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1 INTRODUCTION

The Satisfiability (SAT) problem — that is, the problem of finding a satisfying assignment for a given boolean formula —

is one of the central problems studied in theoretical computer science. As one of the classic NP-Complete problems

there is no efficient algorithm that solves SAT on all instances unless P = NP. Furthermore, since any polynomial-time

algorithm which solves SAT must also correctly classify all unsatisfiable boolean formulas, it follows that the complexity

of the SAT problem is also intimately connected with the study of refuting unsatisfiable formulas.

In this paper, we study the problem of refuting randomly generated SAT instances. The most well-studied random

SAT distribution is the random k-SAT model F (m,n,k ) where a random k-CNF over n variables is chosen by uniformly

and independently selectingm clauses from the set of all possible clauses on k distinct variables. This is an intrinsically

natural distribution of instances similar to the Erdős-Rényi random graph model, and it is closely related to phase

transitions and structural phenomena occurring in statistical physics (e.g. [27, 38]). Further, the model has close

connections with complexity theory through Feige’s Hypothesis: if F (m,n,k ) is hard to refute on average for the “right”

choice ofm,n,k then worst-case inapproximability results follow for many NP-Hard optimization problems [15].

We study refuting random k-SAT instances through the lens of propositional proof complexity. Proof complexity

studies the difficulty of refuting unsatisfiable SAT instances in propositional proof systems of various strengths. In this
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area, theorists have proven strong lower bounds for refuting random k-SAT formulas in many weak proof systems. For

instance, in the Resolution proof system — which forms the basis of essentially all modern SAT solvers — a classic result

of Chvátal and Szemerédi [11] showed that random k-SAT instances require length exp(Ω(n)) refutations with high

probability. Superpolynomial lower bounds for random k-SAT formulas are also known for other proof systems such as

Polynomial Calculus, Res(k ), and Sum-of-Squares proof systems [1, 2, 5, 37].

In the present work we focus on Cutting Planes refutations of F (m,n,k ). The Cutting Planes technique was

introduced in [19] in the context of linear programming, and was shown [9] to be a canonical way of proving that

every integral solution to a set of linear inequalities satisfies another inequality. It was introduced as a proof system in

[12], and is one of the most well-studied proof system from both the theoretical as well as from the algorithmic side. A

Cutting Planes proof begins with a set of unsatisfiable linear integral inequalities — that is, inequalities of the form

aT x ≥ b for a ∈ Zn and b ∈ Z — and seeks to derive the “false” inequality 0 ≥ 1 with as few derivation steps as possible.

New integral inequalities can be derived from old ones by either (i) taking nonnegative linear combinations of previous

lines, or (ii) dividing a previous inequality through by d (as long as all coefficients on the left-hand side are divisible by

d) and then rounding up the constant term on the right-hand side.

It is a well-known open problem to prove superpolynomial lower bounds for Cutting Planes refutations of random

k-SAT formulas, especially because superpolynomial lower bounds for other formulas have been shown [8, 34]. Our

main contribution is the first such lower bound on refutations of random k-SAT instances in this system, provided k is

large enough.

Theorem 1.1. There exist constants c,d such that the following holds. Let n be a sufficiently large positive integer,

k = c logn and m = n2
dk . Then with high probability, any Cutting Planes refutation of a random k-CNF formula

F ∼ F (m,n,k ) requires 2
Ω̃(n) lines1.

In fact, our exponential lower bounds even apply to some stronger proof systems than Cutting Planes — see Section

2 for details. This lower bound has been independently obtained by Pavel Hrubeš and Pavel Pudlák [23] using similar

techniques.

Proof Overview. To obtain the new lower bound we introduce a new technique for proving Cutting Planes lower

bounds. Our new technique is a generalization of the classic (and, prior to this paper, only) lower bound technique for

Cutting Planes proofs: the method of feasible interpolation [8, 28, 29, 34, 36]. As our technique generalizes it, let us first

describe feasible interpolation. Suppose we are given an unsatisfiable CNF formula F (x⃗ , y⃗, z⃗) on three sets of variables

x⃗ , y⃗, z⃗ of the following form

F (x⃗ , y⃗, z⃗) = A(x⃗ , z⃗) ∧ B (y⃗, z⃗).

Then, given an assignment α to the z variables it follows that either the formula A(x⃗ ,α ) is unsatisfiable or the formula

B (y⃗,α ) is unsatisfiable. Generally speaking, a feasible interpolation argument shows that the complexity of computing

the interpolant function

I (α ) =



1 if A(x⃗ ,α ) is unsatisfiable

0 otherwise.

is a lower bound on the complexity of refuting F — or, said contrapositively, from an efficient refutation of F (x⃗ , y⃗, z⃗)

in some proof system P we can construct an efficient algorithm computing I in some algorithmic model. Feasible

1
The notation Ω̃ ignores factors of logn.
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interpolation was introduced at this level of generality in a classic work of Krajicék [28] where it was shown, for

instance, that lower bounds on monotone circuit complexity of I can be used to show Resolution proof size lower bounds

for the formula F (provided I is “monotone” in a certain technical sense). Pudlák generalized Krajicek’s argument,

showing that lower bounds on real monotone circuit complexity lower bounded Cutting Planes proof size [34].

Of course, the obvious drawback of feasible interpolation as a lower bound technique is that it only applies to

“split” formulas of the form A(x⃗ , z⃗) ∧ B (y⃗, z⃗); this is why it can not directly be used to prove lower bounds for random

formulas from the distribution F (m,n,k ). Since this is the only known technique for proving strong lower bounds

against Cutting Planes proofs, researchers were essentially required to invent new techniques to handle random k-SAT

instances.

To prove Theorem 1.1 we generalize the method of feasible interpolation so that it can be applied to any unsatisfiable

CNF formula instead of only “split” formulas. As we have just mentioned, Pudlák [34] showed that from a Cutting Planes

refutation of a split formula F (x⃗ , y⃗, z⃗) one can extract a monotone real circuit for the interpolant I (z⃗) of roughly the

same size. We strengthen this connection by considering the proof system RCC (which is stronger than Cutting Planes,

see Section 2) and show that RCC proofs of any formula F characterize the size of monotone real circuits computing

mCSP-SAT, which is a monotone version of the SAT problem that depends on F .

Theorem 1.2 (Informal). Let F be any unsatisfiable CNF formula. If there is an RCC refutation of F of length ℓ, then

there is a monotone real circuit with poly(ℓ) gates computing mCSP-SAT. Conversely, if there is a monotone real circuit

computing mCSP-SAT of size ℓ then there is an RCC refutation of F of length poly(ℓ).

This equivalence generalizes prior arguments by Krajicék [28] and Bonet, Pitassi, and Raz [8], and crucially relies

on a recent technical result by Hrubeš and Pudlák [24] reducing real communication protocols to monotone real

circuits. With this equivalence in hand we simply need to prove lower bounds on monotone real circuits computing the

mCSP-SAT problem obtained from a random k-SAT instance; this turns out to be possible by using standard techniques

(the symmetric method of approximations [7, 21, 25]).

As stated above, Hrubeš and Pudlák have independently proved Theorem 1.1 using nearly identical techniques

[23]. Given any unsatisfiable CNF F they show how to obtain a partial monotone boolean function which they call an

unsatisfiability certificate for F , and then show that the complexity of computing an unsatisfiability certificate by a

monotone real circuit implies lower bounds for Cutting Planes by directly reducing these certificates to the feasible

interpolation lower bounds. As boolean functions, the unsatisfiability certificates are exactly the same as our mCSP-SAT

problem, and their lower bounds for random k-SAT are also obtained by using the symmetric method of approximations

[7, 21] in a nearly identical proof to ours. Further, they use this technique to give lower bounds for other problems: a

generalization of the Pigeonhole Principle called theWeak Bit Pigeonhole Principle, and a function related to Feige’s

hypothesis.

It is natural to wonder whether or not the new lower bound techniques could be pushed to obtain lower bounds for

k-SAT instances when k is bounded. By being a bit more careful, one can obtain superpolynomial lower bounds when

k ≫ log logn, but when k = Θ(1) the method of approximations fails to give superpolynomial lower bounds on the

CSP problem. Thus, it appears that we will not be able to push the lower bounds any further via this technique without

improving the underlying monotone circuit lower bound techniques.

Related Work. In the random k-SAT model F (m,n,k ) the unsatisfiability of a random formula F ∼ F (m,n,k ) is

controlled by the clause-density ∆ = m/n. For instance, it is easy to show that if ∆ > 2
k

ln 2 then F ∼ F (m,n,k ) is
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unsatisfiable with high probability. The Satisfiability Threshold Conjecture states that this control exhibits a threshold

phenomena: for all k there exists a fixed constant ck such that random k-SAT formulas with density ∆ > ck are almost

surely unsatisfiable, while formulas with density < ck are almost surely satisfiable. For k = 2, the conjecture was known

to be true since the early 1990s [10, 13, 18]. In a recent breakthrough this conjecture was resolved for large values of k

by appealing to arguments in statistical mechanics [14].

The density parameter ∆ also plays a role in lower bounds for refuting F (m,n,k ) in propositional proof systems.

Our main theorem holds for ∆ = Θ(2(1+τ )k ) for some 0 < τ < 1, and furthermore the interval of τ for which our lower

bounds hold seems to be relatively narrow (for instance, it seems impossible to choose τ ≈ 0 or τ ⪆ 1). In contrast,

the classic lower bounds by Chvátal and Szemerédi [11] show for any fixed ∆ > 2
k

ln 2 there is a constant κ (∆) such

that random k-SAT requires length exp(κ (∆)n) with high probabilty. In their result, κ decays doubly-exponentially

as ∆ increases, which makes their lower bound trivial whenm ≫ n log
1/4 n. Later lower bounds by Beame et al [4]

reduce the decay in κ to polynomial in ∆ and, in particular, show that a random k-SAT formula with at most n(k+2)/4

clauses requires exponential-length Resolution refutations. Beame et al also give asymptotically matching upper bounds,

showing tree-like Resolution refutations for random k-SAT of length exp(n/∆1/(k−2) ). Similar dependencies on the

density exist in lower bounds for random k-SAT in other proof systems, such as Polynomial Calculus [6], Res(k ) [1],

and Sum of Squares [37].

Krajicék [28] introduced feasible interpolation in its modern form, with similar results shown around the same time

by Razborov [36] and Bonet, Pitassi, and Raz [8]. Using feasible interpolation techniques, exponential lower bounds

were obtained for many proof systems, including Resolution and several variants and generalizations of Cutting Planes.

For instance, Krajicék used monotone feasible interpolation to obtain lower bounds on Resolution proofs, as well as

proofs in the CC-proof system where lines of the proof are computed by low-depth communication protocols [28].

Bonet, Pitassi and Raz used feasible interpolation techniques to obtain exponential lower bounds on low-weight Cutting

Planes proofs (where the bit-length of each of the coefficients are bounded byO (logn)) [8]. Pudlák obtained exponential

lower bounds on the length of Cutting Planes proofs [34]. Pudlák’s result was later improved to hold for semantic

Cutting Planes proofs by Filmus, Hrubeš and Lauria [16]. Despite the success of feasible interpolation, it has been quite

limited since it only applies to “split” formulas in the above sense, and the lower bounds ultimately rely on the strength

of underlying monotone circuit lower bounds. In particular, the only family of formulas which are known to be hard for

(unrestricted) Cutting Planes are the clique-coclique formulas [8, 34] and the Broken Mosquito Screen formulas [22].

Our equivalence in Theorem 1.2 is inspired by earlier results of Razborov [36] where he gave an interesting

characterization of circuit size in terms of certain communication protocols solving Karchmer-Wigderson games (this

directly generalizes the seminal Karchmer-Wigderson connection between communication complexity and circuit

depth [26]). Razborov’s reduction was recently simplified by Sokolov [39] and, inspired by Sokolov’s proof, we give a

direct equivalence between real monotone circuits and RCC-proofs and also between monotone circuits and CC-proofs

(cf. Section 4).

2 DEFINITIONS AND PRELIMINARIES

If x ,y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i . A function f : {0, 1}n → {0, 1} is monotone if f (x ) ≤ f (y)

whenever x ≤ y. More generally, if f (x ) = 1 we call x an accepting instance or a yes instance, while if f (x ) = 0 then we

call x a rejecting instance or a no instance. If x is any yes instance of f and y is any no instance of f then there exists an

index i ∈ [n] such that xi = 1,yi = 0, as otherwise we would have x ≤ y, contradicting the fact that f is monotone.
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A monotone circuit is a boolean circuit in which all gates are either ∧ or ∨ gates. Motivated by proof complexity,

Pudlak [34] introduced monotone real circuits. In these circuits each internal gate has two inputs and computes any

function ϕ (x ,y) : R2 → R which is monotone nondecreasing in its arguments.

Definition 2.1. A linear integral inequality in variables x = (x1, . . . ,xn ) with coefficients a = (a1, . . . ,an ) ∈ Z
n and

constant term c ∈ Z is an expression aT x ≥ c .

Definition 2.2. Given a system of linear integral inequalities Ax ≥ b, where A ∈ Zm×n and b ∈ Zm , a Cutting Planes

proof of an inequality aT x ≥ c is a sequence of inequalities a1

T x ≥ c1,a2

T x ≥ c2, . . . ,aℓ
T x ≥ cℓ , such that aℓ = a,

cℓ = c and every inequality i ∈ [ℓ] satisfies either

• ai
T x ≥ ci appears in Ax ≥ b,

• ai
T x ≥ ci is a Boolean axiom, i.e., x j ≥ 0 or −x j ≥ −1 for some j,

• there exists j,k < i such that aiT x ≥ ci is the sum of the linear inequalities ajT x ≥ c j and akT x ≥ ck ,

• there exists j < i and a positive integer d dividing every coefficient in aj such that ai = aj/d and ci = ⌈c j/d⌉.

The length of the proof is ℓ, the number of lines. If all coefficients appearing in the Cutting Planes proof are bounded by

O (poly(n)), then the proof is said to be of low weight.

Let F = C1 ∧ . . . ∧Cm be an unsatisfiable CNF formula over variables x1, . . . ,xn . For any clause C let C− denote the

variables that are negated inC and letC+ denote variables that are not negated inC . Each clauseC in F can be encoded

as a linear integral inequality as

∑
xi ∈C+ xi +

∑
xi ∈C− (1 − xi ) ≥ 1. Thus each unsatisfiable CNF can be translated into a

system of linear integral inqualities Ax ≥ b with no 0/1 solutions. A Cutting Planes (CP) refutation of this system is a

Cutting Planes proof of the inequality 0 ≥ 1 from Ax ≥ b.

We will also be interested in semantic proof systems in which the lines are restricted but we allow any sound

deduction. If f ,д,h : {0, 1}n → {0, 1} are boolean functions on the same domain then write f ,д ⊨ h if for all x ∈ {0, 1}n

we have f (x ) ∧ д(x ) =⇒ h(x ).

Definition 2.3. Let F = C1 ∧ . . . ∧ Cm be an unsatisfiable k-CNF and let L ⊇ {C1,C2, . . . ,Cm } be any collection of

boolean functions. An L-semantic refutation of F is a sequence L1,L2, . . . ,Lℓ of boolean functions Li ∈ L such that

(1) Li = Ci for all i = 1, 2, . . . ,m.

(2) Lℓ = 0, the constant 0 function.

(3) For all i > m there exists j,k < i such that Lj ,Lk ⊨ Li .

The length of the refutation is ℓ.

When L is the set of linear integral inequalities then the resulting proof system is called semantic Cutting Planes, and

has been previously studied in earlier works [8, 16, 31]. We will be particularly interested in semantic refutations where

the lines are computed by efficient communication protocols. We quickly review the framework of communication

complexity; for a more detailed introduction, we recommend the excellent exposition by Kushilevitz and Nisan [30].

Definition 2.4. A d-round communication protocol P consists of two players, Alice, who receives an input x ∈ X, and

Bob, who receives an input y ∈ Y . At each round one of the players sends a bit, depending on his or her input as well as

the bits communicated thus far, to the other. After d rounds, the players output a bit b. The protocol computes a function

F : X ×Y → {0, 1} if for all (x ,y) ∈ X × Y the protocol outputs F (x ,y).
Manuscript submitted to ACM
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A d-round communication protocol can be imagined as a full binary tree (known as a protocol tree) of depth at most

d , where each node corresponds to one of the players speaking, and the two outgoing edges of that node are labelled

with 0 and 1. Each root-to-leaf (equivalently, transcript of bits sent by Alice and Bob) is known as a history of the

communication protocol. Of course, a d-round protocol can have at most 2
d
leaves, and therefore histories. The leaves

are labelled with the bit b output by Alice and Bob when communicating according to the history that takes them to

this leaf.

For any communication protocol P , it is useful to think of an associated matrix M (known as a communication

matrix), with rows indexed by x ∈ X and columns indexed by y ∈ Y . The entry at index (x ,y) is the outcome of

the protocol P (x ,y). Initially, before communication begins, Alice and Bob each hold a copy of M . Each bit sent by

Alice partitions the rows of the matrixM into two sets, one consistent with Alice sending the bit 0 and the other with

Alice sending 1. Similarly, the columns of the matrix are partitioned when Bob sends a bit. Therefore, at every round,

Alice and Bob hold a subset R ⊆ X × Y of the indices of M . This subset is known as a rectangle because it satisfies

if (x ,y) ∈ R and (x ′,y′) ∈ R, then (x ′,y), (x ,y′) ∈ R. The protocol ends when Alice and Bob hold a monochromatic

rectangle, a rectangle R such that for every (x ,y) ∈ R, the outcome of P (x ,y) is b, for some b ∈ {0, 1}; we call such a

rectangle b-monochromatic. Because the protocol P outputs a bit b on every input (x ,y), the set of histories and the set

of monochromatic rectangles are in 1-1 correspondence. Therefore, every history h has a corresponding monochromatic

rectangle R (h) ofM . Furthermore, if the players output b on history h, then R (h) is b-monochromatic.

Semantic refutations where the lines are computed by low-depth communication protocols were introduced by

Krajicék in the study of feasible interpolation [28], and are defined next.

Definition 2.5. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables of F . A CCd -refutation of F

with respect to the partition (X ,Y ) is a semantic refutation L1, . . . ,Lℓ of F such that each function Li in the proof can be

computed by a d-bit communication protocol with respect to the partition (X ,Y ).

Observe that since any linear integral inequality aT x +bTy ≥ c with polynomially bounded weights can be evaluated

by a trivial O (logn)-bit communication protocol (just by having Alice evaluating aT x and sending the result to Bob),

it follows that low-weight Cutting Planes proofs are also CCO (logn)-proofs. By strengthening the the underlying

communication protocol we can simulate any Cutting Planes proof; this type of protocol was also introduced by

Krajícek [29].

Definition 2.6. A d-round real communication protocol is a communication protocol between two players, Alice and

Bob, where Alice receives x ∈ X and Bob receives y ∈ Y . In each round, Alice and Bob each send real numbers α , β to a

“referee”, who responds with a single bit b which is 1 if α ≤ β and 0 otherwise. After d rounds of communication, the players

output a bit b. The protocol computes a function F : X ×Y → {0, 1} if for all (x ,y) ∈ X × Y the protocol outputs F (x ,y).

Definition 2.7. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables of F . An RCCd -refutation

of F is a semantic refutation L1,L2, . . . ,Lℓ in which each function Li can be computed by a d-round real communication

protocol with respect to the partition (X ,Y ).

It is clear that any linear integral inequality aT x + bTy ≥ c can be evaluated by a 1-round real communication

protocol: Alice sends aT x to the referee and Bob sends c − bTy. It follows that a Cutting Planes refutation of F is also

an RCC1-refutation of F . We record each of these observations in the next proposition.
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Proposition 2.1. Let F be an unsatisfiable CNF and let (X ,Y ) be any partition of the variables into two sets. Any length-ℓ

low-weight Cutting Planes refutation of F is a length-ℓ CCO (logn)-refutation of F . Similarly, any length-ℓ Cutting Planes

refutation of F is a length-ℓ RCC1-refutation of F .

Although one only needs to establish the equivalence between RCC1-proofs and monotone real circuits in order

to obtain lower bounds for Cutting Planes proofs, we believe that the equivalence between CC-proofs and monotone

circuits is interesting in its own right.

3 UNSATISFIABLE FORMULAS AND MONOTONE CSP-SAT

In this section we introduce mCSP-SAT, which is a monotone version of SAT that plays a central role in our results.

Given any unsatisfiable CNF formula F and any partition (X ,Y ) of F s variables we then show how to produce a

corresponding collection of instances of mCSP-SAT. More precisely: for each assignment X → {0, 1} to the X variables

we will obtain an accepting instance of mCSP-SAT, and for each assignment Y → {0, 1} to the Y variables we will

obtain a rejecting instance of mCSP-SAT. In the next section, we will show that separating these mCSP-SAT instances

by a monotone boolean circuit is equivalent to refuting F in the CC proof system with respect to the partition (X ,Y )

(and we show a similar result for real circuits and RCC refutations). The mCSP-SAT problem has appeared in many

different guises in different works — the function essentially appears in the work of Raz and McKenzie [35] under a

different name, and it has re-appeared in recent work on lifting theorems in communication complexity [20, 33].

In order to define mCSP-SAT we first introduce a very general form of the boolean constraint satisfaction problem.

Definition 3.1. A constraint satisfaction problem (CSP) H is defined as follows. Let H = (L ∪ R,E) be a bipartite

graph and let n = |R |. The vertices in L represent the constraints of the CSP H , and the vertices in R represent boolean

valued variables. For each i ∈ L we let vars(i ) ⊆ R denote the neighbourhood of i and we associate a boolean function

TTi : {0, 1}vars(i ) → {0, 1} called the truth table of i that encodes the set of satisfying assignments to the ith constraint. The

CSPH accepts an assignment ρ ∈ {0, 1}R ifTTi (ρ ↾ vars(i )) = 1 for all i , and it is satisfiable if it accepts some assignment.

The mCSP-SAT problem is then defined by simply fixing the underlying constraint graph H and letting the input

string specify each of the truth tables TTi .

Definition 3.2. Let H = (L ∪ R,E) be a bipartite graph and let N =
∑
i ∈L 2

vars(i ) . The boolean function mCSP-SATH :

{0, 1}N → {0, 1} is defined as follows. An input z ∈ {0, 1}N encodes a CSPHz by specifying for each vertex i ∈ L its truth

table TTi : {0, 1}vars(i ) → {0, 1}. For any z ∈ {0, 1}N , mCSP-SATH (z) = 1 if and only if the CSP Hz encoded by z is

satisfiable.

Observe that this is a monotone boolean function since for any z, z′ ∈ {0, 1}N with z ≤ z′ (that is, zi ≤ z′i for every

i ∈ [N ]), any satisfying assignment for the CSPHz is also a satisfying assignment for the CSPHz′ . This is because z

and z′ both encode sets of truth tables, and so flipping any bit from 0 to 1 simply makes one of the constraints easier to

satisfy.

Next we show how to take any unsatisfiable k-CNF formula F and any partition of F s variables and produce a

collection of accepting and rejecting instances of mCSP-SAT. This reduction provides the key link between refutations

of F and computations of mCSP-SAT.

Definition 3.3. Let F be an unsatisfiable k-CNF and let (X ,Y ) be any partition of the variables of F into two sets. Let

H = H (F ,X ) denote the constraint graph of F restricted to the X variables, and consider mCSP-SATH , which is a boolean

function on N boolean variables. Define sets of accepting and rejecting instances of mCSP-SATH from F as follows.
Manuscript submitted to ACM
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Accepting InstancesU . For any x ∈ {0, 1}X define U (x ) ∈ {0, 1}N as follows. For each i ∈ [m] and each α ∈

{0, 1}vars(i ) set TTi (α ) = 1 iff x ↾ vars(i ) = α .

Rejecting InstancesV . For any y ∈ {0, 1}Y defineV (y) as follows. For each i ∈ [m] and each α ∈ {0, 1}vars(i ) set

TTi (α ) = 1 iff Ci (α ,y) = 1.

When the underlying unsatisfiable CNF F is clear from context, we will write mCSP-SATF to mean the partial monotone

boolean function corresponding to the above set of accepting and rejecting instances.

Note that accepting and rejecting inputs to mCSP-SATF have the following structure. The CSPHU (x ) corresponding

toU (x ) has each truth table TTi to be 0 everywhere except for exactly one 1 corresponding to x , and it follows that

the corresponding CSPHz has x as its unique satisfying assignment. In particular,HU (x ) is satisfiable and so it is an

accepting instance of mCSP-SAT. On the other hand, the CSPHV (y ) corresponding toV (y) is exactly F (x ,y) (note

the y variables are fixed); since F is an unsatisfiable CNF formula it follows thatHV (y ) is also unsatisfiable and so a

rejecting instance of mCSP-SAT. We give a detailed example next.

Example 3.4. Consider the unsatisfiable CNF formula

F = (x1 ∨ x2 ∨ y1) ∧ (x̄1) ∧ (x1 ∨ x̄2) ∧ (x2 ∨ ȳ1)

with the obvious partition into x- and y-variables. The underlying constraint graph of mCSP-SATF is depicted below —

note that we only keep the x variables from the underlying CNF formula.

C1

C2

C3

C4

x1

x2

Consider the truth assignment x = (1, 1) and y = (1). The mCSP-SATF input U (x ) has TTi (α ) = 1 if and only if

α = (1, 1); equivalently, each constraint TTi in the CSP is just the AND function x1 ∧ x2. On the other hand, the

mCSP-SATF input encoded byV (y) is obtained by substituting y = 1 into each constraint of F , yielding the constraints

TT1 = 1,TT2 = ¬x1,TT3 = x1 ∨ ¬x2,TT4 = x2; these constraints are easily seen to be unsatisfiable.

4 RELATING PROOFS AND CIRCUITS

In this section we prove the equivalence between CCd -proofs and monotone circuits, as well as RCC1-proofs and

monotone real circuits. Our argument relating CCd and monotone circuits is a direct generalization of main theorem of

Bonet, Pitassi, and Raz [8], which establishes the equivalence for the special case of the clique-coclique formulas. A

similar argument of this type also appears in the work of Razborov [36]; Razborov’s work was recently simplified by

Sokolov [39].

First we give a high-level sketch of the argument. From a CCd -proof we will construct a monotone circuit inductively

starting with the input clauses of the proof and progressing to the final line. Roughly, for each line L we will construct

a “cluster” of circuits CL satisfying the following property: if L is falsified by a truth assignment (x ,y), then CL will

“separates”U (x ) andV (y), meaning that CL (U (x )) = 1 and CL (V (y)) = 0. To construct CL we will use the soundness
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of the proof. If L was derived from L′ and L′′ in the proof, then by induction we will have constructed circuits CL
′

and

CL
′′

. By soundness, every assignment (x ,y) that falsifies L will falsify at least one of L′ and L′′, and so at least one

of the corresponding circuits CL
′

and CL
′′

will separateU (x ) andV (y). Using this, we will construct CL from the

circuits CL
′

and CL
′′

. Once we arrive at the final line of the proof, because every truth assignment falsifies 0 ≥ 1, the

corresponding circuit will separateU ({0, 1} |X | ) andV ({0, 1} |Y | ).

More concretely, because each line in the CCd -proof can be computed by a small communication protocol, this

induces a partition of the truth assignments to L into at most 2
d
monochromatic rectangles. Instead of constructing

only a single circuit for each line L, we will actually construct one for every 0-monochromatic rectangle (containing

inputs that falsify L) R of L, which will separateU (x ) andV (y) for every (x ,y) ∈ R.

Theorem 4.1. Let F be an unsatisfiable CNF formula on n variables and let X = {x1, . . . ,xn1
}, Y = {y1, . . . ,yn2

} be any

partition of the variables. Let d be a positive integer. If there is a CCd refutation of F with respect to the partition (X ,Y ) of

length ℓ, then there is a monotone circuit separating the accepting and rejecting instancesU ({0, 1} |X | ),V ({0, 1} |Y | ) of

mCSP-SATF of size O (23d ℓ).

Proof. Let F = C1 ∧ . . . ∧Cm be an unsatisfiable CNF formula over variables x1, . . . ,xn1
, y1, . . . ,yn2

. Let P be a

CCd -proof for F with ℓ lines. Order the lines in P as L1,L2, . . . ,Lℓ , where each line is either an input clause, or follows

semantically from two earlier lines.

We build the circuit for mCSP-SATF that separatesU ,V by induction on ℓ, the number of lines. By definition, each

line L can be computed by a d-round communication protocol. Therefore, for each line L there are at most 2
d
possible

histories h, each with an associated monochromatic rectangle RL (h). Recall that each monochromatic rectangle is a

subset of truth assignments that evaluate the same under L. We call a history h good for L if it is 0-monochromatic.

Therefore, a good history is one for which every assignment in the associated monochromatic rectangle falsifies L. For

every line L and each good history h for L, we will build a monotone circuit CLh that correctly “separates” x and y for

each (x ,y) ∈ RL (h). By this, we mean that the circuit CLh outputs 1 onU (x ) (the accepting-input associated with x for

mCSP-SATF ) and outputs 0 onV (y) (the rejecting-input associated with y). Because every assignment falsifies the

final line 0 ≥ 1, the associated monotone circuit will separateU fromV .

For each leaf in the proof, the associated line L is a clause Ci of F . The communication protocol for Ci is a two-bit

protocol where Alice/Bob each send 0 iff their inputs α , β are such that Ci (α , β ) = 0. Thus there is only one good

(0-monochromatic) rectangle with history h = 00 for L = Ci . This pair α , β corresponds to the variable TTi (α ) of

mCSP-SATF , and we define the circuit CLh corresponding to line L = Ci and good history h = 00 to be the variable

TTi (α ).

Now suppose that L is derived from L1 and L2, and inductively we have circuits C
L1

h′ , C
L2

h′′ for each history h′ good

for L1 and h′′ good for L2. Given a good history h for L, we will show how to build the circuit CLh . It will use all of the

circuits that were built for L1 and L2 ({C
L1

h′ ,C
L2

h′′ } for all good h
′
and h′′) and an additional 2

d
gates. To build CLh we

will construct a stacked protocol tree for L, corresponding to first running the communication protocol for L1 and then

running the communication protocol for L2. This will give us a height 2d (full) binary tree, T , where the top part is the

communication protocol tree for L1, with protocol trees for L2 hanging off of each of the leaves (Figure 1). We label each

of the leaves of this stacked tree with a circuit from {C
L1

h′ ,C
L2

h′′ } as follows. Consider a path labelled h1h2 in T , where h1

is the history from running L1 and h2 is the history from running L2. Because L is derived by a sound inference from

L1 and L2, any assignment that falsifies L must falsify at least one of L1 or L2. Since RL (h) is 0-monochromatic (with
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h2

h1

protocol L1

protocol L2

{C
L1

h1

,CL2

h2

}

Fig. 1. Protocol tree T .

respect to the communication matrix for L), for every (x ′,y′) ∈ RL (h) there is some i ∈ {1, 2} such that Li (x
′,y′) = 0.

Therefore, because RL1
(h1) and RL2

(h2) are monochromatic rectangles, it follows that either

(i) the rectangle RL1
(h1) ∩ RL (h) is 0-monochromatic (with respect to the communication matrix of L1), or

(ii) the rectangle RL2
(h2) ∩ RL (h) is 0-monochromatic (with respect to the communication matrix of L2)

In the first case, we will label this leaf with C
L1

h1

and otherwise we will label this leaf with C
L2

h2

. Now we will label the

internal vertices of the stacked tree with a gate: if a node corresponds to Alice speaking, then we label the node with an

∨ gate, and otherwise if the node corresponds to Bob speaking, then we label the node with an ∧ gate. The resulting

monotone circuit
2
for this history h has size 2

2d
plus the sizes of the sub-circuits, and thus performing the construction

for each of the 2
d
histories increases circuit size by factor of 2

3d
. With this, the theorem is immediately implied by the

following claim.

Claim. The monotone circuit resulting from the above construction satisfies: for each line L in P , and for each good

history h for L, CLh will be correct for all (x ,y) ∈ RL (h). That is, C
L
h (U (x )) > CLh (V (y)) for every (x ,y) ∈ RL (h).

Proof of Claim. If L is an axiom, then L is a clause Ci . The communication protocol for Ci is a two-bit protocol where

Alice and Bob each send 0 iff their part ofCi evaluates to 0. There is only one good (0-monochromatic) history, h = 00. If

(x ,y) ∈ RL (h) thenCi (x ,y) = 0 by definition. Let α = x ↾ vars(Ci ). In our construction the circuit corresponding to CLh
is labelled by the variable TTi (α ), and it is easy to check thatU (x ) sets TTi (α ) to true, andV (y) sets TTi (α ) to false.

If L is not an axiom, then we will prove the lemma by proving the following stronger statement by induction: for each

line L (derived from previous lines L1 and L2), and for each nodev in the stacked protocol tree for L, with corresponding

(sub)history h′ = h1h2, the subcircuit C
L
h′ associated with vertex v is correct on all (x ,y) ∈ RL (h) ∩ RL1

(h1)) ∩ RL2
(h2).

The claim follows, because once we reach h′ = ∅, thenCL
h will be correct on (x ,y) ∈ RL (h)∩RL1

(h1))∩RL2
(h2) = RL (h).

This follows because if hi = ∅, then RLi (hi ) = {0, 1}
|X | × {0, 1} |Y | , that is, if Alice and Bob haven’t communicated

anything in history hi , then the corresponding rectangle is the entire communication matrix.

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked protocol tree for L with

history h′ = h1h2. Then by soundness either

2
The resulting circuit is monotone because the only gates used are ∨ and ∧, each of which is a monotone function.
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(i) RL1
(h1) ∩ RL (h) is 0-monochromatic (with respect to the communication matrix of L1), or

(ii) RL2
(h2) ∩ RL (h) is 0-monochromatic (with respect to the communication matrix of L2).

In case (i) we labelled v by C
L1

h1

. Since RL1
(h1) ∩ RL (h) is 0-monochromatic, and because RL1

(h1) is a monochromatic

rectangle, RL1
(h1) is 0-monochromatic. By induction C

L1

h1

is defined and is correct on all (x ,y) ∈ RL1
(h1), so it is correct

on all

(x ,y) ∈ RL (h) ∩ RL1
(h1) ∩ RL2

(h2). A similar argument holds in case (ii).

For the inductive step, let v be a non-leaf node in the protocol tree with history h′ and assume that Alice owns v .

The rectangle RL (h) ∩ RL1
(h1) ∩ RL2

(h2) = A × B is partitioned into A0 × B and A1 × B, where

(1) A = A0 ∪A1,

(2) A0 × B is the rectangle with history h′0,

(3) A1 × B is the rectangle with history h′1.

Given (x ,y) ∈ RL (h) ∩RL1
(h1) ∩RL2

(h2), since by induction CLh′0 is correct on all (x ,y) ∈ A0 ×B and CLh′1 is correct on

all (x ,y) ∈ A1 × B, it follows that C
L
h = C

L
h′0 ∨ C

L
h′1 is correct on all (x ,y) ∈ A × B. To see this, observe that if x ∈ A0,

then CLh′0 (U (x )) = 1 and therefore

CLh′ (U (x )) = CLh′0 (U (x )) ∨ CLh′1 (U (x )) = 1.

The same applies when x ∈ A1, as then C
L
h′1 (U (x )) = 1. Finally if y ∈ B then both CLh′0 (V (y)) = CLh′1 (V (y)) = 0 and

therefore

CLh (V (y)) = CLh′0 (V (y)) ∨ CLh′1 (V (y)) = 0.

A similar argument holds if v is an internal node in the protocol tree that Bob owns (and is therefore labelled by an

AND gate). □

The converse direction is much easier. Although the converse is not necessary in order to establish Cutting Planes

lower bounds, we believe the equivalence between monotone circuits and CCO (logn)-proofs to be of independent

interest.

Theorem 4.2. If there is a monotone circuit separating the inputs of mCSP-SATF of size ℓ, then there is a CC2-refutation

of F of length ℓ with respect to this variable partition.

Proof. We show that from a small monotone circuit F for mCSP-SATF that separatesU ({0, 1} |X | ) andV ({0, 1} |Y | ),

we can construct a small CC2-proof for F , where Alice gets x ∈ {0, 1}
|X |

and Bob gets y ∈ {0, 1} |Y | . The lines/vertices

of the refutation will be in 1-1 correspondence with the gates of C. The protocol is constructed inductively from the

leaves of C to the root. For a gate д of C, letUд be those inputs u ∈ U ({0, 1} |X | ) such that д(u) = 1, and let Vд be those

inputs v ∈ V ({0, 1} |Y | ) such that д(v ) = 0. At each gate д we will prove that for every pair (u,v ) ∈ Uд ×Vд and for

every (x ,y) such that u = U (x ),v = V (y), the protocol Rд on input (x ,y) will output 0. Since the output gate of C is

correct for all pairs, this will achieve our desired protocol.

At a leaf ℓ labeled by some variable TTj (α ), the pairs associated with this leaf must have TTj (α ) = 1 in u and 0 in

v , and thus we can define Rℓ (x ,y) to be 0 if and only if x is consistent with α and the clause Cj evaluates to false on

(x ,y). This is a 2-bit protocol, and by definition of the accepting and rejecting instances we have for all (x ,y) satisfying

u = U (x ),v = V (y) that x ↾ vars(j ) = α and R (α ,y, j ) holds.

Now suppose that д is an OR gate of C, with inputs д1,д2. The protocol Rд on (x ,y) is as follows. Alice privately

simulates Cд1
(U (x )) and Cд2

(U (x )), and Bob simulates Cд1
(V (y)) and Cд2

(V (y)). If (i) either Cд1
(U (x )) = 1 or
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Cд2
(U (x )) = 1 and (ii) both Cд1

(V (y)) = 0 and Cд2
(V (y)) = 0, then they output 0, and otherwise they output 1. This

is a 2-bit protocol, with Alice sending one bit to report whether or not condition (i) is satisfied, and Bob sending one bit

to report if (ii) is satisfied.

Now, we want to show that for all (x ,y) such that Cд (U (x )) = 1 and Cд (V (y)) = 0 we have that Rд (x ,y) = 0.

This is easy — since д = д1 ∨ д2 we have that Cд (U (x )) = 1 and Cд (V (y)) = 0 implies that either Cд1
(U (x )) = 1 or

Cд2
(U (x )) = 1 and Cд1

(V (y)) = 0 and Cд2
(V (y)) = 0, implying that the protocol will output 0 on (x ,y) by definition.

Similarly, if д is an AND gate, then again Alice privately simulates Cд1
(U (x )) and Cд2

(U (x )) and Bob privately

simulates Cд2
(V (y)) and Cд2

(V (y)). If (i) Cд1
(U (x )) = 1 and Cд2

(U (x )) = 1 and (ii) either Cд2
(V (y)) = 0 or

Cд2
(V (y)) = 0, then they ouput 0, and otherwise they output 1. By an analogous argument to the OR case, it’s easy to

see that the protocol will output 0 whenever Cд (U (x )) = 1 and Cд (V (y)) = 0. □

The next theorem relates RCC1 proofs and monotone real circuits. The proof (which is in the Appendix) crucially

uses a recent technical result regarding real monotone circuits due to Pavel Hrubeš and Pavel Pudlák [24].

Theorem 4.3 (cf. Theorem 1.2). Let F be an unsatisfiable CNF formula on n variables and let (X ,Y ) be any partition of

the variables. If there is a RCC1 refutation of F with respect to the partition (X ,Y ) of length ℓ, then there is a monotone real

circuit separating the accepting and rejecting instancesU ({0, 1} |X | ),V ({0, 1} |Y | ) of mCSP-SATF of size ℓ. Conversely, a

monotone real circuit separating the inputs of mCSP-SATF implies a RCC1 refutation of F of the same size.

Because every Cutting Planes line can be computed by a single-round real communication protocol (Proposition 2.1),

the above theorem implies that for any family of formulas F and for any partition of the underlying variables into X ,Y ,

a Cutting Planes refutation of F of length S implies a similar size monotone real circuit for separating the accepting and

rejecting instancesU ({0, 1} |X | ),V ({0, 1} |Y | ) of mCSP-SATF . Thus, lower bounds on the size of monotone real circuits

give lower bounds on the length of Cutting Planes proofs.

5 LOWER BOUNDS FOR RANDOM CNFS

In this section we use Theorem 4.3 to prove Theorem 1.1. In particular, we prove lower bounds for RCC1-refutations

(and therefore Cutting Planes refutations) of uniformly random k-CNFs with sufficient clause density.

Definition 5.1. Let F (m,n,k ) denote the distribution of random k-CNFs on n variables obtained by samplingm clauses

(out of the
(n
k

)
2
k possible clauses) uniformly at random.

The proof of Theorem 1.1 is delayed to Section 5.2; to get a feeling for the argument, we first prove an easier lower

bound for a simpler distribution of balanced random CNFs.

5.1 Balanced Random CNFs

Definition 5.2. Let X = {x1, . . . ,xn } and Y = {y1, . . . ,yn } be two disjoint sets of variables, and let F (m,n,k )⊗2 denote

the following distribution over 2k-CNFs: first sample F 1 = C1

1
∧C1

2
∧ · · · ∧C1

m from F (m,n,k ) on the X variables, and

then F 2 = C2

1
∧C2

2
∧ · · · ∧C2

m from F (m,n,k ) on the Y variables independently. Then output

F = (C1

1
∨C2

1
) ∧ (C1

2
∨C2

2
) ∧ · · · ∧ (C1

m ∨C
2

m ).

This distribution shares the well-known property with F (m,n,k ) that dense enough formulas are unsatisfiable with

high probability.
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Lemma 5.1. Let c > 2/ log e and let n be any positive integer. If k ∈ [n] and m ≥ cn2
2k then F ∼ F (m,n,k )⊗2 is

unsatisfiable with high probability.

Proof. Fix any assignment (x ,y) to the variables of F . The probability that the ith clause is satisfied by the joint

assignment is 1 − 1/22k
, and so the probability that all clauses are satisfied by the joint assignment is (1 − 1/22k )m ≤

e−m/2
2k
, since the clauses are sampled independently. By the union bound, the probability that some joint assignment

satisfies the formula is at most 2
2ne−m/2

2k
= 2

2n−(log e )m/2
2k
≤ 2

2n−(log e )cn ≤ 2
−Ω(n)

. Thus, the probability that the

formula is unsatisfiable is at least 1 − 2
−Ω(n)

. □

The main theorem of this section is that F ∼ F (m,n,k )⊗2
requires large RCC-proofs, which is obtained by using

Theorem 4.3 and applying the well-known method of symmetric approximations [7, 21] to obtain lower bounds on

monotone circuits computing mCSP-SATF . We use the following formalization of the method which is exposited in

Jukna’s excellent book [25]. First we introduce some notation: ifU ⊆ {0, 1}N , then for r ∈ [N ] and b ∈ {0, 1} let

Ab (r ,U ) = max

I ⊆[N ]: |I |=r
|{u ∈ U | ∀i ∈ I : ui = b}|.

Theorem 5.2 (Theorem 9.19 in Jukna). Let f : {0, 1}N → {0, 1} be a monotone boolean function and let 1 ≤ r , s ≤ N be

any positive integers. Let U ⊆ f −1 (1) and V ⊆ f −1 (0) be arbitrary subsets of accepting and rejecting inputs of f . Then

every monotone real circuit that outputs 1 on all inputs inU and 0 on all inputs in V has size at least

min

{
|U | − (2s )A1 (1,U )

(2s )r+1A1 (r ,U )
,

|V |

(2r )s+1A0 (s,V )

}
.

Next we state the main theorem of this section.

Theorem 5.3. Let k = 4 logn andm = cn2
2
k where c > 2/ log e is some constant. Let F ∼ F (m,n,k )⊗2 with variable

partition (X ,Y ), and let U = U ({0, 1} |X | ),V = V ({0, 1} |Y | ). Then with high probability any monotone real circuit

separatingU and V has at least 2
Ω̃(n) gates.

Corollary 5.4. Let n be a sufficiently large positive integer, and let k = 4 logn,m = n6. If F ∼ F (m,n,k )⊗2 then with

high probability every RCC1-refutation (and therefore, Cutting Planes refutation) of F has at least 2
Ω̃(n) lines.

Proof. Immediate consequence of Theorems 4.3 and 5.3. □

The proof of Theorem 5.3 comes down to the essential property that random k-CNFs are good expanders. The next

lemma records the expansion properties we require of random CNFs; the proof is adapted from the notes of Salil Vadhan

[40]. The lemma is stated in general terms for re-use in the next section.

Lemma 5.5. Let n be any sufficiently large positive integer. Let k,m be positive integers and sample F ∼ F (m,n,k ). Let

s ≤ n/ek2 be a positive integer. For any subset S ⊆ F of clauses let vars(S ) denote the subset of variables appearing in

clauses S . If

logm ≤ δ ·
k

2

log

(
k

2

)
for some 0 < δ < 1, then every set S ⊆ F of size s satisfies |vars(S ) | ≥ ks/2 with probability at least 1−2

−(1−δ ) (ks/2) log(k/2) .

Proof. Fix any set S ⊆ F of size s , and for each clause C ∈ S sample the variables in C one at a time without

replacement. Let v1,v2, . . . ,vks denote the concatenation of all sequences of sampled variables over all C ∈ S . We say

that variable vi is a repeat if it has already occurred among v1, . . . ,vi−1. In order for |vars(S ) | < ks/2 the concatenated
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sequence must have at least ks/2 repeats, and the probability that variable vi is a repeat is at most (i − 1)/n ≤ ks/n.

This implies that

Pr[|vars(S ) | < ks/2] ≤

(
ks

ks/2

) (
ks

n

)ks/2

≤

(
2eks

ks

)ks/2
(
ks

n

)ks/2

≤

(
2

k

)ks/2

using standard bounds on binomial coefficients and the fact that s ≤ n/ek2
. Thus

Pr[∃S : |S | = s, |vars(S ) | < ks/2] ≤ ms
(

2

k

)ks/2

,

and by assumption logm ≤ δ · k
2

log

(
k
2

)
, finishing the proof of the lemma. □

Using the expansion lemma we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We shall apply Theorem 5.2 to U = U ({0, 1}n ) and V = V ({0, 1}n ) (cf. Section 3) with

r = s = n/ek2
, k = 4 logn, andm = n2

2
k
. Recall that U and V are the functions mapping x inputs to 1-inputs of

mCSP-SATF and mappingY inputs to 0-inputs of mCSP-SATF , respectively. To finish the argument we need to compute

|U |,A1 (1,U ),A1 (r ,U ), |V |,A0 (s,V ).

By definition, in the accepting inputU (x ) we set TTi (α ) = 1 if and only if x ↾ vars(i ) = α ; thus,U (x ) = U (x ′) for

some x , x ′ only if there exists an x variable that doesn’t appear in any clause. However, it is easy to see that with

high probability every x variable participates in some clause, and thusU is 1-1 with high probability, and therefore

|U | = 2
n
with high probability.

Recall that the 0-inputs of mCSP-SATF correspond to substituting a Y -assignment into F and writing out truth tables

of all the clauses. The truth tables corresponding to the clauses that were satisfied by the Y -assignment are identically

1, and the truth tables corresponding to the clauses that were not satisfied by the given Y -assignment contain exactly

one 0-entry, because each clause has a unique falsifying assignment to its variables. Given a Y -assignment we call the

set of clauses that were not satisfied by the Y assignment the profile of Y . The next lemma implies that the profiles of all

Y -assignments are distinct with high probability.

Lemma 5.6. Let n,m,k be positive integers. Let F ∼ F (m,n,k ), let S ⊆ {0, 1}n be a collection of boolean assignments,

and define the following |S| ×m matrix M , with the rows labelled by assignments α ∈ S and the columns labelled by

clauses of F . Namely, for any pair (α , i ) set

M[α , i] =



1 if the ith clause is not satisfied by α ,

0 otherwise.

If log |S| < km/8n2
k then the rows ofM are distinct with probability at least 1 − 2

km/n2
k
.

Proof. We think ofM as generated column by columnwith the columns sampled independently. Fix two assignments

α and α̂ such that α , α̂ . Let S be the set of indices on which the two assignments differ, i.e., S = {i | αi , α̂i }. Set

s = |S |. Letting Ci denote the ith clause we have

Pr[Ci unsat by α̂ and satisfied by α] =
1

2
k
*.
,
1 −

(n−s
k

)(n
k

) +/
-
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as α̂ must falsify Ci and α must differ from α̂ on one of the indices in S . Continuing the calculation,

1

2
k
*.
,
1 −

(n−s
k

)(n
k

) +/
-
≥

1

2
k

(n
k

)
−

(n−1

k

)(n
k

) =
1

2
k

(n−1

k−1

)(n
k

) = k

2
kn
.

Thus the probability that rows α and α̂ agree on column i is at most 1 − k
2
kn

. Since columns are sampled independently,

the probability that α and α̂ agree on all columns is at most(
1 −

k

n2
k

)m
≤ e−km/(n2

k ) ≤ 2
−5km/4n2

k

since log e > 5/4. By a union bound over ordered pairs of assignments in S, the probability that there exists a pair of

rows that agree on all columns is at most

|S|22
−5km/4n2

k
≤ 2

2 log |S |−5km/4n2
k
≤ 2
−km/n2

k
. □

In our current setting we have S = {0, 1}n and km/n2
k ≥ n logn, thus applying the previous lemma yields that all

rows ofM are distinct with high probability. Since each profile is distinct with high probability, this implies thatV is

1-1 with high probability, and therefore |V | = 2
n
. It remains to bound the terms A1 (1,U ),A1 (r ,U ), and A0 (s,V ).

Bounding A1 (1,U ). Fixing a single bit of a 1-input inU to mCSP-SATF to 1 is the same as selecting a vertex C in the

bipartite constraint graph of F and an assignment α to the variables which participate inC , and then setting TTC (α ) = 1.

By the definition ofU , for any input x ∈ {0, 1}n , fixing this bit to 1 determines exactly k out of the n variables of x .

Thus the number of x ∈ {0, 1}n that are consistent with this partial assignment is 2
n−k

, and sinceU is one-to-one, we

have A1 (1,U ) = 2
n−k

.

Bounding A1 (r ,U ). Similar to the previous bound, but now we fix r of the truth table bits to 1. By definition ofU ,

these bits must be chosen from r distinct truth tables in the 1-input in order to be consistent with any x ∈ {0, 1}n .

With respect to the underlying CNF F , this corresponds to fixing an assignment to the set of variables appearing in an

arbitrary set S of r clauses in F . By Lemma 5.5, with high probability we have |vars(S) | ≥ rk/2. Thus fixing these r bits

in the definition of A1 (r ,U ) corresponds to setting at least rk/2 of the input variables that participate in the constraints

with determined truth tables. The number of x inputs that are consistent with these indices fixed is therefore ≤ 2
n−rk/2

,

and so A1 (r ,U ) ≤ 2
n−rk/2

.

Bounding A0 (s,V ). This case is similar to A1 (r ,U ). We get A0 (s,V ) ≤ 2
n−sk/2

.

Observe that (2s )A1 (1,U ) = (2s )2n−k = (2s )2n/n2 ≤ 2
n−1

. Putting this altogether we get the following lower bound

on monotone circuit size is at least

2
n−1

(2s )s+1
2
n−sk/2

= 2
sk/2−(s+1) log 2s−1 ≥ 2

s (k/2−2 log s ) ≥ 2
Ω̃(n) ,

where the last inequality follows from s = n/ek2
and k/4 ≥ logn. □

5.2 Random CNFs

In this section we show how to modify the argument from the previous section to apply to the “usual” distribution

of random CNFs F (m,n,k ). Using the probabilistic method we find a partition of the variables of a random formula
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F ∼ F (m,n,k ) such that many of the clauses in F are balanced with respect to the partition. Ideally, every clause would

be balanced, but it turns out that this is too strong — instead, we show that we can balance many of the clauses, and the

remaining imbalanced clauses are always satisfied by a large collection of assignments. First we introduce our notion of

“imbalanced” clauses.

Definition 5.3. Fix ϵ > 0. Given a partition of n variables into x-variables and y-variables, a k-clause is called X -heavy

if it contains more than (1− ϵ )k x-variables. A k-clauseC is called Y -heavy if it contains more than (1− ϵ )k y-variables. A

k-clause is called balanced if it is neither X -heavy nor Y -heavy.

We recall some basic facts from probability theory which will be used in our main lemma.

Lemma 5.7 (Lovász Local Lemma (Theorem 5.1.1 in [3])). Let E = {E1, . . . ,En } be a finite set of events in the probability

space Ω. For E ∈ E let Γ(E) denote the set of events Ei on which E depends. If there is q ∈ [0, 1) such that ∀E ∈ E we have

Pr(E) ≤ q(1 − q) |Γ(E ) | , then the probability that none of the events Ei occur is at least Pr(E1 ∧ E2 ∧ · · · ∧ En ) ≥ (1 − q)n .

Fact 5.8 (Entropy bound on binomial tail (Lemma 6.19 in [17]). For any 0 < ε < 1/2 we have

2
H (ε )n√

8nε (1 − ε )
≤

⌊εn ⌋∑
j=0

(
n

j

)
≤ 2

H (ε )n ,

where H (ε ) = −ε log ε − (1 − ε ) log(1 − ε ) is the binary entropy function.

Fact 5.9 (Multiplicative Chernoff Bound (Theorems 4.4 and 4.5 in [32])). Suppose Z1, . . . ,Zn are independent random

variables taking values in {0, 1}. Let Z denote their sum and let µ = E(Z ) denote the sum’s expected value. Then for any

0 < δ ≤ 1 we have

Pr(Z ≥ (1 + δ )µ ) ≤ e−δ
2µ/3 and Pr(Z ≤ (1 − δ )µ ) ≤ e−δ

2µ/3.

We now prove the main lemma of this section, which shows that for F ∼ F (m,n,k ) a good partition of the variables

exists with high probability. There is a delicate balance of parameters. In particular, there is tension between the distinct

profiles lemma (Lemma 5.6), which requiresm to be large, and the Lovasz Local Lemma (Lemma 5.7) which requiresm

to be small. This is further complicated because we would like to retain all but a constant fraction of assignments in

part (3). Because of this we need to set our parameters with precision.

Lemma 5.10. Let ε = 1/50, and let n be a sufficiently large positive integer. Let k = 240 logn, and letm = n2
(1+1/16)k .

Let F ∼ F (m,n,k ) and partition the variables F into two sets (X ,Y ) by adding each variable to X with probability 1/2,

and adding it to Y otherwise. Then with probability 1 − o(1) the following holds:

(1) The number of variables in X is n/2 ± o(n).

(2) The number of X -heavy clauses and Y -heavy clauses are each upper bounded by (3/2)m2
−k/2.

(3) There exists a set A of 2
|X |/e3 truth assignments to the X variables that satisfy all X -heavy clauses, and a set B of

2
|Y |/e3 truth assignments to the Y -variables satisfying all of the Y -heavy clauses.

Proof. We prove the existence of such a partition by the probabilistic method. For each variable, flip a fair coin and

place it in X if the coin is heads and in Y otherwise.

(1)We have E[|X |] = n/2 and since each variable is placed in X independently with probability 1/2 we have

Pr[|X − n/2| > n2/3
] ≤ 2 exp(−n1/3/6)
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by applying the Chernoff bound from Fact 5.9.

(2) For convenience, letm = n2
(1+τ )k

where we set τ = 1/16. For each clause Ci in F let Zi be the random variable

indicating whether this clause is X -heavy. Using both inequalities in Fact 5.8 we have that

Pr(Zi = 1) =
εk∑
j=0

(
k

j

)
2
−k ≤ 2

−k
2
H (ε )k

and

Pr(Zi = 1) =
εk∑
j=0

(
k

j

)
2
−k ≥ 2

−k 2
H (ε )k√

8kε (1 − ε )
>

2
−(0.85)k
√
k

since 0.14 < H (ε ) < 0.15 and

√
8ε (1 − ε ) < 1 for our choice of ε . Let Z =

∑m
i=1

Zi ; then these two bounds and linearity

of expectation implym2
−(0.85)k/

√
k ≤ E[Z ] ≤ m2

−k
2
H (ε )k = n2

(τ+H (ε ))k
. Denotem0 := n2

(τ+H (ε ))k
and observe that

m0 < m2
−k/2

. By the Chernoff bound (see Fact 5.9) we have

Pr(Z > 3m0/2) ≤ Pr(Z > 3E[Z ]/2) ≤ exp(−E[Z ]/12) ≤ exp(−m2
−(0.85)k/(12

√
k )).

Sincem = n2
(1+τ )k

and k = 240 logn this occurs with high probability. An identical calculation applies to the Y -heavy

clauses. It follows by a union bound that the partition satisfies both of the above properties with high probability.

(3) Assuming that our partition (X ,Y ) satisfies properties (1) and (2), we show that the third property is also satisfied

with high probability. We first bound the number of times a variable appears in a heavy clause in F with the goal

of applying the Lovász Local Lemma. Arbitrarily fix z to be any of the n variables occurring as possible inputs to F .

Because the partition (X ,Y ) satisfies (2), the number of X -heavy and Y -heavy clauses are both bounded by 3m0/2. Let

Zi be the indicator random variable which is 1 iff the variable z occurs in the ith heavy clause and let Z =
∑
i Zi . Since

F ∼ F (m,n,k ) we have Pr(Zi = 1) = k/n and so E[Z ] = 3km0/2n. Applying the Chernoff bound we get

Pr(Z > 3km0/n) = Pr(Z > 2E[Z ]) < exp(−3km0/12n). (1)

Taking a union bound over the n variables, we conclude that each variable occurs in at most 3km0/n X -heavy and

Y -heavy clauses with high probability.

Now, consider selecting a random assignment to the X variables. Let Ei be the event that the ith X -heavy clause is

not satisfied by the random assignment, and observe that Pr(Ei ) ≤ 2
−(1−ε )k

since the clause is X -heavy. By property

(2), the number of events Ei is at most 3m0/2. As well, for any event Ei , by Equation 1, the number of events that share

any X variable with Ei is at most 3m0k
2/n. Set q = 2

−δk
for δ = 1/15 + H (ε ). Then for each Ei we must show

q(1 − q) |Γ(Ei ) | ≥ qe−6qm0k2/n ≥ 2
−(1−ϵ )k , (2)

or equivalently

(1 − ε )k ≥ 6 log(e )
qm0k

2

n
− logq.

Sincem0 = n2
(τ+H (ε ))k

and q = 2
−δk

we have

6 log(e )
qm0k

2

n
− logq = 6 log(e )k2

2
(τ+H (ε )−δ )k + δk .
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By our setting τ = 1/16 and δ = 1/15 + H (ε ) we have τ + H (ε ) − δ < 0, and thus

δk + 6 log(e )k2
2
(τ+H (ε )−δ )k ≤ δk + 6 log e ≤ (1 − ε )k

for sufficiently large n (note k → ∞ when n → ∞), and so (2) holds.

We have set q such that only a constant fraction of assignments will not satisfy all X -heavy clauses. To see this,

observe that for our settings of τ ,δ , and k ,

qm0 = 2
−δkn2

(τ+H (ε ))k = n2
−(δ−(H (ε )+τ )k = n2

−(1/15−1/16)240 logn = 1.

Applying the Lovász Local Lemma (Lemma 5.7) we get that the probability that an assignment satisfies all X -heavy

clauses is at least

(1 − q)3m0/2 ≥ e−3qm0 = e−3.

Thus the number of assignments to the X -variables satisfying all heavy clauses is at least 2
|X |/e3

, and an identical

calculation applies to the Y variables by symmetry. □

With this lemma in place, we can proceed in more or less the same way that we proceeded in the last section. Now

we perform the whole argument with respect toU = U (A) and V = V (B), with A and B chosen as in the previous

lemma. This allows us to restrict our attention only to the balanced clauses, and the calculations from the previous

section work mutatis mutandis since many clauses are balanced.

Theorem 5.11. There exists a constant c > 0 such that the following holds. Let n ≥ c be any positive integer. Let

F ∼ F (m,n,k ) form = n2
(1+1/16)k and k = 240 logn. With high probability there exists a partition (X ,Y ) of the variables

of F and a δ > 0 such that any monotone real circuit computing mCSP-SATF requires at least 2
Ω̃(n) gates.

Proof. Apply Lemma 5.10 to get a partition of the variables (X ,Y ), and let A, B denote the set of assignments to

the X and Y variables, respectively given by property (3) of Lemma 5.10. If z is an input to mCSP-SATF , let z
′
be z

restricted to truth tables corresponding to balanced clauses of F with respect to the partition (X ,Y ); it follows from the

lemma that with high probability there are at leastm − 3m2
−k/2 ≥ m/2 balanced clauses for n sufficiently large. Let

U = {z′ | z ∈ U (A)} and V = {z′ | z ∈ V (B)}. Letting F ′ ⊆ F be the formula containing only balanced clauses of F ,

then we can think of z′ as input to mCSP-SATF . As in the previous section, we shall apply Theorem 5.2 toU and V .

The strategy of the proof is as follows: given a monotone real circuit C separatingU (X ) andV (Y ) (and therefore

U (A) andV (B)) we aim to apply a restriction ρ to C that fixes all of the input gates corresponding to the X -heavy

and Y -heavy clauses in such a way that the resulting circuit Cρ separatesU and V . Because F ′ is balanced, we can then

perform the same argument with for Cρ with respect toU (A) andU (B) as we did for balanced random CNFs in the

previous section. A lower bound on the size of Cρ then implies a lower bound on the size of the unrestricted circuit C .

We define the restriction ρ setting inputs (i.e. truth tables) corresponding to unbalanced clauses as follows:

• Truth table entries corresponding to an X -heavy clause are all set to 1 except for the entry corresponding to the

assignment that does not satisfy the clause.

• Truth table entries corresponding to a Y -heavy clause are all set to 1.

Claim 5.12. The circuit Cρ obtained from applying the restriction ρ to C separatesU and V .

Proof of Claim. Let x ∈ A, and let z = U (x ), then there is a corresponding z′ ∈ U . Let z′ ◦ ρ denote the extension of z′

by ρ to an input to mCSP-SATF . Thus, Cρ evaluated on z′ is the same as the original circuit C evaluated on z′ ◦ ρ. We
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claim that z′ ◦ ρ ≥ z, i.e., z′ ◦ ρ is z with some entries set to 1. To see this, observe that the truth table corresponding to

every balanced clause is given the same assignment by z and z′ ◦ ρ. Clearly, for any Y -heavy clause Ci , the assignment

given to TTi by z ◦ ρ is at least the assignment given by z. Now, let Ci be an X -heavy clause, and recall that according

to Definition z is defined by setting TTi (α ) = 1 if and only if x ↾vars (i )= α . Let α ′ be the unique assignment to vars (i )

(the variables of Ci ) that does not satisfy Ci . Because every assignment in A satisfies every X -heavy clause, it cannot

be that x ↾vars (i )= α ′, and so TTi (α
′) = 0 in both z and z′ ◦ ρ. Therefore, z′ ◦ ρ ≥ z. The original circuit C output 1 on

z and therefore, by monotonicity, it also outputs 1 on z′ ◦ ρ. This, in turn, means that Cρ outputs 1 on z′.

Now lety ∈ B, let z = V (y), and consider z′◦ρ. We claim that z′◦ρ ≤ z, i.e., z′◦ρ is z with some entries set to 0. Both

z and z′ ◦ ρ assign the same values to balanced clauses. Because every assignment in B satisfies every Y -heavy clause,

the truth tables corresponding to Y -heavy clauses are identically 1 in both z and z′ ◦ ρ by the definition of mCSP-SATF .

The truth tables corresponding to X -heavy clauses Ci are either the same in z as in z′ ◦ ρ (if there exists α ∈ {0, 1} |X |

such thatCi (x ,y) = 0) or are identically 1 in z and containing a single 0-entry in ρ (if there is no such α ). The original cir-

cuitC outputs 0 on z therefore, by monotonicity, it also outputs outputs 0 on z′◦ρ. This completes the proof of the claim.

The rest of the proof proceeds identically to the proof of Theorem 5.3. We will apply Theorem 5.2 toU and V , and

counting with respect to the balanced clauses. We begin by calculating |U |; to do this, we show that with high probability

U is 1-1 on A when looking only at the truth tables of balanced clauses. That is, each z′ ∈ U maps 1-1 to a z ∈ U (A).

This implies that |U | = |A|. By definition, in an accepting inputU (x ) we set TTi (α ) = 1 if and only if x ↾ vars(i ) = α ;

thus,U (x ) = U (x ′) for some x , x ′ only if there is some variable that doesn’t appear in any clause. It is easy to see

that with high probability them/2 balanced clauses contain all variables occurring in the formula. This implies thatU

is 1-1 when restricted to A and looking only at truth tables of balanced clauses. Therefore |U | = |A| = 2
|X |−3 log(e ))

.

Similarly, we show that with high probabilityV is 1-1 on B when looking only at the truth tables of balanced clauses.

That is, each z′ ∈ V (B) maps 1-1 to a z ∈ V (B). Letting S = V (B), we can apply Lemma 5.6 with respect to the

them/2 balanced clauses. Note that them/2 balanced clauses F ′ are obtained from F by discarding heavy clauses;

heavy-ness depends only on the partition (X ,Y ) and so F ′ is distributed as F (m/2,n,k ). Since

km/8n2
k = 3n15

log(n) > log |S|

for sufficiently large n this lemma implies thatV is 1-1 on B when restricted to the truth tables of the balanced clauses

with high probability. Therefore |V | = |B| = 2
|Y |−3 log(e )

. We now turn to bounding A1 (r ,U ), A1 (1,U ) and A0 (s,V ).

For this will use the following immediate corollary of Lemma 5.5.

Lemma 5.13. Let n be any sufficiently large integer, and k0,m be positive integers. Let F be a CNF formula onm clauses,

where each clause is sampled from F (1,n,k ′) for k ′ ≥ k0. Let s ≤ n/ek2

0
be a positive integer. If

logm ≤ δ ·
k0

2

log

(
k0

2

)
for some 0 < δ < 1, then every set S ⊆ F of size s satisfies |vars(S ) | ≥ k0s/2with probability at least 1−2

−(1−δ ) (k0s/2) log(k0s/2) .

This lemma follows immediately from the proof of Lemma 5.5 with k0 = k by noting that if each clause contains

greater than k variables, then this can only increase the size of vars(S ).

BoundingA1 (r ,U ). Fixing a single bit of an input inU to 1 is the same as selecting a balanced clauseC in the constraint

graph of F and an assignment α to the variables and setting TTC (α ) = 1. Fixing this bit to 1 determines all variables
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from X that participate in this clause. By definition, each balanced clause contains at least k0 = k/50 variables from X .

Now, to fix r truth table bits to 1, by the definition ofU , these bits must be chosen from r distinct truth tables in order

to be consistent with any x ∈ {0, 1}n . Let S be an arbitrary set of r balanced clauses from F ; we will apply Lemma 5.13.

There are at leastm/2 balanced clauses, and so

log(m/2) = log

(
n2

(1+1/16)k−1

)
= 256 logn − 1 ≤ γ ·

k0

2

log

k0

2

for sufficiently large n and some universal constant γ > 0. We set r = n/2ek2

0
; by Lemma 5.13 this implies that each

collection S of r balanced clauses satisfies |varsX (S) | ≥ k0r/2 with high probability. Note that we can apply the

argument from Lemma 5.13 because conditioned on containing some fixed number k ′ ≥ k/20 = k0 of X -variables, the

X -part of a clause is distributed exactly according to F (1, |X |,k ′). Thus, fixing these r bits in the definition of A1 (r ,U )

corresponds to setting at least k0r/2 of the input variables that participate in the constraints with determined truth tables.

The number of x-inputs that are consistent with these indices fixed is at most 2
|X |−rk0/2

, and so A1 (r ,U ) ≤ 2
|X |−rk0/2

.

Using the same argument, we have A1 (1,U ) ≤ 2
|X |−k0

.

Bounding A0 (s,V ). This case is similar to A1 (r ,V ) and we get A0 (s,V ) ≤ 2
|Y |−sk0/2

.

To put everything together, we just follow the calculation at the end of the proof of Theorem 5.3 using our new

estimates. Note that our choice of r = s = n/2ek2

0
implies that 2 log(2r ) ≤ 2 logn ≤ k0/2 since k0 = k/50 > 4 logn.

Applying this,

(2s )A1 (1,U ) ≤ 2
log(2r )+ |X |−k0 ≤ 2

|X |−(3/4)k0 .

This yields the following lower bound on the monotone real circuit size of mCSP-SATF :

|U | − (2s )A1 (1,U ))

(2s )r+1A1 (r ,U )
≥

2
|X |−3 log(e )−1

(2r )r+1
2
|X |−rk0/2

≥ 2
r (k0/2−log(2r ))−log(2r )−3 log(e )−1

≥ 2
rk0/4−log(2r )−3 log(e )−1

≥ 2
rk0/4−log(n)−3 log(e )−1 ≥ 2

Ω̃(n) . □

Corollary 5.14 (Theorem 1.1). Let F be distributed as above. There exists ε > 0 such that with high probability any

RCC1-refutation requires 2
Ω̃(n) lines.

6 CONCLUSION

The obvious problem left open by this paper is to prove lower bounds on other conjectured hard instances for Cutting

Planes: perhaps most important is improving the lower bounds for random k-SAT when k = Θ(1). It seems likely that

such lower bounds should hold for some (possibly large) constant k even for CC-proofs, however, as we discussed in

the introduction it seems that the symmetric method of approximations is incapable of obtaining strong lower bounds

for constant k . Another standard formula which is believed to be hard for Cutting Planes are the Tseitin tautologies

(conjectured, for instance, in [25]). However, CC2 proofs admits linear-length refutations of the Tseitin graph principles

on any underlying graph — simply consider the lines as mod 2 linear equations and add the constraints, using the fact
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that each variable occurs in exactly two clauses. Therefore our techniques cannot be directly applied to obtain lower

bounds for the Tseitin graph principles.
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7 APPENDIX

In this appendix, we prove Theorem 4.3. Theorem 4.3 follows from the following lemmas. The first lemma shows how

to translate an RCC1 refutation for F into a real monotone circuit for mCSP-SATF ; the proof is a modification of a

recent technical result of Hrubeš and Pudlák relating real communication protocols with real monotone circuits [24].

The second lemma shows a converse, and is a simple direct argument analogous to Theorem 4.2.

Lemma 7.1 (cf. Theorem 5 in [24]). Let F be an unsatisfiable CNF formula on n variables and let X = {x1, . . . ,xn1
},

Y = {y1, . . . ,yn2
} be any partition of the variables. If there is a RCC1 refutation of F with respect to the partition (X ,Y ) of

length ℓ, then there is a real monotone circuit separating the accepting and rejecting instancesU ({0, 1} |X | ),V ({0, 1} |Y | )

of mCSP-SATF with ℓ gates.

Proof. Fix an RCC1-refutation of F . With each node v of the underlying directed acyclic graph (dag) associate two

functions Av : {0, 1} |X | → R and Bv : {0, 1} |Y | → R that Alice and Bob use to communicate with the referee. We

assume without loss of generality that the referee outputs 0 if and only if Av (x ) > Bv (y), and furthermore, that Bv ≥ 0.

Recall that each leaf in this dag is associated with a clause Ci and let αi be the assignment to the X -variables that does

not satisfy the X -part of Ci . Note: we may assume that if v is a leaf then

Av (x ) = TT
U (x )
i (αi ) and Bv (y) = TT

V (y )
i (αi ). (3)

Next, we convert the given dag to the real circuit separatingU ({0, 1} |X | ) fromV ({0, 1} |Y | ) as follows. The topology

of the derived circuit is exactly the same as that of the dag. Thus, to finish specifying the circuit we need to label inputs

to the circuit and label the internal nodes by monotone real gates. Each leaf labeled by clause Ci in the dag turns into

an input variable to the circuit labeled by TTi (αi ). With each internal node v of the dag with children u1 and u2 we

associate the function fv defined recursively as follows:

fv (z) = max

x ∈{0,1} |X |
{Av (x ) | fu1

(z) ≥ Au1
(x ) ∧ fu2

(z) ≥ Au2
(x )}.
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We define fv (z) to be 0 if the set on the right-hand side is empty. We claim that these functions can be computed by

monotone real gates and for every x ∈ {0, 1} |X | and every y ∈ {0, 1} |Y | we have

fv (U (x )) ≥ Av (x ) and fv (V (y)) ≤ Bv (y). (4)

First, let’s see how the above properties of fv imply that the constructed circuit separatesU ({0, 1} |X | ) fromV ({0, 1} |Y | ).

Let r be the root node of the dag. Since we started with a valid RCC1 refutation of F we have Ar (x ) > Br (y) for all x

and y. Therefore, fr (U (x )) > fr (V (y)) for all x and y. Modifying fr by composing it with an appropriately chosen

threshold function gives us the separating circuit.

It is easy to see that fv can be computed by a monotone real gate with inputs fu1
and fu2

. First of all, the value of fv

is determined by values of fu1
and fu2

, and secondly, increasing values of fu1
and/or fu2

increases the feasible region of

xs over which the maximum is taken in the definition of fv .

Thus, it is left to show that fv (z) satisfies (4). We shall prove this by induction. The base case is given by (3).

Inductive assumption (IA): suppose that we proved (4) for children u1,u2 of v . Consider an arbitrary x ∈ {0, 1} |X | .

By IA, we have fu1
(U (x )) ≥ Au1

(x ) and fu2
(U (x )) ≥ Au2

(x ). Thus, the region over which the max is taken in the

definition of fv (U (x )) is nonempty and contains x . It follows that fv (U (x )) ≥ Av (x ). Now, consider an arbitrary

y ∈ {0, 1} |Y | . Assume for contradiction that fv (V (y)) > Bv (y). Since Bv (y) ≥ 0, we have fv (V (y)) = Av (x ) for some

x ∈ {0, 1} |X | . Thus we have Av (x ) > Bv (y), and by soundness of the refutation it follows that either Au1
(x ) > Bu1

(y)

or Au2
(x ) > Bu2

(y). Assume without loss of generality that Au1
(x ) > Bu1

(y). By definition of fv (V (y)) we have

fu1
(V (y)) ≥ Au1

(x ) > Bu1
(y). This contradicts the IA. □

The above lemma proves the first part of Theorem 4.3. The following lemma proves the second part of the theorem.

Lemma 7.2. With the setting as in the previous lemma, a monotone real circuit separating the inputs of mCSP-SATF

implies a RCC1 refutation of F of the same size.

Proof. The RCC1 refutation that we shall construct will have the exact same topology as the given monotone real

circuit. Turn each input variable TTi (α ) of the circuit into the corresponding clauseCi in the refutation. Turn each gate

v in the circuit into the line in the refutation computed by the following RCC1 protocol. On input x , Alice privately

runs the circuit onU (x ) and sends the value Av computed by the circuit at gate v to the referee. On input y, Bob acts

analogously — he simulates the circuit privately on input V (y) and sends the value Bv computed by the circuit at

gate v to the referee. The referee outputs 0 if and only if Av > Bv . Since at the top gate the circuit is identically 1 on

U (x ) and 0 onV (y), the referee always outputs 0 at the last line in the refutation. Thus, the only thing left to see is

that the refutation is sound. Let u1 and u2 be the children of v , then Av = f (Au1
,Au2

) and Bv = f (Bu1
,Bu2

) for some

monotone function f . Thus, if Av > Bv then either Au1
> Bu1

or Au2
> Bu2

. □
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