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Abstract

A fundamental notion in Algorithmic Statisticsis that of a stochastic
object, i.e., an object having a simple plausible explanation. Informally,
a probability distribution is a plausible explanation for x if it looks likely
that x was drawn at random with respect to that distribution. In this
paper, we suggest three definitions of a plausible statistical hypothesis
for Algorithmic Statistics with polynomial time bounds, which are called
acceptability, plausibility and optimality. Roughly speaking, a probability
distribution µ is called an acceptable explanation for x, if x possesses all
properties decidable by short programs in a short time and shared by
almost all objects (with respect to µ). Plausibility is a similar notion,
however this time we require x to possess all properties T decidable even
by long programs in a short time and shared by almost all objects. To
compensate the increase in program length, we strengthen the notion of
‘almost all’—the longer the program recognizing the property is, the more
objects must share the property. Finally, a probability distribution µ is

called an optimal explanation for x if µ(x) is large (close to 2−Cpoly(x)).
Almost all our results hold under some plausible complexity theoretic

assumptions. Our main result states that for acceptability and plausibility
there are infinitely many non-stochastic objects, i.e. objects that do not
have simple plausible (acceptable) explanations. We explain why we need
assumptions—our main result implies that P 6= PSPACE. In the proof of
that result, we use the notion of an elusive set, which is interesting in its
own right. Using elusive sets, we show that the distinguishing complexity
of a string x can be super-logarithmically less than the conditional com-
plexity of x with condition r for almost all r (for polynomial time bounded
programs). Such a gap was known before, however only in the case when
both complexities are conditional, or both complexities are unconditional.

It follows from the definition that plausibility implies acceptability and
optimality. We show that there are objects that have simple acceptable
but implausible and non-optimal explanations. We prove that for strings
whose distinguishing complexity is close to Kolmogorov complexity (with
polynomial time bounds) plausibility is equivalent to optimality for all
simple distributions, which fact can be considered as a justification of the
Maximal Likelihood Estimator.
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1 Introduction

Acceptable statistical hypotheses

Example 1. Assume we are given an n-bit natural number x which is a square
and has no singularities. Which statistical hypotheses we would accept for
x? An acceptable hypothesis is the following: the number x was obtained by
random sampling in the set of all n-bit squares, where all numbers have equal
chances to be drawn (the hypothesis µ1). An the following hypothesis µ2 is
clearly not acceptable: the number x was obtained by random sampling in the
set of all n-bit numbers. On what grounds we refute hypothesis µ2? Because
we can exhibit an easily checked property (to be a square) possessed by x and
not possessed by a vast majority of all n-bit strings.

The reader can object this line of reasoning by noting that on these grounds
we can reject the hypothesis µ1 as well. Indeed, we exhibit the property “to be
equal to x”, which is also shared by a negligible fraction of numbers with respect
to µ1. However, in contrast to the property “to be a square”, this property is
not simple, as it has no short program recognizing the property in a short time.
And for the property “to be a square”, there is such a program.

Generalizing this example, we will define the notion of an acceptable statis-
tical hypothesis x. A probability distribution µ over the set of binary strings
will be called an acceptable hypothesis for a binary string x if there is no simple
set T 3 x with negligible µ(T ). We will call a set T simple if there is a short
program to decide membership in T in a short time, as in Example 1.

A string will be called stochastic, if it has a simple acceptable hypothesis.
How will we measure simplicity of a probability distribution µ? In the same way
as we measure the simplicity of a refutation set T : a probability distribution
will be called simple, if it can be generated by a short probabilistic machine with
no input in a short time. We say that such a machine generates a distribution
µ, if for all x the probability of the event “M outputs x” equals µ(x). The
running time of M is defined as the maximum of M ’s running time over all
outcomes of its coin tossing.

Of course in a rigorous definition of an acceptable hypothesis µ, we have
to specify three parameters: the upper bound α for the length of a program
that recognizes T , the upper bound t for the running time of that program,
and the upper bound ε for µ(T ) (how small should be µ(T ) to be qualified as
“negligible”). The larger these parameters are, the stronger the notion of an
acceptable hypothesis is. An in a rigorous definition of a simple distribution
µ, we have to specify two parameters: the upper bound α′ for the length of
a program generating µ and the upper bound t′ for the running time of that
program. The smaller these parameters are, the stronger the notion of a simple
distribution is. Thus in the notion of stochasticity we have 5 parameters, α′, t′

and α, t, ε. It seems natural to choose α > α′ and t > t′, that is, to give
more resources to those who want to refute a hypothesis µ than the amount of
resources needed to generate µ (as it was in Example 1).

Also in the definition of an acceptable hypothesis the parameter ε should
be much smaller than 2−α. In this case the notion of an acceptable distribution
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satisfies The Majority Principle: for every probability distribution µ for almost
all (w.r.t. µ) strings x the distribution µ is an acceptable hypothesis for x
(Proposition 2 below). We believe that any notion of a plausible statistical
hypothesis should satisfy this principle.

The main question we are interested in is the following: for which values
of parameters there are strings that have no simple acceptable explanations?
Such strings will be called non-stochastic. Our main result states that under
assumption NE 6= RE there are infinitely many non-stochastic strings x for
t, t′, 1/ε = poly(n) and α, α′ = O(log n), where n = |x| (Theorem 3).

In Section 5 we explain why we need complexity theoretic assumptions to
prove the main result: we prove that existence of non-stochastic strings for such
parameters implies that P 6=PSPACE. To prove Theorem 3, we introduce the
notion of an elusive set. Using that notion, we establish that there is a super-
logarithmic gap between Kolmogorov complexity and Distinguishing complexity
with polynomial time bounds (similar questions were addressed in [3]). We also
study the following two notions of a good statistical hypothesis.

Plausible statistical hypotheses

Example 2. Let G : {0, 1}n → {0, 1}2n be a Pseudo Random Number Generator
(the precise definition is given in Assumption 4 below). Consider a string x =
G(s) of length 2n. Would we accept the uniform distribution over all strings of
length 2n as a good statistical hypothesis for x? We do not like this hypothesis,
as the fraction of x′ of length 2n for which x′ = G(s′) for some s′ is negligible.
However it is impossible to check this property by a short program in short
time—for almost all s the uniform distribution over all strings of length 2n is
an acceptable hypothesis for Gn(s) (Theorem 10). However for every fixed s
the property Gn(s) = x can be decided by a long program (of length n), into
which s is hard-wired.

Let us give up the requirement that the program recognizing T in a short
time is short. In a compensation, let us decrease the threshold for µ(T ): we
will now think that µ(T ) is negligible if log2 µ(T ) is much less than the nega-
tive length of the program recognizing T . Notice that in Example 2 we have
log2 µ(T ) = −2n, which is by n less than the negative length of the program
recognizing T . Probability distributions satisfying this requirement are called
plausible hypotheses for x. The definitions imply that every plausible hypoth-
esis is acceptable (Proposition 1). The converse is false (Theorem 10). And
again the notion of plausibility satisfies the Majority Principle (Proposition 2).

As plausibility implies acceptability, our main result implies that there are
infinitely many strings that have no simple plausible explanations. The exis-
tence of such strings can be proved also under other assumptions. Indeed, under
Assumption 2 (below) only strings whose distinguishing complexity is close to
Kolmogorov complexity can have simple plausible explanations (Proposition 9).
And strings with a large gap between these complexities exists under assump-
tion FewP ∩ SPARSE * P [3].
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Optimal statistical hypotheses

In practice, it is hard to decide whether a given probability distribution µ is
plausible or acceptable for a given string x, as there are many possible “refuta-
tion sets” T and for a given T it is very hard to check whether it indeed refutes
µ or not. Ideally, we would like to have a sound notion of a good hypothesis
such that for a given simple distribution µ and a given string x, we could decide
whether µ is good for x in a short time. Or, at least to refute µ in a short time,
if µ is not good for x.

There is a natural parameter measuring how good is µ as an explanation
for x, namely µ(x). Let us try to use this parameter instead of “refutation
sets”. According to the new definition, a simple probability distribution µ is a
good explanation for x if µ(x) is large. How large? We will compare µ(x) with
2−Ct(x), where Ct(x) denotes Kolmogorov complexity with time bounded by t,
where t is large enough compared to the running time of the short probabilistic
program generating µ. We will call µ an optimal hypothesis for x if µ(x) ≈
2−Ct(x).

There are three arguments to justify this definition. Firstly, whatever t we
choose, the Majority Principle holds true (Proposition 6). Second, under some
complexity theoretic assumption if t is large enough compared to the running
time of probabilistic machine generating µ then µ(x) cannot significantly exceed
2−Ct(x), therefore, if µ(x) is close to this value, then µ is optimal indeed. And
third, given µ, x we can prove in a short time that µ is not an optimal hypothesis
for x, if this is the case—it suffices to produce a program p for x such that
µ(x)� 2−|p|.

Relations between the introduced notions

It follows from the definitions that plausibility implies acceptability and opti-
mality. (To prove the second implication, we let T = {x} in the definition of
plausibility.) All other statements in the remainder of this section hold true
under some assumptions (that are specified later).

For strings x with CDpoly(n)(x)� Cpoly(n)(x) there are no plausible expla-
nations at all (Proposition 9). For such strings we are not aware about any
relations between plausibility and optimality.

On the other hand, for strings x with CDpoly(n)(x) ≈ Cpoly(n)(x), the picture
is clear: Plausibility = Optimality ⇒ Acceptability, and the converse implica-
tion does not hold (Example 2, Theorem 10 and Remark 2). The equivalence
of plausibility and optimality (Theorem 11) for such strings is a good news,
as it provides a justification to the Maximal Likelihood Estimator. Indeed,
imagine that x was drawn at random w.r.t. a simple but unknown probability
distribution µ. Then with high µ-probability all C(x),Ct(x),CDt(x) are close
to each other and are close to − logµ(x) 1 and µ is an acceptable and plausible
hypothesis for x (Propositions 2, 6, 5). Given x, we want to find µ or any other
plausible or at least acceptable statistical hypothesis for x. Using the Maxi-
mal Likelihood Estimator, we choose among all simple hypotheses µ the one

1provided that t is larger than certain polynomial of the time needed to generate µ
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that maximizes µ(x). Theorem 11 guarantees the success to this strategy—the
chosen hypothesis µ is both acceptable and plausible.

In the next section we provide the rigorous definitions and formulations to
all informal definitions and statements mentioned in this Introduction.

2 Our results and their comparison to the previous
ones

2.1 Existence of non-stochastic strings

By a technical reason we consider only probability distributions µ over {0, 1}n
for some n and assume that µ(x) is a rational number for all x.

Definition 1. Let t, α be natural numbers and ε is a number of the form 2−k for
some natural k. A t, α, ε-acceptable statistical hypothesis (or explanation) for
a string x of length n is a probability distribution µ such that µ(T ) > ε for all
T 3 x recognized by a deterministic program of length less than α in at most t
steps for all inputs of length n.

In this definition we are talking about running time of a program on its
input. To define rigorously the notion of a program and its running time, we
have to fix a universal Turing machine. This technical part of the paper is
deferred to Section 6.

The larger t, α, ε are, the stronger the notion of t, α, ε-acceptable hypothesis
becomes. For every x the distribution concentrated on x is a ∗, ∗, 1-acceptable
hypothesis for x (the asterisk for the time parameter means that the time can be
arbitrary large as long as the program always halts). However, we are interested
in simple explanations.

Definition 2. A probability distribution µ is called t, α-simple if it can be gen-
erated by a probabilistic program (with no input) of length less than α in time
at most t. 2 (Recall that a machine M generates µ in time t if for all x the
probability of event “M outputs x” equals µ(x) and the running time of M is
at most t for all outcomes of coin tossing.)

Strings that have t′, α′-simple t, α, ε-acceptable for small t′, α′ and large
t, α, ε are informally called stochastic and otherwise non-stochastic. The smaller
t′, α′ and the larger t, α, ε are, the stronger the notion of stochasticity is and
the weaker the notion of non-stochasticity is.

Definition 3. A probability distribution µ is called a t, ε-plausible hypothesis
for a sting x of length n, if for any set T 3 x recognized by a program of length
l whose running time on all inputs of length n is at most t we have µ(T ) > 2−lε.

The following proposition is a straightforward corollary from definitions:

Proposition 1. Every t, ε-plausible hypothesis for x is t, α, ε2−α-acceptable for
x for any α.

2In Theorem 11 we will need simplicity in another sense: we will need that the function
x 7→ µ(x) can be computed by a program of length α in time t.
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Remark 1. Notice that if µ is t, α-plausible for x then µ(x) > 0. In contrast,
t, α, ε-acceptability of µ for x does not imply that in general. However, if the set
T = {x | µ(x) = 0} can be recognized by a program of length α in time t, then
t, α, ε-acceptability for x implies µ(x) > 0. Another reason for not stipulating
µ(x) > 0 in the definition of acceptability is that we can achieve this almost
‘for free’. Indeed, for every t, α-simple distribution µ the distribution µ′ that is
the arithmetic mean of µ and the uniform distribution over the set of all strings
of length n is t′, α′-simple for t′, α′ close to t, α. For all x of length n we have
µ′(x) > 0. If µ is t, α, ε-acceptable for x, then µ′ is t, α, ε/2-acceptable for x.

The next statement shows the Majority Principle is valid for t, α, ε-acceptability
provided ε� 2−α and for t, ε-plausibility provided ε� 1/n.

Proposition 2 (Majority Principle). For every probability distribution µ over
binary strings of length n and all α, ε we have

µ{x | µ is not ∗, α, ε-acceptable for x} < ε2α,

µ{x | µ is not ∗, ε-plausible for x} < ε(n+O(1)).

This proposition as well as all other statements in this section will be proved
in Section 4.

Our main result shows that there are infinitely many non-stochastic strings
x for polynomial values of t, t′, 1/ε and logarithmic values of α, α′. This result
holds under the following

Assumption 1. For some language L in NP over the unary alphabet there is
no probabilistic polynomial time machine that for each string x in L finds a
certificate for membership of x in L with probability at least 1/2. Equivalently,
for some language L in NE (the class of languages accepted in time 2O(n) by
non-deterministic Turing machines) there is no probabilistic machine that for
each string x in L in time 2O(|x|) finds a certificate for membership of x in L
with probability at least 1/2.

This assumption follows from the assumption NE 6= RE, where RE denotes
the class of languages recognized in time 2O(n) by probabilistic Turing machines
that err with probability at most 1/2 for all strings in the language and do not
err for strings outside the language. It is unknown whether these to assumptions
are equivalent or not (see [5]).

Theorem 3. Under Assumption 1 for some constant d for all c for infinitely
many n there is a string of length n that has no nc, c log n-simple nd, d, n−c-
acceptable hypotheses.

In other words, for the strings x from this theorem, for every nc, c log n-
simple µ there is T 3 x recognized by a program of length d in time nd with
µ(T ) < n−c. The values of parameters in this theorem are chosen so that the
Majority Principle holds amply: for any candidate µ the fraction of strings for
which µ is not acceptable is less than 2dn−c which is negligible for large c and
n. And the resources nd, d needed to refute a candidate µ can be even smaller
than resources nc, c log n allowed to generate the candidate µ, as c can be much
larger than d.
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Later we will compare this result to known results on non-existence of
stochastic strings. The latter exists only for t = t′ = ∗.

2.2 Super-logarithmic gap between distinguishing complexity
and Kolmogorov complexity

In the proof of Theorem 3 we use the notion of an elusive set, which is interesting
in its own right.

Definition 4. A language T is called elusive if it is decidable in polynomial time
and for all c for infinitely many n the following holds. T contains at least one
word of length n, however there is no probabilistic machine M without input
with program of length at most c log n and running time at most nc that with
probability at least n−c produces a string of length n from T .

We show that under Assumption 1 there exists an elusive set (Theorem 15).
Then we prove that any elusive set has infinitely many non-stochastic strings.
There is another interesting corollary from existence of elusive sets: there are
infinitely many pairs x, r with CDpoly(n)(x|r)� Cpoly(n)(x|r) (the definition of
conditional distinguishing complexity and conditional Kolmogorov complexity
is given in Section 6). More specifically, the following holds.

Theorem 4. Under Assumption 1 for some constant d for all c there are in-
finitely many strings x with

CDnd
(x|r) 6 Cnc

(x|r)− c log n

for 98% of r’s of length nd. Here n stands for the length of x. Moreover, under
Assumption 2 (see below), in the left hand side of the last inequality, we can
replace the conditional complexity by the unconditional one:

CDnd
(x) < Cnc

(x|r)− c log n.

Assumption 2. There is a set that is decidable by deterministic Turing machines
in time 2O(n) but is not decidable by Boolean circuits of size 2o(n) for almost
all n.

The existence of pairs x, r satisfying the first part of Theorem 4 is known to
be equivalent to the impossibility to separate in polynomial time non-satisfiable
Boolean formulas from those having the unique satisfying assignment [3]. The
latter statement (denoted by (1SAT, SAT ) /∈ P) follows from the assumption
NP 6= RP, which is weaker than Assumption 1, using Valiant and Vazirani
Lemma [11].3 For unconditional complexity, previously it was known that there

are strings with CDnd
(x) < Cnc

(x) − c log n under the assumption FewP ∩
SPARSE * P [3]. Thus the first part of Theorem 4 is not new, however its
second part is.

3Thus if (1SAT, SAT ) ∈ P then there are no elusive sets. Is the inverse true?
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2.3 A comparison of the notions of acceptability, plausibility
and optimality

Definition 5. A probability distribution µ is called t, ε-optimal for x, if

µ(x) > ε2−Ct(x).

The larger t, ε are, the stronger the notion of t, ε-optimality is. Assume
that the distribution µ is t′, α-simple for a small α. We will explain that this
definition makes sense for values of t which are larger than some polynomial
of |x| + t′ and does not make any sense if, conversely, t′ is larger than some
polynomial of |x|+ t.

Consider the following

Assumption 3. There is a set which is decidable by deterministic Turing ma-
chines in time 2O(n) but is not decidable by deterministic Turing machines in
space 2o(n) for almost all n.

Proposition 5. Under Assumption 3 the following holds. There is a constant
d such that for all t, α-simple probability distribution µ for all strings x of length
n,

log2 µ(x) 6 −C(n+t)d(x) + α+ d log(n+ t).

Assume that µ is a t, ε-optimal t′, α-simple hypothesis for x and t > (n+t′)d

where d is the constant from Proposition 5. Then log2 µ(x) differs from the
maximal possible value of log2 µ

′(x) for t′, α-simple hypotheses µ′ by at most
α+log(1/ε)+d log(n+t′). This fact provides some justification for the notion of
optimality. Another justification for the definition is the validity of the Majority
Principle:

Proposition 6. For some constant c for all n and all strings x of length n for
all probability distributions µ we have

µ{x | µ is not ∗, ε-optimal for x} < ε(n+ c).

Conversely, if t′ is larger than some polynomial of |x|+ t then for all strings
there is a simple optimal hypothesis (and thus the notion of optimality becomes
trivial).

Proposition 7. There is a constant c such that for all t every string x of length
n has a (n+ t)c, c log(n+ t)-simple t, 1-optimal hypothesis.

Letting T = {x} in the definition of plausibility we can see that plausibility
implies optimality:

Proposition 8. For all strings x and for all t, ε-plausible hypotheses µ for x
we have log2 µ(x) > −CDt(x) + log2 ε > −Ct(x) + log2 ε−O(1).

By Proposition 5 the first inequality in this proposition implies the following

Proposition 9. Under Assumption 3 there is a constant d such that for every
string x of length n that has a t1, α-simple t2, ε-plausible hypothesis we have

C(n+t1)d(x) 6 CDt2(x) + α+ log2(1/ε) + d log(n+ t1).
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Therefore strings with large gap between distinguishing complexity and Kol-
mogorov complexity do not have simple plausible explanations. From the result
of [3] cited above it follows that (under some complexity theoretic assumptions)
for some d for every c there are infinitely many strings x without nc, c log n-
simple nd, n−c-plausible hypotheses (where n denotes the length of x).

Thus plausibility implies acceptability and optimality. Is there any implica-
tion in the reverse direction? Assuming existence of a Pseudo Random Number
Generator G : {0, 1}n → {0, 1}2n we can show that acceptability does not imply
neither plausibility, nor optimality.

Assumption 4. (Existence of PRNG) There is a polynomial time computable
function G : {0, 1}∗ → {0, 1}∗, such that |G(s)| = 2|s| and for every sequence
of Boolean circuits {Cn} with 2n inputs and 1 output such that the size of
Cn is bounded by a polynomial of n, the difference of probabilities of events
Cn(G(s)) = 1 and Cn(r) = 1 tends to 0 faster than every inverse polynomial
of n (that is, for any polynomial p for all sufficiently large n the difference of
probabilities is less than 1/p(n)). We assume here the uniform distributions
over strings s and r of length n and 2n, respectively.

Theorem 10. Assume that there is PRNG G : {0, 1}n → {0, 1}2n, as in As-
sumption 4. Then for all c for all sufficiently large n for 99% of strings s of
length n the uniform distribution over strings of length 2n is a nc, c log n, n−c/200-
acceptable hypothesis for Gn(s).

Remark 2. Note that the uniform distribution is neither optimal (Cpoly(n)(x) 6
n+O(1), and logµ(x) = −2n), nor plausible (recall Example 2) hypothesis for
x. By counting arguments for almost all s for x = Gn(s) it holds CDpoly(n)(x) ≈
Cpoly(n)(x) ≈ C(x) ≈ n. Therefore, there are strings satisfying Theorem 10 and
having the latter property.

Finally, for simple hypotheses µ and for strings with CDpoly(x) ≈ Cpoly(x)
optimality implies plausibility and hence acceptability. However this time we
need that µ can be computed rather than generated in a short time by a short
program.

Theorem 11. Under Assumption 2 there is a constant c such that the following
holds true. Let µ be a probability distribution µ such that the function x 7→ µ(x)
can be computed by a program of length α in time t. Assume further that

µ(x) > ε2−CD(n+t+t1)
c
(x), where n is the length of x and t1 an arbitrary number.

Then µ is a t1, ε2
−α−c logn-plausible hypothesis for x.

Notice that in this theorem instead of (n + t + t1)
c, ε-optimality we use

a stronger condition µ(x) > ε2−CD(n+t+t1)
c
(x) (with distinguishing complex-

ity in place of Kolmogorov complexity). However for strings x and t2 with
Ct2(x) 6 CD(n+t+t1)c(x) + β we can replace that condition by the condition of
t2, ε2

β-optimality of µ for x. Informally speaking, if Cpoly(x) ≈ CDpoly(x) then
optimality for x implies plausibility for x.
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2.4 Non-stochastic strings in classical Algorithmic Statistics

In Algorithmic Statistics without resource bounds [4, 6, 7, 8, 12, 13] plausibility
of a statistical hypothesis µ for x is measured by one parameter − logµ(x) −
C(x|µ), called randomness deficiency of x w.r.t. µ. Probability distributions
can be represented by the lists of pairs (a string, its probability) ordered in a
specific way. Thus we can talk on conditional Kolmogorov complexity C(x|µ)
and of Kolmogorov complexity C(µ) of µ itself. Up to an additive constant
C(µ) coincides with the length of the shortest program generating µ (assuming
that the program always halts).

Neglibibility of randomness deficiency is similar to all three our definitions
of a good hypothesis. More specifically the inequality − logµ(x)− C(x|µ) < β
is similar to saying that µ is ∗, α, 2−β-acceptable, ∗, 2−β-plausible and ∗, α, 2−β-
optimal for x. However there is an important difference. The inequality
− logµ(x) − C(x|µ) < γ implies that µ is ∗, γ + O(1)-optimal for x, but not
the other way around. If − logµ(x)− C(x|µ) < γ then for every set T 3 x ac-
cepted by a non-deterministic program p we have µ(T ) > 2−|p|−γ . Conversely,
if − logµ(x) − C(x|µ) > γ, then there is a set T 3 x accepted by a short
non-deterministic program (of length about C(µ)) with µ(T ) 6 2−γ .

In contrast, both the notion of ∗, γ-plausibility and the notion of ∗, α, ε-
acceptability are defined by means of deterministic recognizing machines. Thus
− logµ(x)− C(x|µ) < γ implies ∗, γ-plausibility but not the other way around
(with logarithmic accuracy: the inequality − logµ(x)−C(x|µ) < γ implies only
∗, γ +O(log n)-plausibility.)

A string x is called Kolmogorov α, β-stochastic if there is a probability dis-
tribution µ with C(µ) 6 α and − logµ(x) − C(x|µ) 6 β. As we have just
explained, Kolmogorov α, β-stochasticity implies the existence of a ∗, α-simple
∗, ε-plausible (and hence ∗, α2, ε+ α2-acceptable for all α2) hypothesis. (Again
we ignore logarithmic terms.)

Shen proved the existence of Kolmogorov α, β-non-stochastic string for α, β
that are linear in n:

Theorem 12 ([10]). For some constant c for all n and all α, β, with 2α+ β <
n− c log n, there is a Kolmogorov α, β-non-stochastic string of length n.

As we have mentioned, this statement does not imply the existence of non-
stochastic strings in our sense (even for very large values of time parameters).
However the techniques of [10] can be used to prove the following:

Theorem 13. For all n and all α, β with α+ β < n there is a string of length
n that has no ∗, α-simple ∗, α+O(log n), 2−β-acceptable hypotheses.

It is not hard to see that Theorem 13 implies Theorem 12. Later the term
2α in Theorem 12 was replaced with α:

Theorem 14 ([13]). For some constant c for all n and all α, β, with α+ β <
n− c log n, there is a Kolmogorov α, β-non-stochastic string of length n.

This result is optimal up to logarithmic terms. Indeed, for all x of length
n and all α 6 n the uniform distribution µ over strings of length n that have
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the same α first bits as x, has complexity about α and randomness deficiency
at most n− α:

− logµ(x)− C(x|µ) = n− α− C(x|µ) 6 n− α.

So using the known methods we can show the existing of strings of length n
that have no ∗, α1-simple ∗, α2, ε-acceptable hypotheses for α1, log(1/ε) = Ω(n)
and for α2 which are only logarithmically larger than α1. It is essential for those
methods that the running time can be arbitrary large and hence they cannot
be used in the case when the running time is bounded by a polynomial of the
length.

The notion of an optimal hypothesis is also borrowed from the classical
Algorithmic Statistics. A distribution µ with small Kolmogorov complexity
is called optimal if logµ(x) is close to −C(x), which is equivalent to saying
that the randomness deficiency is small. However, optimality was studied also
for distribution µ with large Kolmogorov complexity, in which case optimality
was defined as logµ(x) ≈ C(µ)−C(x). Using the Symmetry of Information, we
can show that the randomness deficiency always does not exceed the ‘optimality
deficiency’ C(µ)−C(x)−logµ(x), but not the other way around [13]. However in
the definition of Kolmogorov stochasticity, we can use the optimality deficiency
instead of randomness deficiency: for a string of length n there is an ∗, α-simple
hypothesis with optimality deficiency less than β if and only if the string is
Kolmogorov α, β-stochastic. More accurately, both directions ‘if’ and ‘only if’
hold up to adding some terms of order O(log n) to parameters α, β [13].

3 Open questions

Question 1. Under which other assumptions (different from NP 6= RP) there
are non-stochastic strings and elusive sets? Under which other assumptions
(different (1SAT, SAT ) ∈ P and P =PSPACE) there are no elusive sets and
all strings are stochastic?

Question 2. Let us replace in the definitions of a plausible and acceptable
hypothesis deterministic machines by non-deterministic ones. Do the notions
of a plausible and acceptable hypothesis and of stochastic string become stronger?

Question 3. Are there strings that do not possess simple optimal hypotheses?

Question 4. How acceptability is related to optimality for strings x with CDpoly(x)�
Cpoly(x)?

Question 5. Are there non-stochastic strings with polynomial bounds for time
and linear bounds for program length: is it true that for some c and ε < 1 for
all d and all δ < 1 for all but finitely many n every string x of length n has an
nc, εn-simple nd, δn, n−c-acceptable hypothesis?

11



4 The proofs

4.1 Proof of Proposition 2

The first inequality: the number of sets recognized by a program of length less
than α is less than 2α and each such set contains a fraction at most ε of all
n-bit strings w.r.t. µ.

The second inequality: w.l.o.g. we may consider only sets T recognized by
programs of length less than n+ c (for some constant c). Indeed, assume that
a set T 3 x witnesses implausibility of µ for x and is recognized by a program
of length l > n + c. Then µ(x) 6 µ(T ) 6 ε2−n−c. Thus the set {x}, whose
complexity is less than n + c, witnesses implausibility of µ for x (if c is large
enough). Then we can repeat the arguments from the previous paragraph: for
every fixed l any set T recognized by a program of length l refutes a fraction
at most ε2−l of all strings and the number of programs of length l is 2l, thus
all together they refute a fraction at most ε of strings of length n.

4.2 Proof of Theorem 3

Theorem 15. Under Assumption 1 there exists an elusive set.

Proof. Fix a language L over the unary alphabet {1} that belongs to NP \RP.
Since L ∈ NP it can be represented in the form

L = {1k | ∃x ∈ {0, 1}kc R(1k, x)},

where c > 0 is a natural number and R a relation decidable in time poly(k).
Consider the set

T = {x ∈ {0, 1}kc | R(1k, x)}.

Obviously T can be recognized in polynomial time. Let us show that T is
elusive.

Let d be any constant. For the sake of contradiction assume that for some
m for all k > m with 1k ∈ L there is a program Mk of length d log kc that, with
probability at least k−cd, in time kcd prints a string from T of length kc. To
obtain a contradiction we construct the following probabilistic algorithm that
recognizes L with one-sided bounded error in polynomial time:

The algorithm. On input 1k we run all randomized programs of length
d log kc in time kcd. Each program is run kcd times. For each string x output
by any of those programs we check the equality R(1k, x) = 1. If the equality
holds true for at least one of those x’s, we say that 1k ∈ L, and otherwise we
say that 1k /∈ L. (The end of the Algorithm.)

This algorithm runs in polynomial time and can err only on inputs 1k ∈ L.
Let us bound the probability of error on any such inputs. We assume that for
all 1k ∈ L with k > m there is a randomized program of length d log kc that
produces a string from T with probability at least k−cd. The probability that
kcd times its output falls outside T is less than (1− k−cd)kcd 6 1/e. Therefore
for all k > m the algorithm errs with probability at most 1/e. Hence L ∈ RP,
which is a contradiction.

12



Proof of Theorem 3. By Theorem 15 there is an elusive set T . For some d there
is a machine with program of length at most d recognizing T in time nd.

Let T=n denote the set of all strings of length n from T . For every n such
that L=n 6= ∅ pick any string xn from L=n. We claim that for any constant c
for infinitely many n the string xn does not have nc, c log n-simple nd, d, n−c-
acceptable hypotheses.

For the sake of contradiction assume that for some m for all n > m there is
such hypothesis µn. As xn ∈ T and T is recognized by a program of length at
most d in time nd we have µ(T ) > n−c. Thus for each such n the probabilistic
program of length less than c log n generating the distribution µn in time nc

produces a string from T with probability at least n−c, which contradicts the
assumption that T is elusive.

4.3 Proof of Theorem 4

Proposition 16. Assume that L is an elusive set. Then for all constants c
there is a constant d such that there infinitely many x ∈ L with

CDnd
(x|r) 6 Cnc

(x|r)− c log n

for 99% of strings r of length nd. Here n denotes the length of x.

This proposition follows from Sipser’s lemma.

Lemma ([9]). For every language L recognizable in polynomial time there is a
constant d such that for all n for 99% of strings r of length nd and all x ∈ L=n

we have
CDnd

(x|r) 6 log |L=n|+ d log n.

Proof Proposition 16. Let d be the constant from Sipser’s Lemma applied to the
given elusive language L. Let c be an arbitrary constant. By Sipser’s lemma it
suffices to show that log |L=n| + d log n is less than the right hand side of the
inequality we have to prove. More precisely, we have to show that

log |L=n|+ d log n 6 Cnc
(x|r)− c log n

for infinitely many x ∈ L and for 99% of r of length nd.
For the sake of contradiction assume that for some m for all n > m for all

x ∈ L=n we have
Cnc

(x|r) < log |L=n|+ (c+ d) log n

for at least 1% of r’s. For any such n consider the program Mn of probabilistic
machine that samples a random string w of length less that log |L=n| + (c +
d) log n (all such strings are equiprobable) and a string r of length nd. Then
Mn considers w as a program of a string conditional to r, runs that program in
nc steps and outputs its result (if any). Thus Mn outputs every x ∈ L=n with
probability at least 1/(100|L=n|nc+d). And hence for all n > m with non-empty
L=n the output Mn falls in L=n with probability at least

|L=n|/(100|L=n|nc+d) = 1/100nc+d.

This contradicts the assumption that L is an elusive set, as Mn runs in time
poly(n) and its program length is O(log n).

13



The first part Theorem 4 directly follows from Theorem 15 and Proposition
16. Let us prove the second part of Theorem 4. In [14], it was shown that under
Assumption 2 we can replace in Sipser’s lemma conditional complexity by the
unconditional one.

Theorem 17 (Theorem 3.2 in [14]). Under Assumption 2 for all L ∈ PSPACE/poly
there is a constant d such that for all x ∈ L=n we have

CDnd,L=n
(x) 6 log |L=n|+ d log n.

Moreover the constant d depends only on the length of the advice string for L
and on the space bound for L.

In the notation CDnd,L=n
(x) the superscript L=n means that the distin-

guishing program is granted the access to an oracle for L=n. If L is decidable
on polynomial space we can drop this superscript.

Combining this theorem with the proof of Proposition 16 and Theorem 15
we obtain the proof of the second part of Theorem 4.

Remark 3. In [3], a weaker result is derived from an assumption that is not
comparable with our one:

Theorem 18 ([3]). Assume that FewP∩ SPARSE * P. Then for some constant
d for all c for infinitely many x we have

CDnd
(x) < Cnc

(x)− c log n.

Here n denotes the length of x.

Remark 4. In [3], the following relation between (1 SAT, SAT) and distinguish-
ing complexity was discovered:

Theorem 19 ([3]). The following are equivalent:
(1) (1SAT, SAT ) /∈ P.
(2) For some d for all c there are x and y with

CD(|x|+|y|)d(x|y) 6 C(|x|+|y|)c(x|y)− c log(|x|+ |y|).

From Theorem 19 and Theorem 4 we obtain the following implication NE 6⊆
RE ⇒ (1SAT, SAT ) 6∈ P, which is not surprising since (1SAT, SAT ) ∈ P
implies NP = RP using the Valiant–Vazirani Lemma.

4.4 Proof Proposition 5

Definition 6. A probability distribution σ over {0, 1}∗ is called P-samplable, if
there is a program of randomized machine that generates this distribution in
time bounded by a polynomial of the length of the output.

Theorem 20 (Lemma 3.2 in [1]). Under Assumption 3 for every P-samplable
probability distribution σ there is a d such that for all x of length n,

Cnd
(x) 6 − log σ(x) + d log n.
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Proof of Proposition 5. Assume that µ is generated by a program q of length
less than α in time t. Assume that α < n as otherwise the statement is obvious
(the complexity of x with a polynomial time bound does not exceed its length).

Consider the following P-samplable probability distribution σ: we choose a
random t with probability proportional to 1/t2, then we choose a random pro-
gram q′ of a randomized machine with probability proportional to 2−|q

′|/|q′|2,
run that program in in t steps and output the triple (1t, q′, x), where x is the
result of q′ (if any, and the empty string otherwise). The triple (1t, q′, x) is
encoded in such a way that the code length be polynomial in t+ |q′|+ |x|. By
Theorem 20

C|y|
d
(y) 6 − log σ(y) + d log |y|

for some constant d and all y. Letting y = (1t, q, x), we obtain

C|(1
t,q,x)|d(1t, q, x) 6 − log σ(1t, q, x) + c log |(1t, q, x)|

6 2 log t+ α+ 2 logα− logµ(x) +O(log(t+ |x|)).

Since the complexity of any entry of a tuple does not exceed the complexity of
the tuple itself, we get the sought inequality.

4.5 Proof of Proposition 6

Indeed, if µ is not ∗, β-optimal for x, then µ(x) < 2−β−K(x). The sum of
probabilities of all such words is less than ε times the sum of 2−C(x) over all x
of length n. The latter sum is less than n+O(1), since C(x) 6 n+O(1) for all
x of length n and for all fixed k the sum of 2−C(x) over all x with C(x) = k is
at most 1 (there are at most 2k such x’s).

4.6 Proof of Proposition 7

Consider the machine that chooses a random program of length Ct(x) (with uni-
form distribution), runs it in t steps and outputs its result (if any). The program
of this machine has length O(log(n+ t)) and its running time is bounded by a
polynomial in t + n. With probability at least 2−Ct(x) that machine prints x
hence it generate a probability distribution µ that is poly(n+ t), 1-optimal for
x.

4.7 Proof of Theorem 10

Fix an arbitrary constant c. For any set Tn of strings of length 2n recognizable
by a program of length less than c log n in time nc we can construct a Boolean
circuit Cn recognizing that set whose size is bounded by a polynomial of n (that
polynomial depends only on c). Therefore there is a function ε(n) that tends
to 0 faster than any inverse polynomial of n and such that the probabilities of
events Gn(s) ∈ Tn and r ∈ Tn differ at most by ε(n) for any such set Tn.

For the sake of a contradiction assume that for infinitely many n for 1% of
strings s of length n there is a set Ts recognizable by a program of length less
than c log n in time nc with Pr[r ∈ Ts] < n−c/200. Consider the union Tn of all
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such sets. Since Gn(s) ∈ Tn for all such s, the probability of event Gn(s) ∈ Tn
is at least 1/100. On the other hand, the probability of event r ∈ Tn is less
than 2c logn (the number of sets Ts) times n−c/200, which equals 1/200. Thus
the difference of probabilities of events r ∈ Tn and Gn(s) ∈ Tn is greater than
1/200.

Recall now that for each n probabilities of events Gn(s) ∈ Ts and r ∈ Ts
differ by at most ε(n), which tends to 0 faster than any inverse polynomial
of n. The number of Ts is less than 2c logn. Thus we obtain the inequality
2c lognε(n) > 1/200 for infinitely many n, which is a contradiction.

4.8 Proof of Theorem 11

First we derive a corollary from Theorem 17.

Corollary 21. Under Assumption 2 for some constant d for all n for every
program q of length at most 3n that recognizes a set T ⊂ {0, 1}n in time t, for
all x ∈ T we have

CD(n+t)d(x) 6 log |T |+ |q|+ d log(n+ t).

Proof. Fix any sequence of strings qn with qn 6 3n. Let

L =
⋃
n,t

Tn,t, where Tn,t = {0[n,t]−n1x | |x| = n, qn(x) = 1 in time t}.

Here [n, t] — denotes a polynomial computing a 1-1-mapping from pairs of
natural numbers to natural numbers such that [n, t] > n, t. Given the length
of any word from Tn,t we can compute n and t in polynomial time. Therefore
L ∈ P/3n and L=([n,t]+1) = Tn,t. Hence we can apply Theorem 17 to L and
conclude that

CD([n,t]+1)d,qn(0[n,t]−n1x) 6 log |Tn,t|+ d log(n+ t)

for all t, for all x of length n and all sequences {qn} as above. The constant d
does not depend on {qn}, therefore this inequality holds for all n, t, for all x of
length n and all q 6 3n. Plug into this inequality t, q, n, x from the conditions
of theorem. We obtain

CD([n,t]+1)d,q(0[n,t]−n1x) 6 log |T |+ d log(n+ t).

It remains to append to the program of this length distinguishing 0[n,t]−n1x
from other strings the information about n, t and q. In this way we get a
distinguishing program for x of length log |T |+ |q|+O(log(n+ t)) with running
time poly(n, t) that does not need an oracle for T .

Proof of Theorem 11. Assume the contrary: there is T 3 x recognizable by a
program of length l in time t1 with µ(T ) < ε2−l−α−c logn (where the constant c
will be chosen later). Then consider the set T ′ = {x′ ∈ T | µ(x′) > 2−i} where
−i stands for the integer part of the binary logarithm of µ(x). This set has
at most µ(T )2i 6 2µ(T )/µ(x) strings (of length n) and can be recognized in
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time t+ t1 by a program of length α+ l+O(log log(1/µ(x))). W.l.o.g. we may
assume that µ(x) > 2−n and that α, l 6 n. Thus the length of that program is
less than 3n. Corollary 21 implies that for some constant d

CD(n+t+t1)d(x) 6 logµ(T )− logµ(x) + α+ l + d log n,

that is,

logµ(x) 6 −CD(n+t+t1)d(x) + α+ l + logµ(T ) + d log n

6 −CD(n+t+t1)d(x) + α+ l + log ε− l − α− c log n+ d log n

= −CD(n+t+t1)d(x) + log ε− c log n+ d log n.

Let c = d+ 1. Then the last inequality implies that

logµ(x) < −CD(n+t+t1)d(x) + log ε 6 −CD(n+t+t1)c(x) + log ε,

which contradicts the condition of the theorem.

4.9 Proof of Theorems 13 and 12

Proof of Theorem 13. For every µ generated by a program of length < α con-
sider the set of all x′ satisfying the inequality µ(x′) > 2−β. For any fixed µ
there at most 2β such x′ (otherwise the sum of their probabilities would exceed
1). Therefore the total number of strings in all such sets is less than

2α2β < 2n.

Here the first factor is an upper bound for the number of µ and the second
factor the number of x′ for a fixed µ.

Let x by the lex first string of length n outside all such sets. Its Kolmogorov
complexity is at most α + O(log n), as we can find it from the number N of
distributions µ generated by a program of length < α and from parameters
α, β (from α and N we can find all such distributions by running in parallel all
programs of length less than α until we find N distributions; then for every of
the distributions µ we can find the set of strings x′ with µ(x′) > 2−β).

Let us show that x does not possess ∗, α-simple ∗, α+O(log n), 2−β-acceptable
hypotheses. Assume that µ is generated by a program of length < α. Consider
the set T = {x}. Its complexity is at most α+O(log n) and µ-probability is less
than 2−β by construction. Hence the set T witnesses that µ is not acceptable
for x.

Proof of Theorem 12. Assume that α′, β′ satisfy the inequality 2α′+β′+c log n <
n where c is the constant hidden in the O-notation in Theorem 13 (actually
a little larger). Let in Theorem 13 α = α′ and β = β′ + α′ + c log n. If
the word x existing by Theorem 13 were Kolmogorov α′, β′-stochastic, then it
would have ∗, α′-simple ∗, α2, 2

−β′−α2-acceptable hypothesis for all α2. Letting
α2 = α + c log n, we would derive that x has an ∗, α-simple ∗, α + c log n, 2−β-
acceptable hypothesis, which contradicts the statement of Theorem 13.
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5 Non-stochastic strings and P = PSPACE

In this section we show why we need some complexity-theoretic assumption in
Theorem 3—its statement implies P 6= PSPACE.

Theorem 22. Assume that P=PSPACE. Then for every c there is d for which
every string of length n has nd, 2 log n-simple nc, c log n, n−d-acceptable hypoth-
esis.

Proof. Fix a constant c. Define sets A0, A1, . . . by the recursion: A0 = {0, 1, }n
and for i > 0 let

Ai = {x ∈ Ai−1 | (∃ nc, c log n, n−c-simple T 3 x) |T ∩Ai−1| 6 2nn−i−c}.

The definition of Ai implies that it has at most 2nn−i words. Indeed, the
number of nc, c log n-simple sets is less than 2c and each of them contributes at
most 2nn−i−c strings to Ai.

Since An is empty, for every string x of length n there is i 6 n with x ∈
Ai \ Ai+1. For a given x fix that i and consider the distribution µi generated
as follows. Sample a random j 6 2nn−i and output jth in the lexicographical
order word from Ai (if there is no such word, then the last one, say).

Assume that there is an nc, c log n-simple T 3 x with µi(T ) < n−d. The
probability of each string from Ai is at least 2−nni hence we have

|Ai ∩ T | < n−d2nn−i 6 2nn−(i+1)−c

(the last inequality holds if d > c+ 1). Hence x ∈ Ai+1, which contradicts the
choice of i.

It remains to show that µi is nd, 2 log n-simple provided d is large enough.
The distribution µi can be identified by numbers n, i, hence there is a program
of length 2 log n generating µi. Given the index of a string x in Ai we can find
x on the space polynomial in n and nc . Under assumption P=PSPACE, we
can do it in time polynomial in n and nc and hence µi is nd, 2 log n-simple for
some d.

In this theorem the time (nd) to generate distribution µ which is an nc, c log n, n−d-
acceptable hypothesis for x can be much larger than the time (nc) allowed to
refute µ. Does a similar statement hold for d that does not depend on c? The
next theorem answers this question in the negative.

Theorem 23. Assume that P=PSPACE. Then for some constant e for every
n, α, t there is a string of length n that has no t, α-simple (α + t + n)e, α +
2 log t+ 2 log n, 2−n+α-acceptable statistical hypotheses.

Plugging t = nd and α = d log n we get, for each n, a string of length n
with no nd, d log n-simple ned, (2d + 2) log n, 2−n+d logn-acceptable hypotheses.
Thus for any d for some c = O(d) there are infinitely many strings which have
no nd, 2 log n-simple nc, c log n, n−d-acceptable hypotheses.
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Proof. Let µtp denote the probability distribution generated by a program p in
time t. Consider the arithmetic mean of all t, α-simple distributions: µ(x) =
2−α

∑
|p|<α µ

t
p(x). Let x stand for the lex first string of length n such that

µ(x) 6 2−n. This string can be found on space poly(n + t + α). Using the
assumption P=PSPACE we conclude that x can be found in time p(n+ t+ α)
from t, α, n, where p is a polynomial.

We claim that x has has no t, α-simple p(α+t+n), α+2 log t+2 log n, 2−n+α-
acceptable statistical hypotheses. For the sake of contradiction assume that µtp
is such a hypothesis for x. By construction we have µtp(x) 6 2−n+α and hence
the singleton set T = {x} has small probability. It can be recognized in time
p(α+ t+ n) by a program of length less than α+ 2 log t+ 2 log n, consisting of
t and n in the self-delimiting encoding followed by p.

Remark 5. Assume that, in the definitions of a simple and acceptable hypoth-
esis, we would restrict space instead of time. Then in Theorems 22 and 23 we
would not need any assumptions.

6 The universal machine

Fix a deterministic one-tape Turing machine U that inputs three binary strings
p, x, y and outputs one binary string and satisfies the following condition:

For any other deterministic one-tape Turing machine V there is a
constant c and a polynomial f such that for all p there is q with
|q| < |p| + c for which U(q, y, r) = V (p, y, r) (for all y, r) and the
running time of U(q, y, r) is bounded by

f(|y|+ |r|+ the running time of V (p, y, r))

and the similar inequality for the space holds as well.

This machine will be called universal. Using the universal machine we can define
the Kolmogorov complexity (with or without time or space bounds) and the
notions of programs and their running times for deterministic and randomized
machines.

Kolmogorov complexity: Ct(x|y) is the minimal length of p such that U(p, y,Λ) =
x in time t. Similarly, CSm(x|y) is the minimal length of p such that U(p, y,Λ) =
x on space s. If U(p, y,Λ) = x in time t, we say that p is a program for x con-
ditional to y (or simply a program for x, if y = Λ), and we call t the running
time of p on input y.

The distinguishing complexity: CDt(x|y) is the minimal length of p such
that

• U(p, x, y) = 1;

• U(p, x′, y) halts in t steps for all x′ of the same length as x;

• U(p, x′, y) = 0 for all x′ 6= x.
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Programs of deterministic machines: we say that a program p outputs y on
input x in time t if U(p, y,Λ) in time t.

Programs of randomized machines: Considering the uniform probability dis-
tribution over r’s, we obtain a universal randomized machine. More specifically,
a program of a randomized machine is a pair (p,m). A machine with program
(p,m) on an input string y tosses a fair coin m times and then outputs U(p, y, r),
where r denotes the outcome of the tossing. We can fix y = Λ thus obtaining
the notion of a program of a randomized machine without input. The length
of the program (p,m) is defined as |p| + log2m, and the running time (space)
as the maximum over all r ∈ {0, 1}m of the running time (space) of U(p, y, r).
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