique and rejects k-colorable graphs. Improving
the seminal result of Razborov [27], it was shown in [2] that, for a suitable choice of k, every

such f requires monotone circuit of size 2n
Ω(1)

. In [24], and independently in [17], this was
extended to monotone real circuits.

This in turn provides lower-bounds on sizes of refutations in some proof systems:

Theorem 7 ([22, 24, 13]). Let D be as in (6) where D1 is monotone in Y . Assume that
D has a resolution refutation with s proof lines. Then there is an an interpolant of D0 and
D1 of a monotone circuit size O(s). For Cutting Planes (and Semantic Cutting Planes)
refutations, the same holds with monotone real circuit of size O(s+ |Y | · |D|).

We now explain how to convert unsatisfiability certificates to interpolants, and vice versa.
Let C be as in (1). Introduce m fresh variables Y = {y1, . . . , ym}, and consider the CNF D:

C0
1 ∪ {¬y1}, . . . , C0

m ∪ {¬ym}, C1
1 ∪ {y1}, . . . , C1

m ∪ {ym} ,

and let D0(X0, Y ) be the first m clauses, and D1(X1, Y ) the rest. Then one can see that
every monotone interpolant of D0 and D1 is also an X0, X1-certificate for C.

This implies that the above interpolation theorem applies also to certificates of unsatis-
fiability:

Theorem 8. Assume that a CNF C has a resolution refutation with s proof lines. Then, for
every partition of the variables, C has an unsatisfiability certificate computable by a monotone
circuit of size O(s). For Cutting Planes (and Semantic Cutting Planes) refutations, the same
holds with monotone real circuit of size O(s+ |C|2), where n is the number of variables.
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Proof. C can be obtained from D by resolving C0
i ∪ {¬yi} and C1

i ∪ {yi} for every i ∈ [m].
Hence D has a refutation with O(s) proof lines (w.l.o.g., we can assume m ≤ s). Since
the variables Y appear only negatively in D0 (and only positively in D1), there exists an
interpolant f of D0 and D1 of monotone circuit size O(s).This gives an X0, X1-certificate of
monotone circuit size O(s). The case of Cutting Planes is similar. (Note that the term |C|2
is redundant, as would be revealed by a more careful argument.)

It is instructive also to see a direct proof for resolution which shows a tighter connection
of unsatisfiability certificates and proofs. Given a minimal resolution refutation of C, a
monotone circuit M computing a certificate F for C can be directly constructed as follows:
the graph of M is the same as the graph of the refutation. Initial clauses Ci are replaced
by yi, the variables of the function F . For the inner gates, we write ∧ if the proof resolves a
variable in X0, and ∨ if the proof resolves a variable in X1.

To prove that this, indeed, gives us an unsatisfiability certificate, we need a generalization
of this concept. This more general version will also be used in Theorem 2. For a set of
assignments Γ, a CNF is called Γ-satisfiable if it has a satisfying assignment in Γ. For
e ∈ {0, 1}, let Γe be a set of Boolean assignments to the variables Xe. We will say that F
is Γ0,Γ1-certificate for C, if conditions (2) and (3) hold when “satisfiable” is replaced with
“Γ1-satisfiable” and “Γ0-satisfiable”, respectively.

Now one can easily prove by induction on the depth that the subcircuit of M determined
by a node v is a Γ0,Γ1-unsatisfiability certificate for C where

Γe = {α : (C � Xe)(α) = 0}, e ∈ {0, 1} ,

and where C is the clause that is at the node v in the Resolution proof.

One can also see that Theorem 7 can be viewed as a consequence Theorem 8. That is,
we now explain how to obtain an interpolant from a certificate. First, a simple lemma (the
proof is straightforward and we omit it):

Lemma 9. Let F be an X0, X1-certificate for C. For e ∈ {0, 1}, let Γe be a set of Boolean
assignments to Xe. Assume that C ′ ⊆ C is such that every C ∈ C \ C ′ is satisfied by every
assignment from Γ0 × Γ1. Then some Γ0,Γ1-certificate for C ′ is a projection F .

Suppose now D is as in (6). Assume that D1(Y,X1) is monotone in Y , where Y =
{y1, . . . , ym}. Introduce fresh variables z1, . . . , zm and let C be the CNF

D0(Y,X0) ∪ D1(Z,X1) ∪ {{¬zi, yi} : i ∈ [m]} .

If D is unsatisfiable then so is C. Let X ′0 := X0∪Y and X ′1 := X1∪Z. Let Γ0 be the satisfying
assignments of D0(Y,X0), and Γ1 the satisfying assignments of D1(Z,X1). Then one can see
that a Γ0,Γ1-certificate for C is a monotone interpolant of D0(Y,X0) and D1(Z,X1). Hence a
monotone interpolant of D0(Y,X0) and D1(Z,X1) is a projection of X ′0, X

′
1-certificate for C.
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3.3 The Weak Bit Pigeonhole Principle

We now show how one can apply unsatisfiability certificates to the Weak Bit Pigeon Hole
Principle, proving Theorem 3.

Let M > N = 2n. The CNF formula BPHPM
N has Mn variables xi,k, i ∈ [M ], k ∈ [n].

If we think of them as representing M × n Boolean matrix, the principle asserts that all the
rows of this matrix are distinct. More exactly, let [xi 6= xj] be the unique 2n-CNF asserting
that the vectors (xi,1, . . . , xi,n) and (xj,1, . . . , xj,n) are distinct. The CNF has N clauses. Then
BPHPM

N is the union of M(M − 1)/2 CNFs

[xi 6= xj] , i < j ∈ [M ] .

Since we assume M > N , the formula is unsatisfiable. It has exactly NM(M − 1)/2 clauses.
One can also think of the variables as giving bit-representation of an injection f from [M ]
to {0, 1}n – hence the name the Bit Pigeonhole Principle.

We want to show that for some partition of the variables, BPHP requiresX0, X1-certificates
of exponential monotone complexity. This will also imply an exponential Cutting Planes
lower bound. For simplicity of presentation, we assume that n is even. The partition is as
follows, X0 consists of the first n/2 columns of the matrix, and X1 of the last n/2 columns,
namely:

X0 := {xi,k : i ∈ [M ], k ∈ {1, . . . , n/2}} , X1 := {xi,k : i ∈ [M ], k ∈ {n/2 + 1, . . . ,m}} .
Assume that F is X0, X1-certificate for BPHP. F has NM(M−1)/2 variables corresponding
to clauses of BPHP. Denote the variables yi,j,k where i < j ∈ [M ] and yi,j,k corresponds to
the k-th clause in [xi 6= xj]. Let H : {0, 1}M(M−1)/2 → {0, 1} be obtained by replacing yi,j,k
with yi,j for every k. Hence H is a projection of F . We view its inputs as M -vertex graphs.
We claim that H distinguishes graphs G with χ(G) ≤

√
N from graphs with χ(Ḡ) ≤

√
N ,

namely,

if χ(G) ≤
√
N then H(G) = 0 , (7)

if χ(Ḡ) ≤
√
N then H(G) = 1 . (8)

Here, χ(G) is the chromatic number of G and Ḡ its complement.
To see (7), assume that χ(G) ≤

√
N . Then the CNF⋃

(i,j)∈G

([xi 6= xj] � X0)

is satisfiable: indeed, it is satisfied by the bit-representation of some
√
N -coloring of G.

Hence, by the definition of unsatisfiability certificate, H(G) = 0. The condition (8) is dual.
Thus we have reduced the lower bound on BPHP to the following:

Theorem 10. For M > q2, every monotone function that distinguishes M-vertex graphs G
with χ(G) ≤ q from graphs with χ(Ḡ) ≤ q has monotone real circuit complexity 2Ω(q1/4).

Proof—see Appendix.

The lower bound on the proofs of BPHP in Cutting Planes (Theorem 3) now follows from
the theorem above and Theorem 7.
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4 The monotone lower bounds

In this section, we explain our lower bound technique and prove a simpler version of Theo-
rem 2.

4.1 The lower bound criterion

Our lower bounds use standard techniques used in monotone circuit lower bounds. We use
the machinery presented in a monograph of Jukna [20], which was developed in [7, 19].

Let f : {0, 1}m → {0, 1} be a monotone function. Again, we view inputs of f as subset
of [m]. We call A ⊆ [m] an accepting input, if f(A) = 1. We call it a rejecting input, if
f([m] \ A) = 0. Let F be a multiset whose elements are subsets of [m]. For a parameter r,
let ]r(F) be the maximum number of elements of F , including multiplicities, containing a
fixed r-element set.

Lemma 11 (Jukna). Let f be a monotone Boolean function in m variables and 2 ≤ r0, r1 ≤
m. Let F1 be a multiset of accepting inputs and F0 a multiset of rejecting inputs of f . Then
every monotone real circuit computing f has size at least the minimum of

|F1| − (r0 − 1)]1(F1)

(2r0)r1+1 · ]r1(F1)
and

|F0|
(2r1)r0+1 · ]r0(F0)

Proof. This follows from Theorem 9.21 in [20] in the same way as Theorem 9.18 follows from
Theorem 9.17 in that book. The only difference is that we work with multisets, rather than
sets.

The asymmetry in the lemma can make computations cumbersome. As we will always
be in the situation when the term (r0 − 1)]1(F1) is relatively small, we prefer to work with
a slightly relaxed, but simpler lower bound:

min
e∈{0,1}

|Fe|
(2r1−e)2re · ]re(Fe)

, provided that (r0 − 1)]1(F1) ≤ 1

2
· |F1| . (9)

In our applications, we will usually consider F of the following form. Let C = {C1, . . . , Cm}
be a CNF in n variables and Γ a set of Boolean assignments to the variables. Suppose that
f : {0, 1}m → {0, 1} rejects every subset of C satisfiable in Γ, namely f(A) = 0 whenever
{Ci : i ∈ A} is satisfied by an assignment from Γ. This is the situation in Theorem 4, as well
as the definition of unsatisfiability certificate (where Γ is simply the set of all assignments).
For an assignment α ∈ Γ, let Aα ⊂ [m] be the set indices of clauses falsified by α, namely

Aα := {i ∈ [m] : Ci(α) = 0} .

Then every clause in [m] \ Aα is satisfied by α and hence Aα is a rejecting input of f . Let
F(C,Γ) be the multiset of Aα’s, for all assignments α ∈ Γ.

11



In order to apply Lemma 11, we want to estimate ]r(F(C,Γ)). This will follow from
simple expansion properties of clauses in C. Given 1 ≤ r ≤ m, define

Exr(C) := min
T⊆C,|T |=r

|
⋃
C∈T Var(C)|

r
.

Lemma 12. For f and ]r(F(C,Γ)) as discussed, ]r(F(C,Γ)) is a multiset of rejecting inputs
of f . Moreover,

]r(F(C,Γ)) ≤ 2n−rExr(C) .

Proof. We have already explained that ]r(F(C,Γ)) consists of rejecting inputs, and it remains
to prove the inequality. It is enough to take Γ as the set of all assignments. Given an T ⊆ C
of size r, we want to estimate the number assignments α such that T ⊆ Aα. In other words,
every clause C ∈ T , is false under α. Let S be the set of such assignments. If α ∈ S, then
we must have α(`) = 0 for every literal ` appearing in some C ∈ T . Hence if two clauses
in T contain both a variable and its negation, S is empty. Otherwise, all assignments in S
have the same value on variables in

⋃
C∈T Var(C). Hence

|S| ≤ 2n−|
⋃
C∈T Var(C)| ≤ 2n−rExr(C) ,

as required.

4.2 Unsatisfiability certificates for bipartite CNFs

In this subsection, we give a lower bound for random bipartite CNFs (defined below). The
proof is easier than the proof for general random CNFs, it works for small k, and also for
CNFs of large clause density. The proof of Theorem 2 itself is deferred to Appendix.

Let us fix a partition X0, X1 of 2n variables with |X0| = |X1| = n. A clause of width 2k is
called balanced, if it contains exactly k literals from X0 (and X1). A random bipartite CNF
is obtained by independently choosing m balanced clauses uniformly and independently at
random. We want to show that an X0, X1-certificate for a random bipartite CNF requires
large monotone circuit.

The basic ingredient is the next lemma.

Lemma 13. Let C be a random k-CNF in n variables and m clauses. Assume that m ≤
(n/40rk)k(1−ε) where 0 < ε ≤ 1/2 is fixed and r = r(n), k = k(n) are parameters with
limn→∞ rk =∞. Then, with high probability,

Exr(C) ≥ εk .

Proof. Given a set Z of variables and i ∈ [m],

Pr[Var(Ci) ⊆ Z]) =

(
|Z|
k

)(
n

k

)−1

≤
(

e|Z|
n

)k
.

12



Hence, for a fixed A ⊆ [m] of size r,

Pr[|
⋃
i∈A

Var(Ci)| < εrk] ≤
(

en

bεrkc

)bεrkc(
ebεrkc
n

)rk
≤
(

20rk

n

)rk(1−ε)

. (10)

Since there are at most mr of the sets A, we have

Pr[Exr(C, X) < εk ] ≤

(
m

(
20rk

n

)k(1−ε)
)r

,

which tends to zero if m ≤ (n/40rk)k(1−ε).

The main theorem about bipartite CNFs is as follows.

Theorem 14. Let k = k(n) be a function of n such that limn→∞ k = ∞ and k ≤ log n.
Assume that m ≤ nk(1−ε) for some constant ε > 0. Let C be a random bipartite 2k-CNF in
2n variables with m clauses. Then, w.h.p., every X0, X1-certificate for C requires monotone
real circuit of size 22δk , where δ > 0 is a constant depending on ε. Moreover, if k ≥ 10 log n
and m ≤ 2ck, where c is an arbitrarily large constant, the lower bound is 2Ω(n).

Note that the main bound becomes super-polynomial if k ≥ c′ log log n, where c′ is a
constant depending on ε.

Proof. Let C be as assumed and let F be an unsatisfiability certificate. We want to apply
the bound from Lemma 11 with r0 = r1 := r. Let Γe, e ∈ {0, 1}, be the set of all Boolean
assignments to Xe. Let F0 := F(C � X0,Γ0), as in Lemma 12. It is a multiset of rejecting
inputs. Similarly, one can see that F1 := F(C � X1,Γ1) is a multiset set of accepting inputs
of F . We have

|F0|, |F1| = 2n .

Set ε′ small enough: ε′ := ε/4 suffices. Let r := b2ε′k/4c. In the sequel we will omit the
integer part signs. This is possible, because we assume that k is sufficiently large and
thus the resulting error can be compensated by slightly changing the constants. (This also
concerns the proofs below.) The previous lemma gives Exr(C � Xe) ≥ ε′k for both e ∈ {0, 1}
– this is because C � Xe is a random k-CNF in n variables and

(n/40rk)k(1−ε′) ≥ (n/40k2kε
′/4)k(1−ε′) ≥ (n/nε

′
)k(1−ε′) ≥ nk(1−ε) ≥ m,

for n sufficiently large. Hence,

]r(F0), ]r(F1) ≤ 2n−ε
′kr .

Since ]1(F1) = 2n−k, we have (r − 1)]1(F1) ≤ |F1|/2. Hence the bound in (9) becomes

|Fe|
(4r2)r]r(Fe)

≥
(

2ε
′k

4r2

)r
≥ 2r = 22ε

′k/4
,
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for k large enough.
For the “moreover” part, apply Lemma 13 with ε := 1/2. Set r := αn/k where α is a

small enough positive constant chosen so that the assumption of the lemma is satisfied. The
lower-bound is again (

2εk

4r2

)r
≥
(

2k/2k2

4α2n2

)r
≥
(
2k/4

)r
= 2αn/4 .

Corollary 15. Assuming the same conditions for k,m and n, w.h.p. a random bipartite 2k-
CNF in 2n variables with m clauses requires Semantic Cutting Planes proofs of size 22Ω(k)

.
If k ≥ 10 log n and m = 2O(k), the lower bound is 2Ω(n).

5 Open problems

The most interesting problem is to extend our lower bounds to the case of a constant k. That
is, prove super-polynomial lower bounds on Cutting Planes refutations of random k-CNFs
for a constant k, or at least tree-like Cutting Planes. And, if possible, extend Theorems 2
and 4 in this direction. The following are the simplest problems we do not know how to
solve (recall the X0, X1-game defined in Section 3.1):

(a) Let C be a random 3-CNF of a suitable clause density above the unsatisfiabilty thresh-
old. Does the X0, X1-game for C require deterministic communication complexity of
nΩ(1)? If so, does C require unsatisfiability certificate of exponential monotone circuit
size?

(b) The same questions about random bipartite 6-CNF.

Let us explain some aspects of the problems. First, for a random CNF of large-enough
clause density, both the games in (a) and (b) have small probabilistic communication com-
plexity. This is because, w.h.p., every assignment will make false a constant fraction of
clauses in C, allowing the two players to pick a false clause at random. As tempting as it is,
this means that we cannot solve problems (a) or (b) by means of a randomized reduction to
Disjointness. Furthermore, by Remark 20, in (a) the ”suitable density” must be fairly small,
otherwise the (deterministic) communication complexity is logarithmic. Without proof3, we
note the following:

Remark 16. (i). There exists an explicit unsatisfiable 3-CNF such that every X0, X1-

certificate requires monotone real circuits of size 2n
Ω(1)

(for some partition X0, X1).

(ii). Assume that C is such that every clause in C contains at most 2 variables from X0.
Then C has a certificate with monotone circuit of size polynomial in |C| and depth
O(log |C|2). Hence, the X0, X1-game for C has communication complexity O(log |C|2).

3Hint. In part (i) represent the Clique-Coloring principle as a 3-CNF. In part (ii), recall that, as in (4),
an X0, X1-certificate can be obtained as a monotone projection of UNSAT2,n, where the latter is closely
related to s, t-connectivity.

14



Part (i) shows that exponential lower bounds on unsatisfiability certificates can be proved
even for k = 3, for a specific C. On the other hand, (ii) shows that using the method of this
paper, it is impossible to prove a superpolynomial lower bound for random bipartite 4-CNFs.
It seems, however, that for k ≥ 6, the bottleneck is only in the lower bound methods for
monotone real circuits or communication games.

Acknowledgement We than Neil Thapen and Nicola Galesi for useful discussions.
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6 Appendix

In this section we prove Theorems 2, 4, and 10.

6.1 Proof of Theorem 2

Let X0, X1 be a partition of 2n variables with |X0| = |X1| = n. Let C be a random k-CNF
in variables X0 ∪X1 with m clauses. We will assume that log n ≤ k ≤ n and m = O(n2k).

Fix a constant δ ∈ (0, 1/2). For e ∈ {0, 1}, we will call a clause C an Xe-clause, if it
contains at least (1 − δ)k variables from Xe. A clause which is neither X0-clause nor X1-
clause will be called a mixed clause. Such a clause has at least δk variables from both X0

and X1. Let

De := {Ci � Xe : Ci is Xe-clause} for e = 0, 1, Cmix := {Ci : Ci is mixed} .

Let H(δ) := −δ log2(δ)− (1− δ) log2(1− δ) denote the binary entropy of δ.

Lemma 17.

Pr[|Var(Ci) ∩Xe| ≥ (1− δ)k] ≤ c1 · 2−k(1−H(δ)) , for some constant c1 > 0.

Proof. For r ≤ k,

Pr[|Var(Ci) ∩Xe| = r] =

(
n

r

)(
n

k − r

)(
2n

k

)−1

.

This can be rewritten as

n!n!(2n− k)!k!

r!(n− r)!(n− k + r)!(k − r)!(2n)!
=

(
k

r

)(
2n− k
n− r

)(
2n

n

)−1

Using
(

2n
n

)
∼ 22n(πn)−1/2 and

(
2n−k
n−r

)
= O(22n−k(π(2n− k))−1/2), we have

[Pr[|Var(Ci) ∩Xe| = r] ≤ c1

(
k

r

)
2−k ,
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for some constant c1. Hence,

Pr[|Var(Ci) ∩Xe| ≥ (1− δ)k] ≤ c12−k
δk∑
r=0

(
k

r

)
≤ c12−k2H(δ)k ,

using the well-known upper bound on the sum of binomial coefficients [3].

Lemma 18. Let e ∈ {0, 1}. There exists a constant c2 that depends only on the constant in
m = O(n2k) such that the following happen w.h.p.:

(i). C contains at most c2n2H(δ)k Xe-clauses.

(ii). For every variable x ∈ Xe, x is contained in at most c2k2H(δ)k Xe-clauses.

(iii). If r = ω(1) and rk ≤ c2n, then Exr(Cmix) ≥ δk/2.

Proof. Part (i) is an application of the Chernoff bound: the expected number of Xe-clauses
is at most c1m2−k(1−H(δ)) = O(n2H(δ)k).

(ii) Given x ∈ Xe, the probability that x is contained in ≥ s Xe-clauses is at most(
m

s

)
(c12−k(1−H(δ))k/n)s ≤ (ec1m2−k(1−H(δ))k/ns)s .

If s = 3c12−k(1−H(δ))km/n = O(k2H(δ)k), the bound is (e/3)s, hence the probability goes to
zero as k →∞.

(iii) is a straightforward application of Lemma 13, with ε = 1/2 and replacing k by δk.
This is because a random δk clause in the variables Xe can be obtained by first generating a
random mixed clause, and picking a random δk-subset from its restriction to Xe. Note that
the condition m ≤ (n/40rk)k(1−ε) from Lemma 13 is satisfied, because we assume k ≥ log n
and we can pick the constant c2 sufficiently small.

Lemma 19. Assume k ≥ c log n, where c > 1 is a constant. Then there exists δ ∈ (0, 1/2)
so that, w.h.p., both D0 and D1 have at least 2n−1 satisfying assignments.

Proof. This is an application of the Lovász Local Lemma. Set δ so that (1− δ−H(δ))c > 1.
Assume that C is fixed, but satisfies (i) and (ii) from the previous lemma.

Pick an assignment α to the variables Xe uniformly at random. Given a clause D in
De, let ED be the event that α does not satisfy D. This happens with probability ≤ p
where p := 2−(1−δ)k. Two events ED and ED′ are independent if D and D′ do not share
a variable. Hence, ED is independent of all but d other events, where d := c2k

22H(δ)k. To
every ED, we assign the weight q := 2p. The condition of the Local Lemma p ≤ q(1− q)d is
satisfied, because qd = c2k

22(H(δ)+δ−1)k → 0 as k → ∞, which follows from the assumption
(1 − δ − H(δ))c > 1. Let s := c2n2kH(δ) be the expected size of De. Hence, by the Local
Lemma, the probability that De is satisfied is at least (1− q)s, which approaches 1. This is
because qs = 4n2(H(δ)+δ−1)k and we assumed that (1−H(δ)− δ)k ≥ c′ log n with c′ > 1.
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We now proceed to prove Theorem 2. Assume that F is a certificate for C. Fix δ from
Lemma 19. For e ∈ {0, 1}, let Γe be the set of satisfying assignments of De. We first restrict
F to talk only about the mixed clauses. Namely, by Lemma 9, there is a Γ0,Γ1-certificate g
for Cmix which is a projection of F .

In order to lower-bound circuit size of g, we again use the bound from Lemma 11 with
r0 = r1 = r. By the previous lemma, we can assume |Γe| ≥ 2n−1. Hence

|Fe| ≥ 2n−1 , e ∈ {0, 1} .

Moreover, we have ]1(Fe) ≤ 2n−δk.
Before proceeding with the proof, note that if k is large, e.g., k ≥

√
n, we automatically

get the lower-bound 2n
Ω(1)

. For, the trivial lower-bound for g is 2δk−1. This “trivial bound”
is obtained by noting that mine∈{0,1}

|Fe|
]1(Fe) is a lower-bound on the number of variables g

depends on.
So let us assume k ≤

√
n. Set r := nδ/8. By Lemma 18, part (iii), Exr(Cmix � Xe) ≥ δk/2.

Hence, by Lemma 12,
]r(Fe) ≤ 2n−δkr/2 , e ∈ {0, 1} .

Finally, (9) gives the lower bound

|Fe|
(2r)2r · ]r(Fe)

≥
(

2δk/2

4r2

)r
≥
(
nδ/2

4r2

)r
≥ 2n

δ/8

,

for n sufficiently large. This finishes the proof of Theorem 2.

The clause density can be slightly improved, but not too much:

Remark 20. Theorem 2 holds for m = O(n2(1+ε)k) and ε > 0 small enough. If m ≥ cn22k

for c large enough, w.h.p., C has X0, X1-certificate with monotone circuit of size O(m).

The first statement can be proved by inspecting the proof. There is sufficient leeway to
change the constants to allow the larger bound on m.

The second part follows by noting that a large CNF will contain an unsatisfiable subset
in the variables X0 only. Then one can prove that the X0, X1-communication game has a
logarithmic depth protocol; hence the X0, X1-certificate has a monotone circuit of size O(m).
In more detail: if C contains an unsatisfiable subset {Ci : i ∈ A} which only depends on the
variables X0, then, given assignments α0, α1, Player II can simply send to Player I the name
of the clause in A not satisfied by α0, which takes O(log |A|) bits.

6.2 Proof of Theorem 4

Lemma 21. Assume that f δ-approximates UNSATk,n on
(

[N ]
t

)
. Pick a random m-element

subset A of [N ], for a given t ≤ m ≤ N . Then, with probability at least δ/2, f accepts at
least δ/2-fraction of t-element subsets of A.
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Proof. The expected number of t-element subsets of a randomly chosen m-element set ac-
cepted by f is ≥ δ

(
m
t

)
. The lemma then follows from Markov’s inequality.

We also need a minor modification of Lemma 13. The lemma is stated and proved for
random formulas where we allow repetitions in the process of selecting clauses. The lemma
is also true, if we select clauses without repetition:

Lemma 22. Lemma 13 holds when C is a random CNF with exactly m distinct clauses.

Proof. Indeed, the only place in the proof of Lemma 13 where the repetition issue could mat-
ter is (10). But it is clear that if we select clauses Ci without repetition, then Pr[|

⋃
i∈A Var(Ci)| <

εrk] can only be smaller.

We now proceed to prove Theorem 4. Assume that f is a monotone function which δ-
approximates UNSATk,n on

(
[N ]
t

)
, where n ≤ t ≤ N1−ε and N = 2k

(
n
k

)
. We will also assume

that k ≤ nε/8: every unsatisfiable k-CNF has at least 2k clauses. Hence, the function f must
depend on at least 2k variables, otherwise it would be constant, which gives the bound 2n

Ω(1)

if k is large.
Set ε′ sufficiently small, ε′ := ε/8 suffices. Set m := t1+4ε′ . This guarantees that m ≤

N1−ε/2 ≤ (2n)(1−ε/2)k. Let A be a random m-element subset of [N ]. Let g be the restriction
of f to subsets of A. Using Lemma 11, we want to prove a lower bound on the circuit size
of g. We set

r0 := nε
′
, r1 := 2ε

′k/2−3 .

As F1, the set of accepting inputs, we take the set of all t-element subsets of A accepted
by g. By the previous lemma, with a constant positive probability,

|F1| ≥ δ′
(
m

t

)
, where δ′ := δ/2 .

Furthermore,

]r1(F1) ≤
(
m− r1

t− r1

)
≤
(
m

t

)
·
(
t

m

)r1
≤
(
m

t

)
· n−4ε′r1 .

Hence we have

|F1|
(2r0)2r1 · ]r1(F1)

≥ δ′
(
n4ε′

4r2
0

)r1
≥ δ′nε

′r1 = δ′nε
′2ε
′k/2−3

.

F0 is obtained as follows. View A as the k-CNF C := {Ci, i ∈ A}. Since g rejects all
satisfiable subsets of C, we can take F0 as the multiset F(C,Γ) as in Lemma 12, where Γ is
the set of all Boolean assignments. Then

|F0| = 2n .

We apply Lemma 22 to show that, with high probability, Exr0(C) ≥ ε′k. The assumption of
Lemma 13 is satisfied, as

(n/40r0k)k(1−ε′) ≥ (n/(40nε
′
nε
′
))k(1−ε′) ≥ (n/402)(1−3ε′)k ≥ (2n)k(1−ε/2) ≥ m.
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Hence, by Lemma 12,
]r0(F0) ≤ 2n−ε

′kr0 .

Thus we have
|F0|

(2r1)2r0 · ]r0(F1)
≥
(

2ε
′k

4r2
1

)r0
≥ 2r0 = 2n

ε′

.

Finally, (9) gives a lower bound which is the minimum of

δ′nε
′2ε
′k/2−3

, 2n
ε′

.

If k ≤ log n, we obtain a lower bound of the form n2Ω(k)
; for large k, we go for the latter

bound.

6.3 Proof of Theorem 10

Assume that F is a monotone function that distinguishes M -vertex graphs G with χ(G) ≤ q
from graphs with χ(Ḡ) ≤ q. We want to show that F requires large monotone real circuits.
There are several possibilities how to achieve this. One option is to reduce the clique-coloring
function to F using monotone projections. A better bound follows from a direct application
of the standard lower bound method, which we will do here. Our proof is an adaptation of
the proof of a lower bound on the Clique-Coloring problem presented in [20].

The formula from Lemma 11 does not work for our problem and we have to use a more
general lower bound, also presented in [20]. Let µ be a real valued function defined on subsets
of a finite set A. We say that µ is a legal measure, if µ is nonnegative,

µ(S) ≤ µ(S ∪ {a}) ≤ µ(S) + 2 and |S| ≤ µ(S)2

for every S ⊆ A and a ∈ A. Let, furthermore, F be a multiset of subsets of A. Then we
define

#µ
r (F) := max

S,µ(S)=r
|{X ∈ F | S ⊆ X}|,

where the sizes of the multisets are counted with the multiplicity of their elements.

Lemma 23 ([20]). Let F be a monotone Boolean function in m variables and 2 ≤ r0, r1 ≤ m.
Let F1 be a multiset of accepting inputs and F0 a multiset of rejecting inputs of F . Then
every monotone real circuit computing F has size at least the minimum of

|F1| − r2 · ]1(F1)

(2r)4r · ]µr (F1)
and

|F0|
(2r)4r · ]µr (F0)

.

Again this formula does not appear in [20] explicitly, but it can be derived from his
Theorem 9.25 in the same way as Lemma 11 above. (Since our function is selfdual, we have
stated the lemma with only one measure µ and only one parameter r.)
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Given a mapping f : [M ] → [q], we define a graph Gf by connecting i with j, i 6= j, by
an edge iff f(i) = f(j). We take the multisets

F0 = F1 := {Gf | f : [M ]→ [q]},

where each graph is counted with the multiplicity given by the number of mappings f that
define it. We take a natural measure, which has been used by Jukna and some authors before
him, defined as follows. For a set of edges S, µ(S) is the number of edges of a spanning
forest of the graph defined by S. Equivalently, µ(S) is the number of vertices covered by
S minus the number of connected components of S. The standard argument (which is the
observation that the probability that random q-coloring colors two vertices by the same color
with probability q and that these events are independent for edges in a forest) gives us

|Fe|
]µr (Fe)

≥ qr for e ∈ {0, 1}.

If we take r := b(q/32)1/4c, the second fraction in the lemma turns out to be exponential

in 2Ω(q1/4). Now it only remains to show that r2 · ]1(F1) ≤ |F1|/2. The probability that
a random graph Gf contains a fixed edge (i, j) is the probability that f colors i and j by
the same color, which is 1/q. Hence r2 · ]1(F1) ≤ r2q−1|F1| < |F1|/2 by the choice of the
parameter r.
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