Random CNFs are Hard for Cutting Planes

Noah Fleming*
University of Toronto
novahfleming@cs.toronto.edu

Denis Pankratov*
University of Toronto
denisp@cs.toronto.edu

Toniann Pitassi*
University of Toronto
toni@cs.toronto.edu

Robert Robere*
University of Toronto
robere@cs.toronto.edu

March 20, 2017

Abstract

The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. In this paper, we prove that any Cutting Planes refutation for random k-SAT requires exponential size, for k that is logarithmic in the number of variables, and in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.

1 Introduction

The Satisfiability (SAT) problem is perhaps the most famous problem in theoretical computer science, and significant effort has been devoted to understanding randomly generated SAT instances. The most well-studied random SAT distribution is the random k-SAT model, $F(m, n, k)$, where a random k-CNF over n variables is chosen by uniformly and independently selecting m clauses from the set of all possible clauses on k distinct variables. The random k-SAT model is widely studied for several reasons. First, it is an intrinsically natural model analogous to the random graph model, and closely related to phase transitions and structural phenomena occurring in statistical physics. Second, the random k-SAT model gives us a testbench of empirically hard examples which are useful for comparing and analyzing SAT algorithms; in fact, some of the better practical ideas in use today originated from insights gained by studying the performance of algorithms on this distribution and the properties of typical random instances.

*Research supported by NSERC.
Third, and most relevant to the current work, the difficulty of solving random k-SAT instances above the threshold (in the regime where the formula is almost certainly unsatisfiable) has been connected to worst-case inapproximability by Feige [12]. Feige’s hypothesis states that there is no efficient algorithm to certify unsatisfiability of random 3-SAT instances for certain parameter regimes of (m, n, k), and he shows that this hard-on-average assumption for 3-SAT implies worst-case inapproximability results for many NP-hard optimization problems. The hypothesis was generalized to k-SAT as well as to any CSP, thus exposing more links to central questions in approximation algorithms and the power of natural SDP algorithms [4]. The importance of understanding the difficulty of solving random k-SAT instances in turn makes random k-SAT an important family of formulas for propositional proof complexity, since superpolynomial lower bounds for random k-SAT instances in a particular proof system show that any complete and efficient algorithm based on the proof system will perform badly on random k-SAT instances. Furthermore, since the proof complexity lower bounds hold in the unsatisfiable regime, they are directly connected to Feige’s hypothesis.

Remarkably, determining whether or not a random SAT instance from the distribution $F(m, n, k)$ is satisfiable is controlled quite precisely by the ratio $\Delta = m/n$, which is called the clause density. A simple counting argument shows that $F(m, n, k)$ is unsatisfiable with high probability for $\Delta > 2^k \ln 2$. The famous satisfiability threshold conjecture asserts that there is a constant c_k such that random k-SAT formulas of clause density Δ are almost certainly satisfiable for $\Delta < c_k$ and almost certainly unsatisfiable if $\Delta > c_k$, where c_k is roughly $2^k \ln 2$. In a major recent breakthrough, the conjecture was resolved for large values of k [11].

From the perspective of proof complexity, the density parameter Δ also plays an important role in the difficulty of refuting unsatisfiable CNF formulas. For instance, in Resolution, which is arguably the simplest proof system, the complexity of refuting random k-SAT formulas is now very well understood in terms of Δ. In a seminal paper, Chvatal and Szemeredi [10] showed that for any fixed Δ above the threshold there is a constant κ_Δ such that random k-SAT requires size $\exp(\kappa_\Delta n)$ Resolution refutations with high probability. In their proof, the drop-off in κ_Δ is doubly exponential in Δ, making the lower bound trivial when the number of clauses is larger than $n \log^{1/4} n$ (and thus does not hold when k is large.) Improved lower bounds [5, 7] proved that the drop-off in κ_Δ is at most polynomial in Δ. More precisely, they prove that a random k-SAT formula with at most $n^{(k+2)/4}$ clauses requires exponential size Resolution refutations. Thus for all values of k, even when the number of clauses is way above the threshold, Resolution refutations are exponentially long. They also give asymptotically matching upper bounds, showing that there are DLL refutations of size $\exp(n/\Delta^{1/(k-2)})$.

Superpolynomial lower bounds for random k-SAT formulas are also known for other weak proof systems such as the polynomial calculus and $\text{Res}(k)$ [1, 6], and random k-SAT is also conjectured to be hard for stronger semi-algebraic proof systems. In particular, it is a relatively long-standing open problem to prove superpolynomial size lower bounds for Cutting Planes refutations of random k-SAT. As alluded to earlier, this potential hardness (and even more so for the semi-algebraic SOS proof system) has been linked to hardness of approximation.

In this paper, we focus on the Chvátal-Gomory Cutting Planes proof system and some of its generalizations. A proof in this system begins with a set of unsatisfiable linear integral inequalities (in the form $a^T x \geq b$), and new integral inequalities are derived by (i) taking non-
negative linear combinations of previous lines, or (ii) dividing a previous inequality through by 2 (as long as all coefficients on the left-hand side are even) and then rounding up the constant term on the right-hand side. The goal is to derive the “false” inequality $0 \geq 1$ with as few derivation steps as possible. This system can be generalized in several natural ways. In Semantic Cutting Planes, there are no explicit rules – a new linear inequality can be derived from two previous lines as long as it follows soundly. A further generalization of both CP and Semantic CP is the CC-proof system, where now every line is only required to have low (deterministic or real) communication complexity; like Semantic CP, a new line can be derived from two previous ones as long as the derivation is sound.

The main result of this paper is a new proof method for obtaining Cutting Planes lower bounds. We apply it to prove the first nontrivial lower bounds for the size of Cutting Planes refutations of random k-SAT instances. Specifically, we prove that for $k = \Theta(\log n)$ and m in the unsatisfiable regime random k-SAT requires exponential-size Cutting Planes refutations with high probability. Our main result holds for the other generalizations mentioned above (Semantic CP and CC-proofs).

We obtain our main result by establishing an equivalence between such lower bounds and corresponding monotone circuit lower bounds. Said differently, we generalize the interpolation method so that it applies to any unsatisfiable family of formulas; we show that proving superpolynomial size lower bounds for any formula for Cutting Planes amounts to proving a monotone circuit lower bound for certain yes/no instances of the monotone CSP problem. Applying this equivalence to random k-SAT instances, we reduce the problem to that of proving a monotone circuit lower bound for a specific family of yes/no instances of the monotone CSP problem. We then apply the symmetric method of approximations in order to prove exponential monotone circuit lower bounds for our monotone CSP problem.

Pavel Hrubeš and Pavel Pudlák have independently proven a similar theorem [16].

1.1 Related Work

Exponential lower bounds on lengths of refutations are known for CP, Semantic CP, and low-weight CC-proofs) [9, 13, 20]. These lower bounds were obtained using the method of interpolation [19]. A lower bound proof via interpolation begins with a special type of formula – an interpolant. Given two disjoint NP sets U and V an interpolant formula has the form $A(x, y) \land B(x, z)$ where the A-part asserts that $x \in U$, as verified by the NP-witness y, and the B-part asserts that $x \in V$, as verified by the NP-witness z. The prominent example in the literature is the clique/coclique formula where U is the set of all graphs with the clique number at least k, and V is the set of all $(k - 1)$-colorable graphs. Feasible interpolation for a proof system amounts to showing that if an interpolant formula has a short proof then we can extract from the proof a small monotone circuit for separating U from V. Thus lower bounds follow from the celebrated monotone circuit lower bounds for clique [2, 21].

Despite the success of interpolation, it has been quite limited since it only applies to “split” formulas. In particular, the only family of formulas which are known to be hard for (unrestricted) Cutting Planes are the clique-coclique formulas. In contrast, for Resolution the width measure is a nice combinatorial property that characterizes Resolution proof size [3, 7]; we
would similarly like to understand the strength of Cutting Planes with respect to arbitrary formulas and most notably for random \(k\)-SAT formulas and Tseitin formulas.

Our main equivalence is an adaptation of the earlier work combined with a key reduction between search problems and monotone functions established in [14]. With this reduction in hand, our main proof is very similar to both [9] and [22]. [9] proved this equivalence for the special case of the clique-coclique formulas. Namely they showed that low-weight CC-proofs for this particular formula are equivalent to monotone circuits for the corresponding sets \(U, V\). Our argument is essentially the same as theirs, only we realize that it holds much more generally for any unsatisfiable CNF and partition of the variables, and the corresponding set of Yes/No instances of CSP.

Our equivalence follows by: (1) Razborov’s equivalence [22] between monotone circuits (for a monotone function) and PLS communication games (for the associated KW game), and (2) an equivalence between PLS communication games (for a monotone KW game) and CC-proofs (for the search problem associated with the KW game). For the high weight case, the equivalence follows by replacing (1) by an equivalence between monotone \textit{real} circuits and \textit{real} communication games, recently established by Hrubeš and Pudlák [17], and replacing (2) by its real analog. Inspired by [23], we prove a direct equivalence between monotone circuits and CC-proofs and between monotone real circuits and RCC (real communication) proofs.

2 Definitions and Preliminaries

If \(x, y \in \{0, 1\}^n\) then we write \(x \leq y\) if \(x_i \leq y_i\) for all \(i\). A function \(f : \{0, 1\}^n \to \{0, 1\}\) is \textit{monotone} if \(f(x) \leq f(y)\) whenever \(x \leq y\). If \(f\) is monotone then an input \(x \in \{0, 1\}^n\) is a \textit{maxterm} of \(f\) if \(f(x) = 0\) but \(f(x') = 1\) for any \(x'\) obtained from \(x\) by flipping a single bit from 0 to 1; dually, \(x\) is a \textit{minterm} if \(f(x) = 1\) but \(f(x') = 0\) for any \(x'\) obtained by flipping a single bit of \(x\) from 1 to 0. More generally, if \(f(x) = 1\) we call \(x\) an \textit{accepting instance} or a \textit{yes instance}, while if \(f(x) = 0\) then we call \(x\) a \textit{rejecting instance} or a \textit{no instance}. If \(x\) is any \textit{yes instance} of \(f\) and \(y\) is any \textit{no instance} of \(f\) then there exists an index \(i \in [n]\) such that \(x_i = 1, y_i = 0\), as otherwise we would have \(x \leq y\), contradicting the fact that \(f\) is monotone. If \(f, g, h : \{0, 1\}^n \to \{0, 1\}\) are boolean functions on the same domain then \(f, g \models h\) if for all \(x \in \{0, 1\}^n\) we have \(f(x) \land g(x) \implies h(x)\).

A \textit{monotone circuit} is a circuit in which the only gates are \(\land\) or \(\lor\) gates. A \textit{real monotone circuit} is a circuit in which each internal gate has two inputs and computes any function \(\phi(x, y) : \mathbb{R}^2 \to \mathbb{R}\) which is monotone nondecreasing in its arguments.

\textbf{Definition 2.1.} A linear integral inequality in variables \(x = (x_1, \ldots, x_n)\) with coefficients \(a = (a_1, \ldots, a_n) \in \mathbb{Z}^n\) and constant term \(b \in \mathbb{Z}\) is an expression \(a^T x \geq b\).

\textbf{Definition 2.2.} Given a system of linear integral inequalities \(Ax \geq b\), where \(A \in \mathbb{Z}^{m \times n}\) and \(b \in \mathbb{Z}^m\), a cutting planes proof of an inequality \(a^T x \geq c\) is a sequence of inequalities \(a_1^T x \geq c_1, a_2^T x \geq c_2, \ldots, a_\ell^T x \geq c_\ell\), such that \(a_\ell = a, c_\ell = c\) and every inequality \(i \in [\ell]\) satisfies either

- \(a_i^T x \geq c_i\) appears in \(Ax \geq b\),

4
• $a_i^T x \geq c_i$ is a Boolean axiom, i.e., $x_j \geq 0$ or $-x_j \geq -1$ for some j.

• there exists $j,k < i$ such that $a_i^T x \geq c_i$ is the sum of the linear inequalities $a_j^T x \geq c_j$ and $a_k^T x \geq c_k$.

• there exists $j < i$ and a positive integer d dividing every coefficient in a_j such that $a_i = a_j/d$ and $c_i = \lceil c_j/d \rceil$.

The length of the proof is ℓ, the number of lines. If all coefficients appearing in the cutting planes proof are bounded by $O(\text{poly}(n))$, then the proof is said to be of low weight.

Let $\mathcal{F} = C_1 \land \ldots \land C_m$ be an unsatisfiable CNF formula over variables z_1, \ldots, z_n. For any clause C let C^- denote the set of variables appearing negated in the clause and let C^+ denote variables occurring positively in the clause. Each clause C in \mathcal{F} can be encoded as a linear integral inequality as

$$\sum_{x_i \in C^+} x_i + \sum_{x_i \in C^-} (1 - x_i) \geq 1.$$

Thus each unsatisfiable CNF can be translated into a system of linear integral inequalities $Ax \geq b$ with no 0/1 solutions. A cutting planes (CP) refutation of this system is a cutting planes proof of the inequality $0 \geq 1$ from $Ax \geq b$.

Definition 2.3. Let $\mathcal{F} = C_1 \land \ldots \land C_m$ be an unsatisfiable k-CNF on n variables. A semantic refutation of \mathcal{F} is a sequence L_1, L_2, \ldots, L_ℓ of boolean functions $L_i : \{0,1\}^n \to \{0,1\}$ such that

1. $L_i = C_i$ for all $i = 1, 2, \ldots, m$.
2. $L_\ell = 0$, the constant 0 function.
3. For all $i > m$ there exists $j,k < i$ such that $L_j, L_k \vdash L_i$.

The length of the refutation is ℓ.

We will be particularly interested in semantic refutations where the boolean functions can be computed by short communication protocols.

Definition 2.4. Let $\mathcal{F} = C_1 \land \ldots \land C_m$ be an unsatisfiable CNF on $n = n_1 + n_2$ variables, and let $X = \{x_1, x_2, \ldots, x_{n_1}\}$, $Y = \{y_1, \ldots, y_{n_2}\}$ be a partition of the variables. A CC$_d$-refutation of \mathcal{F} with respect to the partition (X,Y) is a semantic refutation L_1, \ldots, L_ℓ of \mathcal{F} such that each function L_i in the proof can be computed by a d-bit communication protocol with respect to the partition (X,Y).

Since any linear integral inequality $a^T x + b^T y \geq c$ with polynomially bounded weights can be evaluated by a trivial $O(\log n)$-bit communication protocol (just by having Alice evaluating $a^T x$ and sending the result to Bob), it follows that low-weight cutting planes proofs are also CC$_{O(\log n)}$-proofs. We can similarly define a proof system which can simulate any cutting planes proof by strengthening the type of communication protocol.
Definition 2.5. A d-round real communication protocol is a communication protocol between two players, Alice and Bob, where Alice receives $x \in X$ and Bob receives $y \in Y$. In each round, Alice and Bob each send real numbers α, β to a “referee”, who responds with a single bit b which is 1 if $\alpha \leq \beta$ and 0 otherwise. After d rounds of communication, the players output a bit b. The protocol computes a function $F : X \times Y \rightarrow \{0, 1\}$ if for all $(x, y) \in X \times Y$ the protocol outputs $F(x, y)$.

Definition 2.6. Let $\mathcal{F} = C_1 \land \ldots \land C_m$ be an unsatisfiable CNF on $n = n_1 + n_2$ variables $X = \{x_1, \ldots, x_{n_1}\}$ and $Y = \{y_1, \ldots, y_{n_2}\}$. An RCC_d-refutation of \mathcal{F} is a semantic refutation L_1, L_2, \ldots, L_ℓ in which each function L_i can be computed by a d-round real communication protocol with respect to the variable partition (X, Y).

It is clear that any linear integral inequality $a^T x + b^T y \geq c$ can be evaluated by a 1-round real communication protocol, and so it follows that a cutting planes refutation of \mathcal{F} is also an RCC_1-refutation of \mathcal{F}. We record each of these observations in the next proposition.

Proposition 2.7. Let \mathcal{F} be an unsatisfiable CNF on variables z_1, z_2, \ldots, z_n, and let X, Y be any partition of the variables into two sets. Any length-\(\ell\) low-weight cutting planes refutation of \mathcal{F} is a length-\(\ell\) $\text{CC}_{O(\log n)}$-refutation of \mathcal{F}. Similarly, any length-\(\ell\) cutting planes refutation of \mathcal{F} is a length-\(\ell\) RCC_1-refutation of \mathcal{F}.

2.1 Total Search Problems and Monotone CSP-SAT

In this section we review the equivalence between the search problem associated with an unsatisfiable CNF formula, and the Karchmer-Wigderson (KW) search problem for a related (partial) monotone function.

Definition 2.8. Let n_1, n_2, m be positive integers, and let X, Y be finite sets. A total search problem is a relation $R \subseteq X^{n_1} \times Y^{n_2} \times [m]$ where for each $(x, y) \in X^{n_1} \times Y^{n_2}$, there is an $i \in [m]$ such that $R(x, y, i) = 1$. We refer to $x \in X^{n_1}$ as Alice’s input and $y \in Y^{n_2}$ as Bob’s input. The search problem is k-local if for each $i \in [m]$ we have that $R(\ast, \ast, i)$ depends on a fixed set of at most k coordinates of x (it may depend on any number of y coordinates).

A standard example of a k-local search problem is the search problem associated with unsatisfiable k-CNFs.

Definition 2.9. Let \mathcal{F} be an unsatisfiable k-CNF formula with m clauses and n variables z_1, \ldots, z_n, which are partitioned into two sets $x_1, x_2, \ldots, x_{n_1}$ and $y_1, y_2, \ldots, y_{n_2}$. The search problem $\text{Search}(\mathcal{F})$ with respect to this partition takes as input an assignment $x \in \{0, 1\}^{n_1}$ and $y \in \{0, 1\}^{n_2}$ and outputs the index $i \in [m]$ of a violated clause under this assignment.

This problem is clearly k-local since each clause can contain at most k variables from $x_1, x_2, \ldots, x_{n_1}$. Associated with this search problem is the following monotone variant of the constraint satisfaction problem.
Definition 2.10. Let $H = (L \cup R, E)$ be a bipartite graph such that each vertex $v \in L$ has degree at most k, and let $m = |L|$ and $n = |R|$. Let Σ be a finite alphabet. A constraint satisfaction problem (CSP) \mathcal{H} with topology H and alphabet Σ is defined as follows. The vertices in L are thought of as the set of constraints, and the vertices in R are thought of as a set of variables; thus for each vertex $i \in L$ we let $\text{vars}(i)$ denote the neighbourhood of i. For each vertex $i \in L$ the CSP has an associated boolean function $\text{TT}_i : \Sigma^{\text{vars}(i)} \to \{0, 1\}$ called the truth table of i that encodes the set of “satisfying” assignments to the constraint associated with i. An assignment $\alpha \in \Sigma^n$, thought of as a Σ-valued assignment to the variables R, satisfies the CSP \mathcal{H} if for each $i \in L$ we have $\text{TT}_i(\alpha \mid \text{vars}(i)) = 1$, otherwise the assignment falsifies the CSP.

For each $i \in [m]$ and $\alpha \in \Sigma^{\text{vars}(i)}$ we abuse notation and let $\text{TT}_i(\alpha)$ represent the boolean variable corresponding to this entry of the truth table for the constraint i.

Definition 2.11. Let $H = (L \cup R, E)$ be a bipartite graph such that each vertex $i \in L$ has degree at most k, and let $m = |L|$ and $n = |R|$. We think of H as encoding the topology of a constraint satisfaction problem, where each vertex $i \in L$ represents a constraint of the CSP and each $i \in R$ represents a variable of the CSP. Let Σ be a finite alphabet, and let $N = \sum_{i=1}^m |\Sigma|^{\text{vars}(i)} \leq m|\Sigma|^k$. The monotone function $\text{CSP-SAT}_{H,\Sigma} : \{0, 1\}^N \to \{0, 1\}$ is defined as follows. An input $x \in \{0, 1\}^N$ encodes a CSP $\mathcal{H}(x)$ by specifying for each vertex $i \in L$ its truth table

$$\text{TT}_i^x : \Sigma^{\text{vars}(i)} \to \{0, 1\}.$$

Given an assignment $x \in \{0, 1\}^N$ the function $\text{CSP-SAT}_{H,\Sigma}(x) = 1$ if and only if the CSP $\mathcal{H}(x)$ is satisfiable. This function is clearly monotone since for any $x, y \in \{0, 1\}^N$ with $x \leq y$, any satisfying assignment for the CSP $\mathcal{H}(x)$ is also a satisfying assignment for the CSP $\mathcal{H}(y)$.

Next we show how to relate k-local total search problems and the CSP-SAT problem. Let $\mathcal{R} \subseteq \mathcal{X}^{n_1} \times \mathcal{Y}^{n_2} \times [m]$ be a k-local total search problem. Associated with \mathcal{R} is a bipartite constraint graph $H_\mathcal{R}$ encoding for each $i \in [m]$ the coordinates in \mathcal{X}^{n_1} on which $\mathcal{R}(\cdot, \cdot, i)$ depends. Formally, the constraint graph is the bipartite graph $H_\mathcal{R} = (L \cup R, E)$ with $L = [m]$, $|R| = [n_1]$, and for each pair $(i, j) \in L \times R$ we add the edge if $\mathcal{R}(\cdot, \cdot, i)$ depends on the variable x_j. Note that each vertex $u \in L$ has degree at most k, since the original search problem is k-local.

Given \mathcal{R} and its corresponding constraint graph we can give a natural way to construct accepting and rejecting instances of $\text{CSP-SAT}_{H_\mathcal{R},\mathcal{X}}$ from \mathcal{X}^{n_1} and \mathcal{Y}^{n_2}. To reduce clutter, given a k-local total search problem \mathcal{R} we abuse notation and write $\text{CSP-SAT}_\mathcal{R} := \text{CSP-SAT}_{H_\mathcal{R},\mathcal{X}}$.

Accepting Instances \mathcal{U}. For any $x \in \mathcal{X}^{n_1}$ we construct an accepting input $\mathcal{U}(x)$ of $\text{CSP-SAT}_\mathcal{R}$ as follows. For each vertex $i \in L$ we define the corresponding truth table TT_i by setting $\text{TT}_i(\alpha) = 1$ if $x \mid \text{vars}(i) = \alpha$ and $\text{TT}_i(\alpha) = 0$ otherwise.

Rejecting Instances \mathcal{V}. For any $y \in \mathcal{Y}^{n_2}$ we construct a rejecting input $\mathcal{V}(y)$ of $\text{CSP-SAT}_\mathcal{R}$ as follows. For each vertex $i \in L$ and each $\alpha \in \Sigma^{\text{vars}(i)}$ we set

$$\text{TT}_i(\alpha) = 0 \iff \mathcal{R}(\alpha, y, i) \text{ holds}.$$
Given \(x \in X^n \) it is easy to see that \(U(x) \) is a satisfying assignment for CSP-SAT_\(R \) since \(x \) is a satisfying assignment for the corresponding CSP. The rejecting instances require a bit more thought. Let \(y \in Y^n \) and consider the rejecting instance \(V(y) \) as defined above. Suppose by way of contradiction that the corresponding CSP \(H_\(R \)(V(y)) \) is satisfiable, and let \(x \in X^n \) be the satisfying assignment for the CSP. It follows by definition of the rejecting instances that \(R(x, y, u) \) does not hold for any \(u \), implying that \(R \) is not total.

3 Relating Proofs and Circuits

In this section we relate CC\(d \)-proofs and monotone circuits, as well as RCC\(1 \)-proofs and real monotone circuits.

Theorem 3.1. Let \(F \) be an unsatisfiable CNF formula on \(n \) variables and let \(X = \{ x_1, \ldots, x_{n_1} \} \), \(Y = \{ y_1, \ldots, y_{n_2} \} \) be any partition of the variables. Let \(d \) be a positive integer. If there is a CC\(d \) refutation of \(F \) with respect to the partition \((X, Y)\) of length \(\ell \), then there is a monotone circuit separating the accepting and rejecting instances \(U(\{0, 1\}^{n_1}), V(\{0, 1\}^{n_2}) \) of CSP-SAT \(\text{Search}(F) \) of size \(O(2^{d\ell}) \).

Proof. Let \(F = C_1 \land \ldots \land C_m \) over variables \(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2} \). Let \(P \) be a CC\(d \)-proof for \(F \) with \(\ell \) lines. Order the lines in \(P \) as \(L_1, L_2, \ldots, L_\ell \), where each line is either a clause, or follows semantically from two earlier lines.

We build the circuit for CSP-SAT \(\text{Search}(F) \) that separates \(U, V \) by induction on \(\ell \). For each line \(L \) in the proof, there are \(2^d \) possible histories \(h \), each with an associated monochromatic rectangle \(R_L(h) \). A rectangle \(h \) is good for \(L \) if it is 0-monochromatic. For every line \(L \) and each good history \(h \) for \(L \), we will build a circuit \(C_h^{(L)} \) that correctly “separates” \(x \) and \(y \) for each \((x, y) \in R_L(h) \). By this, we mean that the circuit \(C_h^{(L)} \) outputs 1 on \(U(x) \) (the 1-input associated with \(x \)) and outputs 0 on \(V(y) \) (the 0-input associated with \(y \)).

For each leaf in the proof, the associated line \(L \) is a clause \(C_i \) of \(F \). The communication protocol for \(C_i \) is a two-bit protocol where Alice/Bob each send 0 if their inputs are \(\alpha, \beta \) such that \(C_i(\alpha, \beta) = 0 \). Thus there is only one good (0-monochromatic) rectangle with history \(h = 00 \). This pair \(\alpha, \beta \) corresponds to the variable \(TT_i(\alpha) \), and we define the circuit \(C_h^{(L)} \) corresponding to line \(L = C_i \) and good history \(h = 00 \) to be the variable \(TT_i(\alpha) \).

Now suppose that \(L \) is derived from \(L_1 \) and \(L_2 \), and inductively we have circuits \(C_{h'}^{(L_1)}, C_{h''}^{(L_2)} \) for each history \(h' \) good for \(L_1 \) and \(h'' \) good for \(L_2 \). Given a good history \(h \) for \(L \), we will show how to build the circuit \(C_h^{(L)} \). It will use all of the circuits that were built for \(L_1 \) and \(L_2 \) (\(\{C_{h'}^{(L_1)}, C_{h''}^{(L_2)} \} \) for all good \(h' \) and \(h'' \)) and an additional \(2^d \) gates. To build \(C_h^{(L)} \) we will construct a stacked protocol tree for \(L \), corresponding to first running the communication protocol for \(L_1 \) and then running the communication protocol for \(L_2 \). This will give us a height \(2d \) (full) binary tree, \(T \), where the top part is the communication protocol tree for \(L_1 \), with protocol trees for \(L_2 \) hanging off of each of the leaves. We label each of the leaves of this stacked tree with a circuit from \(\{C_{h_1}^{(L_1)}, C_{h_2}^{(L_2)} \} \) as follows. Consider a path labelled \(h_1 h_2 \) in \(T \), where \(h_1 \) is the history from running \(L_1 \) and \(h_2 \) is the history from running \(L_2 \). By soundness, either the rectangle \(R_{L_1}(h) \cap R_{L_2}(h_1) \) is 0-monochromatic, or the rectangle \(R_{L_1}(h) \cap R_{L_2}(h_2) \) is 0-monochromatic. In the first case, we will label this leaf with \(C_{h_1}^{(L_1)} \) and otherwise we will label
this leaf with $C_{h_2}^L$. Now we will label the internal vertices of the stacked tree with a gate: if a node corresponds to Alice speaking, then we label the node with a \lor gate, and otherwise if the node corresponds to Bob speaking, then we label the node with an \land gate. The resulting circuit has size 2^d plus the sizes of the subcircuits, and thus the total circuit size is $2^d \ell$. The theorem is therefore immediately implied by the following claim.

Claim. The circuit resulting from the above construction satisfies: for each line L in P, and for each good history h for L, C_h^L will be correct for all $(x,y) \in R_L(h)$.

Proof of Claim. If L is an axiom, then L is a clause, C_i. The communication protocol for C_i is a two-bit protocol where Alice and Bob each send 0 iff their part of C_i evaluates to 0. There is only one good (0-monochromatic) history, $h = 00$. If $(x,y) \in R_L(h)$ then $C_i(x,y) = 0$ by definition. Let $\alpha = x \mid \text{vars}(C_i)$. In our construction the circuit corresponding to C_h^L is labelled by the variable $TT_i(\alpha)$, and it is easy to check that $U(x)$ sets $TT_i(\alpha)$ to true, and $V(y)$ sets $TT_i(\alpha)$ to false.

If L is not an axiom, then we will prove the lemma by proving the following stronger statement by induction: for each line L (derived from previous lines L_1 and L_2), and for each node v in the stacked protocol tree for L, with corresponding (sub)history $h' = h_1 h_2$, the subcircuit C_h^L associated with vertex v is correct on all $(x,y) \in R_L(h) \cap R_{L_1}(h_1) \cap R_{L_2}(h_2)$.

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked protocol tree for L with history $h' = h_1 h_2$. Then by soundness either (i) $R_L(h) \cap R_{L_1}(h_1)$ is 0-monochromatic or (ii) $R_L(h) \cap R_{L_2}(h_2)$ is 0-monochromatic. In case (i) we labelled v by $C_{h_1}^{L_1}$. Since $R_L(h) \cap R_{L_1}(h_1)$ is 0-monochromatic, $R_{L_1}(h_1)$ is 0-monochromatic and therefore $C_{h_1}^{L_1}$ is defined and is correct on all $(x,y) \in R_{L_1}(h_1)$, so it is correct on all $(x,y) \in R_L(h) \cap R_{L_1}(h_1) \cap R_{L_2}(h_2)$. A similar argument holds in case (ii).

For the inductive step, let v be a nonleaf node in the protocol tree with history h' and assume that Alice owns v. The rectangle $R_L(h) \cap R_{L_1}(h_1) \cap R_{L_2}(h_2) = A \times B$ is partitioned into $A_0 \times B$ and $A_1 \times B$, where

1. $A = A_0 \cup A_1$,
2. $A_0 \times B$ is the rectangle with history $h'0$,
3. $A_1 \times B$ is the rectangle with history $h'1$.

Given $(x,y) \in R_L(h) \cap R_{L_1}(h_1) \cap R_{L_2}(h_2)$, since $C_{h_0}^{L_0}$ is correct on all $(x,y) \in A_0 \times B$ and $C_{h_1}^{L_1}$ is correct on all $(x,y) \in A_1 \times B$, it follows that $C_h^L = C_{h_0}^{L_0} \lor C_{h_1}^{L_1}$ is correct on all $(x,y) \in A \times B$. To see this, observe that if $x \in A_0$, then $C_{h_0}^{L_0}(U(x)) = 1$ and therefore

$$C_h^L(U(x)) = C_{h_0}^{L_0}(U(x)) \lor C_{h_1}^{L_1}(U(x)) = 1.$$

Similarly, if $x \in A_1$, then $C_{h_1}^{L_1}(U(x)) = 1$ and therefore

$$C_h^L(U(x)) = C_{h_0}^{L_0}(U(x)) \lor C_{h_1}^{L_1}(U(x)) = 1.$$

Finally if $y \in B$ then both $C_{h_0}^{L_0}(V(y)) = C_{h_1}^{L_1}(V(y)) = 0$ and therefore

$$C_h^L(V(y)) = C_{h_0}^{L_0}(V(y)) \lor C_{h_1}^{L_1}(V(y)) = 0.$$

9
A similar argument holds if v is an internal node in the protocol tree that Bob owns (and is therefore labelled by an AND gate. \qed

The converse direction is much easier.

Theorem 3.2. If there is a monotone circuit separating the inputs of \(\text{CSP-SAT}_{\text{Search}}(\mathcal{F}) \) of size \(\ell \), then there is a \(\mathsf{CC}_2 \)-refutation of \(\mathcal{F} \) of length \(\ell \) with respect to this variable partition.

Proof. We show that from a small monotone circuit \(\mathcal{C} \) for \(\text{CSP-SAT}_{\text{Search}}(\mathcal{C}) \) that separates \(\mathcal{U}(\{0,1\}^{n_1}) \) and \(\mathcal{V}(\{0,1\}^{n_2}) \), we can construct a small \(\mathsf{CC}_2 \)-proof for \(\mathcal{F} \), where Alice gets \(x \in \{0,1\}^{n_1} \) and Bob gets \(y \in \{0,1\}^{n_2} \). The lines/vertices of the refutation will be in 1-1 correspondence with the gates of \(\mathcal{C} \). The protocol is constructed inductively from the leaves of \(\mathcal{C} \) to the root. For a gate \(g \) of \(\mathcal{C} \), let \(U_g \) be those inputs \(u \in \mathcal{U}(\{0,1\}^{n_1}) \) such that \(g(u) = 1 \), and let \(V_g \) be those inputs \(v \in \mathcal{V}(\{0,1\}^{n_2}) \) such that \(g(v) = 0 \). At each gate \(g \) we will prove that for every pair \((u,v) \in U_g \times V_g \) and for every \((x,y) \) such that \(u = \mathcal{U}(x), v = \mathcal{V}(y) \), the protocol \(R_g \) on input \((x,y) \) will output 0. Since the output gate of \(\mathcal{C} \) is correct for all pairs, this will achieve our desired protocol.

At a leaf \(\ell \) labeled by some variable \(TT_j(\alpha) \), the pairs associated with this leaf must have \(TT_j(\alpha) = 1 \) in \(u \) and 0 in \(v \), and thus we can define \(R_\ell(x,y) \) to be 0 if and only if \(x \) is consistent with \(\alpha \) and the clause \(C_j \) evaluates to false on \((x,y) \). This is a 2-bit protocol, and by definition of the accepting and rejecting instances we have for all \((x,y) \) satisfying \(u = \mathcal{U}(x), v = \mathcal{V}(y) \) that \(x \upharpoonright \text{vars}(j) = \alpha \) and \(R(\alpha,y,j) \) holds.

Now suppose that \(g \) is an OR gate of \(\mathcal{C} \), with inputs \(g_1, g_2 \). The protocol \(R_g \) on \((x,y) \) is as follows. Alice privately simulates \(C_{g_1}(\mathcal{U}(x)) \) and \(C_{g_2}(\mathcal{U}(x)) \), and Bob simulates \(C_{g_1}(\mathcal{V}(y)) \) and \(C_{g_2}(\mathcal{V}(y)) \). If (i) either \(C_{g_1}(\mathcal{U}(x)) = 1 \) or \(C_{g_2}(\mathcal{U}(x)) = 1 \) and (ii) both \(C_{g_1}(\mathcal{V}(y)) = 0 \) and \(C_{g_2}(\mathcal{V}(y)) = 0 \), then they output 0, and otherwise they output 1. This is a 2-bit protocol, with Alice sending one bit to report whether or not condition (i) is satisfied, and Bob sending one bit to report if (ii) is satisfied.

Now, we want to show that for all \((x,y) \) such that \(C_g(\mathcal{U}(x)) = 1 \) and \(C_g(\mathcal{V}(y)) = 0 \) we have that \(R_g(x,y) = 0 \). This is easy — since \(g = g_1 \lor g_2 \) we have that \(C_g(\mathcal{U}(x)) = 1 \) and \(C_g(\mathcal{V}(y)) = 0 \) implies that either \(C_{g_1}(\mathcal{U}(x)) = 1 \) or \(C_{g_2}(\mathcal{U}(x)) = 1 \) and \(C_{g_1}(\mathcal{V}(y)) = 0 \) and \(C_{g_2}(\mathcal{V}(y)) = 0 \), implying that the protocol will output 0 on \((x,y) \) by definition.

Similarly, if \(g \) is an AND gate, then again Alice privately simulates \(C_{g_1}(\mathcal{U}(x)) \) and \(C_{g_2}(\mathcal{U}(x)) \) and Bob privately simulates \(C_{g_1}(\mathcal{V}(y)) \) and \(C_{g_2}(\mathcal{V}(y)) \). If (i) \(C_{g_1}(\mathcal{U}(x)) = 1 \) and \(C_{g_2}(\mathcal{U}(x)) = 1 \) and (ii) either \(C_{g_1}(\mathcal{V}(y)) = 0 \) or \(C_{g_2}(\mathcal{V}(y)) = 0 \), then they output 0, and otherwise they output 1. By an analogous argument to the OR case, it’s easy to see that the protocol will output 0 whenever \(C_g(\mathcal{U}(x)) = 1 \) and \(C_g(\mathcal{V}(y)) = 0 \). \qed

The next theorem relates \(\mathsf{RCC}_1 \) proofs and real monotone circuits. It follows from a recent simulation given by [17]. (The proof is in the Appendix.)

Theorem 3.3. Let \(\mathcal{F} \) be an unsatisfiable CNF formula on \(n \) variables and let \(X = \{x_1, \ldots, x_m\} \), \(Y = \{y_1, \ldots, y_n\} \) be any partition of the variables. If there is a \(\mathsf{RCC}_1 \) refutation of \(\mathcal{F} \) with respect to the partition \((X,Y) \) of length \(\ell \), then there is a monotone real circuit separating the accepting and rejecting instances \(\mathcal{U}(\{0,1\}^m), \mathcal{V}(\{0,1\}^n) \) of \(\text{CSP-SAT}_{\text{Search}}(\mathcal{F}) \) of size \(\ell \).
Conversely, a real monotone circuit separating the inputs of CSP-SAT$_{\text{Search}}(F)$ implies a RCC$_1$ refutation of F of the same size.

In particular, the above theorem implies that for any family of formulas F and for any partition of the underlying variables into X, Y, a Cutting Planes refutation of F of size S implies a similar size monotone real circuit for separating the accepting and rejecting instances $U(\{0, 1\}^n_1), V(\{0, 1\}^n_2)$ of CSP-SAT$_{\text{Search}}(F)$.

4 Lower Bounds for Random CNFs

In this section we use Theorem 3.1 to prove lower bounds for RCC$_1$-refutations (and therefore Cutting Planes refutations) of uniformly random k-CNFs with sufficient clause density.

Definition 4.1. Let $F(m, n, k)$ denote the distribution of random k-CNFs on n variables obtained by sampling m clauses (out of the $\binom{n}{k}$ possible clauses) uniformly at random.

The proof is delayed to Section 4.2; to get a feeling for the argument, we first prove an easier lower bound for a simpler distribution of balanced random CNFs.

4.1 Balanced Random CNFs

Definition 4.2. Let $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$ be two disjoint sets of variables, and let $F(m, n, k)^\otimes 2$ denote the following distribution over $2k$-CNFs: first sample $F^1 = C_{11} \land C_{12} \land \cdots \land C_{1m}$ from $F(m, n, k)$ on the X variables, and then $F^2 = C_{21} \land C_{22} \land \cdots \land C_{2m}$ from $F(m, n, k)$ on the Y variables independently. Then output

$$F = (C_{11} \lor C_{21}) \land (C_{12} \lor C_{22}) \land \cdots \land (C_{1m} \lor C_{2m}).$$

This distribution shares the well-known property with $F(m, n, k)$ that dense enough formulas are unsatisfiable with high probability.

Lemma 4.3. Let $c > 2/ \log e$ and let n be any positive integer. If $k \in [n]$ and $m \geq cn2^{2k}$ then $F \sim F(m, n, k)^\otimes 2$ is unsatisfiable with high probability.

Proof. Fix any assignment (x, y) to the variables of F. The probability that the ith clause is satisfied by the joint assignment is $1 - 1/2^{2k}$, and so the probability that all clauses are satisfied by the joint assignment is $(1 - 1/2^{2k})^m \leq e^{-m/2^{2k}}$, since the clauses are sampled independently. By the union bound, the probability that some joint assignment satisfies the formula is at most $2^{2n}e^{-m/2^{2k}} = 2^{2n-\log e m/2^{2k}} \leq 2^{2n-\log e \log n} \leq 2^{-\Omega(n)}$. Thus, the probability that the formula is unsatisfiable is at least $1 - 2^{-\Omega(n)}$. \[\square\]

The main theorem of this section is that $F \sim F(m, n, k)^\otimes 2$ require large CC- and RCC-proofs, which is obtained by using Theorem 3.1 and applying the well-known method of symmetric approximations [8, 15] to obtain lower bounds on monotone circuits computing CSP-SAT$_{\text{Search}}(F)$. We use the following formalization of the method which is exposited in
Jukna’s excellent book [18]. First we introduce some notation: if \(U \subseteq \{0, 1\}^N \), then for \(r \in [N] \) and \(b \in \{0, 1\} \) let

\[
A_b(r, U) = \max_{I \subseteq [n]: |I| = r} \{ u \in U \mid \forall i \in I : u_i = b \}.
\]

Theorem 4.4 (Theorem 9.19 in Jukna). Let \(f : \{0, 1\}^N \to \{0, 1\} \) be a monotone boolean function and let \(1 \leq r, s \leq N \) be any positive integers. Let \(U \subseteq f^{-1}(1) \) and \(V \subseteq f^{-1}(0) \) be arbitrary subsets of accepting and rejecting inputs of \(f \). Then every real monotone circuit that outputs 1 on all inputs in \(U \) and 0 on all inputs in \(V \) has size at least

\[
\min \left\{ \frac{|U| - (2s)A_1(1, U)}{(2s)^r+1 A_1(r, U)}, \frac{|V|}{(2r)^s+1 A_0(s, V)} \right\}.
\]

Next we state the main theorem of this section.

Theorem 4.5. Let \(k = 4 \log n \) and \(m = cn^2 k^2 \) where \(c > 2/ \log e \) is some constant. Let \(F \sim F(m, n, k)^{\otimes 2} \) with variable partition \((X, Y)\), and let \(U = U(\{0, 1\}^X), V = V(\{0, 1\}^Y) \). Then with high probability any real monotone circuit separating \(U \) and \(V \) has at least \(2 \tilde{\Omega}(n) \) gates.

Corollary 4.6. Let \(n \) be a sufficiently large positive integer, and let \(k = 4 \log n, m = n^6 \). If \(F \sim F(m, n, k)^{\otimes 2} \) then with high probability every \(\text{RCC}_1 \)-refutation (and therefore, Cutting Planes refutation) of \(F \) has at least \(2 \tilde{\Omega}(n) \) lines.

Proof. Immediate consequence of Theorems 3.1 and 4.5.

The proof of Theorem 4.5 comes down to the essential property that random \(k \)-CNFs are good expanders. The next lemma records the expansion properties we require of random CNFs; the proof is adapted from the notes of Salil Vadhan [24]. The lemma is stated in general terms for re-use in the next section.

Lemma 4.7. Let \(n \) be any sufficiently large positive integer. Let \(k, m \) be positive integers and sample \(F \sim F(m, n, k) \). Let \(s \leq n/ek^2 \) be a positive integer. For any subset \(S \subseteq F \) of clauses let \(\text{vars}(S) \) denote the subset of variables appearing in clauses \(S \). If

\[
\log m \leq \delta \cdot k \log \left(\frac{k}{2} \right)
\]

for some \(0 < \delta < 1 \), then every set \(S \subseteq F \) of size \(s \) satisfies \(|\text{vars}(S)| \geq ks/2 \) with probability at least \(1 - 2^{-(1-\delta)(ks/2) \log(k/2)} \).

Proof. Fix any set \(S \subseteq F \) of size \(s \), and for each clause \(C \in S \) sample the variables in \(C \) one at a time without replacement. Let \(v_1, v_2, \ldots, v_{ks} \) denote the concatenation of all sequences of sampled variables over all \(C \in S \). We say that variable \(v_i \) is a repeat if it has already occurred among \(v_1, \ldots, v_{i-1} \). In order for \(|\text{vars}(S)| < ks/2 \) the concatenated sequence must have at
least $ks/2$ repeats, and the probability that variable v_i is a repeat is at most $(i - 1)/n \leq ks/n$. This implies that

$$\Pr[|\mathsf{vars}(S)| < ks/2] \leq \left(\frac{ks}{ks/2}\right)^{ks/2/\left(\frac{ks}{n}\right)^{ks/2}} \leq \left(\frac{2eks}{ks}\right)^{ks/2/\left(\frac{ks}{n}\right)^{ks/2}} \leq \left(\frac{2}{k}\right)^{ks/2}$$

using standard bounds on binomial coefficients and the fact that $s \leq n/ek^2$. Thus

$$\Pr[\exists S : |S| = s, |\mathsf{vars}(S)| < ks/2] \leq m^{s} \left(\frac{2}{k}\right)^{ks/2},$$

and by assumption $\log m \leq \delta \cdot k \log \left(\frac{k}{2}\right)$ for sufficiently large n, finishing the proof of the lemma.

Using the expansion lemma we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. We shall apply Theorem 4.4 to $U = U(\{0, 1\}^n)$ and $V = V(\{0, 1\}^n)$ (cf. Section 2.1) with $r = s = n/ek^2$, $k = 4\log n$, and $m = n^22^k$. Recall that U and V are the functions mapping x inputs to 1-inputs of CSP-SAT$_\mathsf{Search}(F)$ and mapping Y inputs to 0-inputs of CSP-SAT$_\mathsf{Search}(F)$, respectively. To finish the argument we need to compute $|U|, A_1(1, U), A_1(r, U), |V|, A_0(s, V)$.

It is easy to see that every variable participates in some clause in F with high probability. This implies that U is one-to-one and thus $|U| = 2^n$ with high probability.

Recall that the 0-inputs of CSP-SAT$_\mathsf{Search}(F)$ correspond to substituting Y-assignment into F and writing out truth tables of all the clauses. The truth tables corresponding to the clauses that were satisfied by the Y-assignment are identically 1, and the truth tables corresponding to the clauses that were not satisfied by the given Y-assignment contain exactly one 0-entry. Given a Y-assignment we call the set of clauses that were not satisfied by the Y-assignment the *profile* of Y. The next lemma implies that the profiles of all Y-assignments are distinct with high probability.

Lemma 4.8. Let n, m, k be positive integers. Let $F \sim F(m, n, k)$, let $S \subseteq \{0, 1\}^n$ be a collection of boolean assignments, and define the following $2^{|S|} \times m$ matrix M, with the rows labelled by assignments $\alpha \in S$ and the columns labelled by clauses of F. Namely, for any pair (α, i) set

$$M[\alpha, i] = \begin{cases} 1 & \text{if the ith clause is not satisfied by } \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

If $\log |S| < km/8n2^k$ then the rows of M are distinct with probability at least $1 - 2^{km/n2^k}$.

Proof. We think of M as generated column by column with the columns sampled independently. Fix two assignments α and $\hat{\alpha}$ such that $\alpha \neq \hat{\alpha}$. Let S be the set of indices on which the
two assignments differ, i.e., \(S = \{ i \mid \alpha_i \neq \hat{\alpha}_i \} \). Set \(s = |S| \). Let \(C_i \) denote the \(i \)th clause, then

\[
\Pr[C_i \text{ unsat by } \hat{\alpha} \text{ and satisfied by } \alpha] = \frac{1}{2^k} \left(1 - \frac{(n-s)}{\binom{n}{k}} \right) \geq \frac{1}{2^k} \frac{(n) - (n-1)}{\binom{n}{k}} = \frac{1}{2^k} \frac{(n-1)}{\binom{n}{k}} = \frac{k}{2^k n}.
\]

Thus the probability that rows \(\alpha \) and \(\hat{\alpha} \) agree on column \(i \) is at most \(1 - \frac{k}{2^k n} \). Since columns are sampled independently, the probability that \(\alpha \) and \(\hat{\alpha} \) agree on all columns is at most

\[
\left(1 - \frac{k}{n 2^k} \right)^m \leq e^{-km/(n 2^k)} \leq 2^{-5km/4n 2^k}
\]

since \(\log e > 5/4 \). By a union bound over ordered pairs of assignments in \(S \), the probability that there exists a pair of rows that agree on all columns is at most

\[
|S|^2 2^{-5km/4n 2^k} \leq 2^2 \log |S|^{-5km/4n 2^k} \leq 2^{-km/n 2^k}.
\]

In our current setting we have \(S = \{0, 1\}^n \) and \(km/n 2^k \geq n \log n \), thus applying the previous lemma yields that all rows of \(M \) are distinct with high probability. Since each profile is distinct with high probability, this implies that \(\mathcal{V} \) is 1-1 with high probability, and therefore \(|V| = 2^n \). It remains to bound the terms \(A_1(1, U), A_1(r, U), \) and \(A_0(s, V) \).

Bounding \(A_1(1, U) \). Fixing a single bit of a 1-input in \(U \) to \(\text{CSP-SAT}_{\text{Search}(\mathcal{F})} \) to 1 is the same as selecting a vertex \(C \) in the bipartite constraint graph of \(\text{Search}(\mathcal{F}) \) and an assignment \(\alpha \) to the variables which participate in \(C \), and then setting \(\text{TT}_C(\alpha) = 1 \). By the definition of \(\mathcal{U} \), for any input \(x \in \{0, 1\}^n \), fixing this bit to 1 determines exactly \(k \) out of the \(n \) variables of \(x \). Thus the number of \(x \in \{0, 1\}^n \) that are consistent with this partial assignment is \(2^{n-k} \), and since \(\mathcal{U} \) is one-to-one, we have \(A_1(1, U) = 2^{n-k} \).

Bounding \(A_1(r, U) \). Similar to the previous bound, but now we fix \(r \) of the truth table bits to 1. By definition of \(\mathcal{U} \), these bits must be chosen from \(r \) distinct truth tables in the 1-input in order to be consistent with any \(x \in \{0, 1\}^n \). With respect to the underlying CNF \(\mathcal{F} \), this corresponds to fixing an assignment to the set of variables appearing in an arbitrary set \(S \) of \(r \) clauses in \(\mathcal{F} \). By Lemma 4.7, with high probability we have \(|\text{vars}(S)| \geq rk/2 \). Thus fixing these \(r \) bits in the definition of \(A_1(r, U) \) corresponds to setting at least \(rk/2 \) of the input variables that participate in the constraints with determined truth tables. The number of \(x \) inputs that are consistent with these indices fixed is therefore \(\leq 2^{n-rk/2} \), and so \(A_1(r, U) \leq 2^{n-rk/2} \).

Bounding \(A_0(s, V) \). This case is similar to \(A_1(r, U) \). We get \(A_0(s, V) \leq 2^{n-sk/2} \).

Observe that \((2s)A_1(1, U) = (2s)2^{n-k} = (2s)2^n/n^2 \leq 2^{n-1} \). Putting this altogether we get the following lower bound on monotone circuit size is at least

\[
\frac{2^{n-1}}{(2s)^{s+1} 2^{n-sk/2}} = 2^{sk/2-(s+1) \log 2s-1} \geq 2^{s(k/2-2 \log s)} \geq 2^{\tilde{O}(n)}.
\]
where the last inequality follows from $s = n/e k^2$ and $k/4 \geq \log n$.

\section{Random CNFs}

In this section we show how to modify the argument from the previous section to apply to the “usual” distribution of random CNFs $F(m, n, k)$. Using the probabilistic method we find a partition of the variables of a random formula $F \sim F(m, n, k)$ such that many of the clauses in F are balanced with respect to the partition. Ideally, every clause would be balanced, but it turns out that this is too strong — instead, we show that we can balance many of the clauses, and the remaining imbalanced clauses are always satisfied by a large collection of assignments.

First we introduce our notion of “imbalanced” clauses.

\begin{definition}
Fix $\epsilon > 0$. Given a partition of n variables into x-variables and y-variables, clause C is called X-heavy if it contains more than $(1 - \epsilon)k x$-variables. Clause C is called Y-heavy if it contains more than $(1 - \epsilon)k y$-variables. Clause C is called balanced if it is neither X-heavy nor Y-heavy.
\end{definition}

We recall some basic facts from probability theory which will be used in our main lemma.

\begin{lemma}[Lovász Local Lemma]
Let $E = \{E_1, \ldots, E_n\}$ be a finite set of events in the probability space Ω. For $E \in E$ let $\Gamma(E)$ denote the set of events E_i on which E depends. If there is $q \in [0, 1)$ such that $\forall E \in E$ we have $\Pr(E) \leq q(1 - q)|\Gamma(E)|$, then the probability of avoiding all sets E_i is at least $\Pr(E_1 \land E_2 \land \cdots \land E_n) \geq (1 - q)^n$.
\end{lemma}

\begin{fact}[Entropy bound on binomial tail]
For any $0 < \epsilon < 1/2$ we have
\[
\frac{2^{H(\epsilon)n}}{\sqrt{8n\epsilon(1 - \epsilon)}} \leq \sum_{j=0}^{\lfloor \epsilon n \rfloor} \binom{n}{j} \leq 2^{H(\epsilon)n},
\]
where $H(\epsilon) = -\epsilon \log \epsilon - (1 - \epsilon) \log(1 - \epsilon)$ is the binary entropy function.
\end{fact}

\begin{fact}[Multiplicative Chernoff Bound]
Suppose Z_1, \ldots, Z_n are independent random variables taking values in $\{0, 1\}$. Let Z denote their sum and let $\mu = \mathbb{E}(Z)$ denote the sum’s expected value. Then for any $0 < \delta \leq 1$ we have
\[
\Pr(Z \geq (1 + \delta)\mu) \leq e^{-\delta^2 \mu/3} \quad \text{and} \quad \Pr(Z \leq (1 - \delta)\mu) \leq e^{-\delta^2 \mu/3}
\]
\end{fact}

We now prove the main lemma of this section, which shows that for $F \sim F(m, n, k)$ a good partition of the variables exists with high probability.

\begin{lemma}
Let $\epsilon = 1/20$, and let n be a positive integer. Let $k = 160 \log n$, let $m = n^2 2^k$, and let $m' = m 2^{-k/2}$. Let F be any k-CNF with m clauses on n variables. There exists a partition of the variables of F into two sets (X, Y) such that the following holds:
\begin{enumerate}
\item The number of variables in X is $n/2 \pm o(n)$.
\item The number of X-heavy clauses and Y-heavy clauses are each upper bounded by $3m'/2$.
\end{enumerate}
\end{lemma}
If $\mathcal{F} \sim \mathcal{F}(m, n, k)$, then with high probability there exists a set \mathcal{A} of $2^{|X|-(\log(e)n/60k)}$ truth assignments to the X variables that satisfy all X-heavy clauses, and a set \mathcal{B} of $2^{|Y|-(\log(e)n/60k)}$ truth assignments to the Y-variables satisfying all of the Y-heavy clauses.

Proof. We prove the existence of such a partition by the probabilistic method. For each variable, flip a fair coin and place it in X if the coin is heads and in Y otherwise.

(1) By the Chernoff bound, we have $E[|X|] = n/2$ and since each variable is placed in X independently with probability $1/2$ we have

$$\Pr(|X - n/2| > n^{2/3}) \leq 2 \exp(-n^{1/3}/6).$$

(2) For each clause C_i in C let Z_i be the random variable indicating whether this clause is X-heavy. Using both inequalities in Fact 4.11 we have that

$$\Pr(Z_i = 1) = \varepsilon k \sum_{j=0}^{\varepsilon k} \binom{k}{j} 2^{-k} < 2^{-k/2}$$

and

$$\Pr(Z_i = 1) = \sum_{j=0}^{\varepsilon k} \binom{k}{j} 2^{-k} \frac{2^{H(\varepsilon)k}}{\sqrt{8k\varepsilon(1 - \varepsilon)}} \geq \frac{2^{-3k/4}}{\sqrt{k}}$$

since $1/4 < H(1/20) < 1/3$ and $\sqrt{8\varepsilon(1 - \varepsilon)} < 1$ for our choice of ε. Let $Z = \sum_{i=1}^{m} Z_i$; then these two bounds and linearity of expectation imply $m2^{-3k/4}/\sqrt{k} \leq E[Z] \leq m2^{-k/2} = m'$. Thus by the Chernoff bound (see Fact 4.12) we have

$$\Pr(Z > 3m'/2) \leq \Pr(Z > 3E[Z]/2) \leq \exp(-E[Z]/12) \leq \exp(-m2^{-3k/4}/12\sqrt{k}).$$

Since $m = n^{2/2}k$ and $k = 160 \log n$ this occurs with high probability. An identical calculation applies to the Y-heavy clauses. It follows by a union bound that there exists a partition satisfying both of the above properties.

(3) Fix the partition (X,Y) satisfying the properties (1) and (2), and we show that the third property is also satisfied. Sample $\mathcal{F} \sim \mathcal{F}(m,n,k)$. We first bound the number of times a variable appears in a heavy clause with the goal of applying the Lovász Local Lemma.

 Arbitrarily fix z to be any of the n variables occurring as possible inputs to \mathcal{F}. By Lemma 4.13, the number of X-heavy and Y-heavy clauses are both bounded by $3m'/2$. Let Z_i be the indicator random variable which is 1 iff the variable z occurs in the ith heavy clause and let $Z = \sum_i Z_i$. Since $\mathcal{F} \sim \mathcal{F}(m,n,k)$ we have $\Pr(Z_i = 1) = k/n$ and so $E[Z] = 3km'/2n$. Applying the Chernoff bound we get

$$\Pr(Z > 3km'/n) = \Pr(Z > 2E[Z]) < \exp(-3km'/12n).$$
Taking a union bound over the \(n \) variables, we conclude that each variable occurs in at most \(3km'/n \) \(X \)-heavy and \(Y \)-heavy clauses with high probability.

Now, consider selecting a random assignment to the \(X \) variables. Let \(E_i \) be the event that the \(i \)th \(X \)-heavy clause is falsified by the random assignment, and observe that \(\Pr(E_i) \leq 2^{-(1-\varepsilon)k} \) since the clause is \(X \)-heavy. The number of events \(E_i \) is at most \(3m'/2 \), and for any event \(E_i \) the number of events that share any \(X \) variable with \(E_i \) is at most \(3m'k^2/n \). Set \(q = n/90m'k \). Then for each \(E_i \) we have
\[
q(1-q)^{\Gamma(E_i)} \geq q e^{-6qm'k^2/n} \geq \frac{n}{90km'} e^{-k/15} \geq 2^{-(1-\varepsilon)k},
\]
which holds for \(\varepsilon = 1/20 \) and \(k = 160 \log n \). Applying Lovász Local Lemma (see Lemma 4.10) we get that the probability that an assignment satisfies all \(X \)-heavy clauses is at least
\[
(1-q)^{3m'/2} \geq (1-n/(90km'))^{3m'/2} \geq e^{-n/(60k)}.
\]
Thus the number of assignments to the \(X \)-variables satisfying all heavy clauses is at least \(2^{|X|}/e^{n/60k} \), and an identical calculation applies to the \(Y \) variables.

With this lemma in place, we can proceed in more or less the same way that we proceeded in the last section. Now we perform the whole argument with respect to \(U = \mathcal{U}(\mathcal{A}) \) and \(V = \mathcal{V}(\mathcal{B}) \) chosen from the previous lemma. This allows us to restrict our attention only to the balanced clauses, and the calculations from the previous section work \textit{mutatis mutandis} since many clauses are balanced.

Theorem 4.14. There exists a constant \(c > 0 \) such that the following holds. Let \(n \geq c \) be any positive integer. Let \(\mathcal{F} \sim \mathcal{F}(m, n, k) \) for \(m = n^{2^k} \) and \(k = 160 \log n \). There exists a partition \((X, Y)\) of the variables of \(\mathcal{F} \) and a \(\delta > 0 \) such that the search problem \(\text{Search}(\mathcal{F}) \) defined with respect to this partition satisfies the following with high probability: any real monotone circuit computing \(\text{CSP-SAT}_{\text{Search}(\mathcal{F})} \) requires at least \(2^{\Omega(n)} \) gates.

Proof. Apply Lemma 4.13 to get a partition of the variables \((X, Y)\), and let \(\mathcal{A}, \mathcal{B} \) denote the set of assignments to the \(X \) and \(Y \) variables, respectively. If \(z \) is an input to \(\text{CSP-SAT}_{\text{Search}(\mathcal{F})} \), let \(z' \) be \(z \) restricted to truth tables corresponding to balanced clauses of \(\mathcal{F} \) with respect to the partition \((X, Y)\); it follows from the lemma that there are \(m - 3m' \geq m/2 \) balanced clauses for \(n \) sufficiently large. Let \(U = \{z' \mid z \in \mathcal{U}(\mathcal{A})\} \) and \(V = \{z' \mid z \in \mathcal{V}(\mathcal{B})\} \). Letting \(\mathcal{F}' \subseteq \mathcal{F} \) be the formula containing only balanced clauses of \(\mathcal{F} \), then we can think of \(z' \) as input to \(\text{CSP-SAT}_{\text{Search}(\mathcal{F}')}. \) As in the previous section, we shall apply Theorem 4.4 to \(U \) and \(V \).

Given a real monotone circuit separating \(\mathcal{U}(\mathcal{A}) \) and \(\mathcal{V}(\mathcal{B}) \), we apply to it restriction \(\rho \) setting inputs (i.e. truth tables) corresponding to unbalanced clauses as follows:

- Truth table entries corresponding to an \(X \)-heavy clause are all set to 1 except for the entry corresponding to the assignment falsifying the clause.
- Truth table entries corresponding to a \(Y \)-heavy clause are all set to 1.
We first claim that the circuit obtained from applying this restriction separates \(U\) and \(V\).

Given \(z \in \mathcal{U}(\mathcal{A})\) there is a corresponding \(z' \in \mathcal{U}\). Let \(z' \circ \rho\) denote the extension of \(z'\) by \(\rho\) to an input to \(\text{CSP-SAT}_{\text{Search}(\mathcal{F})}\). Thus, the derived circuit evaluated on \(z'\) is the same as the original circuit evaluated on \(z' \circ \rho\). Since assignments in \(\mathcal{A}\) satisfy all \(X\)-heavy clauses, it is easy to see that \(z' \circ \rho \geq z\), i.e., \(z' \circ \rho\) is \(z\) with some entries set to 1. The original circuit output 1 on \(z\), thus, by monotonicity, it also outputs 1 on \(z' \circ \rho\). This, in turn, means that the derived circuit outputs 1 on \(z'\).

Now let \(z \in \mathcal{V}(\mathcal{B})\) and consider \(z' \circ \rho\). Since assignments in \(\mathcal{B}\) satisfy all \(Y\)-heavy clauses it is easy to see that \(z' \circ \rho \leq z\), i.e., \(z' \circ \rho\) is \(z\) with some entries set to 0 (all truth tables corresponding to \(Y\)-heavy clauses are identically 1 both in \(z\) and \(z' \circ \rho\); truth tables corresponding to \(X\)-heavy clauses are either the same in \(z\) as in \(\rho\) or are identically 1 in \(z\) and containing a single 0-entry in \(\rho\). The original circuit outputs 0 on \(z\) therefore, by monotonicity, it also outputs 0 on \(z' \circ \rho\). This means that the derived circuit outputs 0 on \(z'\).

The rest of the proof proceeds identically to the proof of Theorem 4.5 using \(U\) and \(V\) and counting with respect to the balanced clauses. It is easy to see that with high probability the \(m/2\) balanced clauses contain all variables occurring in the formula, and this implies by the lemma that \(\mathcal{U}\) is 1-1 when restricted to \(\mathcal{A}\). Similarly, letting \(S = V = \mathcal{V}(\mathcal{B})\), we can apply Lemma 4.8 with respect to the \(m/2\) balanced clauses. Since

\[
km/8n2^k = (n/4) \log n \geq n/2 \pm o(n) = \log |S|
\]

for sufficiently large \(n\) this lemma implies that \(\mathcal{V}\) is 1-1 on this set of inputs, and so \(\mathcal{V}\) is also 1-1 when restricted to \(\mathcal{B}\).

Finally we consider the expansion by applying Lemma 4.7 with respect to the balanced clauses. By Lemma 4.13, each balanced clause contains at least \(k_0 = k/20\) variables from both \(X\) and \(Y\). There are at least \(m/2\) balanced clauses, and so

\[
\log(m/2) = \log n 2^{k-1} = k+2 \log n - 1 = 162 \log n - 1 \leq \log(n) \log \left(\frac{\log n}{2}\right) \leq \gamma k_0 \log \frac{k_0}{2}
\]

for sufficiently large \(n\) and some universal constant \(\gamma > 0\). We set \(s = n/2e k_0^2\); by Lemma 4.7 this implies that each collection \(S\) of \(s\) balanced clauses satisfies \(\text{vars}_X(S), |\text{vars}_Y(S)| \geq k_0 s/2\) with high probability. Note that we can apply the argument from Lemma 4.7 because conditioned on containing some fixed number \(k' \geq k/20\) of \(X\)-variables, the \(X\)-part of a clause is distributed exactly according to \(\mathcal{F}(1, |X|, k')\).

Our choice of \(s\) implies that \(2 \log 2s \leq 2 \log n \leq k_0/4\) since \(k_0 = k/20 = 8 \log n\). Now we just follow the calculation at the end of Theorem 4.5 using our new estimates. This yields the following lower bound on the real monotone circuit size of \(\text{CSP-SAT}_{\text{Search}(\mathcal{F}')}\):

\[
\frac{|U|(1 - 2s A_1(1, U))}{(2s)^{s+1} A_1(s, U)} \geq \frac{2|X| - \log(e)n/60k - 1}{(2s)^{s+1} 2|X| - sk_0/2} \geq 2^{s(k_0/2 - 2 \log 2s) - \log(e)n/60k - 1} \geq 2^{sk_0/4 - \log(e)n/120k_0 - 1} \geq 2^{\Omega(n)}.
\]

Corollary 4.15. Let \(\mathcal{F}\) be distributed as above. There exists \(\varepsilon > 0\) such that with high probability any RCCI-refutation requires \(2^{\Omega(n)}\) lines.
5 Conclusion

The obvious problem left open by this paper is to prove lower bounds on other conjectured hard problems for Cutting Planes. Hrubeš and Pudlak [17] applied similar techniques to prove lower bounds on the size of Cutting Planes refutations of the bit-encoded weak pigeonhole principle. It is conjectured [18] that the Tseitin tautologies are hard for Cutting Planes. However, \mathbb{CC}_2 admits linear-size refutations of the Tseitin graph principles on any underlying graph — simply consider the lines as mod 2 linear equations and add the constraints, using the fact that each variable occurs in exactly two clauses. Therefore our techniques cannot be directly applied to obtain lower bounds for the Tseitin graph principles.

References

6 Appendix

In this appendix, we show how to prove Theorem 3.3. We could prove this theorem using the equivalence between a real analogue of Karchmer-Wigderson (KW) games and monotone real circuits, proven recently in [17]. This would entail proving equivalence between RCC₁ refutations and a real analogue of KW games, which is a relatively simple exercise. Instead, for
the purpose of readability and self-containment, we give a direct argument, which is essentially the reduction given by [17]. Theorem 3.3 follows from the following two lemmas.

Lemma 6.1. Let \(\mathcal{F} \) be an unsatisfiable CNF formula on \(n \) variables and let \(X = \{x_1, \ldots, x_{n_1}\} \), \(Y = \{y_1, \ldots, y_{n_2}\} \) be any partition of the variables. If there is a RCC1 refutation of \(\mathcal{F} \) with respect to the partition \((X, Y) \) of length \(\ell \), then there is a monotone real circuit separating the accepting and rejecting instances \(\mathcal{U}(\{0, 1\}^{n_1}), \mathcal{V}(\{0, 1\}^{n_2}) \) of CSP-SAT\(\text{Search}(\mathcal{F})\) with \(\ell \) gates.

Proof. Fix an RCC1-refutation of \(\mathcal{F} \). With each node \(v \) of the underlying directed acyclic graph (dag) associate two functions \(A_v : \{0, 1\}^{n_1} \to \mathbb{R} \) and \(B_v : \{0, 1\}^{n_2} \to \mathbb{R} \) that Alice and Bob use to communicate with the referee. We assume without loss of generality that the referee outputs 0 if and only if \(A_v(x) > B_v(y) \), and furthermore, that \(B_v \geq 0 \). Recall that each leaf in this dag is associated with a clause \(C_i \) and let \(\alpha_i \) be the assignment to the \(X \)-variables that does not satisfy the \(X \)-part of \(C_i \). Note: we may assume that if \(v \) is a leaf then

\[
A_v(x) = \text{TT}^{U_i}(\alpha_i) \quad \text{and} \quad B_v(y) = \text{TT}^{V_i}(\alpha_i). \tag{1}
\]

Next, we convert the given dag to the real circuit separating \(\mathcal{U}(\{0, 1\}^{n_1}) \) from \(\mathcal{V}(\{0, 1\}^{n_2}) \) as follows. The topology of the derived circuit is exactly the same as that of the dag. Thus, to finish specifying the circuit we need to label inputs to the circuit and label the internal nodes by real monotone gates. Each leaf labeled by clause \(C_i \) in the dag turns into an input variable to the circuit labeled by \(\text{TT}^{U_i}(\alpha_i) \). With each internal node \(v \) of the dag with children \(u_1 \) and \(u_2 \) we associate the function \(f_v \) defined recursively as follows:

\[
f_v(z) = \max_{x \in \{0, 1\}^{n_1}} \{ A_u(x) \mid f_{u_1}(z) \geq A_{u_1}(x) \land f_{u_2}(z) \geq A_{u_2}(x) \}.
\]

We define \(f_v(z) \) to be 0 if the set on the right-hand side is empty. We claim that these functions can be computed by real monotone gates and for every \(x \in \{0, 1\}^{n_1} \) and every \(y \in \{0, 1\}^{n_2} \) we have

\[
f_v(\mathcal{U}(x)) \geq A_v(x) \quad \text{and} \quad f_v(\mathcal{V}(y)) \leq B_v(y). \tag{2}
\]

First, let’s see how the above properties of \(f_v \) imply that the constructed circuit separates \(\mathcal{U}(\{0, 1\}^{n_1}) \) from \(\mathcal{V}(\{0, 1\}^{n_2}) \). Let \(r \) be the root node of the dag. Since we started with a valid RCC1 refutation of \(\mathcal{F} \) we have \(A_r(x) > B_r(y) \) for all \(x \) and \(y \). Therefore, \(f_r(\mathcal{U}(x)) > f_r(\mathcal{V}(y)) \) for all \(x \) and \(y \). Modifying \(f_r \) by composing it with an appropriately chosen threshold function gives us the separating circuit.

It is easy to see that \(f_v \) can be computed by a real monotone gate with inputs \(f_{u_1} \) and \(f_{u_2} \). First of all, the value of \(f_v \) is determined by values of \(f_{u_1} \) and \(f_{u_2} \), and secondly, increasing values of \(f_{u_1} \) and/or \(f_{u_2} \) increases the feasible region of \(xs \) over which the maximum is taken in the definition of \(f_v \).

Thus, it is left to show that \(f_v(z) \) satisfies (2). We shall prove this by induction. The base case is given by (1). Inductive assumption (IA): suppose that we proved (2) for children \(u_1, u_2 \) of \(v \). Consider an arbitrary \(x \in \{0, 1\}^{n_1} \). By IA, we have \(f_{u_1}(\mathcal{U}(x)) \geq A_{u_1}(x) \) and \(f_{u_2}(\mathcal{U}(x)) \geq A_{u_2}(x) \). Thus, the region over which the max is taken in the definition of \(f_v(\mathcal{U}(x)) \) is nonempty and contains \(x \). It follows that \(f_v(\mathcal{U}(x)) \geq A_v(x) \). Now, consider an
arbitrary $y \in \{0, 1\}^n$. Assume for contradiction that $f_v(\mathcal{V}(y)) > B_v(y)$. Since $B_v(y) \geq 0$, we have $f_v(\mathcal{V}(y)) = A_v(x)$ for some $x \in \{0, 1\}^n$. Thus we have $A_v(x) > B_v(y)$, and by soundness of the refutation it follows that either $A_{u_1}(x) > B_{u_1}(y)$ or $A_{u_2}(x) > B_{u_2}(y)$. Assume without loss of generality that $A_{u_1}(x) > B_{u_1}(y)$. By definition of $f_v(\mathcal{V}(y))$ we have $f_{u_1}(\mathcal{V}(y)) \geq A_{u_1}(x) > B_{u_1}(y)$. This contradicts the IA.

The above lemma proves the first part of Theorem 3.3. The following lemma proves the second part of the theorem.

Lemma 6.2. With the setting as in the previous lemma, a real monotone circuit separating the inputs of CSP-SAT_{Search(F)} implies a RCC$_1$ refutation of F of the same size.

Proof. The RCC$_1$ refutation that we shall construct will have the exact same topology as the given real monotone circuit. Turn each input variable $TT_i(\alpha)$ of the circuit into the corresponding clause C_i in the refutation. Turn each gate v in the circuit into the line in the refutation computed by the following RCC$_1$ protocol. On input x, Alice privately runs the circuit on $U(x)$ and sends the value A_v computed by the circuit at gate v to the referee. On input y, Bob acts analogously — he simulates the circuit privately on input $\mathcal{V}(y)$ and sends the value B_v computed by the circuit at gate v to the referee. The referee outputs 0 if and only if $A_v > B_v$. Since at the top gate the circuit is identically 1 on $U(x)$ and 0 on $\mathcal{V}(y)$, the referee always outputs 0 at the last line in the refutation. Thus, the only thing left to see is that the refutation is sound. Let u_1 and u_2 be the children of v, then $A_v = f(A_{u_1}, A_{u_2})$ and $B_v = f(B_{u_1}, B_{u_2})$ for some monotone function f. Thus, if $A_v > B_v$, then either $A_{u_1} > B_{u_1}$ or $A_{u_2} > B_{u_2}$. \qed