
Learning Residual Alternating Automata

Sebastian Berndt, Maciej Liśkiewicz?, Matthias Lutter, and Rüdiger Reischuk

Institut für Theoretische Informatik, Universität zu Lübeck, Germany
{berndt,liskiewi,lutter,reischuk}@tcs.uni-luebeck.de

Abstract. Residuality plays an essential role for learning finite automata. While residual deterministic and non-
deterministic automata have been understood quite well, fundamental questions concerning alternating automata
(AFA) remain open. Recently, Angluin, Eisenstat, and Fisman [3] have initiated a systematic study of residual
AFAs and proposed an algorithm called AL? – an extension of the popular L? algorithm – to learn AFAs. Based
on computer experiments they conjectured that AL? produces residual AFAs, but have not been able to give a
proof. In this paper we disprove this conjecture by constructing a counterexample. As our main positive result
we design an efficient learning algorithm, named AL??, and give a proof that it outputs residual AFAs only. In
addition, we investigate the succinctness of these different FA types in more detail.

1 Introduction

Learning finite automata is an important issue in machine learning and of great practical sig-
nificance to solve substantial learning problems like pattern recognition, robot navigation, auto-
mated verification, and many others (see e. g. [10], the textbooks [11] and [19], and the references
therein). Depending on applications, different types of automata might be selected as desirable
learning targets. The list goes from deterministic ones (DFA) over nondeterministic ones (NFA),
alternatively the dual of NFAs – universal finite automata (UFA), up to their common general-
ization – the alternating finite automata (AFA). Though these types all have the same expressive
power, they turn out to be different w. r. t. modeling capabilities and succinctness properties. A
minimal (measured by the number of states) DFA might be exponentially larger than an NFA and
double-exponentially larger than an AFA. Thus, for many applications, e. g. in formal verification,
it is desirable to work directly with AFAs rather than with the other types as the membership-
problem for AFAs is still efficiently solvable [6].

In the common exact learning framework for FA the learner can ask membership queries to
test if a word is accepted by the unknown target automaton and equivalence queries to compare
his current hypothesis and, if there is a mismatch to receive a counterexample. This model has
been introduced by Angluin in [2] and launched a tremendous amount of research yielding many
effective algorithms relevant in machine learning and other areas.

Angluin provided in [2] an algorithm, named L? that based on membership and equivalence
queries learns a minimal DFA in polynomial time. The minimality of the resulting DFA plays an
important role here since this condition makes it unique (up to naming of states). Thus, L? learns
precisely the target automaton if this DFA is minimal.

Beside uniqueness, minimal DFAs have another nice property termed residuality. An automa-
ton A accepting a language L is residual if every state q of A can be associated with a word wq
such that the language accepted by Aq – the automaton A that starts in q – is exactly the set of
words v for which wqv is in L. Thus, every state q of A corresponds to the residual language of
L determined by wq.
? This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant LI 634/4-1.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 46 (2017)

For many learning algorithms the residuality property plays an essential role in inferring the
target automaton. Angluin’s L? algorithm makes heavy use of this concept: The states of a hy-
pothesized automaton are represented by a prefix-closed set of strings such that for every state qs
corresponding to a string s, the language accepted from qs is residual with respect to s and the
target language. Unfortunately, nondeterministic automata in general do not satisfy the residual-
ity property. Even worse, languages accepted by Aq for states q of an NFA A, have no natural
interpretation. Furthermore, minimal NFAs don’t have to be isomorphic. The disadvantageous
properties may lead to ambiguity problems and difficulties in learning automata. Moreover the
goal is to learn automata containing a certain structure, that may be helpful for later use in spe-
cific applications, like e. g. in formal verification. Residuality is one such structural property that
allows to assign a natural semantic to the states of a complex automaton. This allows a simpler
analysis of the (possibly) involved behaviour of the automaton.

Denis, Lemay, and Terlutte [12] introduced the class of residual NFA (RNFA), which are
perfectly suited for learning algorithms. For every regular language L there is a unique RNFA
AL called canonical such that the number of states is minimal, the number of transitions be-
tween states is maximal, and for every state q of AL the language accepted by AL

q is residual.
In addition, AL can be exponentially more succinct than the equivalent minimal DFA. Using the
residuality property, Bollig, Habermehl, Kern and Leucker [4] proposed a sophisticated extension
of Angluin’s algorithm named NL? that learns a canonical RNFA with a polynomial number of
membership and equivalence queries. Analogously to RNFA, Kern gave a definition of residual
universal automata (RUFA) and their canonical form [20]. Based on this he further proposed an
algorithm UL? – a remodeling of NL? – for learning canonical RUFAs.

Since NL? and UL? may infer more succinct residual automata than L? ([12,20]) they were
successfully applied to several studies, using e. g. their implementations in the libalf learning
library [5]. For example, these methods are attractive in the area of formal verification including
model checking [1,8,9], where the size of the models of interest is of crucial importance and
nondeterminism is a natural abstraction concept. In this area, among others this approach has been
were used for the compositional verification of probabilistic systems [14,15] and verification and
model synthesis of sequential programs [7]. As verification concerns tasks of alternating nature
involving existential and universal statements, investigations of (residual) alternating automata
seems to be a natural objective for systematic research.

Recently, Angluin, Eisenstat, and Fisman [3] extended the definition of residual automata to
alternating automata and AL?, a learning algorithm for AFAs. To analyze the advantages and
trade-offs among these algorithms, the authors performed experiments and showed that for ran-
domly generated automata, AL? outperforms the other algorithms w. r. t. the number of member-
ship queries, but w. r. t. the number of equivalence queries L? is the best, followed by UL?, NL?,
and AL? (which is justified due to the succinctness obtained). However, as the authors write, they
have not been able to prove that AL? always outputs residual AFAs. Based on the experiments
they have conjectured that this property indeed holds, but left its proof as future work.

In this paper we disprove their conjecture by providing a counterexample that has been con-
structed with the help of specially designed software tools for learning residual automata. Next,
we continue the systematic study of residual AFAs and discuss several properties to get a bet-
ter understanding of these machines. As our main positive result we design an efficient learning
algorithm, named AL??, and give a proof that it outputs residual AFAs only. In addition, we
investigate the succinctness of these different FA types in more detail.

2

The paper is organized as follows. In Section 2 we provide some backgrounds on automata,
learning algorithms and fix notation used in the paper. In Section 3 we describe the UL? algorithm
for learning residual UFAs. Next, in Section 4 we present the algorithm AL?? and its analysis.
Section 5 contains new results on the size of residual AFAs. We finish this paper with a discussion
and some conclusions. For sake of readability, we postpone some of the proofs and technical
details to the appendix.

2 Preliminaries
Let the symmetric difference of sets be denoted by4, the set of all suffixes of a string w denoted
by Suffs(w), and the Boolean values “true” as > and “false” as ⊥. For a set S let F(S) be the
set of all formulas over S using the binary operators ∧ and ∨ plus the trivial formulas > and ⊥
that are always, resp. never satisfied. The restriction F∨(S), resp. F∧(S) denotes the subset of
formulas containing only the ∨ operator plus the formula ⊥ (resp. only ∧ and >).

2.1 Automata
The computational model of alternating finite automata has been introduced by Chandra, Kozen,
and Stockmeyer [6].

Definition 1. Given a finite alphabet Σ, an alternating finite automaton (AFA) is a four-tuple
(Q,Q0, F, δ), where Q is the set of states, Q0 ∈ F(Q) the initial configuration, F ⊆ Q the subset
of accepting states, and δ : Q×Σ → F(Q) the transition function.

If Q0 and, for all q ∈ Q and all a ∈ Σ, the transition δ(q, a) consist of a single state then
the automaton is called deterministic (DFA). If Q0 ∈ F∨(Q) and δ(q, a) ∈ F∨(Q) for all q ∈ Q
and all a ∈ Σ, it models a nondeterministic automaton (NFA). E. g., if δ(q, a) = p1 ∨ p2, this
describes a nondeterministic choice between p1 or p2.

If Q0 ∈ F∧(Q) and δ(q, a) ∈ F∧(Q) for all q ∈ Q and all a ∈ Σ, the automaton is called
universal (UFA). A transition δ(q, a) = p1 ∧ p2, for example, leads to state p1 and state p2
simultaneously.

A transition δ(q, a) of an AFA can be a nested formula of ∨ and ∧ operators. Such a formula
is difficult to draw pictorially. However, any such formula can equivalently be represented by its
disjunctive normal form (DNF) that does not contain any negated variables. Each monomial in
such a DNF is represented by an edge from q marked with the letter a leading to a little square.
From this square we draw edges to all states that are contained in this monomial. If the monomial
consists of a single state only the square can be dropped. For an example, see the AFA in Fig. 1.

The function δ is extended to arbitrary formulas ϕ ∈ F(Q) and strings w ∈ Σ∗. Let ϕDNF =∨
iMi with Mi =

∧
j qi,j be a DNF-formula equivalent to ϕ. Then δ(ϕ, a) :=

∨
i

∧
j δ(qi,j, a)

for a single symbol a ∈ Σ and δ(ϕ, ε) := ϕ for the empty string ε. For w ∈ Σ+, we define
δ(ϕ,wa) := δ(δ(ϕ,w), a). For an NFA, this simply reduces to δ(q ∨ p, a) = δ(q, a) ∨ δ(q, b).

Definition 2. For an AFA A = (Q,Q0, F, δ) and a formula ϕ ∈ F(Q), we define the evaluation
of ϕ, denoted as LϕM, recursively as follows: L>M := > and L⊥M := ⊥. For singletons let LqM := >
if q ∈ F and equal ⊥ otherwise. Finally, LϕRψM := LϕM R LψM for R ∈ {∧,∨}.
The automaton A accepts a word w, if Lδ(Q0, w)M = >. The language L(A) is the set of all
accepted strings. For a state q ∈ Q, we write Aq for the automaton (Q, q, F, δ) that starts in
configuration q instead of Q0.

3

s q

p

b

a

a
a

b

Fig. 1. An AFA for the language L1 = a+ ∪ ba+ ∪ aba∗.
The initial configuration is Q0 = s and the set of accepting states is F = {q}.
From state s the automaton has the transitions δ(s, a) = p ∨ q and δ(s, b) = s ∧ q.

For an NFA with δ(Q0, w) = q1 ∨ . . . ∨ qk the evaluation Lδ(Q0, w)M = > corresponds to
the usual condition {q1, . . . , qk} ∩ F 6= ∅, i. e. when starting with initial configuration Q0 and
reading the word w some accepting state is reached. For a UFA with δ(Q0, w) = q1 ∧ . . . ∧ qk it
requires {q1, . . . , qk} ⊆ F , i. e. all states reached are accepting.

2.2 Residuality

Definition 3. Let L ⊆ Σ∗ be a regular language.
– For a word u ∈ Σ∗, we define the residual language u−1L as {v ∈ Σ∗ | uv ∈ L}.
– The set of all residual languages of language L is denoted by RES(L).
– A residual language u−1L is called ∪ -prime, resp. ∩ -prime if u−1L cannot be defined as the

union, resp. intersection of other residual languages. We denote the set of all ∪ -prime, resp.
∩ -prime residuals of L by ∪ -Primes(L), resp. ∩ -Primes(L).

– An automaton A with states Q is residual, if L(Aq) ∈ RES(L(A)) for all q ∈ Q, i. e. if every
state corresponds to a prefix u and its residual language u−1L(A).

– Let RNFA, RUFA and RAFA denote the appropriate residual restrictions.

For an example, see the residual AFA in Fig. 2 that accepts the same language L1 = a+ ∪
ba+ ∪ aba∗ as the nonresidual AFA illustrated in Fig. 1

s q

p

b

a

a

a, b

Fig. 2. A residual AFA (RAFA) for the language L1 = a+ ∪ ba+ ∪ aba∗.
State s corresponds to ε−1L = a+ ∪ ba+ ∪ aba∗, state p to a−1L = a∗ ∪ ba∗, and state q to (ab)−1L = a∗.
Note that these residual languages ε−1L, a−1L and (ab)−1L are both ∪ -prime and ∩ -prime.

4

2.3 Learning Algorithms
All learning algorithms XL? for automata (i. e. L?, NL?, UL?, and AL?) and the new AL?? follow
a similar pattern. Two sets U, V ⊆ Σ∗ are constructed, where U is prefix-closed and V is suffix-
closed. For all strings uv ∈ UV or uav ∈ UΣV a membership query is performed. The resulting
matrix, indexed byU ∪ UΣ and V is called a table. The rows indexed byU correspond to possible
states. To minimize the number of states, a subset P of rows (a basis) is constructed such that all
rows can be built from the elements of P . The specific way to “build” a row depends on the type
of automaton. A hypothesized automaton is constructed from this subset P . For a row ru indexed
by u ∈ U and a symbol a ∈ Σ, the transition δ(ru, a) equals the formula that “builds” the row
indexed by ua. For this purpose, similar to [4] we introduce the following notion.

Definition 4. Let L be a regular language. For a prefix-closed set U and a suffix-closed set V ,
a |U ∪ UΣ| × |V | table T = (T, U, V) for L with entries in {+,−} is determined by a function
T : Σ∗ → {+,−,⊥} specified as follows. Let W (T) denote the set (U ∪ UΣ) V described by
T . Then for w ∈ Σ∗

T (w) =

⊥ if w 6∈ W (T),

+ if w ∈ W (T) ∩ L,
− if w ∈ W (T) \ L.

The entry of T in row x and column y is equal to T (xy).

Note that to define T we need only values T on W (T). We extend the domain of T to all
words over Σ for the sake of completeness. An example of a table is given in Fig. 3.

ε ab b

ε − + −
a − − +

b − − −
aa − − −
ab + − +

U

R

V

Fig. 3. Table T = (T,U, V) for the language L = ab+, with U = {ε, a}, V = {ε, ab, b}, and R = UΣ \ U = {b, aa, ab}.
The entries of the table are determined by T : the value in row x and column y equals T (xy). For example, the value in row ab
and column b is + since T (abb) = + (abb ∈ L) and abb ∈ W (T). An example for a row is rε = (− + −). Furthermore,
Rowshigh(T) = {rε, ra}.

Definition 5.
– An automaton A and a table T = (T, U, V) are called compatible if for every w ∈ W (T)

holds: A accepts w iff T (w) = +.
– For every u ∈ U ∪ UΣ we associate a vector ru of length |V | over {+,−}with ru[v] = T (uv)

for v ∈ V , called the row of u. The set of all rows is denoted by Rows(T) and the subset of
those ru with u ∈ U by Rowshigh(T).

– A table T is consistent if for every u, u′ ∈ U with ru = ru′ the condition rua = ru′a is fulfilled
for every a ∈ Σ.1

1 This is a weaker requirement than the RFSA-consistency of [4], which requires that ru ≤ ru′ implies rua ≤ ru′a.

5

– To simplify the notation, for a consistent table T , row r ∈ Rowshigh(T), and symbol a ∈ Σ,
let ra denote the vector rua where u ∈ U is an arbitrary string with ru = r.

3 Learning Residual Universal Automata

This section serves two goals. First, restricting our view on universal transitions helps as a warm-
up for the general case of AFAs that we will encounter later on. As universal automata are less
familiar than their nondeterministic counterparts, we will use them in accustomizing to the setting
of universal transitions. Secondly – as already mentioned – we use a weaker form of consistency
than e. g. [4] or [20]. In [3] it was mentioned that this weaker form is sufficient for NL?, UL?

and AL?, but no formal justification has been given yet. Hence, we will use this section to present
UL? with the weaker consistency notion and give a detailed analysis of the algorithm. The original
UL? that uses the stronger consistency notion was presented in [20].

In order to simplify the notation we use the following convention on formulas over states
Q of a residual automaton: to every state q ∈ Q a language Lq is associated and then the set
{Lq1 , . . . , Lqt} represents the formula q1 ∧ . . . ∧ qt. The following definition helps to conclude
that UL? always learns a unique minimal RUFA.

Definition 6 (Canonical RUFA). The canonical RUFA for a regular language L is the tuple
(Q,Q0, F, δ) where Q = ∩ -Primes(L), Q0 = {L′ ∈ Q | L ⊆ L′}, F = {L′ ∈ Q | ε ∈ L′}, and
δ(L1, a) = {L2 ∈ Q | a−1L1 ⊆ L2}.

s q

p

r

b

a a

a, b
b

a, b

Fig. 4. The canonical RUFA for the language L1 = a+ ∪ ba+ ∪ aba∗.

The canonical RUFA has the minimal number of states and the maximal number of transitions
between these states, which makes it unique. In the following we prove that UL? always outputs
such automata.

The order − ≤ + on the set {+,−} is extended to a partial order on vectors by requiring ≤
to hold for each component. The binary operators u,t on the set {+,−} are defined by a u b =
min{a, b} and a t b = max{a, b}. For vectors, these operators are extended by performing the
operation componentwise.

6

Definition 7.
– A row ru of a table T is u-composite if there are rows ru1 , . . . , ruk ∈ Rowshigh(T), with
rui 6= ru, such that ru =

dk
i=1 rui . Otherwise, ru is called u-prime. Let Primesu(T) be the

set of u-prime rows in Rowshigh(T).
– To simplify notation, for every ru ∈ Rows(T), let Bu(ru) := {ru′ ∈ Rowshigh(T) | ru ≤ ru′}.
– A table T is u-closed if every row ru ∈ Rows(T) can be generated from a subset of rows in

Primesu(T) that are combined with the u operator. A subset of rows that can generate all
rows of T using u is called a u-basis for T .

For example, in Fig. 3, the row rb of T is composite as rb = rε u ra, whereas rε, ra, rab are
u-prime and Primesu(T) = {rε, ra}.

Thus, T is u-closed if Primesu(T) is a u-basis for T . The table in Fig. 3 is not u-closed as
the row rab ∈ Rows(T) is not composable by rows of Rowshigh(T).

For a consistent and u-closed table T , define the UFA A(T) = (Q,Q0, F, δ) by Q =
Primesu(T), Q0 = Bu(rε) ∩ Q and F = {r ∈ Q | r[ε] = +}. For r ∈ Q and a ∈ Σ let
δ(r, a) = Bu(ra) ∩ Q. The following propositions show that A(T) is the canonical RUFA.

Lemma 1. For all u, u′ ∈ U with ru, ru′ ∈ Q, v ∈ V and r ∈ δ(Q0, u) it holds:

1. ru[v] = + ⇐⇒ δ(ru, v) ⊆ F ,
2. rε[v] = + ⇐⇒ δ(Q0, v) ⊆ F .

If T and A(T) are compatible then additionally

3. ru ∈ δ(Q0, u) and ru ≤ r,
4. ru′ ≤ ru ⇐⇒ ∀w δ(ru, w) * F ⇒ δ(ru′ , w) * F .

Theorem 1. If T and A(T) are compatible, then A(T) is the canonical RUFA.

Proof. We first show that the automaton is residual. Let r ∈ Q and ur ∈ U s. t. rur = r. Thus,
r ∈ δ(Q0, ur) and hence (ur)

−1L(A(T)) ⊆ L(Ar(T)). Furthermore, for all r′ ∈ δ(Q0, ur),
we have r ≤ r′ and thus L(Ar(T)) ⊆ L(Ar′(T)) by Lemma 1. This implies L(Ar(T)) ⊆
(ur)

−1L(A(T)). Hence, L(Ar(T)) = (ur)
−1L(A(T)). The language L(Ar(T)) is also ∩ -prime

since r is u-prime due to Lemma 1.

1 U ← {ε}; V ← {ε}; initialize T = (T, U, V) with |Σ|+ 1 membership queries;
2 while true do
3 while T is not u-closed do
4 find a row rua ∈ Rows(T) s. t. rua cannot be generated from Primesu(T);
5 add ua to U ; complete T via membership queries;

6 construct the UFA A(T);
7 if L(A(T)) = L then
8 return A(T);
9 else

10 get a counterexample w ∈ L4L(A(T)); set V ← V ∪ Suffs(w);
11 complete T via membership queries;

Algorithm 1: UL? applied to a regular language L ⊆ Σ∗.

7

In order to learn the canonical RUFA, the learning algorithm UL? presented as Algorithm 1
only needs to construct a suitable table T . The consistency of T follows from the fact that no
duplicate rows are present in Rowshigh(T). See Lemma 7 for a formal proof of this in the setting
of alternating automata.

4 Learning Alternating Automata

This section presents our main result. In [3], an algorithm AL? was presented to learn alternat-
ing automata and its running time was analyzed. However, properties of the automata produced
remained unclear. We close this gap by establishing several properties of AL? and then disprove
the conjecture about residuality. Next, we present a modified algorithm AL?? that guarantees
residuality. Finally, we discuss how to find a provably good basis for AFAs (defined in the next
subsection) and present experimental results demonstrating the performance of AL??.

4.1 Analysis of AL?

Let us review the construction of the automata generated by AL? and analyze the properties of
these automata in detail. We use the basic version of AL? (Algorithm 1, in [3]) without further
optimizations described there later.

For a formula ϕ ∈ F(Rows(T)) on the rows of a table, we define the evaluation JϕK by
J>K = +|V | = + · · ·+, J⊥K = −|V | = − · · ·−, JruK = ru, Jϕ ∧ ψK = JϕK u JψK and Jϕ ∨ ψK =
JϕK t JψK and extend this to a set P of formulas by JP K = {JϕK | ϕ ∈ P}. For example,

J(+−+ ∧ −−+) ∨ −+−K = −+ +.

Definition 8. In the following P will always denote a subset of Rowshigh(T).
– The set P is a (t,u)-basis for T (in the following simply called a basis) if Rows(T) ⊆

JF(P)K and table T is then called P -closed.
– The table T is called P -minimal if P is a minimal basis for T , i. e. for all p ∈ P , the set
P \ {p} is not a basis.

– For a P -closed table T and v ∈ V , let MP (v) be the monomial defined by

MP (v) :=
∧

p∈P,p[v]=+

p ,

which is a maximal one over all monomials in F∧(P) such that
q
MP (v)

y
[v] = +. If for all

p ∈ P we have p[v] = − then MP (v) := >.
– For r ∈ Rows(T) of a P -closed table T let bP (r) ∈ F(P) be the expression

bP (r) =
∨

v∈V,r[v]=+

MP (v)

representing r. If for all v ∈ V we have r[v] = − then bP (r) := ⊥.
– For a monomial M and a ∈ Σ we define Ma as the monomial derived from M by replacing

every row r ∈ P of M by ra.

8

Note that
q
bP (r)

y
= r.

Definition 9. Let ϕ be a DNF-formula consisting of monomials Mi. We use the notation Mi @ ϕ
and for a monomial Mi =

∧
j xj the notation xj @Mi for its literals xj .

For formulas ϕ(x1, . . . , xk) and ψ(x1, . . . , xk) with literals x1, . . . , xk that represent vectors r
over {+,−}, we say that ϕ and ψ are equivalent (in symbols ϕ ≡ ψ), if Jϕ(r1, r2, . . . , rk)K =
Jψ(r1, . . . , rk)K for all vectors r1, . . . , rk of identical length.

Now, all necessary tools have been defined to construct an AFA AP (T) from a table a T .

Definition 10. Let T be a consistent and P -closed table. The AFA AP (T) = (Q,Q0, F, δ) con-
sists of the following components: Q = P , Q0 = bP (rε) and F = {r ∈ P | r[ε] = +}. For
r ∈ Q and a ∈ Σ let δ(r, a) = bP (ra).

Recall, that according to our convention, the term ra in the last expression denotes the vector
rua s. t. u ∈ U is any string with ru = r. Note, moreover, that δ(r, a) = bP (ra) is always a
DNF-formula.

ε a ba

ε − + +
a + + −
b − + −
aa + + −
ab + + +

rε ra
a

b

a, b
b

Fig. 5. A consistent and P -closed table T with P = {rε, ra} and the corresponding ATM AP (T).

From this construction one can easily derive

Lemma 2. For every ϕ ∈ F(Q) and every automaton AP (T) it holds: LϕM = > iff JϕK [ε] = +.

Proof. We use induction upon the nesting of ϕ. For r ∈ Q it holds LrM = > ⇔ r ∈ F ⇔ r[ε] =
JrK [ε] = +. In the inductive step one can conclude

Lψ ∧ ξM = > ⇐⇒ LψM = > ∧ LξM = >⇐⇒ JψK [ε] = + ∧ JξK [ε] = +⇐⇒ Jψ ∧ ξK [ε] = + ,

Lψ ∨ ξM = > ⇐⇒ LψM = > ∨ LξM = >⇐⇒ JψK [ε] = + ∨ JξK [ε] = +⇐⇒ Jψ ∨ ξK [ε] = + .

In the following, fix a regular language L, a prefix-closed set U , a suffix-closed set V , the
corresponding table T and a minimal basis P of Rowshigh(T).

Lemma 3. For all r ∈ P and v ∈ V holds r[v] = Jδ(r, v)K [ε].

The technical proof of this claim is given in Appendix B.

Lemma 4. For all ϕ ∈ F(P) and v ∈ V we have JϕK [v] = Jδ(ϕ, v)K [ε].

9

Proof. We may assume that ϕ is in DNF. If JϕK [v] = − then for every monomial M @ ϕ it
must hold JMK [v] = −. Therefore, there exists some r @ M , such that r[v] = −. By Lemma 3,
Jδ(r, v)K [ε] = − and hence Jδ(ϕ, v)K [ε] = −.

Otherwise, if JϕK [v] = + there exists a monomial M @ ϕ with JMK [v] = +. Hence, for all
r @M it must hold r[v] = +. Lemma 3 implies Jδ(r, v)K [ε] = + and thus Jδ(ϕ, v)K [ε] = +.

Using these properties we continue the analysis as follows.

Lemma 5. If T and AP (T) are compatible then for every u ∈ U with ru ∈ P it holdsL(AP
ru(T)) ⊆

u−1L(AP (T)).

Proof. AssumeL(AP
ru(T)) * u−1L(AP (T)), i. e. there exists a string ω such that ω ∈ L(AP

ru(T))
and ω /∈ u−1L(AP (T)). Since ω ∈ L(AP

ru(T)), we have Jδ(ru, ω)K [ε] = + by definition. More-
over, ω /∈ u−1L(AP (T)) implies uω /∈ L(AP (T)) and thus Jδ(δ(Q0, u), ω)K [ε] = −.

We will now prove that such an ω cannot come from V orΣV by showing that ω /∈ (Σ ∪ {ε})V .
Assume that ω = av with a ∈ Σ ∪ {ε}, v ∈ V . By Lemma 4, Jδ(ru, a)K [v] = Jδ(ru, ω)K [ε]. Fur-
ther, Jδ(ru, a)K = rua by definition. Thus

rua[v] = Jδ(ru, a)K [v] = Jδ(ru, ω)K [ε] = +,

but this contradicts compatibility, as rua[v] = + implies that uav = uω ∈ L(AP (T)).
Now let ω = aω̃. From the construction of δ, we know that the row rua is not completely

filled with −, since
q
δ(bP (rua) , ω̃)

y
[ε] =

q
δ(bP (− · · ·−) , ω̃)

y
[ε] = Jδ(⊥, ω̃)K [ε] = J⊥K [ε] = −

would contradict

+ = Jδ(ru, ω)K [ε] = Jδ(ru, aω̃)K [ε] = Jδ(δ(ru, a), ω̃)K [ε] =
q
δ(bP (rua) , ω̃)

y
[ε].

Let δ(Q0, u)DNF = M1 ∨M2 ∨ · · · ∨Mk be the formula that is reached in the automaton after
reading u. For every column v ∈ V with rua[v] = +, consider all monomialsMi with JMiaK [v] =
+. There must be at least one monomial, because otherwise uav /∈ L(AP (T)), which would
contradict the compatibility of T and AP (T). It holds MP (v) @ δ(ru, a) by the construction of
δ(ru, a) = bP (rua). For every row rũ @Mi, we have δ(rũ, a) = bP (rũa) =

∨
ṽ∈V,rũa[ṽ]=+M

P (ṽ).
Hence, MP (v) @ δ(rũa). Thus, MP (v) @ δ(Mi, a)DNF and MP (v) @ δ(M1 ∨ · · · ∨Mk, a)DNF.

So, for every monomial MP (v) @ δ(ru, a), we have MP (v) @ δ(M1 ∨ · · · ∨Mk, a)DNF and
thus MP (v) @ δ(Q0, u)DNF. Hence, Jδ(ru, aω̃)K [ε] = + directly implies

Jδ(M1 ∨ · · · ∨Mk, aω̃)K [ε] = + .

But Jδ(M1 ∨ · · · ∨Mk, aω̃)K [ε] = Jδ(δ(Q0, u), ω)K [ε] = −. Hence, this is a contradiction and no
such ω exists.

For NFAs and UFAs, the reverse inclusion between the two languages in the statement of
Lemma 5 holds in the case of compatibility, too. In [3] it has been conjectured that this is also
the case for AFAs since extensive tests of the algorithm AL? never produced a non-residual
AFA. With the help of specially developed software that simulates and visualizes the run of AL?

interactively, we have been able to construct a counterexample.

10

Lemma 6. There exists a regular language L for which the algorithm AL? constructs a table
T defining a compatible AFA AP (T) with L(AP (T)) = L, such that for some r ∈ P and all
ω ∈ Σ∗ the residual language ω−1L is not contained in L(AP

r (T)).

Proof. It can be shown that the AFA in Fig. 6 is compatible to a table T that can be constructed
by AL? on a carefully designed language L (see Appendix A). The state labeled nr is not residual.

s

c2f

c1f

c1w

c2w

nr

w1 w2

f

σc

σc

σc1f

σc2f

σc1w

σc2w

σw1

σw2

σnr

σnr

σnr

σnr

γ1, σnr, ρc1f

γ2, σnr, ρc2f

γ1, ρc1w

γ2, ρc2w

ρnr

ω

ρw1 ω, ρw2σnr

σnr

ω

Fig. 6. A non-residual AFA constructed by AL? with initial configuration Q0 = s and accepting states F = {f}.

4.2 Learning Residual Alternating Automata

Let L be a given regular language. In order to construct only residual AFAs for L we build on
AL? and design a new algorithm AL?? presented as Algorithm 2 that solves this problem. The
main obstacle that one encounters is the test of residuality of the constructed automaton. We use
the power of the equivalence-oracle to incorporate this task into AL? by reducing it to a single
equivalence query of a larger automaton.

We start the analysis of AL?? with the following observation which guarantees that the au-
tomata constructed successively from tables T are well defined.

Lemma 7. Every table T constructed by AL?? is consistent.

11

1 U ← {ε}; V ← {ε};
2 initialize T = (T, U, V) with |Σ|+ 1 membership queries;
3 while true do
4 P ← Rowshigh(T);
5 while T is not P -closed do
6 find a row rua ∈ Rows(T) with rua /∈ JF(P)K;
7 add ua to U ;
8 complete T via membership queries;
9 P ← Rowshigh(T);

10 construct a minimal basis P and AP (T) for P ;
11 if L(AP (T)) = L then
12 construct AP ′(T) with P ′ = Rowshigh(T);
13 if L(AP ′(T)) = L then
14 return AP (T);
15 else
16 get a counterexample w ∈ L4L(AP ′(T));
17 set V ← V ∪ Suffs(w);
18 complete T via membership queries;

19 else
20 get a counterexample w ∈ L4L(AP (T));
21 set V ← V ∪ Suffs(w);
22 complete T via membership queries;

Algorithm 2: AL?? applied to a regular language L ⊆ Σ∗.

Proof. Let T = (T, U, V) be any table constructed by AL??. It suffices to show that for different
u, u′ ∈ U the rows ru 6= ru′ are different, too. Then the precondition for the consistency require-
ment, namely equal rows, is never fulfilled, and consistency holds trivially. Assume that u′ has
been added to U after u. This can only happen if the closedness condition is violated in line 5.
This, however, contradicts ru′ = ru ∈ Rowshigh T .

The main difference between AL? and AL?? lies in the construction of the automaton AP ′(T)
in line 12. This modification of AL? allows us to guarantee the residuality of the generated au-
tomaton. As shown in the previous section, the reason for the possible non-residuality of the
automaton produced by AL? is that the reverse statement of Lemma 5 does not hold for AFAs.
As we perform no basis reduction in the construction of AP ′(T), compatibility of the table and
the automaton guarantees residuality of the automaton.

Lemma 8. If the AFA AP ′(T) constructed in line 12 is compatible with T , then automaton
AP ′(T) is residual.

Proof. Consider some u ∈ U . As P ′ = Rowshigh(T), we have ru ∈ P ′ and thus L(AP ′
ru (T)) ⊆

u−1L(AP ′(T)) by Lemma 5. It remains to prove the inclusion in the other direction. Iterating
over the length of u one can show that for every configuration of the AFA δ(Q0, u) ≡ ru ∧ Ru,
where Ru is some expression.

12

By construction, every monomial of Q0 = bP (rε) contains rε. Therefore, Q0 ≡ rε ∧ Rε for
some expression Rε. Hence, δ(Q0, ε) = Q0 ≡ rε ∧Rε.

As U is prefix-closed, every prefix of u is also in U . If u = u′a, every monomial of δ(u′, a)
contains ru′a = ru ∈ P ′ by the induction hypothesis. Therefore, δ(u′, a) ≡ ru ∧R′u, where R′u is
an expression. Thus, for an appropriate expression Ru we get

δ(Q0, u) = δ(δ(Q0, u
′), a) ≡ δ(ru′ ∧Ru′ , a) ≡ (ru ∧R′u) ∧Ru′ ≡ ru ∧Ru .

Therefore, L(AP ′
ru (T)) ⊇ u−1L(AP ′(T)).

Computing the large residual automaton AP ′(T) in line 12 upon the trivial basis P ′ allows us
to test the smaller automaton AP (T) for residuality via the following lemma. If AP ′(T) passes
the equivalency test it certificates the residuality of AP (T). Otherwise, the construction directly
gives us a counterexample that helps AP ′(T) to pass the equivalence test the next time.

Lemma 9. If the two AFAs AP (T) and AP ′(T) constructed in line 10, resp. 12 satisfy the con-
dition L(AP (T)) = L = L(AP ′(T)) then AP (T) is residual.

Proof. Assume L(AP (T)) = L = L(AP ′(T)). Lemma 8 states that AP ′(T) is residual. Consider
a state q = ru of AP (T) with corresponding state q′ of AP ′(T). As ru ∈ P ⊆ Rowshigh(T) =
P ′, there is always such a corresponding state. Let a ∈ Σ be any alphabet symbol. For every
monomial M ′ @ δ(q′, a), there is a monomial M @ δ(q, a) such that every literal of M is
in M ′ (with the corresponding v we have M = MP (v) and M ′ = MP ′(v) and MP ′(v) may
consist of states not in P). Hence, Jδ(q, w)K ≥ Jδ(q′, w)K. From Lemma 8 one gets u−1L =
u−1L(AP ′(T)) ⊆ L(AP ′

q′ (T)) and from Lemma 5 L(AP
q (T)) ⊆ u−1L(AP (T)) = u−1L. Thus,

we get u−1L ⊆ L(AP ′

q′ (T)) ⊆ L(AP
q (T)) ⊆ u−1L and u−1L = u−1L(AP (T)) = L(AP

q (T)).
Therefore, the automaton AP (T) is residual, too.

A basis P is called optimal for a regular language L if its size is minimal over all bases P for
all tables T for L s. t. AP (T) is an RAFA. The reverse of L contains all strings a1 . . . ak ∈ Σ∗
such that ak . . . a1 is in L. Now we are ready to state the main result.

Theorem 2. For every regular language L, the algorithm AL?? always generates an RAFA AP

such that L(AP) = L. Moreover, if the basis P is optimal then AP has the minimal number of
states over all RAFAs for L.
The algorithm terminates after at most κL equivalence queries and κLκ̂L(1 + |Σ|)` membership
queries, where κL and κ̂L denote the number of states of the minimal DFA for L, resp. the reverse
of L and ` is the size of the longest counterexample obtained from the equivalence oracle.

4.3 Approximating the Minimum Basis

Assume T = (T, U, V) is a table for a regular language. Note that algorithm AL?? constructs
a minimal basis P (of Rowshigh(T)) because computing a minimum basis (i. e. of minimal car-
dinality) is NP-hard, as shown in [3]. In order to guarantee that the basis (and hence the set
of states) used by the algorithm is small enough, we give an approximation algorithm for this
problem. In the optimization problem MIN-SET-COVER, one is given a groundset X and a set
S of subsets of X and searches the smallest S ⊆ S with

⋃
s∈S s = X (see e. g. [23]). If

MP :=
{q
MP (v)

y
| v ∈ V

}
for P ⊆ Rowshigh(T), we obtain the following lemma.

13

Lemma 10. For every P it holds:MRowshigh(T) =MP iff P is a basis of Rowshigh(T).

We will now reduce the problem of finding a basis of Rowshigh(T) to the problem of finding
a solution to a SET-COVER instance.

Lemma 11. Let X = {(v, i) | v, i ∈ V ∧
q
MRowshigh(T)(v)

y
[i] = −} be the groundset and

S = {mu | u ∈ U} with subsets mu = {(v, i) ∈ X | ru ≥
q
MRowshigh(T)(v)

y
and ru[i] = −}

be an instance of SET-COVER. The set P is a basis of Rowshigh(T), iff there exists a feasible
solution C of the set cover instance above such that P = {ru | mu ∈ C}.

Proof. Every vector ofMP can be composed by the vectors of P by intersection, so requiring
these compositions does not increase P . Now we apply the lemma above.

We can now use the well known algorithm for the optimization problem MIN-SET-COVER

due to [17] that on input (X ,S) produces a feasible solution S ⊆ S with |S| ≤ (ln(|X |) + 1)|S∗|
in polynomial time, where S∗ is an optimal solution to the instance. We get the following result.

Theorem 3. There exists a polynomial time algorithm that for a given table T = (T, U, V)
returns a basis P of Rowshigh(T) with |P | ≤ (2 ln(|V |) + 1) · |P ∗|, where P ∗ is a minimum basis
of Rowshigh(T).

It is important to note here that P ∗ is a minimum basis of Rowshigh(T) and does not nec-
essarily correspond to an optimal basis. One can indeed construct tables T such that no basis
P ⊆ Rows(T) is optimal.

4.4 Experimental Results

We ran L?, NL?, and AL?? on random AFA targets. The first distribution of these random AFAs
(RAT1) was generated similar to the experiments in [3] as told by [16]. For the equivalence
oracle we used the probabilistic (non-error free) equivalence oracle (REQ) described in [3] and
also implemented an exact version (EEQ). When REQ outputs “equivalent” this was verified by
EEQ. In almost every run of L?, NL?, and AL??, at least one wrong answer given by REQ showed
up. Thus, the following experiments were obtained by using the exact algorithm EEQ. However,
EEQ in about 50% of all non-trivial RAT1 instances required so much computational power that
the computation could not be finished. This problem is unlikely to be fixed by a more efficient
implementation of EEQ, because AFA-equivalence is PSPACE-hard (NFA-equivalence is already
PSPACE-complete [21]).

Therefore, to reduce the computational complexity of the instances we have generated a dif-
ferent set of random AFA targets (RAT2) obtained as follows.

– Every AFA has 6 states over an alphabet of size 3.
– Every state is accepting with probability 1/2.
– With probability 1/3, there is exactly one initial state. Otherwise, the initial configuration is a

disjunction of two different random states.
– Every transition is a DNF formula, consisting of two monomials. Each monomial is a con-

junction of random states. With probability 2/3, such a monomial is of size 1, otherwise of of
size 2.

14

q2 q0

q3 q1

q5

q4

c

b

c

a

a

c

b

a, b

a, c

c

b, c

a

b

b
c

b

b, c

b, c

a

a

b c
b, c

a

c

a b

a

Fig. 7. An example of a RAT2 instance.

Figure 7 shows such a randomly generated target AFA. There were still about 24% non-trivial
RAT2 instances we had to abort.

Figure 8 summarizes our experimental results with EEQ for RAT2 comparing the sizes of the
automata generated by L?, NL? and AL??. Note that the target instances randomly generated may
not be residual, while the AFAs output by AL?? are always residual.

50 100

50

100

Size of minimal DFA

N
um

be
ro

fs
ta

te
s

DFA (L?)
NFA (NL?)
AFA (AL??)

Fig. 8. Comparison of the size of automata learnt by L?, NL? and AL?? for random regular languages generated by AFAs.

5 On the Size of Residual AFAs

In [3] it was shown that RAFAs may be exponentially more succinct than RNFAs and RUFAs
and double exponentially more succinct than DFAs. We strengthen these results by proving that
RAFAs may be exponentially more succinct than every equivalent non-residual NFAs or UFAs.
Furthermore, there exists an RAFA that is double exponentially more succinct than the minimal
DFA and uses only 2 nondeterministic (i. e. ∨) transitions and only a linear number of universal

15

(i. e. ∧) transitions. Thus, the restriction to residual automata still allows a very compact repre-
sentation. On the other hand, we give an example where the residuality of an automata demands
an exponentially larger state set.

p1

p1

p2

q1

q2

x

Σa

Σa

Σb

Σb

a1

a1

a2

a2

Σn \ {b1}

Σn \ {b2}

b1

b2

Σn

Fig. 9. The residual AFA for the language An of Theorem 4 with n = 2. The corresponding alphabet is Σn = Σa ∪ Σb with
Σa = {a1, a2} and Σb = {b1, b2}, the initial configuration is Q0 = p1 ∧ p2, and the set of accepting states is F = {q1, q2}.

Theorem 4. For every even n ∈ N, there exists a language An that can be accepted by a residual
AFA with 2n+ 1 states and every NFA or UFA for An needs at least

(
n
n/2

)
states.

Proof. The alphabet Σn for An consists of disjoint subsets Σa = {a1, a2, . . . , an} and Σb =
{b1, b2, . . . , bn}. The language is defined as

An = {w1w2 | w1 ∈ Σ∗a, w2 ∈ Σ∗n, w1 contains all symbols from Σa,

w2 does not contain all symbols from Σb}.

We construct a residual AFA with states {p1, . . . , pn, q1, . . . , qn, x} that is sketched for n = 2 in
Fig. 9. A general construction of AFAs An for An is given below:
– Qn = {p1, p2, . . . , pn, q1, q2, . . . , qn, x}, Q0 =

∧n
i=1 pi, F = {q1, q2, . . . qn}

– δ(pi, ai) = pi ∨ q1 ∨ q2 ∨ . . . ∨ qn
– δ(pi, σ) = pi for σ ∈ Σa \ {ai}, δ(pi, σ) = x for σ ∈ Σb, δ(qi, bi) = x
– δ(qi, σ) = qi for all σ ∈ Σn \ {bi}, δ(x, σ) = x for all σ ∈ Σn

Residuality follows from the following strings u(q) for q ∈ Qn such that L(Aq) = u(q)−1An:
u(x) = a1a2 . . . an b1b2 . . . bn,
u(qi) = a1a2 . . . anb1b2 . . . bi−1bi+1 . . . bn,
u(pi) = a1a2 . . . ai−1ai+1 . . . an.

In order to prove the second property we use permutations on Σa. For a permutation π on Σa let
S0(π) = {π(1), π(2), . . . , π(n/2)}, S1(π) = {π(n/2+1), . . . , π(n)} andw(π) = π(1)π(2) . . . π(n).
The string w(π) contains each letter of Σa exactly once and hence belongs to An.

Let A = (Q,Q0, δ, F) be an NFA for An. For w(π), consider an accepting computation
generating the sequence of states q1π, q

2
π, . . . , q

n
π with qnπ ∈ F . There are

(
n
n/2

)
many pairs of

16

permutations π, π′ with S0(π) 6= S0(π
′). If A has less than that many states there must exist two

such permutations π and π′ with qn/2π = q
n/2
π′ . Hence,

q1π, . . . , q
n/2
π , q

n/2+1
π′ , . . . qnπ′

is an accepting run of

w(π, π′) := π(1)π(2) . . . π(n/2) π′(n/2 + 1) . . . π′(n) .

But, as S0(π) 6= S0(π
′), there is some symbol σ ∈ S1(π) with σ 6∈ S1(π

′). Hence, σ does not
occur in w(π, π′) and thus w 6∈ An. Thus, A does not recognize An correctly.

The lower bound proof for UFAs is dual taking permutations on Σb. Now a string w(π) starts
with a1 . . . an to fulfill the first conditions and then continues with the permutation π of the letters
in Σb. All these strings do not belong to An, but omitting one letter bi in the second part puts the
input into the language.

p

a1

b1

a2

b2

q

a, b

a, b

b

a

a

b

a

b

a, b

Fig. 10. The (non-residual) AFA for the language Bn of Theorem 5 with n = 2.

Theorem 5. For every n ∈ N there exists a language Bn over a binary alphabet that can be
accepted by a (non-residual) AFA with 2n + 2 states, but every residual AFA for Bn requires at
least 2n states.

One can construct the succinct AFAs to prove Theorem 5 as follows. Let Σ = {a, b} and
consider Bn = {w∗w′ | w ∈ Σn, w′ is a prefix of w} (based on the construction of [22]). For
n = 2, the non-residual AFA A = (Q,Q0, δ, F) for Bn is sketched in Fig. 10.

A closer look at the constructions of succinct automata for Bn reveals that the resulting AFAs
are in fact UFAs. Dually, Bn = Σ∗ \ Bn can be accepted by an NFA with the same number of
states 2n+ 2. Thus, we obtain families of languages Bn and Bn for n = 1, 2, . . . , such that every
residual AFA forBn, resp.Bn, is exponentially larger than the corresponding minimal UFA, resp.
NFA. The details of the proof can be found in Appendix C.

As it has already been noted in [3], RAFAs may be double exponentially smaller than the
minimal DFAs. We give a more precise bound inspired by a language defined in [6].

Theorem 6. For every n ∈ N there exists a language Cn such that the minimal DFA for Cn needs
at least 22n states and there is a residual AFA with 2n2 + 5n states for Cn.

17

The construction is given in Appendix C.
The tables below summarize the results presented in this section. Here

A1 A2

k1(n) k2(n)

has the following meaning: For every n there exists a language Ln with a k1(n) state automata of
type A1 and every automaton of type A2 for Ln needs at least k2(n) states.

RAFA NFA/UFA
2n+ 1

(
n
n/2

) NFA/UFA RAFA
2n+ 2 2n

RAFA DFA
2n2 + 5n 22n

6 Discussion

We have disproved the conjecture that the algorithm AL? outputs residual AFAs only and de-
signed a modified algorithm AL?? that achieves this property. This algorithm has almost the same
complexity as AL?. In fact, for more than 98% of the non-trivial instances we used in our exper-
iments, our new algorithm AL?? only performs a single additional equivalence-query to verify
the residuality. Thus, based on the performance experiments for randomly generated automata
or regular expressions AL?? outperforms the algorithms L? and NL? w. r. t. the number of mem-
bership queries. Simultaneously AL?? infers an (approximately minimal) RAFA which is always
smaller than (or equal to) the corresponding minimal DFA generated by L? and RNFA produced
by NL?. Typically, AL?? generates automata which are significantly more succinct than DFAs and
RNFAs. Theoretical analysis shows that residual AFAs can be exponentially smaller than NFAs
and even double exponentially more succinct than DFAs. This makes RAFAs an attractive choice
for language representations in the design of learning algorithms.

While residual nondeterministic automata have been understood quite well [4,12,13,18], fun-
damental questions concerning residual alternating automata remain open. Recently, we have
exhibited languages for which the canonical RNFA and RUFA differ, but both automata are min-
imal AFAs. Thus, a meaningful notion for canonical AFAs would be desirable, but this seems to
be a difficult problem, which we leave for future work.

18

References
1. Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. A survey of regular model checking. In

International Conference on Concurrency Theory, pages 35–48. Springer, 2004.
2. Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87 – 106,

1987.
3. Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular languages via alternating automata. In Proc. 24. IJCAI,

pages 3308–3314, 2015.
4. Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style learning of NFA. In Proc. 21. IJCAI,

pages 1004–1009, 2009.
5. Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider, and David R Piegdon. libalf: The

automata learning framework. In International Conference on Computer Aided Verification, pages 360–364. Springer, 2010.
6. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, January 1981.
7. Yu-Fang Chen, Chiao Hsieh, Ondřej Lengál, Tsung-Ju Lii, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn Wang. PAC learning-

based verification and model synthesis. In Proceedings of the 38th International Conference on Software Engineering, pages
714–724. ACM, 2016.

8. Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.
9. Jamieson M Cobleigh, Dimitra Giannakopoulou, and Corina S Păsăreanu. Learning assumptions for compositional verifi-

cation. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 331–346.
Springer, 2003.

10. Colin De La Higuera. A bibliographical study of grammatical inference. Pattern recognition, 38(9):1332–1348, 2005.
11. Colin De la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, 2010.
12. François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state automata. In Proc. 18. STACS, LNCS 2010, pages

144–157. Springer, 2001.
13. François Denis, Aurélien Lemay, and Alain Terlutte. Learning regular languages using RFSAs. Theoretical Computer

Science, 313(2):267–294, 2004.
14. Lu Feng, Marta Kwiatkowska, and David Parker. Compositional verification of probabilistic systems using learning. In

Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the, pages 133–142. IEEE, 2010.
15. Lu Feng, Marta Kwiatkowska, and David Parker. Automated learning of probabilistic assumptions for compositional rea-

soning. In International Conference on Fundamental Approaches to Software Engineering, pages 2–17. Springer, 2011.
16. Dana Fisman. personal communication, 2017.
17. David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci., 9(3):256–278, 1974.
18. Anna Kasprzik. Learning residual finite-state automata using observation tables. In Proc. 12. DCFS, pages 205–212, 2010.
19. Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational learning theory. MIT press, 1994.
20. Carsten Kern. Learning communicating and nondeterministic automata. PhD thesis, RWTH, Fachgruppe Informatik, 2009.
21. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In Proceedings of the

Fifth Annual ACM Symposium on Theory of Computing, STOC, pages 1–9, New York, NY, USA, 1973. ACM.
22. Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency: Structure versus

Automata, LNCS 1043, pages 238–266. Springer, 1995.
23. David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.

19

Appendix A: A Run of AL? that Produces a Non-Residual AFA

Let

Σ = {σc, σnr, σc1f , σc1w, σc2f , σc2w, σw1, σw2, ρnr, ρc1f , ρc1w, ρc2f , ρc2w, ρw1, ρw2, γ1, γ2, ω},
Lx = {σcγ1, σcγ2, σcσnrρnr, σc1fρc1f , σc1wρc1w, σc2fρc2f , σc2wρc2w, σw1ρw1, σw2ρw2},
Ly = {σc1fγ1, σc1fσnrρnr, σc1wγ1, σc1wσnrρnr, σc2fγ2, σc2fσnrρnr, σc2wγ2, σc2wσnrρnr},
Lz = {σw2ω, σw1ωω, σw1ωρw2, σc1fσnr, σc2fσnr, σc1wσnrρw1, σc1wσnrωρw2, σc1wσnrωω,

σc2wσnrρw1, σc2wσnrωρw2σc2wσnrωω},
L2 = (Lx ∪ Ly ∪ Lz ∪ {σcσnrωω}){ω}∗,

and A be the AFA illustrated in Fig. 6. A detailed case analysis shows L(A) = L2. This AFA is
not residual because of the state labeled nr.

For learning L2, the following implementation of an equivalence oracle EQ is used based on
a total ordering ≺ over Lx given by

σcσnrρnr ≺ σc1fρc1f ≺ σc2fρc2f ≺ σcγ2 ≺ σcγ1 ≺ σc2wρc2w ≺ σc1wρc1w ≺ σw1ρw1 ≺ σw2ρw2.

For a hypothesized AFA A′ that does not accept L2, EQ according to ≺ searches the smallest
element ξ ∈ Lx\L(A′). If such a ξ existsEQ returns it as counterexample, otherwise an arbitrary
counterexample is chosen.2

We have implemented AL? with access to this equivalence oracle. For the language L2 the
non-residual automaton A in Fig. 6 has been obtained as final result. The complete table T of the
corresponding run is not presented here since it has thousands of rows.

Some Intuition Concerning the Construction of A

Let Q′ = {i, c, nr, c1f, c1w, c2f, c2w,w1, w2, f} be a superset of the states of A. For q ∈ Q′ the
symbol σq is used to generate a row of T of a specific form that will serve as a state of A. For q
to ensure that the corresponding row is prime the symbol ρq is used which generates a unique +
in this row. In the subtable in Fig. 11 see for example the second row labelled σc1f and column
labelled ρc1f . This column has a single + at this row that makes this row prime.02

To get a non-residual AFA, Lemma 8 implies that we have to construct a prime row ru where
u = σcσnr such that rσc is not prime. This is achieved by symbols γ1, γ2. For the subtable in
Fig. 11 one notices that

rσc = (rσc1f u rσc1w) t (rσc2f u rσc2w) .

The row with label σcσnr plays a special role representing the non-residual state nr.
We still have to make sure that the state nr corresponding to ru is non-residual. For this

purpose, we add the string σcσnrωω to the language and make sure that the string ωω is not
2 We cannot provide the sequence of counterexamples exactly because it depends on details of the implementation of AL?.

In [3] the authors have suggested some optimizations in order to save membership queries. However, these optimizations
may increase the number of (expensive) equivalence queries, because now AL? may produce automata that do not classify
already seen counterexamples correctly. In this case, the equivalence oracle defined above would simply provide a previous
counterexample again.

20

ε γ1 γ2 ρc1f ρc1w ρc2f ρc2w ρnr

σc − + + − − − − −
σc1f − + − + − − − −
σc1w − + − − + − − −
σc2f − − + − − + − −
σc2w − − + − − − + −
σcσnr − − − − − − − +

Fig. 11. A subtable of T used to construct non-residual AFA A = A(T).

accepted while the automata is in state nr, i. e. ωω 6∈ L(Aru). For the automaton to accept
σcσnrωω the suffix σnrωω must be accepted from the configuration (c1f ∧ c1w) ∨ (c2f ∧ c2w).
The non-residuality is achieved by the table not containing information on σcσnrωω and ωω. To
“hide” this information, we have to make sure that ω is never added to V . This is done by two
“waiting” states w1 and w2. As a path from the states c1w and c2w to the accepting state f visits
the states w1 and w2, the automaton has to “wait” for the string ωω to reach f . By construction of
rσc either c1w or c2w have to be visited in order to accept a word. But, as ω 6∈ V , this “waiting”
behavior cannot be observed by AL? and hence ωω 6∈ L(Aru).

For technical reasons one has to add some words like σw1ωω to the language to get the final
version of L2. Based on these properties, the segmentation of L2 is as follows. The words in Lx
are the counterexamples that let AL? add necessary columns to V and finally necessary rows to U .
The words in Ly ensure that row rσc gets suitably extended. Finally, the words in Lz correspond
to the waiting process before merging the different ∧-branches in the accepting state f .

Appendix B: Additional Claims and Proofs

Proof of Lemma 1

We prove the statements of the lemma separately.

Lemma 12. For all ru ∈ Q and v ∈ V : ru[v] = + ⇐⇒ δ(ru, v) ⊆ F .

Proof. For v = ε it holds ru[ε] = + iff ru ∈ F . Since δ(ru, ε) = {ru} this implies the claim.
Using induction on |v|, for v = av′ one gets ru[v] = ru[av

′] = rua[v
′] since u ∈ U . By definition,

δ(ru, a) = Bu(rua) ∩Q. Now consider the two possible values for rua[v′]:

– case rua[v′] = +:
For every r ∈ δ(ru, a) the property rua ≤ r implies r[v′] = +. By induction hypothesis,
δ(r, v′) ⊆ F . Now δ(ru, av

′) ⊆ F follows from

δ(ru, av
′) = δ(δ(ru, a), v′) =

⋃
r∈δ(ru,a)

δ(r, v′) .

– case rua[v′] = −:
There must be a row r ∈ Q with rua ≤ r such that r[v′] = − (this row may be rua itself if
it is u-prime). By definition, rua ≤ r implies r ∈ δ(ru, a). The induction hypothesis gives
δ(r, v′) 6⊆ F and thus δ(ru, av′) 6⊆ F .

21

Using this lemma one can derive a series of properties.

Claim. For every v ∈ V : rε[v] = + ⇐⇒ δ(Q0, v) ⊆ F .

Proof. If rε is prime and thus a member of the state set Q the statement follows directly from the
lemma above. Otherwise, rε =

d
{ru1 , ru2 , . . . , ruk} with states rui , and thus

Q0 = Bu(rε) ∩Q = {ru1 , ru2 , . . . , ruk} .

Now one can apply the lemma above to the rui .

Claim. If T and A(T) are compatible then ru ∈ δ(Q0, u) for all ru ∈ Q.

Proof. Because ru is prime, for allQ′ ⊆ Q\{ru} there exists some v ∈ V such that (
d
r∈Q′ r)[v] 6=

ru[v]. If we assume ru 6∈ δ(Q0, u) then there must exists v ∈ V such that (
d
r∈δ(Q0,u)

r)[v] 6=
ru[v]. This implies for ru[v]:

– case ru[v] = −:
(
d
r∈δ(Q0,u)

r)[v] = + and we know that r[v] = + for all r ∈ δ(Q0, u). Lemma 12 im-
plies δ(r, v) ⊆ F for all r ∈ δ(Q0, u). As δ(Q0, uv) =

⋃
r∈δ(Q0,u)

δ(r, v) one can deduce
δ(Q0, uv) ⊆ F and thus uv ∈ L(A(T)). Since ru[v] = − this is a contradiction to the
compatibility condition.

– case ru[v] = +:
(
d
r∈δ(Q0,u)

r)[v] = − and there exists a row r ∈ δ(Q0, u) with r[v] = −. Again Lemma 12
implies δ(r, v) 6⊆ F . Then δ(Q0, uv) =

⋃
r∈δ(Q0,u)

δ(r, v) yields δ(Q0, uv) 6⊆ F and thus
uv 6∈ L(A(T)). This leads to a contradiction as well since ru[v] = +.

Claim. If T and A(T) are compatible then for all u ∈ U and r ∈ δ(Q0, u): ru ≤ r.

Proof. Suppose that this is not true, i. e. there exists r ∈ δ(Q0, u) such that ru 6≤ r. Hence, there
is a v ∈ V such that ru[v] = + and r[v] = −. Applying Lemma 12 to r we get δ(r, v) 6⊆ F
and thus

⋃
r∈δ(Q0,u)

δ(r, v) = δ(Q0, uv) 6⊆ F . Hence, uv 6∈ L(A(T)), which is a contradiction
again.

Claim. If T and A(T) are compatible then for all ru, ru′ ∈ Q and a ∈ Σ: ru′ ≤ ru ⇒ ru′a ≤ rua.

Proof. Assume ru′ ≤ ru, but ru′a � rua, i. e. there exists v ∈ V such that ru′a[v] = +, but
rua[v] = −. From the claims above one can deduce ru′ ∈ δ(Q0, u

′). By definition of δ, every
prime row that is greater or equal than ru′ must be in δ(Q0, u

′), too. Thus we have ru ∈ δ(Q0, u
′).

Further,
d
r∈δ(ru,a) r = rua, i. e. there exists a prime row ru′′ ∈ δ(ru, a) with ru′′ [v] = −. By

Lemma 12, δ(ru′′ , v) * F . Hence ru′′ ∈ δ(δ(Q0, u
′), a) and δ(δ(δ(Q0, u

′), a), v) * F . Finally,
u′av /∈ L(A). Again this contradicts compatibility as ru′a[v] = +.

Claim. If T and A(T) are compatible then for all ru, ru′ ∈ Q holds:
ru′ ≤ ru ⇐⇒ ∀ w ∈ Σ∗ [δ(ru, w) 6⊆ F ⇒ δ(ru′ , w) 6⊆ F].

22

Proof. Note that w does not necessarily belong to V .

– case ru′ ≤ ru:
Consider a w with δ(ru, w) 6⊆ F . Using induction on |w|, for w = ε we get w ∈ V and the
claims above give ru[ε] = −. ru′ ≤ ru implies ru′ [ε] = −. Hence, ru′ 6∈ F and δ(ru′ , ε) 6⊆ F .
For w = aw′ one gets δ(ru, w) = δ(ru, aw

′) = δ(δ(ru, a), w′). As δ(ru, w) 6⊆ F , there is
a row r ∈ δ(ru, a) such that δ(r, w′) 6⊆ F . r ∈ δ(ru, a) implies rua ≤ r. As ru′ ≤ ru, by
the claim above ru′a ≤ rua and thus ru′a ≤ r. Hence, r ∈ δ(ru′ , a) and due to δ(ru′ , aw′) =⋃
r∈δ(ru′ ,a)

δ(r, w′) one can conclude δ(ru′ , w) 6⊆ F .

– case ru′ 6≤ ru:
There is a v ∈ V such that ru′ [v] = + and ru[v] = − and by Lemma 12 δ(ru, v) 6⊆ F and
δ(ru′ , v) ⊆ F . Choosing this v as w proves the statement.

This completes the proof of Lemma 1.

Proof of Lemma 3

We prove the lemma by induction upon the length of v. For v = ε one gets r[ε] = JrK [ε] =
Jδ(r, ε)K [ε].
For v = av′ we have r[v] = r[av′] = ra[v′], as r ∈ P and v′ ∈ V due to its suffix-closedness.

– case ra[v′] = +:
It holds δ(r, a) = bP (ra) =

∨
v∈V

ra[v]=+
MP (v). As v′ ∈ V and ra[v′] = + one can conclude

MP (v′) @ δ(r, a). For every r′ @ MP (v′) the induction hypothesis implies Jδ(r′, v′)K [ε] =
r′[v′] = + by the definition of MP (v′). Hence

q
δ(MP (v′), v′)

y
[ε] =

u

vδ(
∧

r′∈P, r′[v′]=+

r′, v′)

}

~ [ε] = + .

Finally, as δ(r, a) contains the monomial MP (v′) one can conclude

Jδ(r, v)K [ε] = Jδ(r, av′)K [ε] = Jδ(δ(r, a), v′)K [ε] ≥
q
δ(MP (v′), v′)

y
[ε] = + .

– case ra[v′] = −:
For every monomial M @ δ(r, a) it must hold JMK [v′] = −. Thus, there is a row rM ∈ P
with rM [v′] = −. The induction hypothesis then implies Jδ(rM , v′)K [ε] = −. So, for every
M @ δ(r, a) we get Jδ(M, v′)K [ε] = −, and finally

Jδ(r, v)K [ε] = Jδ(δ(r, a), v′)K [ε] =
q
δ(bP (ra) , v′)

y
[ε] = − .

Hence, ra[v′] = + iff Jδ(r, v)K [ε] = + which implies r[v] = + iff Jδ(r, v)K [ε] = +.

23

Proof of Theorem 2

Lemma 9 implies that the output of AL?? is always residual. The number of states of the final
hypothesis equals the size of the basis. Thus, an optimal basis leads to a minimal number of
states. The table T cannot have more different rows than κL, the number of states of the minimal
DFA for L (compare Lemma 5 of [4]).

Claim. rε[v] = Jδ(Q0, v)K [ε] for every v ∈ V .

Proof. Choose ϕ = bP (rε). By construction we have rε =
q
bP (rε)

y
. Now we can apply

Lemma 4.

Claim. If c ∈ Σ∗ is classified incorrectly by the AFA then there exists a suffix v of c such that
the corresponding column v /∈ V is different from all columns in V .

Proof. The claim above shows that every w ∈ V is classified correctly by AP
A(T) as well as by

AP ′
A (T). So, for every counterexample c ∈ Σ∗ we know that c is not classified correctly be the

current AFA, but will be classified correctly by every future AFA, which will be constructed from
a table T ′ = (T ′, U ′, V ′) with c in V ′. Hence, δ must be changed. This can only be the case if
either one of the new columns (added when seeing the counterexample) differs from all of the
old columns, or if a new row is added to Rowshigh(T). However, to add a new row, the table must
have become non-P -closed. Therefore, a column that differs from every old column must have
been added before.

Thus, the maximal number of different columns is bounded by the minimal number of states
of a DFA for the reserve language of L denoted by κ̂L. Note that κ̂L ≤ 2κL . Thus both, AP

A(T) and
AP ′
A (T), must be equivalent to the unknown language L after a finite number of counterexamples.

Thus, AL?? terminates.
By construction, Rowshigh(T) does not contain a row more than once. So, |U | is bounded by

κL and Rows(T) by (1+ |Σ|) κL. V is bounded by the number of equivalence queries multiplied
by the length of the counterexamples. Therefore, |V | ≤ ` κ̂L.

The size of the final table is thus at most κLκ̂L(1+ |Σ|)`, and also the number of membership
queries. The total running time of AL?? is polynomial in the size of the final table.

Proof of Lemma 10

Assume that P is a basis of Rowshigh(T), butMRowshigh(T) 6= MP . By construction, for every
m =

q
MP (v)

y
∈ MP there must be some m′ =

q
MRowshigh(T)(v)

y
∈ MRowshigh(T) with

m′ ≤ m. By assumption, there must be such a pair m, m′ with m′ < m. Now consider v, v′ ∈ V
such that m =

q
MP (v)

y
, m′ =

q
MRowshigh(T)(v)

y
and m′[v′] < m[v′]. There must be a row

ru ∈ Rowshigh(T) with ru[v] = + and ru[v
′] = −. Note that ru ∈ MRowshigh(T)(v). Fromq

MP (v)
y

[v′] = + we know that P cannot contain such a row ru. Thus, every monomial over P
that evaluates to + at position v must evaluate to + at position v′. But then, ru ∈ Rowshigh(T)
cannot be composed from P by a DNF. Thus, P cannot be a basis of Rowshigh(T).

Now assume that P is not a basis of Rowshigh(T). So there is some u ∈ U such that ru cannot
be expressed by a DNF over P . Thus, there is a v ∈ V with u[v] = +, but

q
MP (v)

y
> ru =q

MRowshigh(T)(v)
y

. This impliesMRowshigh(T) 6=MP .

24

Appendix C: Construction of Separating Languages

Proof of Theorem 5

We start with an auxiliary lemma. For an AFA A = (Q,Q0, F, δ) and ϕ ∈ F(Q) let Aϕ =
(Q,ϕ, F, δ) denote the AFA starting with the initial configuration ϕ.

Lemma 13. Let L be a regular language and A an AFA accepting L. For every w ∈ Σ∗, there is
a formula ϕw ∈ F(Q) such that L(Aϕw) = w−1L.

Proof. Suppose that this is wrong and there exists a ŵ ∈ Σ∗ that for every ϕ ∈ F(Q), L(Aϕ) 6=
ŵ−1L. Hence, for every ϕ ∈ F(Q), there is a string vϕ such that vϕ ∈ L(Aϕ)4 ŵ−1L. This
means that ŵvϕ is wrongly classified by A.

Now we are ready to give the proof of Theorem 5. First, let us construct an AFA for Bn:
– Q = {p, q, a1, . . . , an, b1, . . . , bn}, Q0 = {p}, F = {p, a1, a2, . . . , an, b1, b2, . . . , bn}
– δ(p, a) = p ∧ a1, δ(p, b) = p ∧ b1
– δ(ai, σ) = ai+1 for i < n and σ ∈ Σ
– δ(bi, σ) = bi+1 for i < n and σ ∈ Σ
– δ(an, a) = p, δ(bn, b) = p, δ(an, b) = q, δ(bn, a) = q
– δ(q, σ) = q for all σ ∈ Σ

It should not be too difficult to convince oneself that this AFA does the job.
To prove that every residual AFA accepting Bn has at least 2n states, let S = {u | u ∈
{a, b}∗, |u| ≤ n} be the set of strings of maximal length n. For w = w1w2 . . . wm in Bn, with
wi ∈ Σ and m > n, we have that w−1Bn = (wm−n+1wm−n+2 . . . wm)−1Bn by the construction
of Bn. Hence, for each residual language L′ of Bn, there is a string u ∈ S such that L′ =
u−1Bn. For u, u′ ∈ S with u 6= u′, we have either u−1Bn (u′−1Bn, or u′−1Bn (u−1Bn, or
u−1Bn∩u′−1Bn = ∅, due to the construction ofBn. Hence, there is a bijection between RES(Bn)
and S.

Let A be a residual AFA for Bn with states Q. As A is residual, every state q ∈ Q cor-
responds to a residual language and thus to a string uq ∈ S. Now consider a string v ∈ Σn.
We have (v−1Bn) ∩ Σn = {v}. In order to correctly recognize Bn, one can see that there is a
configuration ϕv ∈ F(Q) such that L(Aϕv) = v−1Bn (see Lemma 13 above). Without loss of
generality, suppose that ϕv =

∨k
i=1Mi and Mi ⊆ Q. Remember that for all residual languages,

they are either disjoint or one of the languages is a subset of the other. Hence, for every Mi,
either L(AMi

) = ∅ (and it thus can be removed from ϕv) or there is a state qi @ Mi such that
L(AMi

) = L(Aqi). Now ϕv can be represented as a conjunction of states, i. e. ϕv ≡
∨k
i=1 qi. But,

as L(Aϕv) = v−1Bn, we conclude that there is a single state qv ∈ Q such that ϕv ≡ qv (as the
language of every other state is either disjoint or a proper superset). As all of these states need to
be disjoint, we have |Q| ≥ |Σ|n = 2n.

Proof of Theorem 6

Consider the alphabet

Σn = {a, b, AC, $} ∪ {si | 1 < i ≤ n} ∪ {si,σ | 1 ≤ i ≤ n ∧ σ ∈ {a, b}}.

For sake of simplicity, let I = {i, (i, σ) | 1 ≤ i ≤ n, σ ∈ {a, b}} be the indices of the alphabet
symbols si (resp. si,σ). The AFA An = (Q,Q0, δ, F) is constructed as follows.

25

– Q = {qi, qi,σ, qi,σ,j | 1 ≤ i ≤ n, σ ∈ {a, b}, 0 ≤ j ≤ n}, Q0 = q1
– F = {qi,σ,n | 1 ≤ i ≤ n ∧ σ ∈ {a, b}}
– δ(q1, AC) = q1, δ(q1, sI) = qI for all indices I ∈ I
– δ(q1, a) = (q1,a ∧ q2) ∨ q1, δ(q1, b) = (q1,b ∧ q2) ∨ q1
– δ(qi, a) = qi,a ∧ qi+1, δ(qi, b) = qi,b ∧ qi+1 for 1 < i < n
– δ(qn, a) = qn,a, δ(qn, b) = qn,b
– δ(qi,σ, a) = δ(qi,σ, b) = δ(qi,σ, AC) = qi,σ for 1 ≤ i ≤ n and σ ∈ {a, b}
– δ(qi,σ, $) = qi,σ,0 for 1 ≤ i ≤ n and σ ∈ {a, b}
– δ(qi,σ,i−1, σ) = qi,σ,i for 1 ≤ i ≤ n and σ ∈ {a, b}
– δ(qi,σ,j, a) = δ(qi,σ,j, b) = qi,σ,j+1 for 1 ≤ i ≤ n, j 6= i− 1, and σ ∈ {a, b}
– δ(q, σ) = ⊥ for every q ∈ Q and σ ∈ Σn such that δ(q, σ) has not been defined above, where
⊥ is the empty DNF.

The corresponding automaton A2 is shown in Fig. 12.

q1

q1,a q1,a,0 q1,a,1 q1,a,2

q1,b q1,b,0 q1,b,1 q1,b,2

q2

q2,a q2,a,0 q2,a,1 q2,a,2

q2,b q2,b,0 q2,b,1 q2,b,2

a

b

a

b

$ a a, b

$ b a, b

$ a, b a

$ a, b b

a, b,AC,s1

a, b,AC

a, b,AC

a, b,AC

a, b,AC

s1,a

s1,b

s2

s2,a

s2,b

Fig. 12. The AFA An for n = 2.

Note that An has n+ 2n+ 2n(n+ 1) = 2n2 + 5n states and its transitions are of polynomial size.
It accepts the language

Cn = {uwv$w | u, v ∈ {a, b, AC}∗ ∧ w ∈ {a, b}n} ∪
{usIvI | u ∈ {0, 1, AC}∗ ∧ I ∈ I ∧ vI ∈ L((An)qI)}.

This language is inspired by [6]. It remains to show that An is residual, and that Cn has at least
22n different Nerode classes.

1. For every index I ∈ I it holds L ((An)qI) = (sI)
−1Cn, because δ(Q0, sI) = qI . For qi,σ,j with

1 ≤ i ≤ n and σ ∈ {a, b}, 0 ≤ j ≤ n, consider the set {w1, . . . , w2n−1} = {a, b}i−1σ{a, b}n−i.
Since L

(
(An)qi,σ,j

)
= (w1ACw2AC . . . ACw2n−1$σj)−1Cn the AFA An is residual.

2. For any subset W = {w1, . . . , w`} of {a, b}n it holds (w1ACw2AC . . . ACw`$)−1Cn = W . Thus,
the number of different Nerode classes of Cn is at least 22n .

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

