
Random CNFs are Hard for Cutting Planes

Noah Fleming∗

University of Toronto
noahfleming@cs.toronto.edu

Denis Pankratov∗

University of Toronto
denisp@cs.toronto.edu

Toniann Pitassi∗

University of Toronto
toni@cs.toronto.edu

Robert Robere∗

University of Toronto
robere@cs.toronto.edu

March 20, 2017

Abstract

The random k-SAT model is the most important and well-studied distribution over
k-SAT instances. It is closely connected to statistical physics and is a benchmark for sat-
isfiability algorithms. In this paper, we prove that any Cutting Planes refutation for ran-
dom k-SAT requires exponential size, for k that is logarithmic in the number of variables,
and in the interesting regime where the number of clauses guarantees that the formula is
unsatisfiable with high probability.

1 Introduction
The Satisfiability (SAT) problem is perhaps the most famous problem in theoretical com-
puter science, and significant effort has been devoted to understanding randomly generated
SAT instances. The most well-studied random SAT distribution is the random k-SAT model,
F(m,n, k), where a random k-CNF over n variables is chosen by uniformly and indepen-
dently selecting m clauses from the set of all possible clauses on k distinct variables. The
random k-SAT model is widely studied for several reasons. First, it is an intrinsically natural
model analogous to the random graph model, and closely related to phase transitions and struc-
tural phenomena occurring in statistical physics. Second, the random k-SAT model gives us
a testbench of empirically hard examples which are useful for comparing and analyzing SAT
algorithms; in fact, some of the better practical ideas in use today originated from insights
gained by studying the performance of algorithms on this distribution and the properties of
typical random instances.

∗Research supported by NSERC.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 45 (2017)

Third, and most relevant to the current work, the difficulty of solving random k-SAT in-
stances above the threshold (in the regime where the formula is almost certainly unsatisfiable)
has been connected to worst-case inapproximability by Feige [12]. Feige’s hypothesis states
that there is no efficient algorithm to certify unsatisfiability of random 3-SAT instances for
certain parameter regimes of (m,n, k), and he shows that this hard-on-average assumption for
3-SAT implies worst-case inapproximability results for many NP-hard optimization problems.
The hypothesis was generalized to k-SAT as well as to any CSP, thus exposing more links to
central questions in approximation algorithms and the power of natural SDP algorithms [4].
The importance of understanding the difficulty of solving random k-SAT instances in turn
makes random k-SAT an important family of formulas for propositional proof complexity,
since superpolynomial lower bounds for random k-SAT formulas in a particular proof system
show that any complete and efficient algorithm based on the proof system will perform badly
on random k-SAT instances. Furthermore, since the proof complexity lower bounds hold in
the unsatisfiable regime, they are directly connected to Feige’s hypothesis.

Remarkably, determining whether or not a random SAT instance from the distribution
F(m,n, k) is satisfiable is controlled quite precisely by the ratio ∆ = m/n, which is called the
clause density. A simple counting argument shows that F(m,n, k) is unsatisfiable with high
probability for ∆ > 2k ln 2. The famous satisfiability threshold conjecture asserts that there
is a constant ck such that random k-SAT formulas of clause density ∆ are almost certainly
satisfiable for ∆ < ck and almost certainly unsatisfiable if ∆ > ck, where ck is roughly
2k ln 2. In a major recent breakthrough, the conjecture was resolved for large values of k [11].

From the perspective of proof complexity, the density parameter ∆ also plays an important
role in the difficulty of refuting unsatisfiable CNF formulas. For instance, in Resolution, which
is arguably the simplest proof system, the complexity of refuting random k-SAT formulas is
now very well understood in terms of ∆. In a seminal paper, Chvatal and Szemeredi [10]
showed that for any fixed ∆ above the threshold there is a constant κ∆ such that random k-
SAT requires size exp(κ∆n) Resolution refutations with high probability. In their proof, the
drop-off in κ∆ is doubly exponential in ∆, making the lower bound trivial when the number
of clauses is larger than n log1/4 n (and thus does not hold when k is large.) Improved lower
bounds [5, 7] proved that the drop-off in κ∆ is at most polynomial in ∆. More precisely, they
prove that a random k-SAT formula with at most n(k+2)/4 clauses requires exponential size
Resolution refutations. Thus for all values of k, even when the number of clauses is way above
the threshold, Resolution refutations are exponentially long. They also give asymptotically
matching upper bounds, showing that there are DLL refutations of size exp(n/∆1/(k−2)).

Superpolynomial lower bounds for random k-SAT formulas are also known for other weak
proof systems such as the polynomial calculus and Res(k) [1, 6], and random k-SAT is also
conjectured to be hard for stronger semi-algebraic proof systems. In particular, it is a relatively
long-standing open problem to prove superpolynomial size lower bounds for Cutting Planes
refutations of random k-SAT. As alluded to earlier, this potential hardness (and even more so
for the semi-algebraic SOS proof system) has been linked to hardness of approximation.

In this paper, we focus on the Chvátal-Gomory Cutting Planes proof system and some of
its generalizations. A proof in this system begins with a set of unsatisfiable linear integral
inequalities (in the form aTx ≥ b), and new integral inequalities are derived by (i) taking non-

2

negative linear combinations of previous lines, or (ii) dividing a previous inequality through
by 2 (as long as all coefficients on the left-hand side are even) and then rounding up the con-
stant term on the right-hand side. The goal is to derive the “false” inequality 0 ≥ 1 with as
few derivation steps as possible. This system can be generalized in several natural ways. In
Semantic Cutting Planes, there are no explicit rules – a new linear inequality can be derived
from two previous lines as long as it follows soundly. A further generalization of both CP and
Semantic CP is the CC-proof system, where now every line is only required to have low (de-
terministic or real) communication complexity; like Semantic CP, a new line can be derived
from two previous ones as long as the derivation is sound.

The main result of this paper is a new proof method for obtaining Cutting Planes lower
bounds. We apply it to prove the first nontrivial lower bounds for the size of Cutting Planes
refutations of random k-SAT instances. Specifically, we prove that for k = Θ(log n) and m
in the unsatisfiable regime random k-SAT requires exponential-size Cutting Planes refutations
with high probability. Our main result holds for the other generalizations mentioned above
(Semantic CP and CC-proofs).

We obtain our main result by establishing an equivalence between such lower bounds and
corresponding monotone circuit lower bounds. Said differently, we generalize the interpola-
tion method so that it applies to any unsatisfiable family of formulas; we show that proving
superpolynomial size lower bounds for any formula for Cutting Planes amounts to proving
a monotone circuit lower bound for certain yes/no instances of the monotone CSP problem.
Applying this equivalence to random k-SAT instances, we reduce the problem to that of prov-
ing a monotone circuit lower bound for a specific family of yes/no instances of the monotone
CSP problem. We then apply the symmetric method of approximations in order to prove
exponential monotone circuit lower bounds for our monotone CSP problem.

Pavel Hrubes̆ and Pavel Pudlák have independently proven a similar theorem [16].

1.1 Related Work
Exponential lower bounds on lengths of refutations are known for CP, Semantic CP, and low-
weight CC-proofs) [9, 13, 20]. These lower bounds were obtained using the method of inter-
polation [19]. A lower bound proof via interpolation begins with a special type of formula
– an interpolant. Given two disjoint NP sets U and V an interpolant formula has the form
A(x, y) ∧ B(x, z) where the A-part asserts that x ∈ U , as verified by the NP-witness y, and
the B-part asserts that x ∈ V , as verified by the NP-witness z. The prominent example in
the literature is the clique/coclique formula where U is the set of all graphs with the clique
number at least k, and V is the set of all (k− 1)-colorable graphs. Feasible interpolation for a
proof system amounts to showing that if an interpolant formula has a short proof then we can
extract from the proof a small monotone circuit for separating U from V . Thus lower bounds
follow from the celebrated monotone circuit lower bounds for clique [2, 21].

Despite the success of interpolation, it has been quite limited since it only applies to “split”
formulas. In particular, the only family of formulas which are known to be hard for (unre-
stricted) Cutting Planes are the clique-coclique formulas. In contrast, for Resolution the width
measure is a nice combinatorial property that characterizes Resolution proof size [3, 7]; we

3

would similarly like to understand the strength of Cutting Planes with respect to arbitrary
formulas and most notably for random k-SAT formulas and Tseitin formulas.

Our main equivalence is an adaptation of the earlier work combined with a key reduction
between search problems and monotone functions established in [14]. With this reduction
in hand, our main proof is very similar to both [9] and [22]. [9] proved this equivalence for
the special case of the clique-coclique formulas. Namely they showed that low-weight CC-
proofs for this particular formula are equivalent to monotone circuits for the corresponding
sets U, V . Our argument is essentially the same as theirs, only we realize that it holds much
more generally for any unsatisfiable CNF and partition of the variables, and the corresponding
set of Yes/No instances of CSP.

Our equivalence follows by: (1) Razborov’s equivalence [22] between monotone circuits
(for a monotone function) and PLS communication games (for the associated KW game), and
(2) an equivalence between PLS communication games (for a monotone KW game) and CC-
proofs (for the search problem associated with the KW game). For the high weight case, the
equivalence follows by replacing (1) by an equivalence between monotone real circuits and
real communication games, recently established by Hrubes̆ and Pudlák [17], and replacing (2)
by its real analog. Inspired by [23], we prove a direct equivalence between monotone circuits
and CC-proofs and between monotone real circuits and RCC (real communication) proofs.

2 Definitions and Preliminaries
If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i. A function f : {0, 1}n → {0, 1}
is monotone if f(x) ≤ f(y) whenever x ≤ y. If f is monotone then an input x ∈ {0, 1}n is
a maxterm of f if f(x) = 0 but f(x′) = 1 for any x′ obtained from x by flipping a single bit
from 0 to 1; dually, x is a minterm if f(x) = 1 but f(x′) = 0 for any x′ obtained by flipping
a single bit of x from 1 to 0. More generally, if f(x) = 1 we call x an accepting instance or
a yes instance, while if f(x) = 0 then we call x a rejecting instance or a no instance. If x is
any yes instance of f and y is any no instance of f then there exists an index i ∈ [n] such that
xi = 1, yi = 0, as otherwise we would have x ≤ y, contradicting the fact that f is monotone.
If f, g, h : {0, 1}n → {0, 1} are boolean functions on the same domain then f, g � h if for all
x ∈ {0, 1}n we have f(x) ∧ g(x) =⇒ h(x).

A monotone circuit is a circuit in which the only gates are ∧ or ∨ gates. A real monotone
circuit is a circuit in which each internal gate has two inputs and computes any function
φ(x, y) : R2 → R which is monotone nondecreasing in its arguments.

Definition 2.1. A linear integral inequality in variables x = (x1, . . . , xn) with coefficients
a = (a1, . . . , an) ∈ Zn and constant term b ∈ Z is an expression aTx ≥ b.

Definition 2.2. Given a system of linear integral inequalities Ax ≥ b, where A ∈ Zm×n
and b ∈ Zm, a cutting planes proof of an inequality aTx ≥ c is a sequence of inequalities
a1
Tx ≥ c1, a2

Tx ≥ c2, . . . , a`
Tx ≥ c`, such that a` = a, c` = c and every inequality i ∈ [`]

satisfies either

• aiTx ≥ ci appears in Ax ≥ b,

4

• aiTx ≥ ci is a Boolean axiom, i.e., xj ≥ 0 or −xj ≥ −1 for some j,

• there exists j, k < i such that aiTx ≥ ci is the sum of the linear inequalities ajTx ≥ cj
and akTx ≥ ck,

• there exists j < i and a positive integer d dividing every coefficient in aj such that
ai = aj/d and ci = dcj/de.

The length of the proof is `, the number of lines. If all coefficients appearing in the cutting
planes proof are bounded by O(poly(n)), then the proof is said to be of low weight.

Let F = C1∧ . . .∧Cm be an unsatisfiable CNF formula over variables z1, . . . , zn. For any
clause C let C− denote the set of variables appearing negated in the clause and let C+ denote
variables occurring positively in the clause. Each clause C in F can be encoded as a linear
integral inequality as ∑

xi∈C+

xi +
∑
xi∈C−

(1− xi) ≥ 1.

Thus each unsatisfiable CNF can be translated into a system of linear integral inqualitiesAx ≥
b with no 0/1 solutions. A cutting planes (CP) refutation of this system is a cutting planes
proof of the inequality 0 ≥ 1 from Ax ≥ b.

Definition 2.3. Let F = C1 ∧ . . .∧Cm be an unsatisfiable k-CNF on n variables. A semantic
refutation of F is a sequence L1, L2, . . . , L` of boolean functions Li : {0, 1}n → {0, 1} such
that

1. Li = Ci for all i = 1, 2, . . . ,m.

2. L` = 0, the constant 0 function.

3. For all i > m there exists j, k < i such that Lj, Lk � Li.

The length of the refutation is `.

We will be particularly interested in semantic refutations where the boolean functions can
be computed by short communication protocols.

Definition 2.4. Let F = C1∧ . . .∧Cm be an unsatisfiable CNF on n = n1 +n2 variables, and
letX = {x1, x2, . . . , xn1}, Y = {y1, . . . , yn2} be a partition of the variables. A CCd-refutation
of F with respect to the partition (X, Y) is a semantic refutation L1, . . . , L` of F such that
each function Li in the proof can be computed by a d-bit communication protocol with respect
to the partition (X, Y).

Since any linear integral inequality aTx+bTy ≥ cwith polynomially bounded weights can
be evaluated by a trivialO(log n)-bit communication protocol (just by having Alice evaluating
aTx and sending the result to Bob), it follows that low-weight cutting planes proofs are also
CCO(logn)-proofs. We can similarly define a proof system which can simulate any cutting
planes proof by strengthening the type of communication protocol.

5

Definition 2.5. A d-round real communication protocol is a communication protocol between
two players, Alice and Bob, where Alice receives x ∈ X and Bob receives y ∈ Y . In each
round, Alice and Bob each send real numbers α, β to a “referee”, who responds with a single
bit bwhich is 1 if α ≤ β and 0 otherwise. After d rounds of communication, the players output
a bit b. The protocol computes a function F : X × Y → {0, 1} if for all (x, y) ∈ X × Y the
protocol outputs F (x, y).

Definition 2.6. Let F = C1 ∧ . . . ∧ Cm be an unsatisfiable CNF on n = n1 + n2 variables
X = {x1, . . . , xn1} and Y = {y1, . . . yn2}. An RCCd-refutation of F is a semantic refutation
L1, L2, . . . , L` in which each function Li can be computed by a d-round real communication
protocol with respect to the variable partition (X, Y).

It is clear that any linear integral inequality aTx+ bTy ≥ c can be evaluated by a 1-round
real communication protocol, and so it follows that a cutting planes refutation of F is also an
RCC1-refutation of F . We record each of these observations in the next proposition.

Proposition 2.7. Let F be an unsatisfiable CNF on variables z1, z2, . . . , zn, and let X, Y be
any partition of the variables into two sets. Any length-` low-weight cutting planes refutation
of F is a length-` CCO(logn)-refutation of F . Similarly, any length-` cutting planes refutation
of F is a length-` RCC1-refutation of F .

2.1 Total Search Problems and Monotone CSP-SAT
In this section we review the equivalence between the search problem associated with an
unsatisfiable CNF formula, and the Karchmer-Wigderson (KW) search problem for a related
(partial) monotone function.

Definition 2.8. Let n1, n2,m be positive integers, and let X ,Y be finite sets. A total search
problem is a relation R ⊆ X n1 × Yn2 × [m] where for each (x, y) ∈ X n1 × Yn2 , there is an
i ∈ [m] such that R(x, y, i) = 1. We refer to x ∈ X n1 as Alice’s input and y ∈ Yn2 as Bob’s
input. The search problem is k-local if for each i ∈ [m] we have that R(∗, ∗, i) depends on a
fixed set of at most k coordinates of x (it may depend on any number of y coordinates).

A standard example of a k-local search problem is the search problem associated with
unsatisfiable k-CNFs.

Definition 2.9. Let F be an unsatisfiable k-CNF formula with m clauses and n variables
z1, . . . , zn, which are partitioned into two sets x1, x2, . . . , xn1 and y1, y2, . . . , yn2 . The search
problem Search(F) with respect to this partition takes as input an assignment x ∈ {0, 1}n1

and y ∈ {0, 1}n2 and outputs the index i ∈ [m] of a violated clause under this assignment.

This problem is clearly k-local since each clause can contain at most k variables from
x1, x2, . . . , xn1 . Associated with this search problem is the following monotone variant of the
constraint satisfaction problem.

6

Definition 2.10. Let H = (L ∪ R,E) be a bipartite graph such that each vertex v ∈ L has
degree at most k, and let m = |L| and n = |R|. Let Σ be a finite alphabet. A constraint
satisfaction problem (CSP) H with topology H and alphabet Σ is defined as follows. The
vertices in L are thought of as the set of constraints, and the vertices in R are thought of as a
set of variables; thus for each vertex i ∈ L we let vars(i) denote the neighbourhood of i. For
each vertex i ∈ L the CSP has an associated boolean function TTi : Σvars(i) → {0, 1} called
the truth table of i that encodes the set of “satisfying” assignments to the constraint associated
with i. An assignment α ∈ Σn, thought of as a Σ-valued assignment to the variables R,
satisfies the CSPH if for each i ∈ L we have TTi(α � vars(i)) = 1, otherwise the assignment
falsifies the CSP.

For each i ∈ [m] and α ∈ Σvars(i) we abuse notation and let TTi(α) represent the boolean
variable corresponding to this entry of the truth table for the constraint i.

Definition 2.11. Let H = (L ∪ R,E) be a bipartite graph such that each vertex i ∈ L has
degree at most k, and let m = |L| and n = |R|. We think of H as encoding the topology
of a constraint satisfaction problem, where each vertex i ∈ L represents a constraint of the
CSP and each i ∈ R represents a variable of the CSP. Let Σ be a finite alphabet, and let
N =

∑m
i=1 |Σ|vars(i) ≤ m|Σ|k. The monotone function CSP-SATH,Σ : {0, 1}N → {0, 1} is

defined as follows. An input x ∈ {0, 1}N encodes a CSP H(x) by specifying for each vertex
i ∈ L its truth table

TTx
i : Σvars(i) → {0, 1} .

Given an assignment x ∈ {0, 1}N the function CSP-SATH,Σ(x) = 1 if and only if the CSP
H(x) is satisfiable. This function is clearly monotone since for any x, y ∈ {0, 1}N with x ≤ y,
any satisfying assignment for the CSPH(x) is also a satisfying assignment for the CSPH(y).

Next we show how to relate k-local total search problems and the CSP-SAT problem. Let
R ⊆ X n1 × Yn2 × [m] be a k-local total search problem. Associated with R is a bipartite
constraint graph HR encoding for each i ∈ [m] the coordinates in X n1 on which R(∗, ∗, i)
depends. Formally, the constraint graph is the bipartite graph HR = (L∪R,E) with L = [m],
|R| = [n1], and for each pair (i, j) ∈ L × R we add the edge if R(∗, ∗, i) depends on the
variable xj . Note that each vertex u ∈ L has degree at most k, since the original search
problem is k-local.

GivenR and its corresponding constraint graph we can give a natural way to construct ac-
cepting and rejecting instances of CSP-SATHR,X from X n1 and Yn2 . To reduce clutter, given
a k-local total search problemR we abuse notation and write CSP-SATR := CSP-SATHR,X .

Accepting Instances U . For any x ∈ X n1 we construct an accepting input U(x) of CSP-SATR
as follows. For each vertex i ∈ L we define the corresponding truth table TTi by setting
TTi(α) = 1 if x � vars(i) = α and TTi(α) = 0 otherwise.

Rejecting Instances V . For any y ∈ Yn2 we construct a rejecting input V(y) of CSP-SATR
as follows. For each vertex i ∈ L and each α ∈ Σvars(i) we set

TTi(α) = 0⇐⇒ R(α, y, i) holds.

7

Given x ∈ X n1 it is easy to see that U(x) is a satisfying assignment for CSP-SATR since
x is a satisfying assignment for the corresponding CSP. The rejecting instances require a bit
more thought. Let y ∈ Yn2 and consider the rejecting instance V(y) as defined above. Suppose
by way of contradiction that the corresponding CSP HR(V(y)) is satisfiable, and let x ∈ X n1

be the satisfying assignment for the CSP. It follows by definition of the rejecting instances that
R(x, y, u) does not hold for any u, implying thatR is not total.

3 Relating Proofs and Circuits
In this section we relate CCd-proofs and monotone circuits, as well as RCC1-proofs and real
monotone circuits.

Theorem 3.1. LetF be an unsatisfiable CNF formula on n variables and letX = {x1, . . . , xn1},
Y = {y1, . . . , yn2} be any partition of the variables. Let d be a positive integer. If there
is a CCd refutation of F with respect to the partition (X, Y) of length `, then there is a
monotone circuit separating the accepting and rejecting instances U({0, 1}n1),V({0, 1}n2)
of CSP-SATSearch(F) of size O(2d`).

Proof. Let F = C1 ∧ . . . ∧ Cm over variables x1, . . . , xn1 , y1, . . . , yn2 . Let P be a CCd-proof
for F with ` lines. Order the lines in P as L1, L2, . . . , L`, where each line is either a clause,
or follows semantically from two earlier lines.

We build the circuit for CSP-SATSearch(F) that separates U ,V by induction on `. For each
line L in the proof, there are 2d possible histories h, each with an associated monochromatic
rectangle RL(h). A rectangle h is good for L if it is 0-monochromatic. For every line L and
each good history h for L, we will build a circuit CLh that correctly “separates” x and y for each
(x, y) ∈ RL(h). By this, we mean that the circuit CLh outputs 1 on U(x) (the 1-input associated
with x) and outputs 0 on V(y) (the 0-input associated with y).

For each leaf in the proof, the associated line L is a clause Ci of F . The communication
protocol for Ci is a two-bit protocol where Alice/Bob each send 0 iff their inputs are α, β such
that Ci(α, β) = 0. Thus there is only one good (0-monochromatic) rectangle with history
h = 00. This pair α, β corresponds to the variable TTi(α), and we define the circuit CLh
corresponding to line L = Ci and good history h = 00 to be the variable TTi(α).

Now suppose that L is derived from L1 and L2, and inductively we have circuits CL1

h′ , CL2

h′′

for each history h′ good for L1 and h′′ good for L2. Given a good history h for L, we will
show how to build the circuit CLh . It will use all of the circuits that were built for L1 and L2

({CL1

h′ , C
L2

h′′ } for all good h′ and h′′) and an additional 2d gates. To build CLh we will construct
a stacked protocol tree for L, corresponding to first running the communication protocol for
L1 and then running the communication protocol for L2. This will give us a height 2d (full)
binary tree, T , where the top part is the communication protocol tree for L1, with protocol
trees for L2 hanging off of each of the leaves. We label each of the leaves of this stacked
tree with a circuit from {CL1

h′ , C
L2

h′′ } as follows. Consider a path labelled h1h2 in T , where h1

is the history from running L1 and h2 is the history from running L2. By soundness, either
the rectangle RL(h) ∩ RL1(h1) is 0-monochromatic, or the rectangle RL(h) ∩ RL2(h2) is 0-
monochromatic. In the first case, we will label this leaf with CL1

h1
and otherwise we will label

8

this leaf with CL2
h2

. Now we will label the internal vertices of the stacked tree with a gate: if a
node corresponds to Alice speaking, then we label the node with an ∨ gate, and otherwise if
the node corresponds to Bob speaking, then we label the node with an ∧ gate. The resulting
circuit has size 2d plus the sizes of the subcircuits, and thus the total circuit size is 2d`. The
theorem is therefore immediately implied by the following claim.

Claim. The circuit resulting from the above construction satisfies: for each line L in P , and
for each good history h for L, CLh will be correct for all (x, y) ∈ RL(h).

Proof of Claim. If L is an axiom, then L is a clause, Ci. The communication protocol for Ci
is a two-bit protocol where Alice and Bob each send 0 iff their part of Ci evalutes to 0. There
is only one good (0-monochromatic) history, h = 00. If (x, y) ∈ RL(h) then Ci(x, y) = 0
by definition. Let α = x � vars(Ci). In our construction the circuit corresponding to CLh is
labelled by the variable TTi(α), and it is easy to check that U(x) sets TTi(α) to true, and
V(y) sets TTi(α) to false.

If L is not an axiom, then we will prove the lemma by proving the following stronger
statement by induction: for each line L (derived from previous lines L1 and L2), and for each
node v in the stacked protocol tree for L, with corresponding (sub)history h′ = h1h2, the
subcircuit CLh′ associated with vertex v is correct on all (x, y) ∈ RL(h) ∩RL1(h1) ∩RL2(h2).

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked
protocol tree for L with history h′ = h1h2. Then by soundness either (i) RL(h) ∩ RL1(h1)
is 0-monochromatic or (ii) RL(h) ∩ RL2(h2) is 0-monochromatic. In case (i) we labelled
v by CL1

h1
. Since RL(h) ∩ RL1(h1) is 0-monochromatic, RL1(h1) is 0-monochromatic and

therefore CL1
h1

is defined and is correct on all (x, y) ∈ RL1(h1), so it is correct on all (x, y) ∈
RL(h) ∩RL1(h1) ∩RL2(h2). A similar argument holds in case (ii).

For the inductive step, let v be a nonleaf node in the protocol tree with history h′ and
assume that Alice owns v. The rectangle RL(h)∩RL1(h1)∩RL2(h2) = A×B is partitioned
into A0 ×B and A1 ×B, where

1. A = A0 ∪ A1,

2. A0 ×B is the rectangle with history h′0,

3. A1 ×B is the rectangle with history h′1.

Given (x, y) ∈ RL(h) ∩ RL1(h1) ∩ RL2(h2), since CLh′0 is correct on all (x, y) ∈ A0 × B
and CLh′1 is correct on all (x, y) ∈ A1 × B, it follows that CLh = CLh′0 ∨ CLh′1 is correct on all
(x, y) ∈ A×B. To see this, observe that if x ∈ A0, then CLh′0(U(x)) = 1 and therefore

CLh (U(x)) = CLh′0(U(x)) ∨ CLh′1(U(x)) = 1.

Similarly, if x ∈ A1, then CLh′1(U(x)) = 1 and therefore

CLh (U(x)) = CLh′0(U(x)) ∨ CLh′1(U(x)) = 1.

Finally if y ∈ B then both CLh′0(V(y)) = CLh′1(V(y)) = 0 and therefore

CLh (V(y)) = CLh′0(V(y)) ∨ CLh′1(V(y)) = 0.

9

A similar argument holds if v is an internal node in the protocol tree that Bob owns (and is
therefore labelled by an AND gate.

The converse direction is much easier.

Theorem 3.2. If there is a monotone circuit separating the inputs of CSP-SATSearch(F) of size
`, then there is a CC2-refutation of F of length ` with respect to this variable partition.

Proof. We show that from a small monotone circuit C for CSP-SATSearch(C) that separates
U({0, 1}n1) and V({0, 1}n2), we can construct a small CC2-proof for F , where Alice gets
x ∈ {0, 1}n1 and Bob gets y ∈ {0, 1}n2 . The lines/vertices of the refutation will be in 1-1
correspondence with the gates of C. The protocol is constructed inductively from the leaves
of C to the root. For a gate g of C, let Ug be those inputs u ∈ U({0, 1}n1) such that g(u) = 1,
and let Vg be those inputs v ∈ V({0, 1}n2) such that g(v) = 0. At each gate g we will prove
that for every pair (u, v) ∈ Ug × Vg and for every (x, y) such that u = U(x), v = V(y), the
protocol Rg on input (x, y) will output 0. Since the output gate of C is correct for all pairs,
this will achieve our desired protocol.

At a leaf ` labeled by some variable TTj(α), the pairs associated with this leaf must have
TTj(α) = 1 in u and 0 in v, and thus we can defineR`(x, y) to be 0 if and only if x is consistent
with α and the clause Cj evaluates to false on (x, y). This is a 2-bit protocol, and by definition
of the accepting and rejecting instances we have for all (x, y) satisfying u = U(x), v = V(y)
that x � vars(j) = α andR(α, y, j) holds.

Now suppose that g is an OR gate of C, with inputs g1, g2. The protocol Rg on (x, y) is
as follows. Alice privately simulates Cg1(U(x)) and Cg2(U(x)), and Bob simulates Cg1(V(y))
and Cg2(V(y)). If (i) either Cg1(U(x)) = 1 or Cg2(U(x)) = 1 and (ii) both Cg1(V(y)) = 0 and
Cg2(V(y)) = 0, then they output 0, and otherwise they output 1. This is a 2-bit protocol, with
Alice sending one bit to report whether or not condition (i) is satisfied, and Bob sending one
bit to report if (ii) is satisfied.

Now, we want to show that for all (x, y) such that Cg(U(x)) = 1 and Cg(V(y)) = 0 we
have that Rg(x, y) = 0. This is easy — since g = g1 ∨ g2 we have that Cg(U(x)) = 1 and
Cg(V(y) = 0 implies that either Cg1(U(x)) = 1 or Cg2(U(x)) = 1 and Cg1(V(y)) = 0 and
Cg2(V(y)) = 0, implying that the protocol will output 0 on (x, y) by definition.

Similarly, if g is an AND gate, then again Alice privately simulates Cg1(U(x)) and Cg2(U(x))
and Bob privately simulates Cg2(V(y)) and Cg2(V(y)). If (i) Cg1(U(x)) = 1 and Cg2(U(x)) = 1
and (ii) either Cg2(V(y)) = 0 or Cg2(V(y)) = 0, then they ouput 0, and otherwise they output
1. By an analogous argument to the OR case, it’s easy to see that the protocol will output 0
whenever Cg(U(x)) = 1 and Cg(V(y)) = 0.

The next theorem relates RCC1 proofs and real monotone circuits. It follows from a recent
simulation given by [17]. (The proof is in the Appendix.)

Theorem 3.3. LetF be an unsatisfiable CNF formula on n variables and letX = {x1, . . . , xn1},
Y = {y1, . . . , yn2} be any partition of the variables. If there is a RCC1 refutation of F with
respect to the partition (X, Y) of length `, then there is a monotone real circuit separating
the accepting and rejecting instances U({0, 1}n1),V({0, 1}n2) of CSP-SATSearch(F) of size `.

10

Conversely, a real monotone circuit separating the inputs of CSP-SATSearch(F) implies a RCC1

refutation of F of the same size.

In particular, the above theorem implies that for any family of formulas F and for any
partition of the underlying variables into X, Y , a Cutting Planes refutation of F of size S
implies a similar size monotone real circuit for separating the accepting and rejecting instances
U({0, 1}n1),V({0, 1}n2) of CSP-SATSearch(F).

4 Lower Bounds for Random CNFs
In this section we use Theorem 3.1 to prove lower bounds for RCC1-refutations (and therefore
Cutting Planes refutations) of uniformly random k-CNFs with sufficient clause density.

Definition 4.1. Let F(m,n, k) denote the distribution of random k-CNFs on n variables ob-
tained by sampling m clauses (out of the

(
n
k

)
2k possible clauses) uniformly at random.

The proof is delayed to Section 4.2; to get a feeling for the argument, we first prove an
easier lower bound for a simpler distribution of balanced random CNFs.

4.1 Balanced Random CNFs
Definition 4.2. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of variables,
and let F(m,n, k)⊗2 denote the following distribution over 2k-CNFs: first sample F1 =
C1

1 ∧C1
2 ∧ · · · ∧C1

m from F(m,n, k) on the X variables, and then F2 = C2
1 ∧C2

2 ∧ · · · ∧C2
m

from F(m,n, k) on the Y variables independently. Then output

F = (C1
1 ∨ C2

1) ∧ (C1
2 ∨ C2

2) ∧ · · · ∧ (C1
m ∨ C2

m).

This distribution shares the well-known property with F(m,n, k) that dense enough for-
mulas are unsatisfiable with high probability.

Lemma 4.3. Let c > 2/ log e and let n be any positive integer. If k ∈ [n] and m ≥ cn22k then
F ∼ F(m,n, k)⊗2 is unsatisfiable with high probability.

Proof. Fix any assignment (x, y) to the variables of F . The probability that the ith clause
is satisfied by the joint assignment is 1 − 1/22k, and so the probability that all clauses are
satisfied by the joint assignment is (1 − 1/22k)m ≤ e−m/2

2k , since the clauses are sampled
independently. By the union bound, the probability that some joint assignment satisfies the
formula is at most 22ne−m/2

2k
= 22n−(log e)m/22k ≤ 22n−(log e)cn ≤ 2−Ω(n). Thus, the probability

that the formula is unsatisfiable is at least 1− 2−Ω(n).

The main theorem of this section is that F ∼ F(m,n, k)⊗2 require large CC- and RCC-
proofs, which is obtained by using Theorem 3.1 and applying the well-known method of
symmetric approximations [8, 15] to obtain lower bounds on monotone circuits computing
CSP-SATSearch(F). We use the following formalization of the method which is exposited in

11

Jukna’s excellent book [18]. First we introduce some notation: if U ⊆ {0, 1}N , then for
r ∈ [N] and b ∈ {0, 1} let

Ab(r, U) = max
I⊆[n]:|I|=r

| {u ∈ U | ∀i ∈ I : ui = b} |.

Theorem 4.4 (Theorem 9.19 in Jukna). Let f : {0, 1}N → {0, 1} be a monotone boolean
function and let 1 ≤ r, s ≤ N be any positive integers. Let U ⊆ f−1(1) and V ⊆ f−1(0) be
arbitrary subsets of accepting and rejecting inputs of f . Then every real monotone circuit that
outputs 1 on all inputs in U and 0 on all inputs in V has size at least

min

{
|U | − (2s)A1(1, U)

(2s)r+1A1(r, U)
,

|V |
(2r)s+1A0(s, V)

}
.

Next we state the main theorem of this section.

Theorem 4.5. Let k = 4 log n and m = cn22k where c > 2/ log e is some constant. Let
F ∼ F(m,n, k)⊗2 with variable partition (X, Y), and let U = U({0, 1}X), V = V({0, 1}Y).

Then with high probability any real monotone circuit separating U and V has at least 2Ω̃(n)

gates.

Corollary 4.6. Let n be a sufficiently large positive integer, and let k = 4 log n,m = n6. If
F ∼ F(m,n, k)⊗2 then with high probability every RCC1-refutation (and therefore, Cutting
Planes refutation) of F has at least 2Ω̃(n) lines.

Proof. Immediate consequence of Theorems 3.1 and 4.5.

The proof of Theorem 4.5 comes down to the essential property that random k-CNFs
are good expanders. The next lemma records the expansion properties we require of random
CNFs; the proof is adapted from the notes of Salil Vadhan [24]. The lemma is stated in general
terms for re-use in the next section.

Lemma 4.7. Let n be any sufficiently large positive integer. Let k,m be positive integers and
sample F ∼ F(m,n, k). Let s ≤ n/ek2 be a positive integer. For any subset S ⊆ F of
clauses let vars(S) denote the subset of variables appearing in clauses S. If

logm ≤ δ · k
2

log

(
k

2

)
for some 0 < δ < 1, then every set S ⊆ F of size s satisfies |vars(S)| ≥ ks/2 with probability
at least 1− 2−(1−δ)(ks/2) log(k/2).

Proof. Fix any set S ⊆ F of size s, and for each clause C ∈ S sample the variables in C one
at a time without replacement. Let v1, v2, . . . , vks denote the concatenation of all sequences of
sampled variables over all C ∈ S. We say that variable vi is a repeat if it has already occurred
among v1, . . . , vi−1. In order for |vars(S)| < ks/2 the concatenated sequence must have at

12

least ks/2 repeats, and the probability that variable vi is a repeat is at most (i− 1)/n ≤ ks/n.
This implies that

Pr[|vars(S)| < ks/2] ≤
(
ks

ks/2

)(
ks

n

)ks/2
≤
(

2eks

ks

)ks/2(
ks

n

)ks/2
≤
(

2

k

)ks/2
using standard bounds on binomial coefficients and the fact that s ≤ n/ek2. Thus

Pr[∃S : |S| = s, |vars(S)| < ks/2] ≤ ms

(
2

k

)ks/2
,

and by assumption logm ≤ δ · k
2

log
(
k
2

)
for sufficiently large n, finishing the proof of the

lemma.

Using the expansion lemma we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. We shall apply Theorem 4.4 to U = U({0, 1}n) and V = V({0, 1}n)
(cf. Section 2.1) with r = s = n/ek2, k = 4 log n, and m = n22k. Recall that U and V
are the functions mapping x inputs to 1-inputs of CSP-SATSearch(F) and mapping Y inputs
to 0-inputs of CSP-SATSearch(F), respectively. To finish the argument we need to compute
|U |, A1(1, U), A1(r, U), |V |, A0(s, V).

It is easy to see that every variable participates in some clause in F with high probability.
This implies that U is one-to-one and thus |U | = 2n with high probability.

Recall that the 0-inputs of CSP-SATSearch(F) correspond to substituting Y -assignment into
F and writing out truth tables of all the clauses. The truth tables corresponding to the clauses
that were satisfied by the Y -assignment are identically 1, and the truth tables corresponding
to the clauses that were not satisfied by the given Y -assignment contain exactly one 0-entry.
Given a Y -assignment we call the set of clauses that were not satisfied by the Y assignment
the profile of Y . The next lemma implies that the profiles of all Y -assignments are distinct
with high probability.

Lemma 4.8. Let n,m, k be positive integers. Let F ∼ F(m,n, k), let S ⊆ {0, 1}n be a
collection of boolean assignments, and define the following 2|S| ×m matrix M , with the rows
labelled by assignments α ∈ S and the columns labelled by clauses of F . Namely, for any
pair (α, i) set

M [α, i] =

{
1 if the ith clause is not satisfied by α,
0 otherwise.

If log |S| < km/8n2k then the rows of M are distinct with probability at least 1− 2km/n2k .

Proof. We think of M as generated column by column with the columns sampled indepen-
dently. Fix two assignments α and α̂ such that α 6= α̂. Let S be the set of indices on which the

13

two assignments differ, i.e., S = {i | αi 6= α̂i}. Set s = |S|. Let Ci denote the ith clause,then

Pr[Ci unsat by α̂ and satisfied by α] =
1

2k

(
1−

(
n−s
k

)(
n
k

))

≥ 1

2k

(
n
k

)
−
(
n−1
k

)(
n
k

) =
1

2k

(
n−1
k−1

)(
n
k

) =
k

2kn
.

Thus the probability that rows α and α̂ agree on column i is at most 1 − k
2kn

. Since columns
are sampled independently, the probability that α and α̂ agree on all columns is at most(

1− k

n2k

)m
≤ e−km/(n2k) ≤ 2−5km/4n2k

since log e > 5/4. By a union bound over ordered pairs of assignments in S, the probability
that there exists a pair of rows that agree on all columns is at most

|S|22−5km/4n2k ≤ 22 log |S|−5km/4n2k ≤ 2−km/n2k .

In our current setting we have S = {0, 1}n and km/n2k ≥ n log n, thus applying the
previous lemma yields that all rows of M are distinct with high probability. Since each profile
is distinct with high probability, this implies that V is 1-1 with high probability, and therefore
|V | = 2n. It remains to bound the terms A1(1, U), A1(r, U), and A0(s, V).

Bounding A1(1, U). Fixing a single bit of a 1-input in U to CSP-SATSearch(F) to 1 is the same
as selecting a vertex C in the bipartite constraint graph of Search(F) and an assignment α to
the variables which participate in C, and then setting TTC(α) = 1. By the definition of U ,
for any input x ∈ {0, 1}n, fixing this bit to 1 determines exactly k out of the n variables of x.
Thus the number of x ∈ {0, 1}n that are consistent with this partial assignment is 2n−k, and
since U is one-to-one, we have A1(1, U) = 2n−k.

BoundingA1(r, U). Similar to the previous bound, but now we fix r of the truth table bits to 1.
By definition of U , these bits must be chosen from r distinct truth tables in the 1-input in order
to be consistent with any x ∈ {0, 1}n. With respect to the underlying CNFF , this corresponds
to fixing an assignment to the set of variables appearing in an arbitrary set S of r clauses in
F . By Lemma 4.7, with high probability we have |vars(S)| ≥ rk/2. Thus fixing these r bits
in the definition of A1(r, U) corresponds to setting at least rk/2 of the input variables that
participate in the constraints with determined truth tables. The number of x inputs that are
consistent with these indices fixed is therefore ≤ 2n−rk/2, and so A1(r, U) ≤ 2n−rk/2.

Bounding A0(s, V). This case is similar to A1(r, U). We get A0(s, V) ≤ 2n−sk/2.
Observe that (2s)A1(1, U) = (2s)2n−k = (2s)2n/n2 ≤ 2n−1. Putting this altogether we

get the following lower bound on monotone circuit size is at least

2n−1

(2s)s+12n−sk/2
= 2sk/2−(s+1) log 2s−1 ≥ 2s(k/2−2 log s) ≥ 2Ω̃(n),

14

where the last inequality follows from s = n/ek2 and k/4 ≥ log n.

4.2 Random CNFs
In this section we show how to modify the argument from the previous section to apply to the
“usual” distribution of random CNFs F(m,n, k). Using the probabilistic method we find a
partition of the variables of a random formula F ∼ F(m,n, k) such that many of the clauses
in F are balanced with respect to the partition. Ideally, every clause would be balanced, but it
turns out that this is too strong — instead, we show that we can balance many of the clauses,
and the remaining imbalanced clauses are always satisfied by a large collection of assignments.
First we introduce our notion of “imbalanced” clauses.

Definition 4.9. Fix ε > 0. Given a partition of n variables into x-variables and y-variables,
clause C is called X-heavy if it contains more than (1 − ε)k x-variables. Clause C is called
Y -heavy if it contains more than (1 − ε)k y-variables. Clause C is called balanced if it is
neither X-heavy nor Y -heavy.

We recall some basic facts from probability theory which will be used in our main lemma.

Lemma 4.10 (Lovász Local Lemma). Let E = {E1, . . . , En} be a finite set of events in the
probability space Ω. For E ∈ E let Γ(E) denote the set of events Ei on which E depends. If
there is q ∈ [0, 1) such that ∀E ∈ E we have Pr(E) ≤ q(1 − q)|Γ(E)|, then the probability of
avoiding all sets Ei is at least Pr(E1 ∧ E2 ∧ · · · ∧ En) ≥ (1− q)n.

Fact 4.11 (Entropy bound on binomial tail). For any 0 < ε < 1/2 we have

2H(ε)n√
8nε(1− ε)

≤
bεnc∑
j=0

(
n

j

)
≤ 2H(ε)n,

where H(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy function.

Fact 4.12 (Multiplicative Chernoff Bound). Suppose Z1, . . . , Zn are independent random
variables taking values in {0, 1}. Let Z denote their sum and let µ = E(Z) denote the sum’s
expected value. Then for any 0 < δ ≤ 1 we have

Pr(Z ≥ (1 + δ)µ) ≤ e−δ
2µ/3 and Pr(Z ≤ (1− δ)µ) ≤ e−δ

2µ/3

We now prove the main lemma of this section, which shows that for F ∼ F(m,n, k) a
good partition of the variables exists with high probability.

Lemma 4.13. Let ε = 1/20, and let n be a positive integer. Let k = 160 log n, let m = n22k,
and let m′ = m2−k/2. Let F be any k-CNF with m clauses on n variables. There exists a
partition of the variables of F into two sets (X, Y) such that the following holds:

1. The number of variables in X is n/2± o(n).

2. The number ofX-heavy clauses and Y -heavy clauses are each upper bounded by 3m′/2.

15

3. If F ∼ F(m,n, k), then with high probability there exists a set A of 2|X|−(log(e)n/60k)

truth assignments to the X variables that satisfy all X-heavy clauses, and a set B
of 2|Y |−(log(e)n/60k) truth assignments to the Y -variables satisfying all of the Y -heavy
clauses.

Proof. We prove the existence of such a partition by the probabilistic method. For each vari-
able, flip a fair coin and place it in X if the coin is heads and in Y otherwise.

(1) By the Chernoff bound, we have E[|X|] = n/2 and since each variable is placed in X
independently with probability 1/2 we have

Pr[|X − n/2| > n2/3] ≤ 2 exp(−n1/3/6).

(2) For each clause Ci in C let Zi be the random variable indicating whether this clause is
X-heavy. Using both inequalities in Fact 4.11 we have that

Pr(Zi = 1) =
εk∑
j=0

(
k

j

)
2−k ≤ 2−k2H(ε)k ≤ 2(H(ε)−1)k < 2−k/2

and

Pr(Zi = 1) =
εk∑
j=0

(
k

j

)
2−k ≥ 2−k

2H(ε)k√
8kε(1− ε)

≥ 2−3k/4

√
k

since 1/4 < H(1/20) < 1/3 and
√

8ε(1− ε) < 1 for our choice of ε. Let Z =
∑m

i=1 Zi; then
these two bounds and linearity of expectation imply m2−3k/4/

√
k ≤ E[Z] ≤ m2−k/2 = m′.

Thus by the Chernoff bound (see Fact 4.12) we have

Pr(Z > 3m′/2) ≤ Pr(Z > 3 E[Z]/2) ≤ exp(−E[Z]/12) ≤ exp(−m2−3k/4/12
√
k).

Since m = n22k and k = 160 log n this occurs with high probability. An identical calcula-
tion applies to the Y -heavy clauses. It follows by a union bound that there exists a partition
satisfying both of the above properties.

(3) Fix the partition (X, Y) satisfying the properties (1) and (2), and we show that the third
property is also satisfied. Sample F ∼ F(m,n, k). We first bound the number of times a
variable appears in a heavy clause with the goal of applying the Lovász Local Lemma.

Arbitrarily fix z to be any of the n variables occurring as possible inputs to F . By Lemma
4.13, the number of X-heavy and Y -heavy clauses are both bounded by 3m′/2. Let Zi be the
indicator random variable which is 1 iff the variable z occurs in the ith heavy clause and let
Z =

∑
i Zi. Since F ∼ F(m,n, k) we have Pr(Zi = 1) = k/n and so E[Z] = 3km′/2n.

Applying the Chernoff bound we get

Pr(Z > 3km′/n) = Pr(Z > 2 E[Z]) < exp(−3km′/12n).

16

Taking a union bound over the n variables, we conclude that each variable occurs in at most
3km′/n X-heavy and Y -heavy clauses with high probability.

Now, consider selecting a random assignment to the X variables. Let Ei be the event
that the ith X-heavy clause is falsified by the random assignment, and observe that Pr(Ei) ≤
2−(1−ε)k since the clause is X-heavy. The number of events Ei is at most 3m′/2, and for any
event Ei the number of events that share any X variable with Ei is at most 3m′k2/n. Set
q = n/90m′k. Then for each Ei we have

q(1− q)|Γ(Ei)| ≥ qe−6qm′k2/n ≥ n

90km′
e−k/15 ≥ 2−(1−ε)k,

which holds for ε = 1/20 and k = 160 log n. Applying Lovász Local Lemma (see Lemma 4.10)
we get that the probability that an assignment satisfies all X-heavy clauses is at least

(1− q)3m′/2 ≥ (1− n/(90km′))3m′/2 ≥ e−n/(60k).

Thus the number of assignments to the X-variables satisfying all heavy clauses is at least
2|X|/en/60k, and an identical calculation applies to the Y variables.

With this lemma in place, we can proceed in more or less the same way that we proceeded
in the last section. Now we perform the whole argument with respect to U = U(A) and
V = V(B) chosen from the previous lemma. This allows us to restrict our attention only to
the balanced clauses, and the calculations from the previous section work mutatis mutandis
since many clauses are balanced.

Theorem 4.14. There exists a constant c > 0 such that the following holds. Let n ≥ c be
any positive integer. Let F ∼ F(m,n, k) for m = n22k and k = 160 log n. There exists a
partition (X, Y) of the variables of F and a δ > 0 such that the search problem Search(F)
defined with respect to this partition satisfies the following with high probability: any real
monotone circuit computing CSP-SATSearch(F) requires at least 2Ω̃(n) gates.

Proof. Apply Lemma 4.13 to get a partition of the variables (X, Y), and let A, B denote the
set of assignments to theX and Y variables, respectively. If z is an input to CSP-SATSearch(F),
let z′ be z restricted to truth tables corresponding to balanced clauses of F with respect to the
partition (X, Y); it follows from the lemma that there are m − 3m′ ≥ m/2 balanced clauses
for n sufficiently large. Let U = {z′ | z ∈ U(A)} and V = {z′ | z ∈ V(B)}. Letting F ′ ⊆ F
be the formula containing only balanced clauses of F , then we can think of z′ as input to
CSP-SATSearch(F ′). As in the previous section, we shall apply Theorem 4.4 to U and V .

Given a real monotone circuit separating U(A) and V(B), we apply to it restriction ρ
setting inputs (i.e. truth tables) corresponding to unbalanced clauses as follows:

• Truth table entries corresponding to an X-heavy clause are all set to 1 except for the
entry corresponding to the assignment falsifying the clause.

• Truth table entries corresponding to a Y -heavy clause are all set to 1.

17

We first claim that the circuit obtained from applying this restriction separates U and V .
Given z ∈ U(A) there is a corresponding z′ ∈ U . Let z′ ◦ ρ denote the extension of z′ by

ρ to an input to CSP-SATSearch(F). Thus, the derived circuit evaluated on z′ is the same as the
original circuit evaluated on z′ ◦ ρ. Since assignments in A satisfy all X-heavy clauses, it is
easy to see that z′ ◦ ρ ≥ z, i.e., z′ ◦ ρ is z with some entries set to 1. The original circuit output
1 on z, thus, by monotonicity, it also outputs 1 on z′ ◦ ρ. This, in turn, means that the derived
circuit outputs 1 on z′.

Now let z ∈ V(B) and consider z′ ◦ ρ. Since assignments in B satisfy all Y -heavy clauses
it is easy to see that z′ ◦ ρ ≤ z, i.e., z′ ◦ ρ is z with some entries set to 0 (all truth tables corre-
sponding to Y -heavy clauses are identically 1 both in z and z′ ◦ ρ; truth tables corresponding
to X-heavy clauses are either the same in z as in ρ or are identically 1 in z and containing
a single 0-entry in ρ). The original circuit outputs 0 on z therefore, by monotonicity, it also
outputs 0 on z′ ◦ ρ. This means that the derived circuit outputs 0 on z′.

The rest of the proof proceeds identically to the proof of Theorem 4.5 using U and V and
counting with respect to the balanced clauses. It is easy to see that with high probability the
m/2 balanced clauses contain all variables occurring in the formula, and this implies by the
lemma that U is 1-1 when restricted to A. Similarly, letting S = V = V(B), we can apply
Lemma 4.8 with respect to the m/2 balanced clauses. Since

km/8n2k = (n/4) log n ≥ n/2± o(n) = log |S|

for sufficiently large n this lemma implies that V is 1-1 on this set of inputs, and so V is also
1-1 when restricted to B.

Finally we consider the expansion by applying Lemma 4.7 with respect to the balanced
clauses. By Lemma 4.13, each balanced clause contains at least k0 = k/20 variables from
both X and Y . There are at least m/2 balanced clauses, and so

log(m/2) = log n22k−1 = k+2 log n−1 = 162 log n−1 ≤ log(n) log

(
log n

2

)
≤ γ·k0

2
log

k0

2

for sufficiently large n and some universal constant γ > 0. We set s = n/2ek2
0; by Lemma

4.7 this implies that each collection S of s balanced clauses satisfies |varsX(S)|, |varsY (S)| ≥
k0s/2 with high probability. Note that we can apply the argument from Lemma 4.7 because
conditioned on containing some fixed number k′ ≥ k/20 of X-variables, the X-part of a
clause is distributed exactly according to F(1, |X|, k′).

Our choice of s implies that 2 log 2s ≤ 2 log n ≤ k0/4 since k0 = k/20 = 8 log n. Now
we just follow the calculation at the end of Theorem 4.5 using our new estimates. This yields
the following lower bound on the real monotone circuit size of CSP-SATSearch(F ′):

|U |(1− 2sA1(1, U)))

(2s)s+1A1(s, U)
≥ 2|X|−log(e)n/60k−1

(2s)s+12|X|−sk0/2

≥ 2s(k0/2−2 log 2s)−log(e)n/60k−1

≥ 2sk0/4−log(e)n/1200k0−1 ≥ 2Ω̃(n).

Corollary 4.15. Let F be distributed as above. There exists ε > 0 such that with high proba-
bility any RCC1-refutation requires 2Ω̃(n) lines.

18

5 Conclusion
The obvious problem left open by this paper is to prove lower bounds on other conjectured
hard problems for Cutting Planes. Hrubes̆ and Pudlak [17] applied similar techniques to prove
lower bounds on the size of Cutting Planes refutations of the bit-encoded weak pigeonhole
principle. It is conjectured [18] that the Tseitin tautologies are hard for Cutting Planes. How-
ever, CC2 admits linear-size refutations of the Tseitin graph principles on any underlying graph
— simply consider the lines as mod 2 linear equations and add the constraints, using the fact
that each variable occurs in exactly two clauses. Therefore our techniques cannot be directly
applied to obtain lower bounds for the Tseitin graph principles.

References
[1] Michael Alekhnovich. Lower bounds for k-DNF resolution on random 3-CNFs. In Proc.

of the 37th STOC, pages 251–256, 2005.

[2] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987.

[3] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. J. Comput. Syst. Sci., 74(3):323–334, 2008.

[4] Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite relax-
ations for average-case and generalized constraint satisfaction. In Proc. of ITCS, pages
197–214, 2013.

[5] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. On the complexity
of unsatisfiability proofs for random k-CNF formulas. In Proc. of the 13th STOC, pages
561–571, 1998.

[6] Eli Ben-Sasson and Russell Impagliazzo. Random CNFs are hard for the polynomial
calculus. Computational Complexity, 19(4):501–519, 2010.

[7] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple.
J. ACM, 48(2):149–169, 2001.

[8] Christer Berg and Staffan Ulfberg. Symmetric approximation arguments for monotone
lower bounds without sunflowers. Computational Complexity, 8(1):1–20, 1999.

[9] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes
proofs with small coefficients. J. Symb. Log., 62(3):708–728, 1997.

[10] Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM,
35(4):759–768, 1988.

19

[11] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proc. of the 47th STOC, pages 59–68, 2015.

[12] Uriel Feige. Relations between average case complexity and approximation complexity.
In Proc. of the 34th STOC, pages 534–543, 2002.

[13] Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic cutting
planes. In Proc. of the 33rd STACS, pages 35:1–35:13, 2016.

[14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensi-
tivity. In Proc. of the 46th STOC, pages 847–856, 2014.

[15] Armin Haken and Stephen A. Cook. An exponential lower bound for the size of mono-
tone real circuits. J. Comput. Syst. Sci., 58(2):326–335, 1999.

[16] Pavel Hrubes̆ and Pavel Pudák. Random formulas, monotone circuits, and interpolation.
ECCC TR17-042, 2017.

[17] Pavel Hrubes̆ and Pavel Pudlák. A note on monotone real circuits. ECCC TR17-048,
2017.

[18] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012.

[19] Jan Krajı́cek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

[20] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone com-
putations. J. Symb. Log., 62(3):981–998, 1997.

[21] Alexander Razborov. Lower bounds for the monotone complexity of some boolean func-
tions. Sov. Math. Dokl., 31:354–357, 1985.

[22] Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments
of bounded arithmetic. Izvestiya Mathematics, 59(1):205–227, 1995.

[23] Dmitry Sokolov. Dag-like communication and its applications. ECCC TR16-202, 2017.

[24] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

6 Appendix
In this appendix, we show how to prove Theorem 3.3. We could prove this theorem using
the equivalence between a real analogue of Karchmer-Wigderson (KW) games and monotone
real circuits, proven recently in [17]. This would entail proving equivalence between RCC1

refutations and a real analogue of KW games, which is a relatively simple exercise. Instead, for

20

the purpose of readability and self-containment, we give a direct argument, which is essentially
the reduction given by [17]. Theorem 3.3 follows from the following two lemmas.

Lemma 6.1. LetF be an unsatisfiable CNF formula on n variables and letX = {x1, . . . , xn1},
Y = {y1, . . . , yn2} be any partition of the variables. If there is a RCC1 refutation of F with
respect to the partition (X, Y) of length `, then there is a monotone real circuit separating the
accepting and rejecting instances U({0, 1}n1),V({0, 1}n2) of CSP-SATSearch(F) with ` gates.

Proof. Fix an RCC1-refutation of F . With each node v of the underlying directed acyclic
graph (dag) associate two functions Av : {0, 1}n1 → R and Bv : {0, 1}n2 → R that Alice
and Bob use to communicate with the referee. We assume without loss of generality that the
referee outputs 0 if and only ifAv(x) > Bv(y), and furthermore, thatBv ≥ 0. Recall that each
leaf in this dag is associated with a clause Ci and let αi be the assignment to the X-variables
that does not satisfy the X-part of Ci. Note: we may assume that if v is a leaf then

Av(x) = TT
U(x)
i (αi) and Bv(y) = TT

V(y)
i (αi). (1)

Next, we convert the given dag to the real circuit separating U({0, 1}n1) from V({0, 1}n2)
as follows. The topology of the derived circuit is exactly the same as that of the dag. Thus, to
finish specifying the circuit we need to label inputs to the circuit and label the internal nodes
by real monotone gates. Each leaf labeled by clause Ci in the dag turns into an input variable
to the circuit labeled by TTi(αi). With each internal node v of the dag with children u1 and
u2 we associate the function fv defined recursively as follows:

fv(z) = max
x∈{0,1}n1

{Av(x) | fu1(z) ≥ Au1(x) ∧ fu2(z) ≥ Au2(x)}.

We define fv(z) to be 0 if the set on the right-hand side is empty. We claim that these functions
can be computed by real monotone gates and for every x ∈ {0, 1}n1 and every y ∈ {0, 1}n2

we have
fv(U(x)) ≥ Av(x) and fv(V(y)) ≤ Bv(y). (2)

First, let’s see how the above properties of fv imply that the constructed circuit separates
U({0, 1}n1) from V({0, 1}n2). Let r be the root node of the dag. Since we started with a valid
RCC1 refutation ofF we haveAr(x) > Br(y) for all x and y. Therefore, fr(U(x)) > fr(V(y))
for all x and y. Modifying fr by composing it with an appropriately chosen threshold function
gives us the separating circuit.

It is easy to see that fv can be computed by a real monotone gate with inputs fu1 and fu2 .
First of all, the value of fv is determined by values of fu1 and fu2 , and secondly, increasing
values of fu1 and/or fu2 increases the feasible region of xs over which the maximum is taken
in the definition of fv.

Thus, it is left to show that fv(z) satisfies (2). We shall prove this by induction. The
base case is given by (1). Inductive assumption (IA): suppose that we proved (2) for chil-
dren u1, u2 of v. Consider an arbitrary x ∈ {0, 1}n1 . By IA, we have fu1(U(x)) ≥ Au1(x)
and fu2(U(x)) ≥ Au2(x). Thus, the region over which the max is taken in the definition of
fv(U(x)) is nonempty and contains x. It follows that fv(U(x)) ≥ Av(x). Now, consider an

21

arbitrary y ∈ {0, 1}n2 . Assume for contradiction that fv(V(y)) > Bv(y). Since Bv(y) ≥ 0,
we have fv(V(y)) = Av(x) for some x ∈ {0, 1}n1 . Thus we have Av(x) > Bv(y), and by
soundness of the refutation it follows that either Au1(x) > Bu1(y) or Au2(x) > Bu2(y). As-
sume without loss of generality that Au1(x) > Bu1(y). By definition of fv(V(y)) we have
fu1(V(y)) ≥ Au1(x) > Bu1(y). This contradicts the IA.

The above lemma proves the first part of Theorem 3.3. The following lemma proves the
second part of the theorem.

Lemma 6.2. With the setting as in the previous lemma, a real monotone circuit separating the
inputs of CSP-SATSearch(F) implies a RCC1 refutation of F of the same size.

Proof. The RCC1 refutation that we shall construct will have the exact same topology as the
given real monotone circuit. Turn each input variable TTi(α) of the circuit into the corre-
sponding clause Ci in the refutation. Turn each gate v in the circuit into the line in the refuta-
tion computed by the following RCC1 protocol. On input x, Alice privately runs the circuit on
U(x) and sends the value Av computed by the circuit at gate v to the referee. On input y, Bob
acts analogously — he simulates the circuit privately on input V(y) and sends the value Bv

computed by the circuit at gate v to the referee. The referee outputs 0 if and only if Av > Bv.
Since at the top gate the circuit is identically 1 on U(x) and 0 on V(y), the referee always
outputs 0 at the last line in the refutation. Thus, the only thing left to see is that the refutation
is sound. Let u1 and u2 be the children of v, then Av = f(Au1 , Au2) and Bv = f(Bu1 , Bu2)
for some monotone function f . Thus, if Av > Bv then either Au1 > Bu1 or Au2 > Bu2 .

22 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

