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Abstract
We aim to understand inherent reasons for lower bounds for QBF proof systems and revisit and
compare two previous approaches in this direction.

The first of these relates size lower bounds for strong QBF Frege systems to circuit lower
bounds via strategy extraction (Beyersdorff & Pich, LICS’16). Here we show a refined version
of strategy extraction and thereby for any QBF proof system obtain a trichotomy for hardness:
(1) via circuit lower bounds, (2) via propositional Resolution lower bounds, or (3) ‘genuine’ QBF
lower bounds.

The second approach tries to explain QBF lower bounds through quantifier alternations in a
system called relaxing QU-Res (Chen, ICALP’16). We prove a strong lower bound for relaxing
QU-Res, which at the same time exhibits significant shortcomings of that model. Prompted by
this we propose an alternative, improved version, allowing fewer but more flexible oracle queries
in proofs. We show that lower bounds in our new model correspond to the trichotomy obtained
via strategy extraction.

Keywords and phrases proof complexity, quantified Boolean formulas, resolution, lower bounds

1 Introduction

Proof complexity studies the question of how difficult it is to prove theorems in different
formal proof systems. The main question is thus: for a given theorem φ and proof system P ,
what is the size of the shortest proof of φ in P? This research has strong and productive
connections to several other areas, most notably to computational complexity, with the
aim of separating complexity classes through Cook’s programme [10,13], and to first-order
logic (theories of bounded arithmetic [12, 25]). In recent years, progress in practical SAT-
and QBF-solving has been a major motivation for proof complexity, as runs of SAT-solvers
correspond to proofs of (un)satisfiability of CNFs. Analysis of the corresponding proof system
provides the framework for understanding the power and the limitations of the solver [10].

The majority of work in proof complexity has been focussed on propositional proof
complexity, on proof systems for classical propositional logic. In particular, Resolution [30]
has received much attention as it models the approach taken by many modern SAT-solvers.

QBF proof complexity is a comparatively young field, studying proof systems for quantified
Boolean formulas. Determining the truth of a QBF is PSPACE-complete, and so has wider
ranging applications than SAT-solving, extending to fields such as formal verification and
planning [3, 14, 29]. Similarly to the propositional case, several Resolution-based QBF proof
systems have been suggested and analysed [1,5–7,16,21,23,33] to model the approaches taken
by QBF solvers. Of particular importance are Q-Resolution [23] and universal Q-Resolution
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(QU-Res) [16], which as analogues of propositional Resolution form the base systems for
conflict-driven clause learning (CDCL) QBF solving [17].

Stronger systems in the form of QBF Frege systems were developed recently [4]. As in
the propositional framework, by restricting the lines in Frege to a circuit class C we obtain a
hierarchy of (QBF) C-Frege systems, corresponding to the hierarchy of circuit classes.

A conceptually simple but powerful technique for constructing QBF proof size lower
bounds from Boolean circuit lower bounds was developed in [4,6]. This strategy extraction
technique employs the complexity of Herbrand functions witnessing the universal quantifiers.
In [4] the technique was used to show strong lower bounds for QBF Frege systems, including
exponential lower bounds for QBF AC0[p]-Frege (which is in stark contrast to the situation
in propositional Frege, where lower bounds for AC0[p]-Frege are wide open).

Recent work has tightened the connection to circuit complexity further. In [8] it has
been shown that for natural circuit classes C, a lower bound for proof size in QBF C-Frege
corresponds to either a lower bound for propositional C-Frege, or a lower bound for the
circuit class C. This characterisation points to a distinction between lower bounds derived
from lower bounds on propositional proof systems, and ‘genuine’ QBF lower bounds.

More widely, understanding the reasons of hardness for QBF proof systems and solving
constitutes a major challenge, which at current is only insufficiently mastered. Most QBF
proof systems use a propositional system such as Resolution or Frege as their core, implying
that on existentially quantified formulas the QBF system coincides with its classical core
system. This leads to the somewhat disturbing fact that lower bounds for e.g. propositional
Resolution trivially lift to any of the studied QBF Resolution systems.

Motivated by this observation, Chen [11] introduced a new notion of proof system ensemble,
in particular for QU-Res called relaxing QU-Res, with the aim to distinguish between lower
bounds lifted from propositional Resolution and ‘genuine’ QBF lower bounds arising from
quantifier alternation of the QBFs. Quantifier alternation as also been empirically observed
as a source of hardness [26, 27], making this a very interesting direction for theoretical study.

Our Contributions
The main aim of this paper is to gain a refined understanding of the reasons for QBF
hardness, both following the strategy extraction paradigm [8] and the paradigm via quantifier
alternation [11]. We revisit both models and relate them in their explanatory power.
A. Refinement of formalised strategy extraction. We describe a decomposition of
QBF solving into SAT solving and a search for small circuits witnessing a given QBF. This
relies on an improvement of the strategy extraction theorem from [8] which says that, given
polynomial-size QBF C-Frege proofs of QBFs ψn, one can construct small C circuits witnessing
the existential quantifiers in ψn in such a way that the resulting ‘witnessed’ propositional
formulas have polynomial-size proofs in C-Frege. Here, we show that in fact the witnessed
formulas have polynomial-size proofs even in tree-like Resolution (Theorem 1).

Applying a similar decomposition, we observe that polynomial-size lower bounds on a
sequence of QBFs in any QBF proof system can be categorized as either (1) a circuit lower
bound, (2) a Resolution lower bound, or (3) a genuine QBF lower bound (Theorem 2).
B. Lower bounds for relaxing QU-Res. We revisit relaxing QU-Res, introduced in [11]
with the aim of distinguishing propositional bounds from QBF bounds arising from quantifier
alternation. In particular, Chen [11] gives an exponential lower bound for relaxing QU-Res
that applies to quantified Boolean circuits, however with no small CNF representations
(Appendix A). As this is a somewhat atypical feature in proof complexity, we improve this
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by presenting QBFs with CNF matrices that require exponential-size relaxing QU-Res proofs
(Theorem 9). Our formulas use a new construction that combines two false QBFs Φ and Ψ
into their product formula Φ⊗Ψ such that each short QU-Res proof must refute Ψ before it
refutes Φ.

These product formulas have another compelling feature: their hardness for relaxing
QU-Res (and QU-Res) rests on the hardness of the pigeonhole principle for propositional
Resolution. Our lower bound therefore suggests that relaxing QU-Res does not capture
‘genuine’ hardness of QBFs due to quantifier alternation.
C. New systems for ‘genuine’ QBF hardness. Noting this situation, we propose new
QBF proof systems, Σpk-QU-Resolution (Def. 14). The systems bear similarities to relaxing
QU-Res, particularly in the use of relaxations of quantifiers and a proof checking algorithm
with access to a Σp

k-oracle. The major difference is that our algorithm is only permitted a
constant number of oracle queries, but these may appear at any point in the proof.

It is interesting to relate lower bounds in Σp1-QU-Resolution to our trichotomy shown in A.
In this direction, we prove that Σp

1-QU-Resolution admits strategy extraction by depth-3
Boolean circuits (Lemma 16). Hence QU-Res lower bounds stemming from circuit lower
bounds (case (1) in the trichotomy in A) translate to lower bounds in Σp

1-QU-Resolution.
Further, if a QBF is hard for QU-Res due to a Resolution lower bound (case (2) in A), it
has short proofs in Σp1-QU-Resolution. We also demonstrate that a variant of the prominent
formulas of Kleine Büning et al. [23] simultaneously has genuine QBF lower bounds as per
case (3) in A (Theorem 4) and is hard for Σpk-QU-Res proofs for any constant k (Theorem 20).

Organisation. In Sec. 2 we detail necessary background. Section 3 refines formalised
strategy extraction and the characterisation of QBF lower bounds from [8]. In Sec. 4 we show
the lower bound for relaxing QU-Res. Section 5 contains the definition of Σpk-QU-Res and
the analysis of several QBF families in this proof system. In Sec. 6, we extend Σp1-QU-Res to
a stronger system allowing parallel oracle queries.

2 Preliminaries

Quantified Boolean Formulas. A (prenex normal form) quantified Boolean formula (QBF)
Φ = Q1x1 . . .Qnxn.φ(x1, . . . , xn) consists of a propositional formula φ, usually expressed as
a CNF, and a quantifier prefix Q1x1 . . .Qnxn, where each Qi ∈ {∃,∀} ranges over {0, 1}.

The semantics of such a QBF can be considered as a game between players ∃ and ∀. On
the ith turn, the player corresponding to Qi assigns a 0/1 value to xi. After all the variables
have been assigned, the ∃ player (resp. ∀ player) wins the game if φ evaluates to 1 (resp. 0).

Given a variable xi, a strategy for the variable i is a function σi : {x1, . . . , xi−1} → {0, 1}.
A winning strategy for the ∃ (resp. ∀) player, consists of a strategy for each existential (resp.
universal) variable which wins all possible games on Φ. A QBF is false (resp. true) if and
only if there is a winning strategy for the ∀ player (resp. ∃ player).

The quantifier complexity of a QBF is described by inductively defined classes Σb
i and

Πb
i , counting the number of quantifier alternations. By Σpi (resp. Πp

i ) we denote the ith level
of the polynomial hierarchy, for which deciding truth of Σbi (resp. Πb

i ) formulas is complete.
Proof Complexity. A proof system for a language L is a polynomial-time computable
surjective function f : {0, 1}∗ → L [13]. If f(π) = φ, we say π is an f -proof of φ. Given
proof systems P and Q for L, P p-simulates Q if there is a polynomial-time function t with
P (t(π)) = Q(π) for any π. Two proof systems are p-equivalent if they p-simulate each other.

Here we consider proof systems for propositional tautologies and fully quantified true
QBFs. We also consider proof systems for unsatisfiable formulas and false QBFs and use the
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words proof and refutation interchangeably.
Resolution [30] is one of the best studied propositional proof systems [32]. Given two

clauses C ∨ x and D ∨ ¬x, Resolution can derive the clause C ∨D. A Resolution proof that
a CNF φ is unsatisfiable is a derivation of the empty clause ⊥ using the resolution rule.

QU-Resolution (QU-Res) [16] is a natural extension of Resolution to QBFs. Given a
QBF Φ = Q1x1 . . .Qnxn.φ, where φ is a CNF, a QU-Res refutation of Φ is a derivation of ⊥
from the clauses of φ. It uses the Resolution rule (with the extra condition that deriving
tautological clauses is not allowed) and the ∀-reduction rule, which from a clause C ∨ l with
literal l on universal variable xi (i.e., l = xi or l = ¬xi) can derive the clause C provided C
contains no literals on xi+1, . . . , xn.

A proof in Resolution (and QU-Res, and other proof systems) can be represented as
a directed acyclic graph (dag) with a root labelled by ⊥, and input vertices labelled with
clauses from the CNF. If we restrict the dag to be a tree, we define tree-like Resolution,
which we denote by R∗. Tree-like Resolution is known to be weaker than Resolution [9].
Frege Systems. Frege systems are common ‘textbook’ proof systems comprised of a set of
axiom schemes and inference rules [13]. Lines of a Frege proof are formulas in propositional
variables and Boolean connectives ∧,∨,¬. A Frege proof of φ is a sequence of formulas,
ending with φ, in which each formula is either a substitution instance of an axiom, or is
inferred from previous formulas by a valid inference rule. We also consider refutational Frege
systems, in which we start with the formula ¬φ and derive a contradiction.

For a given circuit class C, we define C-Frege, as in [22], to be a Frege system which works
with lines consisting of circuits in C and a finite set of derivation rules. If C consists of all
Boolean circuits, then C-Frege is p-equivalent to extended Frege (EF). If C is restricted to
Boolean formulas, i.e. C = NC1, then NC1-Frege is Frege as defined above.

An elegant method for extending C-Frege systems to QBF was shown in [4]. The QBF
proof system C-Frege+∀-red is a refutational proof system working with circuits from C.
The inference rules of C-Frege+∀-red are those of C-Frege, along with the ∀-red rule Lj(u)

Lj(u/B)
where u is quantified innermost among the variables of Lj with respect to the quantifier
prefix, and the circuit B does not contain any variables to the right of u. Restricting the
circuit B in the ∀-red rule to the constants 0, 1 results in a p-equivalent system [8].

3 Strategy extraction and reasons for hardness

A QBF proof system P has the strategy extraction property if for any P -proof π of a QBF ψ

of the general form ∀x1∃y1 . . . ∀xn∃yn. φ(x1, . . . , xn, y1, . . . , yn), where φ is a propositional
formula, there are |π|O(1)-size circuits Ci witnessing the existential quantifiers in ψ, i.e.

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ φ(x1, . . . , xn, y1, . . . , yn). (1)

The strategy extraction is Q-formalised if, in addition, the propositional formulas (1)
have |π|O(1)-size proofs in a propositional proof system Q.

For any QBF ψ, either there is a propositional formula as in (1) equivalent to ψ, or there
are no (small) circuits Ci witnessing the existential variables, and so no QBF proof system
with the strategy extraction property can prove ψ feasibly.

The task of QBF solving based on proof systems admitting strategy extraction is thus
reducible to the task of finding the witnessing circuits Ci, and then SAT solving of the witnessed
formula. Alternatively, we can speak about a reduction of QBF solving to Σq2-formulas with
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existentially quantified witnessing circuits:

∃C1, . . . , Cn∀x1, . . . , xn, y1, . . . , yn.

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ φ.

We will show that all QBF proof systems P p-simulated by EF+∀-red1 have R∗-formalized
strategy extraction. More precisely, we improve the formalised strategy extraction for EF+∀-
red from [8] by observing that the witnessing circuits can encode extension variables, which
allows us to replace the EF proof of the witnessed formula with an R∗ proof.

Consequently, instead of determining whether there is a short P -proof of ψ, one can solve
the equivalent problem of whether there are small circuits Ci and a short R∗-proof of (1).
As R∗ is quasi-automatisable (i.e., R∗ refutations for a given CNF can be constructed in
quasi-polynomial time in the size of the smallest R∗ proof [2]), the problem is essentially
reduced to the search for the right witnessing circuits Ci.

I Theorem 1. Let C be the circuit class NC1 or P/poly.2 Given a C-Frege+∀-red refutation
π of a QBF ∃x1∀y1 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn) where φ ∈ Σq

0, we can construct in
time |π|O(1) an R∗ refutation of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn) (2)

for some circuits Ci ∈ C.

Proof. By the formalised strategy extraction theorem for C-Frege systems [8], there is a
C-Frege proof of the witnessed formula (2). This means there is an R∗ refutation of

Ext ∧
n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) ∧ φ(x1, . . . , xn, y1, . . . , yn)

where Ext is a set of extension axioms defining C formulas built on variables x1, . . . , xn, y1, . . . , yn.
With the exception of those depending on yn, these axioms can be encoded into circuits Ci
with each extension variable represented by a possibly redundant gate of a circuit Ci. In
order to remove the extension variables depending on yn, we construct two independent R∗
refutations, one with all occurrences of yn in clauses of Ext substituted by 0 and the other
with occurrences of yn in Ext substituted by 1. This results in two R∗ derivations, both at
most as large as the original, one concluding with {yn} and the other with {¬yn}. Resolving
on these two clauses we obtain the needed R∗ derivation without the extension variables
depending on yn. J

The reduction of QBF solving to SAT solving presented above is also of use for proving
QBF proof complexity lower bounds. In [8] it was shown that any super-polynomial lower
bound on EF+∀-red is either a super-polynomial circuit lower bound or a super-polynomial
lower bound on EF. Here we generalise this phenomenon to other QBF proof systems.

Let P be a refutational QBF proof system operating on clauses of matrices of QBFs
(given in a prenex form with CNF matrices) which contains a resolution rule that allows
resolution on both existential and universal variables. We say that a set of clauses C defines

1 this includes all commonly studied Resolution-based QBF systems
2 The result easily generalises to further ‘natural’ circuit classes C such as AC0 or T C0, but we will focus

here on the two most interesting cases NC1 and P/poly leading to Frege and EF systems, respectively.
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a formula Ci(~x) = z for a circuit Ci with input variables ~x and output variable z if z appears
in a literal of some clause in C and for any assignment of the input variables there is exactly
one assignment of the remaining variables satisfying all clauses in C.

Whenever a QBF ψ as above is hard for a QBF proof system P it is for one of the
following reasons:

1. the existential quantifiers in ψ cannot be witnessed by circuits Ci such that formulas∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) = yi have |φ|O(1)-size P -derivations from ¬φ.

2. ψ is witnessable as in 1. but the witnessed formula
∧n
i=1 (yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))∧

¬φ(x1, . . . , xn, y1, . . . , yn) is hard for Resolution.

This characterisation can be specified further.

I Theorem 2. Let P be a refutational QBF proof system as above admitting strategy
extraction by C circuits. If QBFs ψn = ∀x1∃y1 . . . ∀xn∃yn. φn(x1, . . . , xn, y1, . . . , yn), with
propositional φn, have no polynomial-size proofs in P , then one of the following holds:

1. Circuit lower bound. The existential variables in ψn are not witnessable by C circuits.
2. Resolution lower bound. Condition 1. does not hold, but for all C circuits witnessing

ψn, the witnessed formulas require super-polynomial size Resolution refutations.
3. Genuine QBF hardness. There are circuits Ci ∈ C witnessing ψn so that the witnessed

formulas have polynomial-size Resolution refutations, but for all such circuits Ci it is
hard to derive

∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) = yi from ¬φn in P . J

Proof. If the existential variables in ψn are not witnessable by C circuits, we are done. We
therefore assume that there are C circuits witnessing the existential variables.

Suppose that there are some circuits Ci ∈ C such that the witnessed formula (2) has a
polynomial-size Resolution refutation. If this is not the case, we are done as we are in case 2.

We can construct a refutation of ¬ψn in P by first deriving
∧
i Ci(x1, . . . , xi, y1, . . . , yi−1) =

yi from ¬φn, and then refuting
∧
i(Ci ↔ yi)∧¬φn. Since the refutation of

∧
i(Ci ↔ yi)∧¬φ

is assumed to have a polynomial-size refutation, but any refutation of ¬ψn requires super-
polynomial-size, it must be the case that for the circuits Ci ∈ C, the derivation of

∧
i(Ci ↔ yi)

from ¬φn requires super-polynomial size (case 3). J

This means that any QBF lower bound on P is either a circuit lower bound, a propositional
proof complexity lower bound, or it is a ‘genuine’ QBF proof complexity lower bound in
the sense that P cannot derive efficiently some circuits witnessing the existential quantifiers
in the original formula and whenever it can do that for some other witnessing circuits, the
witnessed formula is hard for Resolution.

The last possibility does not happen in the case of strong systems like EF+∀-red. The
situation is, however, more delicate with weaker systems, where we can indeed encounter
‘genuine’ QBF lower bounds. We give an example.

I Definition 3 ([23]). The QBFs KBKFn have clauses

¬y0 y0 ∨ ¬y1 ∨ ¬y′1
yk ∨ ¬xk ∨ ¬yk+1 ∨ ¬y′k+1 y′k ∨ xk ∨ ¬yk+1 ∨ ¬y′k+1 for k ∈ [n− 1]

yn ∨ ¬xn ∨ ¬yn+1 ∨ · · · ∨ ¬yn+n y′n ∨ xn ∨ ¬yn+1 ∨ · · · ∨ ¬yn+n

xt ∨ yn+t ¬xt ∨ yn+t for t ∈ [n]

and quantifier prefix ∃y0y1y
′
1∀x1 . . . ∃yky′k∀xk . . . ∀xn∃yn+1 . . . yn+n.
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This family of QBFs is known to require proofs of size 2Ω(n) in Q-Resolution [6, 23],
and this bound can be extended to QU-Resolution using the formulas KBKF′n, obtained
by adding new universal variables zk, quantified at the same level as xk, and adding the
literal zk or ¬zk to each clause containing xk or ¬xk, respectively [1]. This lower bound is a
‘genuine’ QBF proof complexity lower bound.

I Theorem 4. The formulas KBKF′n are hard for QU-Resolution due to genuine QBF
hardness (case 3 in Theorem 2).

Proof. It is clear that playing the variables xk and zk identical to y′k is a winning strategy
for the universal player, and so there are circuits Ci as described in Theorem 2 which are of
constant size.

Looking now at the witnessed formula
∧n
i=1((xi ↔ y′i) ∧ zi ↔ y′i)) ∧ φ, we show this can

be refuted by a linear-size proof. By resolving on each xi and zi to replace these with the
relevant literal on y′i, we obtain the clauses y′i ∨ yn+i and ¬y′i ∨ yn+i. Resolving on each yn+i
gives y′n, yn ∨ ¬y′n and consequently yn. For each i, we use yi and y′i to deduce yi−1 and
y′i−1 and finally y0, completing the refutation.

Since KBKF′n is known to require exponential size proofs in QU-Res [1], by Theorem 2,
it must satisfy one of the three conditions given. We have established that there are small
witnessing circuits, and that the witnessed formula is easy to refute, and so it must be the
case that it is hard to derive the witnessing circuits. J

4 Hardness due to quantifier alternation

The characterisation of QBF proof system lower bounds given above is a very natural one.
We now show that other suggested reasons for hardness correspond with it.

An alternative characterisation of QBF lower bounds that has previously been suggested
is based on the alternation of quantifiers in the quantifier prefix. Most studied QBF proof
systems build on a propositional proof system (e.g. Resolution) and on Σb

1 formulas just
coincide with the propositional base system. Therefore we can obtain QBF lower bounds
directly from the propositional lower bounds. Characterising lower bounds by quantifier
alternation aims to distinguish between such propositional lower bounds and ‘genuine’ QBF
lower bounds arising from the alternation of quantifiers. Relaxing QU-Res has been put
forward as a proof system to determine hardness due to quantifier alternation.

I Definition 5 (Relaxing QU-Res [11]). Let Π = Q1x1 . . .Qnxn be a quantifier prefix, and
let Π′ = Qπ(1)xπ(1) . . .Qπ(n)xπ(n) be obtained from Π by a permutation π : [n]→ [n]. If π
has the property that π(i) < π(j) for any 1 ≤ i < j ≤ n with Qi = ∀ and Qj = ∃, then we
call Π′ a relaxation of Π. That is, a relaxation is obtained by ‘moving ∀ quantifiers to the
left’. We say that Π′ is a Σbk-relaxation if Π′ is a Σbk quantifier prefix.

Let Φ = Π.φ be a QBF. Let A be a clause in the variables xi, and define α as the unique
minimal assignment that falsifies A. We obtain the quantifier prefix Π[α] by removing all
variables assigned in α, and replacing any universal quantifiers left of a variable in the domain
of α with an existential quantifier. If there is some Πb

k-relaxation Π′[α] of Π[α] such that
Π′[α].φ[α] is false, then A ∈ H(Φ,Πb

k).
Relaxing QU-Res contains the same derivation rules as QU-Res. However, for a fixed

constant k, relaxing QU-Res can introduce any axiom from H(Φ,Πb
k).

For some families of QBFs, such as the pigeonhole principle, other propositional formulas or
indeed any QBF with a prefix with constant alternation, relaxing QU-Res has polynomial-size
proofs, whereas QU-Res may require exponential-size proofs.
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However, lower bounds for both tree-like and dag-like relaxing QU-Res were also shown
in [11]. The lower bound for dag-like relaxing QU-Res in [11] is rather unconventional as
the proof system works with clauses, whereas the lower bound applies to circuits without
polynomial-size CNF representations (cf. Appendix A). Here we present formulas with
polynomially many clauses that require exponential-size proofs in relaxing QU-Res.

Furthermore, the lower bounds we show on the size of QU-Res proofs of these formulas
are clearly due to lower bounds on Resolution proofs of the pigeonhole principle, rather than
alternation of quantifiers, or any other ‘genuine’ QBF reasons. It follows that this is the case
for relaxing QU-Res as well. This demonstrates that relaxing QU-Res is not an adequate
formalism to distinguish propositional lower bounds from genuine QBF lower bounds.

To begin, we present a method of combining two false QBFs to produce another false
QBF. This method might also be of independent interest for the creation of hard QBFs.

I Definition 6. Let Φ = Λ(~x) ·
∧n
i=1 Ci(~x) and Ψ = Π(~z) ·

∧m
j=1Dj(~z) be QBFs consisting

of quantifier prefixes Λ and Π over the variables ~x and ~z respectively, and of clauses Ci and
Dj over the corresponding variables. Then define

Φ⊗Ψ := Λ(~x)Π(~z1) . . .Π( ~zn) ·
n∧
i=1

m∧
j=1

(Ci(~x) ∨Dj(~zi))

where each ~zi is a fresh copy of the variables ~z for each i = 1, . . . , n.

The new formula Φ⊗Ψ is false if and only if Φ and Ψ are both false. We can combine a
winning strategy for the universal variables of Φ with a winning strategy for the universal
variables of Ψ to construct a strategy which must falsify some Ci(~x) and, for each i, will
falsify some Dj(~zi). It is therefore the case that the strategy will falsify some Ci(~x) ∨Dj(~zi).
Similarly, a winning strategy for the existential player for either Φ or Ψ will give a winning
strategy for Φ⊗Ψ.

The proof size for Φ⊗Ψ is bounded by the size of proofs required by Φ and Ψ.

I Lemma 7. Let Φ = ~P .
∧n
i=1 Ci and Ψ = ~S.

∧m
j=1Dj be minimally unsatisfiable QBFs. Let

sP (Φ) be the size of the smallest P -proof for Φ (and similarly for other formulas). Then

max(sP (Φ), sP (Ψ)) ≤ sP (Φ⊗Ψ) ≤ sP (Φ) + n · sP (Ψ).

Moreover, if P is QU-Res, then sP (Φ⊗Ψ) = sP (Φ) + n · sP (Ψ).

Proof. All clauses of Φ⊗Ψ are necessary for a refutation. By assigning variables from Φ or
the copies of Ψ appropriately, the lines in the proof can be restricted to a refutation of Φ or
Ψ, and so max(sP (Φ), sP (Ψ)) ≤ sP (Φ⊗Ψ). Since Φ⊗Ψ can be refuted by first deriving
each clause Ci from

∧m
j=1(Ci(~x) ∨Dj(~zi)), which can be done in sP (Ψ), and then refuting∧n

i=1 Ci(~x) with size sP (Φ), we can find a refutation of Φ⊗Ψ of size sP (Φ) + n · sP (Ψ).
As noted, by restricting the variables we can construct a refutation of Φ(~x) and each

Ψ(~zi) assigning variables. In QU-Res, each resolution step or ∀-reduction step can only be
performed on one variable, and so will only remain in one of these proofs, being replaced by
a weakening or trivial step in all others. Any QU-Res proof of Φ⊗Ψ must therefore have
size at least sP (Φ) + n · sP (Ψ). Equality comes from the upper bound above. J

We use this method to construct a family of false QBFs that require exponential-size
proofs in QU-Res. These QBFs are the product of propositional formulas hard for Resolution
and of QBFs easy for QU-Res, so the hardness of the product is clearly derived from the
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propositional lower bound. Yet, these product formulas are also hard for relaxing QU-Res.
The QBF is obtained by taking the product of the pigeonhole principle, defined below, and
the formulas by Kleine Büning et al. [23] as defined in Definition 3 above.

I Definition 8. The pigeonhole principle for m pigeons and n holes, denoted PHPmn , is the
CNF

∧m
i=1 (xi,1 ∨ · · · ∨ xi,n) ∧

∧m
j=1

∧
1≤i1<i2≤n(¬xi1,j ∨ ¬xi2,j).

For m > n, this is unsatisfiable, and for m = n+ 1 it has been shown that 2Ω(n) clauses are
required to refute it in Resolution, and indeed in any constant-depth Frege system [18,24,28].

I Theorem 9. The QBFs Φn := PHPn+1
n ⊗KBKFn require relaxing QU-Res proofs of size

2Ω(n).

Since QU-Res when restricted to a propositional formula is equivalent to Resolution,
and PHPn+1

n requires proofs of size 2Ω(n) in Resolution [18], we know that PHPn+1
n requires

QU-Res proofs of size at least 2Ω(n). In QU-Res, it is known that the formulas KBKFn have
linear-size proofs [16]. Given the proof size bounds on Φn given by Lemma 7, this QU-Res
lower bound for Φn is unambiguously due to the lower bound for PHPn+1

n in Resolution.
We first show that any relaxation of the quantifier prefix of KBKFn is true.

I Lemma 10. Any relaxation of the quantifier prefix of KBKFn to a Πb
t prefix results in a

true QBF, for any t < n.

Proof. To produce a Πb
t-relaxation of the quantifier prefix, for t < n, there must be some k

such that either xk is quantified existentially, or xk is quantified to the left of yk and y′k. In
either case, we can construct a winning strategy for the existential player.

If some xk is now quantified existentially, then a winning strategy for the existential
player is to play yi = 0, y′i = 1 for each i ≤ k, and to play yj = y′j = 1 for each j > k. Finally,
playing yn+i = 1 for each i then satisfies every clause apart from yk−1∨¬xk ∨¬yk+1∨¬y′k+1,
which can be satisfied by playing xk = 0.

If some xk is universally quantified to the left of yk, y′k, then the strategy for the existential
variables is as above, except on the variables yk and y′k. When assigning these variables, the
existential strategy looks at the value of xk. If xk = 0, then play yk = 0, y′k = 1. If xk = 1,
then play yk = 1, y′k = 0. This strategy will then satisfy all clauses. J

Proof of Theorem 9. Any clause in the variables of Φn can be written as X ∨Z1 ∨ · · · ∨Zm
where X is a clause in the variables of ~x, and Zi is a clause in the variables of ~zi. We use the
terms Z-variables and X-variables to refer to any variables in ~z1, . . . , ~zm and ~x respectively.
Similarly, given a clause C, we use X-clause and Z-clause to refer to the restriction of C to
the X-variables and Z-variables, and denote these restrictions by CX and CZ .

We first show that, for any clause A derived as an axiom by relaxing QU-Res, if AX
requires at least c clauses from PHPn+1

n to prove, then it must also contain at least c
existentially quantified Z-variables.

We then establish an upper bound on the size of a proof of an X-clause derived from
c axioms of PHPn+1

n which depends only on c. Using this, we conclude that any relaxing
QU-Res axiom where the corresponding X-clause requires proofs of size 2k must contain
Ω(k) Z-variables.

Lastly, we show that given any relaxing QU-Res proof, for each assignment to the Z-
variables, we can find an axiom containing Ω(n) Z-variables which agrees with the given
Z-assignment. From this, we conclude that the proof must contain 2Ω(n) axioms.
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I Lemma 11. Suppose that the clause A = AX ∨AZ is derived as an axiom of Φn by relaxing
QU-Res. Let Zi1 , . . . , Zil be such that all the existential variables in AZ are in some Zij .
Then the clause AX is a semantic consequence of the pigeonhole principle axioms Ci1 , . . . , Cil ,
i.e. Ci1 ∧ · · · ∧ Cil |= AX .

Proof. Suppose that Ci1 ∧ · · · ∧Cil 6|= AX . Let α be an assignment to the X-variables which
falsifies AX but satisfies each Cij . We can extend α to the minimal assignment α′ which
falsifies A. We show that for any Πb

t-relaxation of Φn, for t << n, we can extend α′ to a
winning strategy for the existential player.

Given a Πb
t-relaxation of Φn, with quantifier prefix ~P ′, we show by induction that for

each k, we can construct a strategy σk on the existential variables of X and Z1, . . . , Zk which
extends α′ and is a winning strategy for

~P ′ ·
k∧
i=1

m∧
j=1

(Ci(~x) ∨Dj(~zi))

Let σ0 := α′. This clearly satisfies the empty conjunction. For each k, we extend the
strategy σk−1 which satisfies

∧k−1
i=1

∧m
j=1(Ci(~x) ∨ Dj(~zi)). It therefore suffices to find a

strategy for the unassigned Zk variables which satisfies
∧m
j=1(Ck(~x) ∨Dj( ~zk)). We divide

into two possible cases:

Suppose k = ij for some 1 ≤ j ≤ l. Then α′, and hence σk−1, already satisfies Ck(~x).
Therefore σk−1 satisfies each clause Ck(~x)∨D(~zi) for any D, and we can define σk = σk−1
on the variables of X and Z1, . . . , Zk−1, and arbitrarily on Zk.
Suppose k 6= ij for any 1 ≤ j ≤ l. Then AZ does not contain any existential variables in Zk
so α′, and hence σk−1, are not defined on any existential variables in Zk. Any Πb

t -relaxation
of KBKFn is true, by Lemma 10. Let τk be a strategy for the existential variables of Zk
which is a winning strategy for ~P ′ ·

∧m
j=1Dj( ~zk), and so also for ~P ′ ·

∧m
j=1 Ck ∨Dj( ~zk).

As σk−1 is not defined on any existential variables from Zk, τk and σk−1 are strategies
for disjoint sets of variables. We extend our strategy σk−1 with τk to give σk, a winning
strategy for ~P ′ ·

∧k
i=1

∧m
j=1(Ci(~x) ∨Dj(~zi)).

The final strategy σn is therefore a winning strategy for the existential variables of the
Πb
t-relaxation of Φn, and σn extends the assignment α′. This suffices to show that the

relaxation of Φn[α′] is true. Since α′ extends β, the minimal assignment falsifying A, with
assignments to existential variables only, the strategy detailed here will also be a winning
existential strategy for any Πb

t-relaxation of Φ[β], and so any Πb
t-relaxation of Φ[β] is true.

This does not satisfy the axiom derivation rules of relaxing QU-Res, and so A cannot be
derived as an axiom in this system. J

This is enough to show that if we use relaxing QU-Res to derive an axiom A, and AX
requires at least l axioms from PHPn+1

n in any proof, then A must contain existential variables
from at least l different Zi. In particular, A contains at least l distinct Z-variables.

The following lemma gives an upper bound for the size of Resolution proofs from a fixed
number of axioms from PHPn+1

n . This upper bound also applies to the length of a Resolution
proof of the X-clause of an axiom containing a small number of Z-variables.

I Lemma 12. Suppose C is a clause derived by Resolution from PHPn+1
n , and there exist

axioms C1, . . . , Ct from PHPn+1
n such that C1 ∧ · · · ∧ Ct |= C. Then there is a Resolution

proof of C of size at most 18t.
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Combining this with Lemma 11 shows that any relaxing QU-Res axiom A for which AX
requires a large QU-Res derivation from the axioms of the pigeonhole principle must also
contain a large number of Z-variables.

I Corollary 13. Let A be an axiom derived from Φn by relaxing QU-Res. Let S(AX) be the
size of the smallest Resolution derivation of AX from PHPn+1

n . Then A must contain at
least 1

log 18 logS(AX) existential Z-variables.

Proof of Lemma 12. We show that without weakening, which can be done in one step at
the end if needed, there are at most 18t clauses that can be derived by Resolution from t

axioms of PHPn+1
n . This upper bound is far from tight, but is sufficient for the proof of

Theorem 9.
Given t clauses from PHPn+1

n , all negative literals are in clauses of size 2. Thus there
are at most 2t variables xi which appear in both positive and negative literals in the clauses
C1, . . . , Ct. There are then at most t blocks Yj of pure positive or pure negative literals, at
most one corresponding to each Ci. Any clause derived by Resolution from C1, . . . , Ct must
contain each variable xi as a positive literal, a negative literal or not at all, and must contain
some subset of the blocks of pure literals. Thus the total number of clauses derivable in
Resolution from C1, . . . , Ct is at most 32t · 2t = 18t. Any Resolution derivation of C from
C1, . . . , Ct therefore has size at most 18t. J

To conclude the proof of Theorem 9 we show that for any relaxing QU-Res proof π of
Φn and for any assignment to the existential Z-variables, we can find an axiom in π which
agrees with the Z-assignment and contains linear number of Z-variables.

Suppose that Φn has relaxing QU-Res proofs of size f(n). Given a proof π with |π| ≤ f(n),
and an assignment α to the existentially quantified Z-variables, we will show that by restricting
π to the clauses which agree with α, and restricting these clauses to their respective X-clauses,
we can construct a sound Resolution refutation of PHPn+1

n from the X-axioms.
Consider π|α, the result of restricting π to those clauses which agree with α. We show by

induction that π|αX is a Resolution refutation from the X-axioms, of size at most f(n).
The empty clause is the root of the Resolution proof on the X-variables, and clearly
agrees with α.
Suppose a clause C is derived by a ∀-red step on a Z-variable u. Then clearly C ∨ u
agrees with α if C agrees with α, since α does not assign u. Also CX = (C ∨ u)X , so this
is a valid step in a Resolution proof on the X-clauses.
Suppose C agrees with α and C is derived from C1 and C2 by resolving on an X-variable
x. Then CZ1 , CZ2 ⊆ CZ , and so both C1 and C2 agree with α since C does so. Observe
also that CX is derived from CX1 and CX2 by a single Resolution step on x.
Suppose C agrees with α and C is derived from C1 and C2 by resolving on a Z-variable
z. Then at least one of C1 and C2 must agree with α, depending on the value of α(z).
As CX1 , CX2 ⊆ CX , we can derive CX by a weakening step from whichever agrees with
the Z-assignment, or both if z is universally quantified.

This completes our induction, and proves that theX-clauses of the clauses in π which agree
with α are a valid Resolution proof. As we know that any Resolution refutation of PHPn+1

n

requires proofs of size at least 2kn, for some constant k, we know that there is some X-axiom
B in this proof which requires Resolution derivation of size at least 2kn−f(n)

f(n) = 1
f(n)2kn − 1.

From the construction above, there is some axiom A in π such that AX = B, and
by Corollary 13, A must contain at least c(kn − log f(n)) =: g(n) existentially quantified
Z-variables, which agree with α, for some constant c.
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For every assignment α to the existential Z-variables, we can find such an axiom containing
at least g(n) existential Z-variables and agreeing with a. As each of these axioms can agree
with at most a 2−g(n) proportion of the possible assignments α, π must contain at least
2g(n) axioms. As a proof cannot contain more axioms than its length, we conclude that
2g(n) ≤ f(n), i.e.

2ckn ≤ f(n)2c log f(n) = f(n)c+1

and so f(n) = 2Ω(n). J

We have shown that PHPn+1
n ⊗KBKFn requires proofs of size 2Ω(n) in relaxing QU-Res,

despite consisting of a propositional formula which is hard for Resolution combined with a
QBF which is easy for QU-Res.

5 An alternative definition of hardness from alternation

In this section, we propose a new set of proof systems which better characterise whether a
QBF lower bound is due to alternating quantifiers or due to a propositional lower bound. In
this proof system, PHPn+1

n ⊗KBKFn has linear-size proofs.

I Definition 14. A Σpk-QU-Resolution proof is a derivation of the empty clause by the rules
of QU-Resolution, and a constant number of instances of the following rule:

(Σpk-derivation) C1 . . . Cl
D1 . . . Dm

where there is some Σb
k-relaxation Π′ of the quantifier prefix Π such that Π′ ·

∧l
i=1 Ci |=

Π′ ·
∧m
j=1Dj . In the context of this proof system, we define a Σbk-relaxation of a quantifier

prefix as in Definition 5, but we also allow the replacing of any ∀ quantifier by ∃.

This proof system is clearly complete as QU-Res is complete. The soundness of this
system can be seen by noting that QU-Res (with weakening) is sound and implicationally
complete. Furthermore, any QU-Res step consistent with the relaxed prefix is also consistent
with the original prefix, and so if a Σpk-QU-Resolution refutation exists, then we can construct
a QU-Res refutation. Allowing a relaxation to replace universal quantifiers with existential
quantifiers is not necessary, but as we shall see later, it reduces the number of levels of the
polynomial hierarchy we need to consider.

This definition differs from the definition of relaxing QU-Res as it allows the proof checker
to make queries to a Σp

k-oracle at any point in the proof. However, the number of queries
it can make is bounded by a constant, rather than the unbounded number permitted in
relaxing QU-Res. Note that Σpk-QU-Resolution, parameterised by the number of queries to
the Σpk oracle, forms a proof system ensemble as defined in [11].

We can now define a QBF to be hard due to (quantifier) alternation if it is hard for
Σp1-QU-Resolution, i.e. if efficiently solving a SAT problem does not significantly shorten the
proof. We can extend this to a hierarchy of QBFs, saying a QBF is hard due to Σbk-alternation
if it has short proofs in Σpk-QU-Resolution, but requires long proofs in any lower class. The
proof complexity of formulas in Σp1-QU-Resolution is of particular interest, as recent success in
SAT solving has resulted in some QBF solvers embedding a SAT solver as a black box [20,31].
The oracle access to Σp1 models this technique, and may provide some insight as to the power
and limitations of such QBF solvers.

It is straightforward to extend this definition to construct Σp
k-P for most QBF proof

systems which work with proof lines, such as C-Frege+∀-red systems. Clearly, using a different
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proof system may change proof sizes, and so the definition of hardness due to alternation is
dependent upon the proof system used.

As noted in Section 4, the formulas PHPn+1
n ⊗KBKFn require QU-Res proofs of size 2Ω(n)

due to the lower bound on Resolution. Here we show that these formulas have polynomial-size
proofs in Σp1-QU-Resolution, and so are not hard for QU-Res due to quantifier alternation.
This is in sharp contrast with the lower bound shown in Theorem 9 for relaxing QU-Res,
despite this proof system also making use of oracles for Σpk.

I Theorem 15. PHPn+1
n ⊗KBKFn have Σp1-QU-Resolution proofs of length O(n3).

Proof. Define the clauses Ci and Dj such that PHPn+1
n =

∧
i Ci and KBKFn = Π ·

∧
j Dj ,

and so the clauses of PHPn+1
n ⊗KBKFn are Ci(x̄) ∨Dj(z̄i) for all i, j.

Since there is an O(n)-length refutation of KBKFn in QU-Res, we know that QU-Res can
derive Ci(x̄) from

∧
j Ci(x̄)∨Dj(z̄i) in O(n) lines. There are O(n2) clauses Ci in PHPn+1

n , so
there is a QU-Res derivation of

∧
i Ci(x̄) in O(n3) lines. All the variables in x̄ are existentially

quantified, and PHPn+1
n is false, thus from

∧
i Ci(x̄), Σp1-QU-Res derives the empty clause in

a single Σp1-derivation step. J

In order to compare this characterisation of QBF proof lower bounds with that in Section 3,
we first show that Σp1-QU-Resolution has strategy extraction. While we only show strategy
extraction for Σp1-QU-Resolution, the result generalises easily to other Σp1-C-Frege systems.

I Lemma 16. Σp1-QU-Resolution has strategy extraction by depth-3 Boolean circuits.

Proof. QU-Resolution is known to have strategy extraction by depth-3 Boolean circuits [4].
We extend this result to Σp1-QU-Resolution by showing that Σp1-derivations do not contain
any information on the strategy for the universal player.

From any Σpk-QU-Resolution proof we can construct a QU-Resolution proof by replacing
the Σpk-derivation steps with a QU-Resolution derivation of the clauses. By the implicational
completeness of QU-Resolution, this is possible, and each Σpk-derivation can be replaced by a
QU-Resolution derivation consistent with the Σbk-relaxation.

In the case of Σb
1, the relaxation of the prefix treats all variables as existential. A

QU-Resolution proof constructed in this way, while potentially much larger than the Σp
1-

QU-Resolution proof, does not contain any additional ∀-reduction steps that were not in
the Σp

1-QU-Resolution proof. Strategy extraction for QU-Resolution constructs a strategy
which is polynomial in the number of ∀-reduction steps of the proof, as noted in [4]. Given
any Σp1-QU-Resolution proof, it is therefore possible to extract a strategy for the universal
variables as a depth-3 Boolean circuit with size polynomial in the length of the proof. J

QBFs hard for QU-Res by item 1 of Theorem 2 (hardness due to strategy extraction)
are therefore still hard for Σp1-QU-Res. Intuitively, lower bounds due to strategy extraction
can also be considered lower bounds due to quantifier alternation, as strategy extraction is a
technique that inherently relies on universally quantified variables.

Consider now QBFs hard for QU-Res by item 2 in Theorem 2. There are polynomial-size
strategies for the universal variables, but for all of these, the witnessed formulas require
super-polynomial size proofs in Resolution. Using the normal form for proofs described in [8],
we can construct short proofs of these QBFs in Σp1-QU-Res, deriving the witnessed formula,
and then using a Σp

1-derivation to derive ⊥. This demonstrates that QBFs in the second
category are not hard due to alternation of quantifiers.

For sufficiently strong proof systems, such as Frege+∀-red, these are the only two
possible reasons for hardness [8]. As Lemma 16 extends naturally to Σp

1-Frege+∀-red,
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the characterisation of hardness for QBF Frege systems in [8] (circuit lower bounds vs
propositional Frege lower bounds) therefore coincides with our characterisation via quantifier
alternation.

In the following, we determine the precise alternation hardness for two formulas known
to be hard for QU-Resolution, one from each of the two interesting categories 1 and 3 from
Theorem 2. Formulas in category 2 such as the existentially quantified PHPn+1

n formulas (or,
less trivially, the formulas from Theorem 15) are all easy for Σp1-QU-Res.

We first show a simulation result for certain levels of the polynomial hierarchy, which has
the effect of restricting the interesting quantifier relaxations to the classes Σb2k−1.
I Lemma 17. If a family of QBFs has proofs of size s(n) in Πp

m-QU-Res or Σp2k-QU-Res,
then it has proofs of size n · s(n) in Σpm−1-QU-Res or Σp2k−1-QU-Res respectively.

In particular, given a family of QBFs Φn, if the alternation hardness of Φn is precisely C,
then C = Σb2k+1 for some integer k.
Proof. We begin by demonstrating that from a Πp

m-QU-Resolution refutation of Φn of size
s(n), we can construct a Σpm−1-QU-Resolution refutation of size O(s(n)).

Consider the outermost block of universal variables in a Πb
m-relaxation. A Σbm−1-relaxation

can be obtained by quantifying the variables in this block existentially. If a Πp
m-derivation does

not derive the empty clause, then all possible clauses derived by the Πp
m-derivation contain

at least one variable quantified existentially in the Πb
m-relaxation. Thus we can still derive

the same clauses using the Σbm−1 relaxation, as at no point would any QU-Resolution proof
consistent with the Πb

m-relaxation contain a ∀-reduction step on these universal variables. If
the Πp

m-derivation does derive the empty clause, then it is possible in the Σbm−1-relaxation to
derive a clause containing only variables which were universally quantified in the first block
in the Πb

m-relaxation. As these variables must be universally quantified in the original QBF,
there is a proof using a Σbm−1-relaxation of size ≤ p(n) +n, which replaces the Πp

m-deduction
with a Σpm−1-deduction and at most n ∀-reduction steps.

Given a Σb2k-relaxation of the quantifier prefix, the innermost block of variable is universally
quantified. By the definition of relaxation, these variables must also have been innermost in
the original quantifier prefix. The first step in a Σp2k−1-QU-Resolution proof is to ∀-reduce
these variables in each axiom. The Σp2k-QU-Res proof is then followed, with the innermost
variables removed from the clauses. At each Σp2k-derivation, the innermost variables are not
present in any of the clauses, and so the Σb2k-relaxation can be replaced by a Σb2k−1-relaxation
with these variables also existentially quantified. J

The proof of Lemma 17 relies on the fact that we allow relaxations to replace universal
quantifiers with existential quantifiers. If the definition of relaxation were restricted to that of
relaxing QU-Res, then the simulation of Πp

m-QU-Resolution by Σpm−1-QU-Resolution would
not hold. With the exception of Σp

2-QU-Resolution, it would still be possible to reduce a
Σp2k-QU-Resolution proof to a Σp2k−1-QU-Resolution proof by moving the innermost universal
variables outwards to another block of universal quantifiers.

Lemmas 16 and 17 immediately allow us to extend a strategy extraction lower bound
to obtain a lower bound on Σp1-QU-Resolution. We illustrate this on the QParity formulas
from [4,6], for which we establish the precise alternation hardness.
I Definition 18 ([6]). The formulas QParityn have quantifier prefix ∃x1 . . . xn∀z∃t2 . . . tn
and clauses expressing that t2 ≡ x1 ⊕ x2, tk ≡ tk−1 ⊕ xk for each 3 ≤ k ≤ n, and z ≡ ¬tn.
The QBFs are false, and the only winning strategy for the ∀ player is to play z ≡

⊕n
i=1 xi.

However, the parity function is hard to compute for depth-3 circuits [15, 19], and so any
QU-Resolution proof requires length Ω(2n).
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I Corollary 19. The formulas QParityn have Σb
3-alternation hardness. In particular, they

are hard for QU-Resolution due to the alternation of quantifiers.

Proof. It is clear that QParityn has short proofs in Σp
3-QU-Resolution, as their quantifier

prefix is Σb
3. By Lemma 17, we need only show that QParityn does not have polynomial

size proofs in Σp1-QU-Resolution. By Lemma 16, Σp1-QU-Resolution has strategy extraction
by depth-3 circuits. Since any depth-3 circuit for the parity function requires exponential
size [15,19], any Σp1-QU-Resolution refutation of QParityn requires exponential size. J

By Theorem 4, the formulas KBKF′n are hard for QU-Resolution due to a genuine QBF
lower bound. As their hardness does not originate from a Resolution lower bound, we might
expect them to be hard due to alternation. In fact, we can go further than this and show
that the formulas KBKF′n are hard for Σpk-QU-Resolution for all k.

I Theorem 20. For any constant k, the formulas KBKF′n require proofs of length 2Ω(n) in
Σpk-QU-Resolution.

Proof. Throughout this proof, we will refer only to universal variables xi. Since the variables
xi and zi appear with the same polarity in all clauses, we only need to consider whichever is
quantified first in any relaxation, which w.l.o.g. we assume is xi.

The first step in our proof is to observe that the winning strategy for the universal player
in KBKF′n is to play the variable xi according only to the values of the variables yi and y′i.
Thus any Σbk relaxation in which xi is quantified existentially, or is quantified before yi and
y′i cannot contribute to the strategy derived for xi.

Moreover, as noted in [23], whenever a variable xi is reduced, the clause must contain
literals on each xj variable for 1 ≤ j < i. Since the strategy for xi depends only on yi, y′i and
not on the xj , define a ∀-reduction on xi to be ‘useful’ if there is a literal on yi or y′i in the
clause. In QU-Res, there must be a useful ∀-reduction on xi for each of the 2i−1 different
combinations of literals on x1, . . . , xi−1.

Given a Σbk-relaxation of the quantifier prefix of KBKF′n, there are at most k
2 blocks of

universal variables. If such a block contains xi, then for each j > i, the variables yj , y′j must
be quantified to the right of the block. Hence each block contains at most one universal
variable xi, namely the xj in the block with the smallest index j, which is right of the
corresponding variables yi, y′i.

As in the proof of Lemma 16, we see that for a Σpk-QU-Resolution proof, we can construct
a QU-Resolution proof by replacing the Σp

k-derivations with QU-Resolution derivations
consistent with a Σbk-relaxation. By the above, the QU-Resolution derivations that replace
the Σpk-derivations can only contain useful ∀-reduction steps on k universal variables.

Given a Σp
k-QU-Resolution proof which contains at most m Σp

k-derivations, we can
conclude that there are at most mk universal variables which appear to the right of their
corresponding yi, y′i variables in at least one Σbk-relaxation. Since at least one of xn−mk, . . . , xn
does not have this property, the Σpk-QU-Resolution proof must contain all useful ∀-reduction
steps on one of these variables, and so must contain at least 2n−mk clauses in total. J

6 Allowing parallel queries: stronger QBF proof systems

In Σp
k-QU-Resolution, the algorithm for verifying the proof is allowed to make a constant

number of queries to a Σpk-oracle. Here we will propose a stronger system, motivated by the
observation that a Σpk-oracle query can be used to check multiple parallel Σpk-derivations at
once. Thus as long as no path in the proof dag contains more than m Σpk-derivation steps,
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there is a polynomial-time proof checking algorithm which requires at most m Σp
k-oracle

queries.

I Definition 21. A parallel Σpk-QU-Resolution proof of a QBF φ is a derivation of the empty
clause by the same rules as Σpk-QU-Resolution. The proof may contain an arbitrary number
of Σpk-derivation steps, but there is a constant m such that any path through the proof dag
contains no more than m such steps.

It is clear that parallel Σpk-QU-Resolution p-simulates Σpk-QU-Resolution. However the
converse does not hold: there is an exponential separation between the two systems for k ≥ 3.

I Theorem 22. For k ≥ 3, there is a family of QBFs Φn such that Φn has polynomial size
proofs in parallel Σpk-QU-Resolution, but requires proofs of size 2Ω(n) in Σpk-QU-Resolution.

Proof. Let Φn be the QBF PHPn+1
n ⊗QParityn. Note in particular that the definition of

⊗ quantifies the variables from each copy of QParityn sequentially, and so Φn has a Σb2N+1
quantifier prefix, where N is the number of clauses in PHPn+1

n .
It is easy to see that Φn has short proofs in parallel Σp

k-QU-Resolution. Each clause
of PHPn+1

n can be derived by a Σp
k-derivation, each of which is independent of the others.

We then require a single Σpk-derivation to derive ⊥ from the clauses of PHPn+1
n . Each path

through this proof contains at most two Σpk-derivations.
Since the strategy for each universal variable in Φn requires size 2Ω(n) as a depth-3

Boolean circuit, we see that any polynomial size Σpk-QU-Resolution proof of Φn must contain
for each universal variable, at least one Σpk-derivation in which the relaxation quantifies the
universal variable to the right of the corresponding existential variables from that copy of
QParityn. If this were not the case, it would be possible to extract a strategy for this variable
from the proof, which cannot be done in polynomial size.

As a Σbk-relaxation can only contain k
2 blocks of universal variables, a Σpk-QU-Resolution

proof containing m Σpk-derivations can only contain suitable relaxations for 1
2mk universal

variables. Thus for any Σpk-QU-Resolution proof, there is some universal variable for which
we can extract a strategy from the ∀-reduction steps of the proof. The proof must therefore
have size 2Ω(n). J

Note that this separation only holds for k > 1. When k = 1, the two systems are in
fact p-equivalent, since there is only one possible Σb

1-relaxation. Parallel Σp
1-derivations

can therefore be combined into a single such step. The two proof systems therefore give
equivalent definitions for hardness due to (Σb1-)alternation.

It is relatively straightforward to see that the strategy extraction from Lemma 17 can be
extended to parallel Σpk-QU-Resolution. Defining a hierarchy of alternation hardness as before,
we conclude that QParityn still has Σb3-alternation hardness for parallel Σpk-QU-Resolution.

The example in Theorem 22 demonstrates that the alternation hardness of a family of
QBFs need not be the same in parallel Σpk-QU-Resolution as it is in Σpk-QU-Resolution. We
conclude by showing that there exist QBFs which do not have short proofs in any parallel
Σp
k-QU-Resolution. The formulas we use for this are the same KBKF′n formulas for which

the analogous result for Σpk-QU-Resolution was shown above.

I Theorem 23. The formulas KBKF′n require super-polynomial size proofs in parallel Σp
k-

QU-Resolution for any constant k.

Proof. The proof uses much the same technique as the proof of Theorem 20. As in that
proof, we refer only to universal variables xi. We first observe that in a QU-Res proof, any
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∀-reduction on a universal variable xi must be in a clause containing a literal on each xj
for j < i. Furthermore, each ∀-reduction on xi must be preceded by a ∀-reduction on xl for
each i < l ≤ n. Clearly, these ∀-reductions must also contain the same literals on x1, . . . , xi
as in the ∀-reduction on xi.

We now fix constant k and m. Assume that KBKF′n has a polynomial size proof in
parallel Σpk-QU-Resolution with at most m Σpk-derivations on any path. This proof can be
expanded to a QU-Res proof by replacing the Σpk-derivations with QU-Res derivations. This
QU-Res proof requires 2i ∀-reductions on xi, but there is some polynomial p(n) such that for
each i, at most p(n) ∀-reductions on xi are not contained in the expansion of a Σpk-derivation,
as the parallel Σpk-QU-Resolution proof has polynomial size.

The number of ∀-reductions on variables xn−mk, . . . , xn that are not in the expansion
of some Σp

k-derivation is at most (mk + 1)p(n) < 2n−mk−1 for large enough n. We can
therefore find an assignment to the variables x1, . . . , xn−mk−1 for which all ∀-reductions on
xn−mk, . . . , xn agreeing with this assignment are in an expansion of a Σpk-derivation.

As mentioned previously, the xi variables depend only on the yi, y′i variables and an
expansion of a Σp

k-derivation can only contain a ∀-reduction on k variables xi with a
corresponding yi or y′i variable in the same clause. The clause corresponding to the assignment
to x1, . . . , xn−mk−1 is preceded by mk + 1 successive ∀-reductions, all of which are obtained
by expanding a Σp

k-derivation. Consequently, the path through these ∀-reductions must
contain at least m+ 1 Σpk-derivations, contradicting our assumption that the proof contained
at most m on any path. J

7 Conclusion

We have undertaken an analysis of strategies and alternation as underlying reasons for the
size of proofs in QBF proof systems. In the search for ‘genuine’ QBF lower bounds, these
are the two characterisations which have received the most attention. We have shown that,
for sufficiently strong proof systems (Frege and above), these two criteria are equivalent, and
proposed a system for which all lower bounds are such proper QBF lower bounds.

A natural question is whether for weaker Resolution-based systems, QBFs from the third
category of Theorem 2 are always hard due to alternation. Here we have only shown this for
the special case of KBKF′n. We also leave open the question of finding formulas which have
alternation hardness precisely Σbk for odd k > 3.
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A Chen’s lower bound for relaxing QU-Res

Define Ψn = ~Pn · ψn to be the quantified Boolean circuit consisting of the quantifier prefix
~Pn := ∃x1∀y1 . . . ∃xi∀yi . . . ∃xn∀yn and a (polynomial-sized) Boolean circuit ψn defined such
that

ψn ↔
n∑
i=1

(xi + yi) 6≡ 0 mod 3.

The quantified Boolean circuits Ψn then provide a lower bound for relaxing QU-Res.

I Theorem 24 (Chen [11]). Relaxing QU-Res requires proofs of size Ω(2n) on Ψn.

Lines in the relaxing QU-Res proof system are clauses, however there is no polynomial-size
CNF equivalent to ψn.

I Lemma 25. Any CNF φn(~x, ~y) equivalent to ψn(~x, ~y) must contain Ω(2n) clauses.

Proof. The circuit ψn has 2n input variables. For any assignment to 2n− 1 of these, the
corresponding restriction of the circuit is not equivalent to 0. Any clause in an equivalent
CNF must therefore contain literals on all 2n variables.

For each clause C in φn, there is therefore a unique assignment to ~x, ~y which falsifies C.
As each of the Ω(2n) assignments on which ψn evaluates to 0 must falsify a clause, φn must
contain Ω(2n) clauses. J
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