
Crossing the Logarithmic Barrier for Dynamic Boolean Data

Structure Lower Bounds

Kasper Green Larsen∗ Omri Weinstein† Huacheng Yu‡

Abstract

This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic
boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower
bounds.

We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a
Ω̃(lg1.5 n) lower bound on the operational time of a wide range of boolean data structure problems, most
notably, on the query time of dynamic range counting over F2 ([Pat07]). Proving an ω(lgn) lower bound
for this problem was explicitly posed as one of five important open problems in the late Mihai Pǎtraşcu’s
obituary [Tho13]. This result also implies the first ω(lgn) lower bound for the classical 2D range counting
problem, one of the most fundamental data structure problems in computational geometry and spatial
databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and
2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median.

Our technical centerpiece is a new way of “weakly” simulating dynamic data structures using efficient
one-way communication protocols with small advantage over random guessing. This simulation involves
a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and
offers an entirely new algorithmic angle on the “cell sampling” method of Panigrahy et al. [PTW10].

1 Introduction

Proving unconditional lower bounds on the operational time of data structures in the cell probe model [Yao81]
is one of the holy grails of complexity theory, primarily because lower bounds in this model are oblivious
to implementation considerations, hence they apply essentially to any imaginable data structure (and in
particular, to the ubiquitous word-RAM model). Unfortunately, this abstraction makes it notoriously difficult
to obtain data structure lower bounds, and progress over the past three decades has been very slow. In the
dynamic cell probe model, where a data structure needs to maintain a database under an “online” sequence
of n operations (updates and queries) by accessing as few memory cells as possible, a number of lower
bound techniques have been developed. In [FS89], Fredman and Saks proved Ω(lg n/ lg lg n) lower bounds
for a list of dynamic problems. About 15 years later, Pǎtraşcu and Demaine [PD04, PD06] proved the first
Ω(lg n) lower bound ever shown for an explicit dynamic problem. The celebrated breakthrough work of
Larsen [Lar12a] brought a near quadratic improvement on the lower bound frontier, where he showed an
Ω((lg n/ lg lg n)2) cell probe lower bound for the 2D range sum problem (a.k.a. weighted orthogonal range
counting in 2D). This is the highest cell probe lower bound known to date.

Larsen’s result has one substantial caveat, namely, it inherently requires the queries to have large (Θ(lg n)-
bit) output size. Therefore, when measured per output-bit of a query, the highest lower bound remains only
Ω(lg n) per bit (for dynamic connectivity due to Pǎtraşcu and Demaine [PD06]).

In light of this, a concrete milestone that was identified en route to proving ω(lg2 n) dynamic cell probe
lower bounds, was to prove an ω(lg n) cell probe lower bound for boolean (a.k.a. decision) data structure

∗Department of Computer Science, Aarhus University. Supported by MADALGO, grant DNRF84, a Villum Young Investi-
gator Grant and an AUFF Starting Grant.
†Department of Computer Science, Columbia University.
‡Department of Computer Science, Stanford University. Supported by NSF CCF-1212372.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 47 (2017)

problems (the problem was explicitly posed in [Lar12a, Tho13, Lar13] and the caveat with previous techniques
requiring large output has also been discussed in e.g. [Pat07, CGL15]). We stress that this challenge is
provably a prerequisite for going beyond the ω(lg2 n) barrier for general (Θ(lg n)-bit output) problems:
Indeed, consider a dynamic data structure problem P maintaining a database with updates U and queries
Q, where each query q ∈ Q outputs lg n bits. If one could prove an ω(lg2 n) lower bound for P, this would
directly translate into an ω(lg n) lower bound for the following induced dynamic boolean problem Pbool:
Pbool has the same set of update operations U , and has queries Q′ := Q × [lg n]. Upon a query (q, i), the
data structure should output the i-th bit (P(q,U))i of the answer to the original query q w.r.t the database
U . An ω(lg n) lower bound then follows, simply because each query of P can be simulated by Θ(lg n) queries
of Pbool, and the update time is preserved. Thus, to break the lg2 n-barrier for cell probe lower bounds,
one must first prove a super-logarithmic lower bound for some dynamic boolean problem. Of course, many
classic data structure problems are naturally boolean (e.g., reachability, membership, etc.), hence studying
decision data structure problems is interesting on its own.

Technically speaking, the common reason why all previous techniques hitherto (e.g., [Pat07, Lar12a,
WY16]) fail to prove super-logarithmic lower bounds for dynamic boolean problems, is that they all heavily
rely on each query revealing a large amount of information about the database. In contrast, for boolean
problems, each query could reveal at most one bit of information, and thus any such technique is doomed
to fail. We elaborate on this excruciating obstacle and how we overcome it in the following subsection.

In this paper, we develop a fundamentally new lower bound method and use it to prove the first super-
logarithmic lower bounds for dynamic boolean data structure problems. Our results apply to natural boolean
versions of several classic data structure problems. Most notably, we study a boolean variant of the dynamic
2D range counting problem. In 2D range counting, n points are inserted one-by-one into an [n]× [n] integer
grid, and given a query point q = (x, y) ∈ [n] × [n], the data structure must return the number of points p
dominated by q (i.e., p.x ≤ x and p.y ≤ y). This is one of the most fundamental data structure problems in
computational geometry and spatial database theory (see e.g., [Aga04] and references therein). It is known
that a variant of dynamic “range trees” solve this problem using O((lg n/ lg lg n)2) amortized update time
and O((lg n/ lg lg n)2) worst case query time ([BGJS11]). We prove an Ω̃(lg1.5 n) lower bound even for a
boolean version, called 2D range parity, where one needs only to return the parity of the number of points
dominated by q. This is, in particular, the first ω(lg n) lower bound for the (classical) 2D range counting
problem. We are also pleased to report that this is the first progress made on the 5 important open problems
posed in Mihai Pǎtraşcu’s obituary [Tho13].

In addition to the new results for 2D range parity, we also prove the first ω(lg n) lower bounds for the
classic (non-boolean) problems of dynamic range selection and range median, as well as an ω(lg n) lower
bound for a boolean version of polynomial evaluation. We formally state these problems, our new lower
bounds, and a discussion of previous state-of-the-art bounds in Section 1.2.

The following two subsections provide a streamlined overview of our technical approach and how we apply
it to obtain new dynamic lower bounds, as well as discussion and comparison to previous related work.

1.1 Techniques

To better understand the challenge involved in proving super-logarithmic lower bounds for boolean data
structure problems, and how our approach departs from previous techniques that fail to overcome it, we
first revisit Larsen’s Ω̃(lg2 n) lower bound technique for problems with Θ(lg n)-bit output size, which is most
relevant for our work. (We caution that a few variations [CGL15, WY16] of Larsen’s [Lar12a] approach have
been proposed, yet all of them crucially rely on large query output size). The following overview is presented
in the context of the 2D range sum problem for which Larsen originally proved his lower bound. 2D range
sum is the variant of 2D range counting where each point is assigned a Θ(lg n)-bit integer weight, and the
goal is to return the sum of weights assigned to points dominated by the query q. Clearly this is a harder
problem than 2D range counting (which corresponds to all weights being 1) and 2D range parity (which
again has all weights being 1, but now only 1 bit of the output must be returned).

2

Larsen’s Lower Bound [Lar12a]. Larsen’s result combines the seminal chronogram method of Fredman
and Saks [FS89] together with the cell sampling technique introduced by Panigrahy et al. [PTW10]. The idea
is to show that, after n random updates have been performed,1 any data structure (with poly lg n update
time) must probe many cells when prompted on a random range query. To this end, the n random updates
are partitioned into ` := Θ(lg n/ lg lg n) epochs U`, . . . ,Ui, . . . ,U1, where the i-th epoch Ui consists of βi

updates for β = poly lg n. The goal is to show that, for each epoch i ∈ {1, . . . , `}, a random query must
read in expectation Ω(lg n/ lg lg n) memory cells whose last modification occurred during the ith epoch Ui.
Summing over all epochs then yields a Ω̃(lg2 n) query lower bound.

To carry out this approach, one restricts the attention to epoch i, assuming all remaining updates in
other epochs (U−i) are fixed (i.e., only Ui is random). For a data structure D, let Ai denote the set of
memory cells associated with epoch i, i.e., the cells whose last update occurred in epoch i. Clearly, any cell
that is written before epoch i cannot contain any information about Ui, while the construction guarantees
there are relatively few cells written after epoch i, due to the geometric decay in the lengths of epochs.
Thus, “most” of the information D provides on Ui comes from cell probes to Ai (hence, intuitively, the
chronogram method reduces a dynamic problem into ≈ lg n nearly independent static problems).

The high-level idea is to now prove that, if a too-good-to-be-true data structure D exists, which probes
o(lg n/ lg lg n) cells associated with epoch i on an average query, then D can be used to devise a compression
scheme (i.e., a “one-way” communication protocol) which allows a decoder to reconstruct the random update
sequence Ui from an o(H(Ui))-bit message, an information-theoretic contradiction.

Larsen’s encoding scheme has the encoder (Alice) find a subset C ⊆ Ai of a fixed size, such that suffi-
ciently many range queries q ∈ [n] × [n] can be resolved by C, meaning that these queries can be answered
without probing any cell in Ai \ C. Indeed, the assumption that the query algorithm of D probes only
o(lg n/ lg lg n) cells from Ai, implies that a random subset of size |C| = |Ai|/poly lg n cells resolves at least a
(1/poly lg n)o(lgn/ lg lgn) = n−o(1)-fraction of the n2 possible queries, an observation first made in [PTW10].
This observation in turn implies that by sending the contents and addresses of C, the decoder (Bob) can
recover the answers to some specific subset Q∗ ⊆ [n] × [n] of at least n2−o(1) queries. Intuitively, if the
queries of the problem are “sufficiently independent”, e.g., the answers to all queries are n-wise independent
over a random Ui, then answering Q∗ or even any subset of Q∗ of size n would be sufficient to reconstruct
the entire update sequence Ui. Thus, by simulating the query algorithm ∀q ∈ Q∗ and using the set C to
“fill in” his missing memory cells associated with Ui, Bob could essentially recover Ui. On the other hand,
the update sequence itself contains at least Ω(|Ui|) � |C| · w bits of entropy, hence it cannot possibly be
reconstructed from C, yielding an information-theoretic contradiction. Here, and throughout the paper, w
denotes the number of bits in a memory cell. We make the standard assumption that w = Ω(lg n), such that
a cell has enough bits to store an index into the sequence of updates performed.

It is noteworthy that range queries do not directly possess such “n-wise independence” property per-se,
but using (nontrivial) technical manipulations (a-la [Pat07, Lar12a, WY16]) this argument can be made to
work, see the discussion in Section 6.

Alas, a subtle but crucial issue with the above scheme is that Bob cannot identify the subset Q∗, that
is, when simulating the query algorithm of D on a given query, he can never know whether an unsampled
(/∈ C) encountered cell in the query-path in fact belongs to Ai or not. This issue is also faced by Pǎtraşcu’s
approach in [Pat07]. Larsen resolves this excruciating problem by having Alice further send Bob the indices
of (a subset of) Q∗ that already reveals enough information about Ui to get a contradiction. In order to
achieve the anticipated contradiction, the problem must therefore guarantee that the answer to a query
reveals more information than it takes to specify the query itself (Θ(lg n) bits for 2D range sum). This is
precisely the reason why Larsen’s lower bound requires Ω(lg n)-bit weights assigned to each input point,
whereas for the boolean 2D range parity problem, all bets are off.

1Each update inserts a random point and assigns it a random Θ(lgn)-bit weight.

3

1.1.1 Our Techniques

We develop a new lower bound technique which ultimately circumvents the aforementioned obstacle that
stems from Bob’s inability to identify the subset Q∗. Our high-level strategy is to argue that an efficient
dynamic data structure for a boolean problem, induces an efficient one-way protocol from Alice (holding
the entire update sequence U := U`, . . . ,U1 as before) to Bob (who now receives a query q ∈ Q and
U \ {Ui}), which enables Bob to answer his boolean query with some tiny yet nontrivial advantage over
random guessing. For a dynamic boolean data structure problem P, we denote this induced communication
game (corresponding to the ith epoch) by GiP . The following “weak simulation” theorem, which is the
centerpiece of this paper, applies to any dynamic boolean data structure problem P:

Theorem 1 (One-Way Weak Simulation Theorem, informal). Let P be any dynamic boolean data structure
problem, with n random updates grouped into epochs U = {Ui}`i=1 followed by a single query q ∈ Q.
If P admits a dynamic data structure D with word-size w, worst-case update time tu and average (over
Q) expected query time tq with respect to U , satisfying tq, tu, w ≤ n0.1, then there exists some epoch i ∈
[`] for which there is a one-way randomized communication protocol for GiP in which Alice sends Bob a
message of only |Ui|/(wtu)Θ(1) bits, and after which Bob successfully computes P(q,U) with probability at
least 1/2 + exp

(
−tq lg2(w · tu)/

√
lg n
)
.2

The formal statement and proof of the above theorem can be found in Section 4. Before we elaborate on
the proof of Theorem 1, let us explain informally why such a seemingly modest guarantee suffices to prove
super-logarithmic cell probe lower bounds on boolean problems with a certain “list-decoding” property. If
we view query-answering as mapping an update sequence to an answer vector,3 then answering a random
query correctly with probability 1/2+e−r(n) would correspond to mapping an update sequence to an answer
vector that is (1/2−e−r(n))-far from the true answer vector defined by the problem. Intuitively, if the correct
mapping defined by the problem is list-decodable in the sense that in the (1/2− e−r(n))-ball centered at any
answer vector, there are very few codewords (which are the correct answer vectors corresponding to some
update sequences), then knowing any vector within distance (1/2 − e−r(n)) from the correct answer vector
would reveal a lot of information about the update sequence. Standard probabilistic arguments [Vad12] show
that when the code rate is n−Θ(1) (i.e., |Q| = nΘ(1) as for 2D range parity), a random code is “sufficiently”
list-decodable with r(n) = Ω(lg n), i.e., for most data structure problems, the protocol in the theorem
would reveal too much information if Bob can predict the answer with probability, say 1/2 + e−0.01 lgn.

Therefore, Theorem 1 would imply that the query time must be at least tq = Ω(lg1.5 n
lg2(w·tu)

). Assuming the

data structure has tu = poly lg n worst-case update time and standard word-size w = Θ(lg n), the above
bound gives tq ≥ Ω̃(lg1.5 n). Indeed all our concrete lower bounds are obtained by showing a similar list-

decoding property with r(n) = Ω(lg n), yielding a lower bound of Ω̃(lg1.5 n). See Subsection 1.2 for more
details.

Overview of Theorem 1 and the “Peak-to-Average” Lemma. We now present a streamlined
overview of the technical approach and proof of our weak one-way simulation theorem, the main result
of this paper. Let P be any boolean dynamic data structure problem and denote by ni := |Ui| = βi the

size of each epoch of random updates (where β := (tu · w)Θ(1) and
∑`
i=1 ni = n). Recall that in GiP , Alice

receives the entire sequence of epochs U , Bob receives q ∈R Q and U \ {Ui}, and our objective is to show
that Alice can send Bob a relatively short message (ni/(tu · w)Θ(1) bits) which allows him to compute the
answer to q w.r.t U , denoted P(q,U) ∈ {0, 1}, with advantage δ := exp(−tq lg2(w · tu)/

√
lg n) over 1/2.

Suppose P admits a dynamic data structure D with worst-case update time tu and expected query time tq
with respect to U and q ∈R Q. Following Larsen’s cell sampling approach, a natural course of action for Alice
is to generate the updated memory state M of D (w.r.t U), and send Bob a relatively small random subset
C0 of the the cells Ai associated with epoch i, where each cell is sampled with probability p = 1/(tu ·w)Θ(1).
Since the expected query time of D is tq and there are ` = Θ(lgβ n) epochs, the average (over i ∈ [`]) number

2Throughout the paper, we use exp(x) to denote 2Θ(x).
3An answer vector is a |Q|-dimensional vector containing one coordinate per query, whose value is the answer to this query.

4

of cells in Ai probed by a query is tq/`, hence the probability that Alice’s random set C0 resolves Bob’s
random query q ∈R Q is at least ε := pΘ(tq/`). Let us henceforth denote this desirable event byWq. It is easy
to see that, if Alice further sends Bob all cells that were written (associated) with future epochs U<i (which
can be done using less than ni/(w · tu)Θ(1) bits due to the geometric decay of epochs and the assumption
that D probes at most tu cells on each update operation), then conditioned on Wq, Bob would have acquired
all the necessary information to perfectly simulate the correct query-path of D on his query q.

Thus, if Bob could detect the event Wq, the above argument would have already yielded an advantage
of roughly Pr[Wq] ≥ ε = pΘ(tq/`) ≥ exp(−tq lg2(w · tu)/ lg n) � δ (as Bob could simply output a random
coin-toss unlessWq occurs), and this would have finished the proof. Unfortunately, certifying the occurrence
of Wq is prohibitively expensive, precisely for the same reason that identifying the subset Q∗ is costly in
Larsen’s argument. Abandoning the hope for certifying the eventWq (while insisting on low communication)
means that we must take a fundamentally different approach to argue that the noticeable occurrence of this
event can somehow still be exploited implicitly so as to guarantee a nontrivial advantage. This is the heart
of the paper, and the focal point of the rest of this exposition.

The most general strategy Bob has is to output his “maximum likelihood” estimate for the answer
P(q,U) given the information he receives, i.e., the more likely posterior value of (P(q,U) |U−i, C0) ∈ {0, 1}
(for simplicity of exposition, we henceforth ignore the conditioning on U−i, C0 and on the set of updates D
makes to future epochs U<i which Alice sends as well). Assuming without loss of generality that the answer
to the query is P(q,U) = 1, when Wq occurs, this strategy produces an advantage (“bias”) of 1/2 (since
when Wq occurs, the answer P(q,U) is completely determined by U−i, C0 and the updates to U<i), and
when it does not occur, the strategy produces a bias of Pr[(P(q,U) = 1|Wq)]− 1/2. Thus, the overall bias is
Pr[Wq] · (1/2)+Pr[Wq] ·

(
Pr[(P(q,U) = 1|Wq)]− 1/2

)
. This quantity could be arbitrarily close to 0, since we

have no control over the distribution of the answer conditioned on the complement event Wq, which might
even cause perfect cancellation of the two terms.

Nevertheless, one could hope that such unfortunate cancellation of our advantage can be avoided if Alice
reveals to Bob some little extra “relevant” information. To be more precise, let Sq be the set of memory
addresses D would have probed when invoked on the query q according to Bob’s simulation. That is, Bob
simulates D until epoch i, updates the contents for all cells that appear in Alice’s message, and simulates
the query algorithm for q on this memory state. In particular, if the event Wq occurs, then Sq is the correct
set of memory cells the data structure probes. Of course, the set Sq is extremely unlikely to be “correct” as
Pr[Wq] is tiny, so Sq should generally be viewed as an arbitrary subset of memory addresses. Now, the true
contents of the cells Sq (w.r.t the true memory state M) induce some posterior distribution on the correct
answer P(q,U) (in particular, when Wq occurs, the path is correct and its contents induce the true answer).

Imagine that Alice further reveals to Bob the true contents of some small subset Y ⊆ Sq, i.e., an
assignment x ∈ [2w]Y . The posterior distribution of the answer P(q,U) conditioned on x is simply the
convex combination of the posterior distributions conditioned on “Sq = z” for all z’s that are consistent
with x (z|Y = x), weighted by the probability of z (Pr[Sq = z]) up to some normalizer. The contribution of
each term in this convex combination (i.e., of each posterior distribution induced by a partial assignment x)
to the overall bias, is precisely the average, over all full assignments z to cells in Sq which are x-consistent,
of the posterior bias induced by the event “Sq = z” (i.e., when the entire Sq is revealed). For each full
assignment z, we denote its latter contribution by f(z), hence the expected bias contributed by the event
“z|Y = x” is nothing but the sum of f(z) over all z’s satisfying z|Y = x. Furthermore, we know that there
is some assignment z∗, namely the contents of Sq when Wq occurs, such that |f(z∗)| is “large” (recall the
bias is 1/2 in this event). Thus, the key question we pose and set out to answer, is whether it is possible

to translate this `∞ “peak” of f into a comparable lower bound on the “average” bias
∑
x

∣∣∣∑z|Y =x f(z)
∣∣∣,

by conditioning on the assignments to a small subset of coordinates Y . Indeed, if such Y exists, Alice can
sample independently another set of memory cells C1 and send it to Bob. With probability p|Y |, all contents
of Y are revealed to Bob, and we will have the desired advantage. In essence, the above question is equivalent
to the following information-theoretic problem:

Let Z be a k-variate random variable and B a uniform binary random variable in the same

5

probability space, satisfying: (i) Pr[Z = z∗] ≥ ε for some z∗; (ii) H(B | Z = z∗) = 0. What is
the smallest subset of coordinates Y ⊆ [k] such that H(B | (Z|Y)) ≤ 1− η ?

The crux of our proof is the following lemma, which asserts that conditioning on only |Y | = O(
√
k lg(1/ε))

many coordinates suffices to achieve a non-negligible average advantage η = exp(−
√
k lg(1/ε)).

Lemma 1 (Peak-to-Average Lemma). Let f : Σk → R be any real function satisfying: (i)
∑
z∈Σk |f(z)| ≤ 1;

and (ii) maxz∈Σk |f(z)| ≥ ε. Then there exists a subset Y of indices, |Y | ≤ O
(√

k · lg 1/ε
)

, such that∑
y∈ΣY |

∑
z|Y =y f(z)| ≥ exp(−

√
k · lg 1/ε).

An indispensable ingredient of the proof is the usage of low-degree (multivariate) polynomials with
“threshold”-like phenomena, commonly known as (discrete) Chebyshev polynomials.4 The lemma can be
viewed as an interesting and efficient way of “decomposing” a distribution into a small number of conditional
distributions, “boosting” the effect of a single desirable event, hence the Peak-to-Average Lemma may be
of independent interest (see Section 4.1 for a high-level overview and the formal proof). In Appendix B,
we show that the lemma is in fact tight, in the sense that there are functions for which conditioning on

o
(√

k · lg 1/ε
)

of their coordinates provides no advantage at all.

To complete the proof of the simulation theorem, we apply the Peak-to-Average Lemma with f , k := tq
and ε := pΘ(tq/`) = (1/wtu)O(tq/`). The lemma guarantees that Bob can find a small (specific) set of coordi-
nates Y ⊆ Sq, such that his maximum-likelihood estimate conditioned on the true value y of the coordinates

in Y must provide an advantage of at least exp(−
√
k · lg 1/ε) = exp

(
−tq lg(w · tu)/

√
lg n
)
. Since |Y | is

small, the probability that Y is contained in Alice’s second sample C1 is p|Y | ≥ exp
(
−tq lg2(w · tu)/

√
lg n
)
.

Overall, Bob’s maximum-likelihood strategy provides the desired advantage δ we sought.

1.2 Applications: New Lower Bounds

We apply our new technique to a number of classic data structure problems, resulting in a range of new lower
bounds. This section describes the problems and the lower bounds we derive for them, in context of prior
work. As a warm-up, we prove a lower bound for a somewhat artificial version of polynomial evaluation:

Polynomial Evaluation. Consider storing, updating and evaluating a polynomial P over the Galois field
GF (2d). Here we assume that elements of GF (2d) are represented by bit strings in {0, 1}d, i.e. there is
some bijection between GF (2d) and {0, 1}d. Elements are represented by the corresponding bit strings. Any
bijection between elements and bit strings suffice for our lower bound to apply.

The least-bit polynomial evaluation data structure problem is defined as follows: A degree n ≤ 2d/4

polynomial P (x) =
∑n
i=0 aix

i over GF (2d) is initialized with all n + 1 coefficients ai being 0. An update
is specified by a tuple (i, b) where i ∈ [n + 1] is an index and b is an element in GF (2d). It changes the
coefficient ai such that ai ← ai + b (where addition is over GF (2d)). A query is specified by an element
y ∈ GF (2d) and one must return the least significant bit of P (y). Recall that we make no assumptions on
the concrete representation of the elements in GF (2d), only that the elements are in a bijection with {0, 1}d
so that precisely half of all elements in GF (2d) have a 0 as the least significant bit.

Using our weak one-way simulation theorem, Section 5 proves the following lower bound:

Theorem 2. Any cell probe data structure for least-bit polynomial evaluation over GF (2d), having cell size
w, worst case update time tu and expected average query time tq must satisfy:

tq = Ω

(
min

{
d
√

lg n

lg2(tuw)
,

√
n

(tuw)O(1)

})
.

4These are real polynomials defined on the k-hypercube, of degree O(
√
k lg(1/γ)) and whose value is uniformly bounded by

γ everywhere on the cube except the all-0 point which attains the value 1.

6

Note that this lower bound is not restricted to have d = O(lg n) (corresponding to having polynomially
many queries). It holds for arbitrarily large d and thus demonstrates that our lower bound actually grows as
log of the number of queries, times a

√
lg n. At least up to a certain (unavoidable) barrier (the

√
n bound in

the min is precisely when the query time is large enough that the data structure can read all cells associated
to more than half of the epochs). We remark that the majority of previous lower bound techniques could
also replace a lg n in the lower bounds by a d for problems with 2d queries. Our introduction focuses on the
most natural case of polynomially many queries (d = Θ(lg n)) for ease of exposition.

Polynomial evaluation has been studied quite intensively from a lower bound perspective, partly since it
often allows for very clean proofs. The previous work on the problem considered the standard (non-boolean)
version in which we are required to output the value P (x), not just its least significant bit. Miltersen [Mil95]
first considered the static version where the polynomial is given in advance and we disallow updates. He
proved a lower bound of tq = Ω(d/ lgS) where S is the space usage of the data structure in number of
cells. This was improved by Larsen [Lar12b] to tq = Ω(d/ lg(Sw/(nd))), which remains the highest static
lower bound proved to date. Note that the lower bound peaks at tq = Ω(d) for linear space S = O(nd/w).
Larsen [Lar12b] also extended his lower bound to the dynamic case (though for a slightly different type of
updates), resulting in a lower bound of tq = Ω(d lg n/(lg(wtu) · lg(wtu/d)). Note that none of these lower
bounds are greater than tq = Ω(lg n/ lg tu) per output bit and in that sense they are much weaker than our
new lower bound.

In [GM07], Gál and Miltersen considered succinct data structures for polynomial evaluation. Succinct
data structures are data structures that use space close to the information theoretic minimum required for
storing the input. In this setting, they showed that any data structure for polynomial evaluation must satisfy
tqr = Ω(n) when 2d ≥ (1 + ε)n for any constant ε > 0. Here r is the redundancy, i.e. the additive number of
extra bits of space used by the data structure compared to the information theoretic minimum. Note that
even for data structures using just a factor 2 more space than the minimum possible, the time lower bound
reduces to the trivial tq = Ω(1). For data structures with non-determinism (i.e., they can guess the right
cells to probe), Yin [Yin10] proved a lower bound matching that of Miltersen.

On the upper bound side, Kedlaya and Umans [KU08] presented a word-RAM data structure for the

static version of the problem, having space usage n1+εd1+o(1) and worst case query time lgO(1) n · d1+o(1),
getting rather close to the lower bounds. While not discussed in their paper, a simple application of the
logarithmic method makes their data structure dynamic with an amortized update time of nεd1+o(1) and
worst case query time lgO(1) n · d1+o(1).

Parity Searching in Butterfly Graphs. In a seminal paper [Pǎt08], Pǎtraşcu presented an exciting
connection between an entire class of data structure problems. Starting from a problem of reachability
oracles in the Butterfly graph, he gave a series of reductions to classic data structure problems. His reductions
resulted in tq = Ω(lg n/ lg(Sw/n)) lower bounds for static data structures solving any of these problems.

We modify Pǎtraşcu’s reachability problem such that we can use it in reductions to prove new dynamic
lower bounds. In our version of the problem, which we term parity searching in Butterfly graphs, the data
structure must maintain a set of directed acyclic graphs (Butterfly graphs of the same degree B, but different
depths) under updates which assign binary weights to edges, and support queries that ask to compute the
parity of weights assigned to edges along a number of paths in these graphs. The formal definition of this
version of the problem is deferred to Section 6.2.

While this new problem might sound quite artificial and incompatible to work with, we show that parity
searching in Butterfly graphs in fact reduces to many classic problems, hence proving lower bounds on this
problem is the key to many of our results. Indeed, our starting point is the following lower bound:

Theorem 3. Any dynamic data structure for parity searching in Butterfly graphs of degree B = (wtu)8,
with a total of n edges, having cell size w, worst case update time tu and expected average query time tq must
satisfy:

tq = Ω

(
lg3/2 n

lg3(tuw)

)
.

7

In the remainder of this section, we present new lower bounds which we derive via reductions from parity
searching in Butterfly graphs . For context, our results are complemented with a discussion of previous work.

2D Range Counting. In 2D range counting, we are given n points P on a [U]× [U] integer grid, for some
U = nO(1). We must preprocess the points such that given a query point q = (x, y) ∈ [U]× [U], we can return
the number of points p ∈ P that are dominated by q (i.e. p.x ≤ q.x and p.y ≤ q.y). In the dynamic version
of the problem, an update specifies a new point to insert. 2D range counting is a fundamental problem in
both computational geometry and spatial databases and many variations of it have been studied over the
past many decades.

Via a reduction from reachability oracles in the Butterfly graph, Pǎtraşcu [Pǎt08] proved a static lower
bound of tq = Ω(lg n/ lg(Sw/n)) for this problem, even in the case where one needs only to return the parity
of the number of points dominated by q. Recall that this is the 2D range parity problem.

It turns out that a fairly easy adaptation of Pǎtraşcu’s reduction implies the following:

Theorem 4. Any dynamic cell probe data structure for 2D range parity, having cell size w, worst case
update time tu and expected query time tq, gives a dynamic cell probe data structure for parity searching
in Butterfly graphs (for any degree B) with cell size w, worst case update time O(tu) and average expected
query time tq.

Combining this with our lower bound for parity searching in Butterfly graphs (Theorem 3), we obtain:

Corollary 1. Any cell probe data structure for 2D range parity, having cell size w, worst case update time
tu and expected query time tq must satisfy:

tq = Ω

(
lg3/2 n

lg3(tuw)

)
.

In addition to Pǎtraşcu’s static lower bound, Larsen [Lar12a] studied the aforementioned variant of the
range counting problem, called 2D range sum, in which points are assigned Θ(lg n)-bit integer weights and
the goal is to compute the sum of weights assigned to points dominated by q. As previously discussed,
Larsen’s lower bound for dynamic 2D range sum was tq = Ω((lg n/ lg(tuw))2) and was the first lower bound
to break the Ω(lg n)-barrier, though only for a problem with Θ(lg n) bit output. Weinstein and Yu [WY16]
later re-proved Larsen’s lower bound, this time extending it to the setting of amortized update time and
a very high probability of error. Note that these lower bounds remain below the logarithmic barrier when
measured per output bit of a query. While 2D range counting (not the parity version) also has Θ(lg n)-bit
outputs, it seems that the techniques of Larsen and Weinstein and Yu are incapable of proving an ω(lg n)
lower bound for it. Thus the strongest previous lower bound for the dynamic version of 2D range counting
is just the static bound of tq = Ω(lg n/ lg(tuw)) (since one cannot build a data structure with space usage
higher than S = tun in n operations). As a rather technical explanation for why the previous techniques fail,
it can be observed that they all argue that a collection of m = n/poly(lg n) queries have Ω(m lg n) bits of
entropy in their output. But for 2D range counting, having n/poly(lg n) queries means that on average, each
query contains just poly(lg n) new points, reducing the total entropy to something closer to O(m lg lgn).
This turns out to be useless for the lower bound arguments. It is conceivable that a clever argument could
show that the entropy remains Ω(m lg n), but this has so forth resisted all attempts.

From the upper bound side, JáJá, Mortensen and Shi [JMS04] gave a static 2D range counting data
structure using linear space and O(lg n/ lg lg n) query time, which is optimal by Pǎtraşcu’s lower bound.
For the dynamic case, Brodal et al. [BGJS11] gave a data structure with tq = tu = O((lg n/ lg lg n)2). Our
new lower bound shrinks the gap between the upper and lower bound on tq to only a factor

√
lg n lg lg n for

tu = poly(lg n).

2D Rectangle Stabbing. In 2D rectangle stabbing, we must maintain a set of n 2D axis aligned rectangles
with integer coordinates, i.e. rectangles are of the form [x1, x2]×[y1, y2]. We assume coordinates are bounded

8

by a polynomial in n. An update inserts a new rectangle. A query is specified by a point q, and one must
return the number of rectangles containing q. This problem is known to be equivalent to 2D range counting
via a folklore reduction. Thus all the bounds in the previous section, both upper and lower bounds, also
apply to this problem. Furthermore, 2D range parity is also equivalent to 2D rectangle parity, i.e. returning
just the parity of the number of rectangles stabbed.

Range Selection and Range Median. In range selection, we are to store an array A = {A[0], . . . , A[n−
1]} where each entry stores an integer bounded by a polynomial in n. A query is specified by a triple (i, j, k).
The goal is to return the index of the k’th smallest entry in the subarray {A[i], . . . , A[j]}. In the dynamic
version of the problem, entries are initialized to 0. Updates are specified by an index i and a value a and
has the effect of changing the value stored in entry A[i] to a. In case of multiple entries storing the same
value, we allow returning an arbitrary index being tied for k’th smallest.

We give a reduction from parity searching in Butterfly graphs:

Theorem 5. Any dynamic cell probe data structure for range selection, having cell size w, worst case update
time tu and expected query time tq, gives a dynamic cell probe data structure for parity searching in Butterfly
graphs (for any degree B) having cell size w, worst case update time O(tu lg2 n) and expected average query
time tq. Furthermore, this holds even if we force i = 0 in queries (i, j, k) and require only that we return
whether the k’th smallest element in A[0], . . . , A[j] is stored at an even or odd position.

Since we assume w = Ω(lg n), combining this with Theorem 3 immediately proves the following:

Corollary 2. Any cell probe data structure for range selection, having cell size w, worst case update time
tu and expected query time tq must satisfy:

tq = Ω

(
lg3/2 n

lg3(tuw)

)
.

Furthermore, this holds even if we force i = 0 in queries (i, j, k) and require only that we return whether the
k’th smallest element in A[0], . . . , A[j] is stored at an even or odd position.

While range selection is not a boolean data structure problem, it is still a fundamental problem and for
the same reasons as mentioned under 2D range counting, the previous lower bound techniques seem incapable
of proving ω(lg n) lower bounds for the dynamic version. Thus we find our new lower bound very valuable
despite the problem not beeing boolean . Also, we do in fact manage to prove the same lower bound for the
boolean version where we need only determine whether the index of the k’th smallest element is even or odd.

For the static version of the problem, Jørgensen and Larsen [JL11] proved a lower bound of tq =
Ω(lg n/ lg(Sw/n)). Their proof was rather technical and a new contribution of our work is that their static
lower bound now follows by reduction also from Pǎtraşcu’s lower bound for reachability oracles in the But-
terfly graph. For the dynamic version of the problem, no lower bound stronger than the tq = Ω(lg n/ lg(tuw))
bound following from the static bound was previously known.

On the upper bound side, Brodal et al. [BGJS11] gave a linear space static data structure with query
time tq = O(lg n/ lg lg n). This matches the lower bound of Jørgensen and Larsen. They also gave a dynamic
data structure with tq = tu = O((lg n/ lg lg n)2).

Since we prove our lower bound for the version of range selection where i = 0, also known as prefix
selection, we can re-execute a reduction of Jørgensen and Larsen [JL11]. This means that we also get a
lower bound for the fundamental range median problem. Range median is the natural special case of range
selection where k = d(j − i+ 1)/2e.

Corollary 3. Any cell probe data structure for range median, having cell size w, worst case update time tu
and expected query time tq must satisfy:

tq = Ω

(
lg3/2 n

lg3(tuw)

)
.

9

Furthermore, this holds even if we are required only to return whether the median amongst A[i], . . . , A[j] is
stored at an even or odd position.

We note that the upper bound of Brodal et al. for range selection is also the best known upper bound
for range median.

2 Organization

In Section 3 we introduce both the dynamic cell probe model and the one-way communication model, which
is the main proxy for our results. In Section 4 we state the formal version of Theorem 1 and give its proof as
well as the proof of the Peak-to-Average lemma. Section 5 and onwards are devoted to applications of our
new simulation theorem, starting with a lower bound for polynomial evaluation. In Section 6 we formally
define parity searching in Butterfly graphs and prove a lower bound for it using our simulation theorem.
Finally, Section 7 presents a number of reductions from parity searching in Butterfly graphs to various
fundamental data structure problems, proving the remaining lower bounds stated in the introduction.

3 Preliminaries

The dynamic cell probe model. A dynamic data structure in the cell probe model consists of an array
of memory cells, each of which can store w bits. Each memory cell is identified by a w-bit address, so the
set of possible addresses is [2w]. It is natural to assume that each cell has enough space to address (index)
all update operations performed on it, hence we assume that w = Ω(lg n) when analyzing a sequence of n
operations.

Upon an update operation, the data structure can perform read and write operations to its memory so
as to reflect the update, by probing a subset of memory cells. This subset may be an arbitrary function of
the update and the content of the memory cells previously probed during this process. The update time of
a data structure, denoted by tu, is the number of probes made when processing an update (this complexity
measure can be measured in worst-case or in an amortized sense). Similarly, upon a query operation, the
data structure performs a sequence of probes to read a subset of the memory cells in order to answer the
query. Once again, this subset may by an arbitrary (adaptive) function of the query and previous cells
probed during the processing of the query. The query time of a data structure, denoted by tq, is the number
of probes made when processing a query.

3.1 One-way protocols and “Epoch” communication games

A useful way to abstract the information-theoretic bottleneck of dynamic data structures is communication
complexity. Our main results (both upper and lower bounds) are cast in terms of the following two-party
communication games, which are induced by dynamic data structure problems:

Definition 1 (Epoch Communication Games GiP). Let P be a dynamic data structure problem, consisting
of a sequence of n update operations divided into epochs U = (U`,Ul−1, . . . ,U1), where |Ui| = ni (and∑
i ni = n), followed by a single query q ∈ Q. For each epoch i ∈ [`], the two-party communication game

GiP induced by P is defined as follows:

• Alice receives all update operations U = (U`,Ul−1, . . . ,U1).

• Bob receives U−i := U \ {Ui} (i.e., all updates except those in epoch i) and a query q ∈ Q for P.

• The goal of the players is to output the correct answer to q, that is, to output P(q,U).

We shall consider the following restricted model of communication for solving such communication games.

10

Definition 2 (One-Way Randomized Communication Protocols). Let f : X × Y 7→ {0, 1} be a two-party
boolean function. A one-way communication protocol π for f(x, y) under input distribution µ proceeds as
follows:

• Alice and Bob have shared access to a public random string R of their choice.

• Alice sends Bob a single message, MA(x,R), which is only a function of her input and the public
random string.

• Based on Alice’s message, Bob must output a value vπ = vπ(y,R,MA) ∈ {0, 1}.

We say that π ε-solves f under µ with cost m, if :

• For any input x, Alice never sends more than m bits to Bob, i.e., |MA(x,R)| ≤ m, for all x, r.

• Pr(x,y)∼µ,R[vπ = f(x, y)] ≥ 1/2 + ε.

Let us denote by

−→
adv(f, µ,m) := sup{ε | ∃ one-way protocol π that ε-solves f under µ with cost m}

the largest advantage ε achievable for predicting f under µ via an m-bit one-way communication protocol.
For example, when applied to the boolean communication problem GiP , we say that GiP has an m-bit one-

way communication protocol with advantage ε, if
−→
adv(GiP , µ,m) ≥ ε. We remark that we sometimes use the

notation ‖π‖ to denote the message-length (i.e., number of bits m) of the communication protocol π.

4 One-Way Weak Simulation of Dynamic Data Structures

In this section we prove our main result, Theorem 1. For any dynamic decision problem P, we show that if P
admits an efficient data structure D with respect to a random sequence of n updates divided into ` := lgβ n
epochs U = (U`,U`−1, . . . ,U1), then we can use it to devise an efficient one-way communication protocol
for the underlying two-party communication problem GiP of some (large enough) epoch i, with a nontrivial
success (advantage over random guessing).

Throughout this section, let us denote the size of epoch i by ni := |Ui| = βi, where we require β =

(w · tu)Θ(1), and
∑`
i=1 ni = n. We prove the following theorem.

Theorem 1 (restated). Let P be a dynamic boolean data structure problem, with n random updates grouped
into epochs U = {Ui}`i=1, such that |Ui| = βi, followed by a single query q ∈ Q. If P admits a dynamic
data structure D with worst-case update time tu and average (over Q) expected query time tq satisfying
tq(w · tu)a+1 ≤ n1/2, then there exists some epoch i ∈ [`/2, `] for which

−→
adv

(
GiP , U , ni/(w · tu)a−1

)
≥ exp

(
−tq lg2(w · tu)/

√
lg n
)

as long as β = (w · tu)Θ(1) ≥ (w · tu)a for a constant a > 1.

Proof. Consider the memory state M = M(U) of D after the entire update sequence U , and for each cell
c ∈ M , define its associated epoch E(c) to be the last epoch in [`] during which c was probed (note that
E(c) is a random variable over the random update sequence U). For each query q ∈ Q, let Tq be the random
variable denoting the number of probes made by D on query q (on the random update sequence). For each
query q and epoch i, let T iq denote the number of probes on query q to cells associated with epoch i (i.e., cells
c for which E(c) = i).

By definition, we have 1
|Q|
∑
q∈Q E[Tq] = tq and Tq =

∑`
i=1 T

i
q . By averaging, there is an epoch i ∈ [`/2, `]

such that 1
|Q|
∑
q∈Q E[T iq] ≤ 2tq/`. By Markov’s inequality and a union bound, there exists a subset Q′ ⊆ Q

of |Q|/2 queries such that both
E[T iq] ≤ 8tq/` and E[Tq] ≤ 8tq , (1)

11

for every query q ∈ Q′. By Markov’s inequality and union bound, for each q ∈ Q′, we have

Pr
U

[T iq ≤ 32tq/`, Tq ≤ 32tq] ≥ 1/2. (2)

Note that, while Bob cannot identify the event “T iq ≤ 32tq/`, Tq ≤ 32tq” (as it depends on Alice’s input as
well), he does know whether his query q is in Q′ or not, which is enough to certify (2).

Now, suppose that Alice samples each cell associated with epoch i in M independently with probability
p, where

p :=
1

(w · tu)
a

(note that, by definition of GiP , Alice can indeed generate the memory state M and compute the associated
epoch for each cell, as her input consists of the entire update sequence). Let C0 be the resulting set of cells
sampled by Alice. Alice sends Bob C0 (both addresses and contents). For a query q ∈ Q′, let Wq denote the
event that the set of cells C0 Bob receives, contains all T iq cells associated with epoch i and probed by the
data structure. By Equation (2), we have that for every q ∈ Q′

Pr
C0,U

[Wq, Tq ≤ 32tq] ≥ p32tq/` · Pr
U

[T iq ≤ 32tq/`, Tq ≤ 32tq] ≥ p32tq/`/2. (3)

If Bob could detect the eventWq, we would be done. Indeed, let C2 denote the set of (addresses and contents
of) cells associated with all future epochs j < i, i.e., all the cells probed by D succeeding epoch i. Due to the
geometrically decreasing sizes of epochs, sending C2 requires less than ni/(w · tu)a−1 bits of communication.
Since Bob has all the updates preceding epoch i, he can simulate the data structure and generate the correct
memory state of D right before epoch i. In particular, Bob knows for every cell, assuming it is not probed
since epoch i (thus associated with some epoch j > i), what its content will be. Therefore, when he is
further given the messages (c0, c2), Bob would be able to simulate the data structure perfectly on query q,
assuming the event Wq occurs. If Bob could detect Wq, he could simply output a random bit if it does not
occur, and follow the data structure if it does. This strategy would have already produced an advantage of
p32tq/` ≥ exp(−tq lg2(w · tu)/ lg n), which would have finished the proof. As explained in the introduction,
Bob has no hope of certifying the occurrence of the event Wq, hence we must take a fundamentally different
approach for arguing that condition (3) can nevertheless be (implicitly) used to devise a strategy for Bob
with a nontrivial advantage. This is the heart of the proof.

To this end, note that, given a query q ∈ Q′, a received sample c0 and all cells c2 associated with
some epoch j < i, Bob can simulate D on his partial update sequence (u−i), filling in the memory updates
according to c0 and c2, and pretending that all cells in the query-path of q which are associated with epoch i
are actually sampled in c0 (i.e., pretending that the event Wq occurs). See Step 5 of Figure 1 for the formal
simulation argument. Let M ′(u−i, c0, c2) denote the resulting memory state obtained by Bob’s simulation
in the figure, given u−i and his received sets of cells c0, c2.

Now, let us consider the (deterministic) sequence of cells Sq that D would probe given query q in the above
simulation with respect to Bob’s memory state M ′(u−i, c0, c2). Let us say that the triple (u−i, c0, c2) is good
for a query q ∈ Q′, if PrUi

[Wq|U−i = u−i, C0 = c0, C2 = c2] ≥ p32tq/`/4 and |Sq| ≤ 32tq. That is, (u−i, c0, c2)
is good for q, if the posterior probability of Wq is (relatively) high and Sq is not too large. By Equation (3)
and Markov’s inequality, the probability that the triple (u−i, c0, c2) satisfies PrU [Wq, Tq ≤ 32tq|u−i, c0, c2] ≥
p32tq/`/4, is at least p32tq/`/4 (indeed, the expectation in (3) can be rewritten as EU−i,C0,C2

PrUi
[Wq, Tq ≤

32tq|U−i, C0, C2], since C2 is a deterministic function of U). Note that when Wq occurs, the value of Tq
is completely determined given u−i, c0 and c2, in which case |Sq| = Tq, and thus the probability that
(u−i, c0, c2) is good is at least p32tq/`/4. From now on, let us focus only on the case that (u−i, c0, c2) that
Alice sends is good, since Bob can identify whether u−i, c0, c2 is good based on q and Alice’s message, and
if it is not, he will output a random bit.

We caution that Sq is simply a set of memory addresses in M , not necessarily the correct one – in
particular, while the addresses of the cells Sq are determined by the above simulation, the contents of these
cells (in M) are not – they are a random variable of Ui, as the sample c0 is very unlikely to contain all the

12

associated cells). For any assignment z ∈ [2w]Sq to the contents of the cells in Sq, let us denote by

µq(z) := Pr
Ui

[Sq ← z|u−i, c0, c2]

the probability that the memory content of the sequence of cells Sq is equal to z, conditioned on u−i, c0, c2.
Every content assignment Z = z to Sq, generates some posterior distribution on the correct query path

(i.e., with respect to the true memory state M) and therefore on the output P(q,U) of the query q with
respect to U . Hence we may look at the joint probability distribution of the event “P(q,U) = 1” and the
assignment Z which is

ηq(z) := Pr
Ui

[P(q,U) = 1, Sq ← z | u−i, c0, c2].

Now, consider the function

f(z) = fqu−i,c0,c2(z) := ηq(z)−
1

2
· µq(z). (4)

Equivalently, conditioned on u−i, c0 and c2, f(z) is the bias of the random varaible P(q,U) conditioned on
Sq ← z, multiplied by the probability of Sq ← z.

Note that, since ηq(z) ≤ µq(z) for every assignment z, we have |f(z)| ≤ µq(z)/2, and since µq(z) is
a probability distribution, this fact implies that: (i)

∑
z |f(z)| ≤ 1

2 . Furthermore, we shall argue that

Pr[Wq | u−i, c0, c2] ≥ p32tq/`/4 (as we always condition on good u−i, c0, c2), in which case the contents
of Sq are completely determined by u−i, c0, c2 (we postpone the formal argument to the Analysis section
below). Denoting by z∗ the content assignment to Sq induced by u−i, c0, c2, we observe that conditioned on
Wq, Sq will be precisely the correct set of cells probed by D on q, in which case P(q,U) is determined by
z∗, q, u−i, c0, c2. Formally, this fact means that: (ii) |f(z∗)| = 1

2 · Pr[Sq ← z∗ | u−i, c0, c2] ≥ Ω(p32tq/`).
Conditions (i)+(ii) above imply that f = fqu−i,c0,c2 satisfies the premise of the Peak-to-Average Lemma

(Lemma 1) with Σ := [2w], k := O(tq), ε := Ω(p32tq/`) = exp(−tq lg2(w · tu)/ lg n). Recall that the lemma
guarantees there is a not-too-large subset Y ⊆ Sq of coordinates (= addresses) of Sq, which Bob can
privately compute,5 such that if the values of the coordinates in Y are also revealed, then the conditional
expectation of fqu−i,c0,c2

(
namely, ESq|Y |PrUi

[P(q,U) = 1 | u−i, c0, c2, Sq|Y] − 1/2|
)
, which is the average

of Bob’s “maximum-likelihood” estimate for P(q,U), is non-negligible (the formal details are postponed to
the Analysis section below).

Given this insight, a natural strategy for the players is for Alice to further send Bob the contents of cells in
the subset Y . While Alice does not know the subset Y ,6 she can use public randomness to sample yet another
random set C1 of cells from the entire memory M , where now every cell is sampled with equal probability
p, and send the subset of C1 that is associated with epoch i to Bob. (Note that it is important that this
time the players use public randomness to subsample from the entire memory state M , since Alice does not
know Y and yet Bob must be absolutely certain that all cells in Y were subsampled. Notwithstanding, to
keep communication low, it is crucial that Alice sends Bob only the contents of cells associated with epoch
i). Since |Y | is guaranteed to be relatively small (of order O(

√
k lg(1/ε))), the probability p|Y | that all cells

in Y get sampled will be sufficiently noticeable, in which case we shall argue that Bob’s maximum-likelihood
strategy will output the correct answer ∈ {0, 1} with the desired nontrivial advantage. The formal one-way
protocol π that the parties execute is described in Figure 1.

Analysis. We now turn to the formal analysis of the protocol π. We need to show

• (Communication cost) ‖π‖ ≤ O(ni/(w · tu)a−1) .

• (Correctness) PrGiP∼U,q∈RQ
[
π(GiP) = P(q,U)

]
≥ 1/2 + exp

(
−tq lg2(w · tu)/

√
lg n
)
.

5Indeed, Y is only a function of q, fqu−i,c0,c2 , c0,c2 and the prior distribution on U , and Bob possesses all this information.
6Indeed, Y is a function of q.

13

One-way protocol π for GiP

Henceforth, by “sending a cell”, we mean sending the address and (up to date) content of the cell in M .

Encoding:

1. Alice generates the memory state M of D by simulating the data structure on U , and computes the
associated epoch for each cell.

2. Alice samples each cell associated with epoch i independently with probability p. Let c0 be the set
of sampled cells. If |c0| > 2p|Ui| · tu, Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1,
followed by all cells in c0.

3. Alice uses public randomness to sample every cell in M independently with probability p. Let c1
be the set of sampled cells. If there are more than 2p|Ui| · tu cells in c1 that are associated with
epoch i, Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1, followed by all cells in c1 that
are associated with epoch i.

4. Alice sends Bob all cells associated with epoch j for all j < i, i.e., all the cells probed by D
succeeding epoch i. Denote this set of (address and contents of) cells by c2.

Decoding:

5. Given his query q ∈ Q, Bob simulates the data structure D on u>i and obtains a memory state
M0. He updates the contents of c0 and c2 in M0, obtains a memory state M ′ = M ′(u−i, c0, c2),
and then simulates the query algorithm of D on query q and memory state M ′. Let Sq be the set
of (memory addresses of) cells probed by D in this simulation. If any of the following events occur,
Bob outputs a random bit and aborts:

(i) q /∈ Q′,
(ii) Bob receives a bit 0 before c0 or c1,

(iii) (u−i, c0, c2) is not good for q.

6. Let Y ⊂ Sq be a subset of cells of size κ := |Y | ≤ O
(√

k · lg 1/ε
)

guaranteed by Lemma 1, when

applied with f := fqu−i,c0,c2 , Σ := [2w], k := |Sq| ≤ 32tq, ε := p32tq/`/4.

(recall that Bob can privately compute the set Y).

7. If Y * c1 (i.e., if the sample c1 sent by Alice does not contain all cells in Y), Bob outputs a random
bit. Otherwise, let y ∈ [2w]Y denote the content of the cells Y according to c1. Let Sq|Y ← y
denote the event that the memory content of Y is assigned the value y. Bob outputs 1 iff

Pr
Ui

[P(q,U) = 1 | u−i, c0, c2, Sq|Y ← y] > 1/2.

Otherwise, Bob outputs 0.

Figure 1: The one-way weak simulation protocol of data structure D.

14

Communication. In both Step 2 and Step 3, Alice sends at most 2p|Ui|tu · (2w) + 1 bits. In Step 4, Alice
sends at most |U<i| · tu · (2w) =

∑
j<i |Uj | · tu · (2w) bits. Since |Uj | = nj = βj , the total communication

cost is at most
O(p · ni · tuw) +O(βi−1 · tuw) ≤ O(ni/(w · tu)a−1).

Correctness. Let π′ be the variant of the protocol π in which, when executing Step 2 and Step 3, Alice
ignores the condition of whether the samples C0 or C1 exceed the specified size limit, i.e., she always sends
a bit 1 followed by all sampled cells. For simplicity of analysis, we will first show that π′ has the claimed
success probability, and then show that the impact of the above event (i.e., conditioning on C0 and C1 being
within the size bound) is negligible, as it occurs with extremely high probability.

We first claim that the probability (over U and an average query q ∈R Q) that π′ reaches Step 6 is not
too small. By (1) and Markov’s inequality, and by the discussion below (3), the probability that q ∈ Q′ and
(u−i, c0, c2) is “good” for q is at least Ω(p32tq/`) ≥ exp(−tq lg2(w · tu)/ lg n). This is precisely the probability
that π′ reaches Step 6.

We now calculate the success probability of π′ conditioned on reaching Step 6. To this end, fix a set
Y ⊆ Sq of size κ. Then by Step 7, the success probability of π′ conditioned on u−i, c0, c2 and the event
“Y ⊆ C1” is

1

2
+ E
Sq|Y

∣∣∣∣Pr
Ui

[P(q,U) = 1 | u−i, c0, c2, Sq|Y] − 1/2

∣∣∣∣
=

1

2
+

∑
y∈[2w]Y

Pr
Ui

[(Sq|Y ← y) | u−i, c0, c2] ·
∣∣∣∣Pr
Ui

[P(q,U) = 1 | (Sq|Y ← y), u−i, c0, c2] − 1/2

∣∣∣∣
=

1

2
+

∑
y∈[2w]Y

∣∣∣∣Pr
Ui

[P(q,U) = 1, (Sq|Y ← y) | u−i, c0, c2] − 1

2
· Pr
Ui

[(Sq|Y ← y) | u−i, c0, c2]

∣∣∣∣
=

1

2
+

∑
y∈[2w]Y

∣∣∣∣∣∣
∑

z∈[2w]Sq : z|Y =y

(
Pr
Ui

[P(q,U) = 1, (Sq ← z) | u−i, c0, c2] − 1

2
· Pr
Ui

[Sq ← z | u−i, c0, c2]

)∣∣∣∣∣∣
=

1

2
+

∑
y∈[2w]Y

∣∣∣∣∣∣
∑

z∈[2w]Sq : z|Y =y

fqu−i,c0,c2(z)

∣∣∣∣∣∣ , (5)

where the last transition is by the definition of fqu−i,c0,c2 in (4). Note that for any z, it holds that |f(z)| ≤
1
2 · Pr[Sq ← z | u−i, c0, c2]. Thus,

∑
z∈[2w]Sq |f(z)| ≤ 1

2 . On the other hand, since we always condition on

good (u−i, c0, c2), we have Pr[Wq | u−i, c0, c2] ≥ p32tq/`/4. That is, with probability at least p32tq/`/4 all cells
in Sq associated with epoch i are contained in c0. In this case, the contents of Sq are completely determined
by u−i, c0, c2. Indeed, the contents of the cells associated with epoch < i are determined by c2; the cells
associated with epoch i are determined by c0; the remaining cells are determined by u>i. Let z∗ denote
the assignment to Sq, induced by u−i and the contents of c0, c2 conditioned on the occurrence of Wq. By
the definition of Sq, when Wq happens, Sq will be exactly the set of cells the data structure probes. Thus,
the output of q is also determined. We therefore have |f(z∗)| = 1

2 · Pr[Sq ← z∗ | u−i, c0, c2] ≥ Ω(p32tq/`).
We conclude that the function f = fqu−i,c0,c2 satisfies the premise of the Peak-to-Average lemma (Lemma 1)
with

• Σ = [2w];

• k = |Sq| ≤ O(tq);

• ε = p32tq/`/4 ≥ exp(−tq lg2(w · tu)/ lg n).7

7We used the fact that ` = Θ(lgβ n) and β = (w · tu)Θ(1).

15

Without loss of generality, we may assume lg(w · tu) �
√

lg n, and thus ε ∈ [2−O(k), 1].8 Therefore, the
lemma guarantees there is a set Y ⊂ Sq of cells that has size at most

|Y | = κ ≤ O
(√

k lg 1/ε
)
≤ O

(
tq lg(w · tu)/

√
lg n
)
,

for which ∑
y∈[2w]Y

∣∣∣∣∣∣
∑

z∈[2w]Sq : z|Y =y

fqu−i,c0,c2(z)

∣∣∣∣∣∣ ≥ exp
(
−tq lg(w · tu)/

√
lg n
)
.

This justifies Step 6 of the protocol. It follows that, for any q ∈ Q′, the probability that the sample C1 of
cells contains the set Y is at least

Pr
C1

[Y ⊆ C1] = p|Y | = pO(tq lg(w·tu)/
√

lgn) = exp
(
−tq lg2(w · tu)/

√
lg n
)
. (6)

Equation (5) therefore implies that, conditioned on the event that |Y | ⊆ C1, the probability that π′ outputs
a correct answer is

1/2 + exp
(
−tq lg(w · tu)/

√
lg n
)
,

and combining this with (6) and the probability that π′ reaches Step 6, we conclude that the overall success
probability of π, conditioned on the protocol not aborting when c0 or c1 is too large, is

1/2 + exp
(
−tq lg2(w · tu)/

√
lg n
)
. (7)

To finish the proof, it therefore suffices to argue that the probability that π aborts due to this event is
tiny. To this end, let Ai denote the random variable representing the number of associated cells with epoch
i. We know that Ai ≤ |Ui| · tu = ni · tu (since the worst-case update time of D is tu by assumption). Now, let
E0 denote the event that Alice’s sample in Step 2 of the protocol is too large, i.e., that “|C0| > 2p|Ui| · tu”.
Similarly, let E1 denote the event that in Step 3 of the protocol, “|C1| > 2p|Ui| · tu”. Denote E := E0 ∨ E1
(note that this is the event (ii) in Step 5 of π). Since both sets C0 and C1 are i.i.d samples where each cell
is sampled independently with probability p, a standard Chernoff bound implies that

Pr[E] ≤ 2 Pr [|C0| ≥ 2E [|C0|]] ≤ exp(−p(ni · tu)) ≤ exp(−ni/(w · tu)a). (8)

Finally, since i ≥ `/2 and thus ni ≥ n1/2 ≥ tq(w · tu)a+1, by (7), (8) and a union bound, we conclude that

Pr
U,q

[π(q) 6= P(q,U)] ≤ 1/2− exp
(
−tq lg2(w · tu)/

√
lg n
)

+ Pr[E]

≤ 1/2− exp
(
−tq lg2(w · tu)/

√
lg n
)

+ exp(−tq · (w · tu))

≤ 1/2− exp
(
−tq lg2(w · tu)/

√
lg n
)
,

which completes the proof of the entire theorem.

While Theorem 1 is very clean, we shall need a slightly more technical version of it for some of our lower
bound proofs. The following corollary follows directly by examining the proof of Theorem 1:

Theorem 6 (One-Way Weak Simulation of Epoch i). Let P be a dynamic boolean data structure problem,
with n random updates grouped into epochs U = {Ui}`i=1, such that |Ui| = βi followed by a single query

8In fact, if lg(w · tu) ≥ Ω(
√

lgn), the right-hand side of the inequality in the theorem statement is less than ptq , hence the
statement becomes trivial. Indeed, with probability ptq , Alice samples all cells probed by the data structure on query q.

16

q ∈ Q. If P admits a dynamic data structure D with worst-case update time tu and average (over Q) expected
query time tq, such that for some epoch i ∈ [`/2, `] it holds that

1

|Q|
∑
q∈Q

E[T iq] ≤ 2tq/`,

then if tq(w · tu)a+1 ≤ ni, we have

−→
adv

(
GiP , U , ni/(w · tu)a−1

)
≥ exp

(
−tq lg2(w · tu)/

√
lg n
)

as long as β = (w · tu)Θ(1) ≥ (w · tu)a for a constant a > 1.

4.1 Proof of the Peak-to-Average Lemma

In this subsection we prove our key technical lemma, which is required to complete the proof of Theorem 1.

Lemma 1 (restated). Let f : Σk → R be any real function on the length-k strings over alphabet Σ,
satisfying:

(i)
∑
z∈Σk |f(z)| ≤ 1; and

(ii) maxz∈Σk |f(z)| ≥ ε

for some ε ∈ [2−O(k), 1]. Then there exists a subset Y of indices, |Y | ≤ O
(√

k · lg 1/ε
)

, such that

∑
y∈ΣY

∣∣∣∣∣∣
∑
z|Y =y

f(z)

∣∣∣∣∣∣ ≥ exp
(
−
√
k · lg 1/ε

)
.

The lemma is tight, as shown in Section B of the Appendix. We first provide a high-level overview of the
proof of Lemma 1, and then proceed to the formal proof. The first observation is that we may without loss of
generality assume that Σ = {0, 1} (intuitively, the larger the alphabet is, the more information we will learn
upon revealing the values of Y). Assuming f is defined on a boolean hypercube, the high-level intuition for
the proof is that we can multiply f(z) by a low-degree polynomial Q(z) that point-wise approximates the
ANDk function to within an additive error ε, a.k.a., a (variant of the) discrete Chebychev polynomial, which
has the effect of preserving the `∞ value of f but exponentially “dampening” the magnitude of all remaining
values, thereby making the maximum (constant) value of (f · Q)(z) dominate the sum of all remaining
values. Since the degree of Q(z) (required to ensure the latter property) is d := O(

√
k lg(1/ε)), Q itself

can be written as the sum of at most
(
k
d

)
= exp(Õ(

√
k · lg 1/ε)) monomials, hence one of these monomials

(which can be viewed as some specific subset of ≤ d = O(
√
k lg(1/ε)) coordinates) must account for at least

& exp(−
√
k · lg 1/ε) fraction of the total sum

∑
z f(z) ·Q(z), so fixing this particular monomial’s coordinates

(which is the small subset Y we are looking for) to 1 must contribute the aforementioned quantity to the
average of f .

4.1.1 The formal proof

As discussed above, a central ingredient of the proof is the existence of low-degree polynomials with “thresh-
old” phenomena, commonly known as Chebychev polynomials. In particular, the following lemma states
that there is a low-degree multivariate polynomial that point-wise approximates the AND function on the k-
dimensional hypercube to within small error (i.e., in the `∞ sense). The following lemma, which is translating
the quantum algorithm in [BCdWZ99], asserts the existence of such polynomials.

17

Lemma 2. For any k and M satisfying 2 ≤ M ≤ 2O(k), there exists a polynomial Q = Qk,M (x1, . . . , xk)
such that

(i) Q has total degree O(
√
k lgM);

(ii) |Q(0k)| ≥M ;

(iii) ∀x ∈ {0, 1}k \ {0k}, |Q(x)| ≤ 1;

(iv) The sum of absolute values of all coefficients is at most exp(
√
k lgM).

The proof of the lemma can be found in Appendix A. We are now ready to prove the Peak-to-Average
Lemma.

Proof of Lemma 1. We first show that without loss of generality, we may assume that Σ = {0, 1} and |f(0)| ≥
ε. In general, let z∗ ∈ Σk be any point with large absolute f -value: |f(z∗)| ≥ ε. Define h : {0, 1}k → R as
follows:

h(x) =
∑

z∈Σk:zi=z∗i iffxi=0

f(z).

It is easy to verify that ∑
x∈{0,1}k

|h(x)| ≤
∑
z∈Σk

|f(z)| ≤ 1

and |h(0)| = |f(z∗)| ≥ ε, i.e., h satisfies both conditions in the lemma statement. Moreover, for any subset
Y of indices, we have

∑
y∈{0,1}Y

∣∣∣∣∣∣
∑
x|Y =y

h(x)

∣∣∣∣∣∣ ≤
∑

y∈{0,1}Y

∣∣∣∣∣∣
∑

x|Y =y,z∈Σk:zi=z∗i iffxi=0

f(z)

∣∣∣∣∣∣
≤
∑
y′∈ΣY

∣∣∣∣∣∣
∑

z|Y =y′

f(z)

∣∣∣∣∣∣ .
Thus, it suffices to prove the lemma assuming Σ = {0, 1} and |f(0)| ≥ ε.

Let Q = Qk,2/ε be a polynomial with all four properties in Lemma 2 with M = 2/ε. Since 2−O(k) ≤ ε ≤ 1,
such polynomial exists and has degree d ≤ O(

√
k lgM). Without loss of generality, we may assume Q is

multi-linear.9 Thus, let

Q(x) =
∑

Y⊆[k],|Y |≤d

αY ·
∏
i∈Y

xi.

By Property (iv), we have ∑
Y

|αY | ≤ exp(
√
k lgM). (9)

Now, consider the function
g(x) := f(x) ·Q(x).

By the premise of the lemma, we have that |g(0k)| ≥ 2
ε · ε = 2, but∣∣∣∣∣∣

∑
x∈{0,1}k\{0k}

g(x)

∣∣∣∣∣∣ ≤
∑

x∈{0,1}k\{0k}

|g(x)| ≤
∑

x∈{0,1}k\{0k}

|f(x)| ≤ 1,

9Q is only evaluated on {0, 1}k, and all four properties are preserved when replacing x2
i by xi.

18

by the triangle inequality and |Q(x)| ≤ 1 for x 6= 0k. Therefore, we have∣∣∣∣∣∣
∑

x∈{0,1}k
g(x)

∣∣∣∣∣∣ ≥ 2− 1 = 1. (10)

On the other hand, we have∑
x∈{0,1}k

g(x) =
∑

x∈{0,1}k
f(x) ·Q(x)

=
∑

x∈{0,1}k
f(x) ·

 ∑
Y⊆[k],|Y |≤d

αY ·
∏
i∈Y

xi


=

∑
Y⊆[k],|Y |≤d

αY ·

 ∑
x∈{0,1}k

f(x) ·
∏
i∈Y

xi


=

∑
Y⊆[k],|Y |≤d

αY ·
∑

x∈{0,1}k:xi=1 for i∈Y

f(x).

By Equation (10) and Equation (9), there must exist some Y ⊆ [k] and |Y | ≤ d for which∣∣∣∣∣∣
∑

x∈{0,1}k:xi=1 for i∈Y

f(x)

∣∣∣∣∣∣ ≥ exp(−
√
k lg 1/ε).

Thus, we have ∑
y∈ΣY

∣∣∣∣∣∣
∑

x∈{0,1}k:x|Y =y

f(x)

∣∣∣∣∣∣ ≥ exp
(
−
√
k · lg 1/ε

)
,

and |Y | ≤ d = O(
√
k · lg 1/ε), as claimed.

5 Boolean Polynomial Evaluation

In this section, we prove our first concrete lower bound using our new technique. Let P be the dynamic
least-bit polynomial evaluation problem over the Galois field GF (2d) (as defined in Section 1.2). Recall that
the data structure problem P is defined as follows: A degree n ≤ 2d/4 polynomial P (x) =

∑n
i=0 aix

i over
GF (2d) is initialized with all n + 1 coefficients ai being 0. An update is specified by a tuple (i, b) where
i ∈ [n+1] is an index and b is an element in GF (2d). It changes the coefficient ai such that ai ← ai+b (where
addition is over GF (2d)). A query is specified by an element y ∈ GF (2d) and one must return the least
significant bit of P (y). Note that we make no assumptions on the concrete representation of the elements in
GF (2d), only that the elements are in a bijection with {0, 1}d so that precisely half of all elements in GF (2d)
have a 0 as the least significant bit.

We consider the following random sequence of updates U = (U`,U`−1, . . . ,U1), where |Ui| = ni = βi

for some β = (wtu)Θ(1). The maintained polynomial P (x) has degree n = β` − 1, and thus the number of
updates is Θ(n). The ni updates Ui are (0, b0), . . . , (ni−1, bni−1) in that order, where the bj ’s are chosen
independently and uniformly at random from GF (2d). The query q is chosen as a uniform random element
of GF (2d).

Invoking Theorem 1, the existence of a a dynamic data structure for P with worst case update time tu
and expected query time tq under U implies that either tq(wtu)Θ(1) > n1/2 or for some i ∈ {`/2, . . . , `}, we
have −→

adv
(
GiP , U , ni/(w · tu)Θ(1)

)
≥ exp

(
−tq lg2(w · tu)/

√
lg n
)
.

19

In the first case, we are already done as we have a lower bound of tq = Ω(
√
n/(wtu)O(1)). We thus set

out to prove an upper bound on
−→
adv

(
GiP , U , ni/(w · tu)Θ(1)

)
for any epoch i ∈ {`/2, . . . , `} (assuming

tq(wtu)Θ(1) ≤ n1/2).

Lemma 3. For any epoch i ∈ {`/2, . . . , `}, we have
−→
adv

(
GiP , U , o(nid)

)
≤ 2−d/8.

Before proving the lemma, let us use it to derive our lower bound. We see that it must be the case that:

exp
(
−tq lg2(w · tu)/

√
lg n
)
≤ 2−d/8 ⇒

tq lg2(w · tu)/
√

lg n = Ω(d)⇒
tq = Ω(d

√
lg n/ lg2(w · tu)).

Thus Theorem 2 follows. Proving Lemma 3 is the focus of Section 5.1.

5.1 Low Advantage on Epochs

Let i ∈ {`/2, . . . , `}. Recall that in the communication game GiP for the random update sequence U ,
Alice receives all updates of all epochs and Bob receives all updates of all epochs except epoch i. Bob
also receives the query q. Let π be a one-way randomized protocol in which Alice sends o(nid) bits to
Bob, and suppose that π achieves an advantage of ε w.r.t U and q. Since the query q and the updates Ui

are independent of the updates of epochs U`, . . . ,Ui+1,Ui−1, . . . ,U1, we can fix the random coins of the
protocol and fix the updates of all epochs except epoch i, such that for the resulting deterministic protocol
π∗ and fixed update sequence u`, . . . , ui+1, ui−1, . . . , u1 we have that Alice never sends more than o(nid) bits
and PrUi,q[vπ∗ = P0(q)] ≥ 1/2 + ε. Here P0 is the least significant bit of P (q), where P is the polynomial
resulting from performing the updates u`, . . . , ui+1,Ui, ui−1, . . . , u1. Recall that the random variable vπ∗ is
Bob’s output when running the deterministic protocol π∗ on u`, . . . , ui+1,Ui, ui−1, . . . , u1 and q.

Let Mπ∗(Ui) denote the message sent by Alice in procotol π∗ on updates u`, . . . , ui+1,Ui, ui−1, . . . , u1.
Then vπ∗ = vπ∗(Mπ∗(Ui), q) is determined from Mπ∗(Ui) and q alone (since the updates of other epochs
are fixed). For each of the possible messages m of Alice, define the vector χm having one coordinate per
x ∈ GF (2d). The coordinate χm(x) corresponding to some x has the value −1 if vπ∗(m,x) = 0 and it has
the value 1 otherwise. Similarly define for each sequence of updates ui ∈ supp(Ui) the vector ψui having
one coordinate ψui(x) per x ∈ GF (2d), where the coordinate corresponding to some x takes the value −1 if
the correct answer to the query x is 0 after the update sequence u`, . . . , ui+1, ui, ui−1, . . . , u1 and taking the
value 1 otherwise. Since π∗ has advantage ε and q is uniform over GF (2d), we must have

E
Ui

[〈ψUi
, χMπ∗ (Ui)〉] = ((1/2 + ε)− (1/2− ε))2d = ε2d+1.

This in particular implies that if we take the absolute value of the inner product, we have

E
Ui

[|〈ψUi
, χMπ∗ (Ui)〉|] ≥ ε2

d+1.

As we will show later, this implies the following:

Lemma 4. There is some m ∈ supp(Mπ∗(Ui)) such that we have both

• EUi
[|〈ψUi

, χMπ∗ (Ui)〉| |Mπ∗(Ui) = m] ≥ ε2d.

• PrUi
[Mπ∗(Ui) = m] ≥ | supp(Mπ∗(Ui))|−1ε/2.

20

Consider such an m and the corresponding vector χm. We examine the following k’th moment for an
even k to be determined:

E
Ui

[〈ψUi
, χm〉k] =

∑
S∈GF (2w)k

E
Ui

[∏
x∈S

ψUi
(x)χm(x)

]
=

∑
S∈GF (2w)k

E
Ui

[∏
x∈S

ψUi
(x)

] ∏
x∈S

χm(x).

Here
∏
x∈S is the product over all elements in the tuple S (where some elements may occur multiple times).

Now observe that the polynomial P corresponding to an update sequence u`, . . . , u1 can be written as the
sum of two polynomials P = Q + R, where Q is the polynomial corresponding to performing all updates
except those in epoch i, and R corresponds to performing only the updates of epoch i. Since we fixed all
updates outside epoch i, the polynomial Q is fixed. The polynomial R on the other hand is precisely uniform
random over all degree ni − 1 polynomials over GF (2d). It follows that the evaluations P (x) are ni-wise
independent, i.e. for any h ≤ ni distinct elements x1, . . . , xh ∈ GF (2d) and any set of (not necessarily
distinct) values y1, . . . , yh ∈ GF (2d), we have

Pr
Ui

[
∧hi=1P (xi) = yi

]
= 2−dh.

This in particular implies that the entries of ψUi
are uniform random and ni-wise independent. Using this

observation, we observe that

E
Ui

[∏
x∈S

ψUi(x)

]
is 0 if k ≤ ni and at least one x occurs an odd number of times in S. On the other hand, if all x in S occur
an even number of times, then both EUi

[∏
x∈S ψUi(x)

]
and

∏
x∈S χm(x) are equal to 1. The number of

tuples S ∈ GF (2d)k with all elements occuring an even number of times is at most
(

2d+k/2−1
k/2

)
k!. We thus

have

E
Ui

[〈ψUi , χm〉k] ≤
(

2d + k/2− 1

k/2

)
k! ≤

(
2e(2d + k/2− 1)

k

)k/2
kk.

Since k is even, we know that 〈ψUi
, χm〉k is non-negative. Thus we can insert absolute values:

E
Ui

[|〈ψUi
, χm〉|k] ≤

(
2e(2d + k/2− 1)

k

)k/2
kk.

Using that PrUi
[Mπ∗(Ui) = m] ≥ | supp(Mπ∗(Ui))|−1ε/2 by the second proposition of Lemma 4, it further

holds that

E
Ui

[|〈ψUi , χm〉|k |Mπ∗(Ui) = m] ≤ 2ε−1

(
2e(2d + k/2− 1)

k

)k/2
kk| supp(Mπ∗(Ui))|.

By convexity of xk, it follows from Jensen’s inequality that

E
Ui

[|〈ψUi , χm〉| |Mπ∗(Ui) = m]k ≤ 2ε−1

(
2e(2d + k/2− 1)

k

)k/2
kk| supp(Mπ∗(Ui))|.

Taking the k’th root, we arrive at

E
Ui

[|〈ψUi , χm〉| |Mπ∗(Ui) = m] ≤
(
2ε−1

)1/k (2e(2d + k/2− 1)

k

)1/2

k| supp(Mπ∗(Ui))|1/k.

21

We thus conclude

ε2d ≤
(
2ε−1

)1/k (2e(2d + k/2− 1)

k

)1/2

k| supp(Mπ∗(Ui))|1/k ⇒

ε22d ≤ 2
(
2ek(2d + k/2− 1)

)1/2 | supp(Mπ∗(Ui))|1/k.

Setting k = ni (or ni − 1 if ni is odd), we have k ≤ 2d/4 (since ni ≤ n` ≤ 2d/4). For this choice of k, the
above gives us:

ε22d ≤ 2(5/8)d+O(1)| supp(Mπ∗(Ui))|1/ni .

For ε ≥ 2−d/8, this gives

2d/8−O(1) ≤ | supp(Mπ∗(Ui))|1/ni ⇒
lg2 (| supp(Mπ∗(Ui))|) = Ω(nid).

Since we assumed the protocol has Alice sending o(nid) bits, we conclude that the protocol π must have

advantage less than 2−d/8. Since this holds for any protocol, we conclude
−→
adv

(
GiP , U , o(nid)

)
≤ 2−d/8.

Proof of Lemma 4. For each m ∈ supp(Mπ∗(Ui)), define zm to take the value zm := 1/PrUi [Mπ∗(Ui) =
m] and ym := 2d − EUi

[|〈ψUi
, χMπ∗ (Ui)〉| | Mπ∗(Ui) = m]. Both zm and ym are non-negative for all

m ∈ supp(Mπ∗(Ui)). We observe that EUi
[zMπ∗ (Ui)] = | supp(Mπ∗(Ui))|. Secondly, we have

E
Ui

[yMπ∗ (Ui)] = 2d − E
U′i

[E
Ui

[|〈ψUi
, χMπ∗ (Ui)〉| |Mπ∗(Ui) = Mπ∗(U

′
i)]]

= 2d −
∑

m∈supp(Mπ∗ (Ui))

Pr[Mπ∗(Ui) = m] E
Ui

[|〈ψUi , χMπ∗ (Ui)〉| |Mπ∗(Ui) = m]

= 2d − E
Ui

[|〈ψUi
, χMπ∗ (Ui)〉|]

≤ 2d − ε2d+1.

From Markov’s inequality, we conclude that

Pr[yMπ∗ (Ui) > 2d − ε2d] < 2d − ε2d+1

2d − ε2d
= 1− ε2d

2d − ε2d
≤ 1− 2ε.

Similarly, we conclude
Pr[zMπ∗ (Ui) > ε−1| supp(Mπ∗(Ui))|/2] < 2ε.

By a union bound, we conclude that there is some m ∈ supp(Mπ∗(Ui)) satisfying both:

ym ≤ 2d − ε2d ⇒ E
Ui

[|〈ψUi
, χMπ∗ (Ui)〉| |Mπ∗(Ui) = m] ≥ ε2d.

and
zm ≤ ε−1| supp(Mπ∗(Ui))|/2⇒ Pr

Ui

[Mπ∗(Ui) = m] ≥ | supp(Mπ∗(Ui))|−1ε/2.

6 Lower Bound for Parity Searching in Butterfly Graphs

In this section, we prove a lower bound for a new and dynamic version of Pǎtraşcu’s distance oracles on
“Butterfly” graphs, which is the key for the rest of our lower bounds. We start by formally defining the
problem, which we call parity searching in Butterfly graphs.

22

6.1 Parity Searching in Butterfly Graphs

To introduce the problem, we first define the Butterfly graph. The Butterfly graph with degree B and depth
d is defined as follows: It has d+ 1 layers, each with Bd vertices. The vertices on level 0 are sources, while
the ones on level d are sinks. Each vertex except the sinks has out-degree B, and each vertex except the
sources has in-degree B. Let v0, . . . , vBd−1 denote the nodes at some level of the Butterfly. We think of the
nodes as being indexed by vectors in [B]d, where the i’th coordinate of the vector corresponding to vj equals
the i’th bit of j. With this representation, there are precisely two edges going out of a node vj on level i,
and these two edges go to the two nodes wj and wk at level i+ 1 such that k differs from j only on the i’th
bit (and j = j). See Figure 2 for a Butterfly graph with degree 2 and depth 3.

(0,0,0)
(1,0,0)

(0,1,0)
(1,1,0)

(0,0,1)
(1,0,1)

(0,1,1)
(1,1,1)

Figure 2: The Butterfly graph with degree 2 and depth 3. Nodes are represented as vectors in [2]3, where the
i’th coordinate corresponds to the i’th bit of the binary representation of the column index. Edges leaving
a node at level i go to nodes at level i+ 1 whose column index may differ only in the i’th bit.

The Butterfly graph has the property that there is a unique source-sink path for each source-sink pair,
corresponding to “morphing” the binary representation of the source index into the sink index, one bit at a
time.

For a directed edge (u, v) in the Butterfly graph, let j denote the level of u and j+1 the level of v. Let û =
(. . . , wj−1, wj , wj+1, . . .) ∈ [B]d denote the vector corresponding to u and v̂ = (. . . , wj−1, w

′
j , wj+1, . . .) ∈

[B]d denote the vector corresponding to v. The crucial property of the Butterfly graph is that the set of
source-sink pairs (s, t) that have their unique path routing through the edge (u, v) are precisely those pairs
(s, t) where s ∈ (?, ?, . . . , wj , wj+1, . . . , wd−1) ⊆ [B]d and t ∈ (w0, . . . , wj−1, w

′
j , ?, . . .) ⊆ [B]d. See Figure 3.

Pǎtraşcu studied reachability in the Butterfly graph. More precisely, one is given as input a subset of
the n = dBd+1 possible edges of a Butterfly graph. One must preprocess the edges into a data structure,
such that given a source-sink pair (s, t), one can output whether s can reach t.

We modify Pǎtraşcu’s reachability problem such that we can use it in reductions to prove new dynamic
lower bounds.

Parity Searching in One Butterfly. First consider the following boolean problem on (a single) Butterfly
graph: Each edge (u, v) of the Butterfly is assigned a weight z(u,v) amongst 0 and 1. A query is defined by a

pair (s, t) ∈ [Bd]× [Bd]. We think of s as the index of a source node. For t, compute the number t̂ =
←−
t and

think of t̂ as the index of a sink. The goal is to sum the weights assigned to the set of edges on the unique
source-sink path from s to t̂. Here ←−x of an integer x ∈ [Bd] is the number obtained by writing x in base B

and then reversing the order of digits. That is, if x =
∑d−1
j=0 wjB

j for wj ∈ [B], then ←−x =
∑d−1
j=0 wjB

d−j−1.

Note that←−x preserves the leading 0’s and thus when reversing t we include potential leading 0’s in such a way
that before reversing, we have precisely d digits. Reversing the digits of t is an idea by Pǎtraşcu. It has the

23

(0,0,0)
(1,0,0)

(0,1,0)
(1,1,0)

(0,0,1)
(1,0,1)

(0,1,1)
(1,1,1)

Figure 3: The bold edge goes from the level 1 node indexed by (1, 1, 0) to the level 2 node indexed by
(1, 0, 0). The set of source-sink pairs having their unique path routing through the edge is (?, 1, 0)×(1, 0, ?) =
{(0, 1, 0), (1, 1, 0)} × {(1, 0, 0), (1, 0, 1)}.

crucial effect that the set of queries (s, t) summing the weight of an edge (u, v) will correspond to a rectangle.
More formally, recall that the source-sink pairs (s′, t′) ∈ [B]d × [B]d that route through an edge (u, v) is
precisely the set where s′ ∈ (?, ?, . . . , wj , wj+1, . . . , wd−1) ⊆ [B]d and t′ ∈ (w0, . . . , wj−1, w

′
j , ?, . . .) ⊆ [B]d.

Translating this back to the query pairs (s, t) ∈ [Bd]× [Bd] (where we recall that the sink index is obtained
by reversing the digits of t), we get that the set of queries that must sum the weight of an edge are those
where

s ∈

d−1∑
k=j

wkB
k,

d−1∑
k=j

wkB
k +

j−1∑
k=0

(B − 1)Bk


and

t ∈

[
w′jB

d−j−1 +

j−1∑
k=0

wkB
d−1−k, w′jB

d−j−1 +

j−1∑
k=0

wkB
d−1−k +

d−j−2∑
k=0

(B − 1)Bk

]
.

Note that this is a rectangle. This already hints at how we are going to use Butterfly graphs in a reduction
to 2D rectangle stabbing.

Denoting by p(s, t) the unique set of edges on the path from the source indexed by s to the sink indexed

by
←−
t , the goal is thus to compute ⊕(u,v)∈p(s,t)z

(u,v), where ⊕ denotes XOR (parity). See Figure 4.

Parity Searching in Butterfly Graphs. We extend this problem to a dynamic data structure problem,
parity searching in Butterfly graphs, as follows: We have ` Butterfly graphs G`, . . . , G1 where all Gi’s have
the same degree B, but varying depths d`, . . . , d1 such that di = 8i lg(tuw)/ lgB. We will from here and
onwards fix B = (wtu)8 to ensure that depths are integers (they then become di = i). The idea is that we
will have an epoch of updates corresponding to each Gi. Since the number of edges in a Butterfly graph of
depth di is diB

di+1, this means that the epoch sizes go down by a factor β = Θ(B8 lg(tuw)/ lgB) = Θ((tuw)8).
Initially all edges of all Butterflies have weight 0. An update is specified by an index i ∈ {1, . . . , `}, an

edge (u, v) ∈ Gi and a weight y ∈ {0, 1}. It has the effect of changing the weight of the edge (u, v) ∈ Gi to
z(u,v) ← y. For technical reasons (for use in reductions), we require that throughout a sequence of updates,
no edge has its weight set more than once.

A query is specified by two indices s, t ∈ [Bd`] and the answer to the query is:

⊕̀
i=1

⊕
(u,v)∈pi(s,t)

z(u,v)

24

(0,0,0)
(1,0,0)

(0,1,0)
(1,1,0)

(0,0,1)
(1,0,1)

(0,1,1)
(1,1,1)

0

1

1

Figure 4: Given the query (2, 4), we interpret 2 as the index of a source. The number 4 is written in binary
(with 3 bits) and then reversed, yielding the number 1. The query (2, 4) thus asks to sum the weights of
edges on the path from the source indexed by 2 = (0, 1, 0) to the sink indexed by 1 = (1, 0, 0). In this
example, two of these edges are assigned the weight 1, so the XOR of the weights, and thus the answer to
the query (2, 4), is 0.

where pi(s, t) is the set of edges on the path from the source si = bs/Bd`−dic to the sink ti =
←−−−−−−−
bt/Bd`−dic in

Gi.
To summarize a query in words, the indices s and t are translated to a set of source-sink pairs, one

in each Gi, by integer division with Bd`−di and then reversing the bits of the number obtained from t.
We must then compute the parity of the weights assigned to all the edges along the ` corresponding paths
p1(s, t), . . . , p`(s, t). Note that the total input size is n =

∑`
i=1 diB

di+1 = O(d`B
d`+1) and that the size of

consecutive graphs Gi and Gi−1 differ by a factor (tuw)Θ(1). See Figure 5 for an example.

6.2 The Lower Bound

Let P denote the dynamic problem of parity searching in Butterfly graphs. Recall that in P, we have `
Butterfly graphs G`, . . . , G1 where all Gi’s have the same degree B = (wtu)8, but varying depths d`, . . . , d1

such that di = 8i lg(tuw)/ lgB = i.

Hard Distribution. We consider the following random sequence of updates U = (U`,U`−1, . . . ,U1),
where |Ui| = ni = diB

di+1. The updates Ui of epoch i assign a uniform random weight amongst {0, 1} to
each edge of the Butterfly Gi (which has precisely diB

di+1 edges). The query q = (s, t) has s and t drawn
independently and uniformly at random from [Bd`].

6.2.1 Meta Queries

Let D be a dynamic data structure for parity searching in Butterfly graphs of degree B, having worst case
update time tu and expected query time tq under U . We cannot apply Theorem 1 directly to this problem by
proving a strong lower bound for the possible advantage on epochs i ∈ [`/2, `]. In fact, there is a randomized
one-way protocol achieving advantage 1/poly(lgn) with ni/poly(lg n) communication for any epoch i. To get
the lower bound we are after, we need to show that with ni/poly(lg n) communication, the best achievable
advantage is only 1/poly(n). To ensure the latter, we need to perform certain technical manipulations on
queries of P in our simulation. We do this as follows:

First, by arguments similar to those in the proof of Theorem 1, there must be an epoch i ∈ [`/2, `] such

25

(0,0,0)
(1,0,0)

(0,1,0)
(1,1,0)

(0,0,1)
(1,0,1)

(0,1,1)
(1,1,1)

0

1

1

(0,0)
(1,0)

(0,1)
(1,1)

0

0

(0)
(1)

1

Figure 5: Consider parity searching in the three Butterfly graphs of degree 2 and depths 3, 2 and 1 respec-
tively. Given the query (2, 4), we interpret b2/20c = 2 as the index of a source in the first graph, b2/21c = 1
as the source index in the second and b2/22c = 0 as the index of the source in the third and smallest graph.
The number b4/20c = 4 is written in binary (with 3 bits) and then reversed, yielding the sink indexed 1 in
the first graph. Similarly b2/21c = 2 is written in binary with 2 bits and reversed, yielding the sink indexed
1 in the second graph. Finally, b4/22c = 1 is written in binary with 1 bit and reversed, yielding the sink
indexed 1 in the third and smallest graph. The query (2, 4) thus asks to sum the weights of edges along all
the paths in bold, yielding the result 0 + 1 + 1 + 0 + 0 + 1 = 1 (we are computing parity).

that
1

|Q|
∑
q∈Q

E[T iq] ≤ 2tq/`.

Recall that T iq is the number of cells associated to epoch i which is probed by D when answering q (see
Section 4). Fix such an epoch i.

Recall that a query in Q is specified by a tuple (s, t) with s, t ∈ [Bd`]. Each such tuple corresponds to
a source-sink path by integer division with Bd`−di and reversing the digits of the number obtained from t.
Hence there are exactly Bd`−di values of s that specify the same source. Likewise for the sinks.

From the set of source-sink paths, we define a collection of meta queries Q∗. For each level j of the But-
terfly graph Gi, recall that edges go between vertices whose base-B vector differ only in the j’th coordinate.
We thus group vertices in level j and j + 1 into Bdi−1 chunks. Each chunk consists of all vertices in level j
and j+1 whose corresponding vectors agree in all but the j’th coordinate, i.e. a chunk consists of all vertices
with the corresponding vector being (w0, . . . , wj−1, ?, wj+1, . . . , wdi−1). Summed over all di levels with out-
going edges, we have diB

di−1 chunks. Now consider assigning a permutation on B elements to each chunk.

Using π
(w0,...,wj−1,?,wj+1,...,wdi−1)

j to denote the permutation at level j corresponding to vertices in level j and
j + 1 with vectors of the form (w0, . . . , wj−1, ?, wj+1, . . . , wdi−1), such an assignment of permutations to all
chunks now yield Bdi unique source-sink pairs as follows: For each source s′ = (w0, . . . , wdi−1), trace a path

as follows: Start by going to the level 1 vertex with vector (w′0 = π
(?,w1...,wdi−1)

0 (w0), w1, . . . , wdi−1). Then

to the level 2 vertex with vector (w′0, w
′
1 = π

(w′0,?,w2...,wdi−1)

0 (w1), . . . , wdi−1) and so forth until we reach a
sink t′ = (w′0, . . . , w

′
di−1). Since we use a permutation in each chunk, the set of Bdi constructed source-sink

pairs have the property that exactly one path passes through each vertex at each level. See Figure 6.
Now consider such a collection of Bdi source-sink pairs (0, t1), . . . , (Bdi−1, tBdi−1) (recall there is precisely

one query per source and one per sink). We create a number of meta queries for each such collection of Bdi

source-sink pairs. The set of meta queries corresponding to source-sink pairs (0, t0), . . . , (Bdi − 1, tBdi−1) is

precisely the set of all query lists S = (s′0, t
′
0), . . . , (s′

Bdi−1
, t′
Bdi−1

) with bs′j/Bd`−dic = j and
←−−−−−−−−
bt′j/Bd`−dic = tj

26

A B C D E F G H

H C D F A G E B

1 1

1 1

2 2

2 2

Figure 6: Two chunks have been marked in this figure, labeled “1” and “2” respectively. In each chunk,
a permutation on two elements define two edges, one leaving each node at level 1 and one entering each
node at level 2. The permutation assigned to chunk “1” is the permutation π(0) = 0, π(1) = 1, whereas the
permutation assigned to chunk “2” is π(0) = 1, π(1) = 0. Such a permutation is assigned to every chunk of
the graph. We can then trace a path from each source down to a sink, resulting in 8 node-disjoint source-sink
paths. The edges on these paths are shown in bold and the corresponding source-sink pairs are labeled such
that the source labeled “A” is paired with the sink labeled “A” and so forth.

for all j = 0, . . . , Bdi − 1. The meta query qS then has the answer

A(qS) :=
⊕

(s′j ,t
′
j)∈S

⊕̀
i=1

⊕
(u,v)∈pi(s′j ,t′j)

z(u,v)

Said in words, the meta query qS asks to compute the XOR of the answer to all the queries in S. Note that
all paths involved in the XORs are disjoint in Gi, and thus the weight of any edge in Gi is included at most
once in this sum. We use Q∗ to denote the collection of all meta queries.

Now the idea is that we can use D to answer such meta queries efficiently. More specifically, consider
running the same distribution U of updates, but instead of drawing the query tuple q as above, we instead
draw a uniform random meta query qS and ask to output its answer. Call the resulting dynamic data
structure problem P∗i . We can use the data structure D to obtain an efficient solution for this problem:
When receiving the meta query qS , we simply run the query algorithm for each (sj , tj) ∈ S and compute
the resulting XOR of query answers. Clearly this gives the correct result. Now the crucial observation is
that if we draw a uniform random query (sj , tj) from qS , then the distribution of that query is still uniform
over all queries to the original problem, i.e. the distribution of (sj , tj) is simply a uniform random tuple in
[Bd`]× [Bd`]. Thus by linearity of expectation, we have:

1

|Q∗|
∑

qS∈Q∗
E[T iqS] = Bdi

1

|Q|
∑
q∈Q

E[T iq] ≤ 2Bditq/`.

Here T iqS is the number of cells associated to epoch i that is probed when answering qS in the above manner.
We also have:

1

|Q∗|
∑

qS∈Q∗
E[T iqS] = Bditq.

We now wish to invoke Theorem 6. The theorem requires tq(wtu)a+1 ≤ ni for a constant a > 1. The average
expected query time for a meta query was Bditq, thus we must have Bditq(wtu)a+1 ≤ ni for a constant

27

a > 1. Since ni = diB
di+1, we see that it suffices to have B ≥ tq(wtu)a+1. We can assume tq ≤ lg2 n,

as otherwise we have already finished our proof. Therefore, we see that any B = Ω((wtu)a+3) suffices (as
w = Ω(lg n)). We chose B = (wtu)8, so we can apply the theorem with any a ≤ 5. Furthermore, the epoch
sizes go down by a factor β = Θ((wtu)8) which also satisfies the requirements of the theorem for any choice
of a ≤ 8.

We can thus invoke Theorem 6, with a = 2, to conclude that

−→
adv

(
GiP∗i , U , ni/(wtu)

)
≥ exp

(
−tqBdi lg2(wtu)/

√
lg n
)
.

The next section therefore aims to bound the best achievable advantage for this GiP∗i
problem.

Before we proceed, a few remarks are in order. As discussed earlier, the base problem of answering
just one source-sink pair admits a too efficient communication protocol. As we shall see in the following
subsection, forcing the data structure to answer multiple structured queries on the same input (i.e., meta
queries) rules out such efficient protocols. Unfortunately, the number of queries we need in a meta query
depends on the epoch size. Therefore, we had to first zoom in on an epoch i for which the data structure
is efficient, and then define the meta queries after having chosen the epoch. This is also the reason why we
needed the more specific Theorem 6 rather than Theorem 1.

The next subsection proves the following result:

Lemma 5. For any epoch i ∈ [`/2, `], we have
−→
adv

(
GiP∗i

, U , o(ni)
)
≤ 2−(diB

di)/8.

Let us first see why this lemma implies the desired lower bound. We see that it must be the case that

exp
(
−tqBdi lg2(w · tu)/

√
lg n
)
≤ 2−(diB

di)/8 ⇒

tqB
di lg2(w · tu)/

√
lg n = Ω

(
diB

di
)
⇒

tq = Ω(di
√

lg n/ lg2(w · tu))

But di ≥ d`/2 for any i ≥ `/2 and d` = Ω(lgB n), thus we conclude that

tq = Ω

(
lg3/2 n

lgB lg2(w · tu)

)
.

We have set B = (wtu)8, thus the lower bound becomes:

tq = Ω

(
lg3/2 n

lg3(w · tu)

)
.

This completes the proof of Theorem 3. The next section proves the necessary Lemma 5.

6.2.2 Low Advantage on Epochs

Let i ∈ [`/2, `]. In the communication game GiP∗i
for the random update sequence U , Alice receives all

updates of all epochs and Bob receives all updates of all epochs except i. Bob also receives a meta
query qS . Let π be a one-way randomized protocol in which Alice sends o(ni) bits to Bob, and sup-
pose that π achieves an advantage of ε w.r.t. U and qS . Since the query qS and the updates Ui are
independent of the updates of epochs U`, · · · ,Ui+1,Ui−1, . . . ,U1, we can fix the random coins of the
protocol and fix the updates of all epochs except epoch i, such that for the resulting deterministic pro-
tocol π∗ and fixed update sequences u`, . . . , ui+1, ui−1, . . . , u1 we have that Alice never sends more than
o(ni) bits and PrUi,qS [vπ∗ = A(qS)] ≥ 1/2 + ε. Here A(qS) is the answer to query qS on updates
u`, . . . , ui+1,Ui, ui−1, . . . , u1 and query qS . The random variable vπ∗ is Bob’s output when running the
deterministic protocol π∗ on u`, . . . , ui+1,Ui, ui−1, . . . , u1 and query qS .

28

Let Mπ∗(Ui) be the message sent by Alice in procotol π∗ on updates u`, . . . , ui+1,Ui, ui−1, . . . , u1. Then
vπ∗ = vπ∗(Mπ∗(Ui), q

S) is determined from Mπ∗(Ui) and qS alone (since the updates of other epochs are
fixed). For each of the possible messages m of Alice, define the vector χm having one coordinate per qS ∈ Q∗.
The coordinate χm(x) corresponding to some qS has the value −1 if vπ∗(m, q

S) = 0 and it has the value 1
otherwise. Similarly define for each sequence of updates ui ∈ supp(Ui) the vector ψui having one coordinate
ψui(q

S) per qS ∈ Q∗, where the coordinate corresponding to some x takes the value −1 if the correct answer
to the query qS is 0 after the update sequence u`, . . . , ui+1, ui, ui−1, . . . , u1 and taking the value 1 otherwise.
Since π∗ has advantage ε and qS is uniform in Q∗, we must have

E
Ui

[〈ψUi , χMπ∗ (Ui)〉] = ((1/2 + ε)− (1/2− ε))|Q∗| = 2ε|Q∗|.

This in particular implies that if we take the absolute value of the inner product, we have

E
Ui

[|〈ψUi , χMπ∗ (Ui)〉|] ≥ 2ε|Q∗|.

By arguments identical to those in the proof of Lemma 4, we conclude that there must be some m ∈
supp(Mπ∗(Ui)) such that we have both

• EUi [|〈ψUi , χMπ∗ (Ui)〉| |Mπ∗(Ui) = m] ≥ ε|Q∗|.

• PrUi
[Mπ∗(Ui) = m] ≥ | supp(Mπ∗(Ui))|−1ε/2.

Consider such an m and the corresponding vector χm. We examine the following expectation for an even
integer k to be determined:

E
Ui

[〈ψUi
, χm〉k] =

∑
T∈(Q∗)k

E
Ui

 ∏
qS∈T

ψUi(q
S)χm(qS)

 =

∑
T∈(Q∗)k

E
Ui

 ∏
qS∈T

ψUi(q
S)

 ∏
qS∈T

χm(qS).

Now recall that Ui assigns a uniform random and independently chosen weight in {0, 1} to each edge of Gi.
For an edge (u, v), let y(u,v) take the value 1 if z(u,v) = 0 and let it take the value −1 otherwise. Then

ψUi
(qS) =

∏
(s′j ,t

′
j)∈S

∏̀
i=1

∏
(u,v)∈pi(s′j ,t′j)

y(u,v)

It follows that if there is even a single edge (u, v) in Gi, such that (u, v) occurs an odd number of times

when summed over all pi(s
′
j , t
′
j) in all qS in T , then EUi

[∏
qS∈T ψUi(q

S)
]

= 0. If all edges in Gi occur an

even number of times, then EUi

[∏
qS∈T ψUi

(qS)
]
∈ {−1,+1}, depending on the (fixed) weights assigned

to edges in epochs different from i. Denoting by Γ the number of sets T ∈ (Q∗)k such that all edges in Gi
occur an even number of times in the corresponding source-sink paths, we conclude that

E
Ui

[〈ψUi
, χm〉k] ≤ Γ.

Since we assume k is even, we may insert absolute values:

E
Ui

[|〈ψUi
, χm〉|k] ≤ Γ.

29

To bound Γ, consider drawing k meta queries qS1 , qS2 , . . . , qSk independently and uniformly at random. We
wish to bound the probability that every edge in Gi is included an even number of times when summed over
the k meta queries qS1 , . . . , qSk . For this, zoom in on a chunk of the butterfly graph between some levels j
and j+ 1. Each qSh assigns a uniform random permutation πh on B elements to the chunk. That each edge
occurs an even number of times in the chunk is equivalent to every pair of indices x, y ∈ [B] satisfying that
there is an even number of permutations amongst π1, . . . , πk for which πh(x) = y. Call this event E. To
bound the probability of E, first observe that π1, . . . , πk is uniform random amongst (B!)k possible lists of
permutations. We wish to bound the number of such lists ρ1, . . . , ρk that satisfy

1. For every pair (x, y) ∈ [B]× [B], there is an even number of ρh for which ρh(x) = y.

We upper bound the number of such lists ρ1, . . . , ρk via an encoding argument. Let ρ1, . . . , ρk satisfy 1.
We can encode ρ1, . . . , ρk as follows: First specify for every pair x, y how many ρh that satisfy ρh(x) = y.
Letting ∆(x, y) denote this number for a pair (x, y), we encode the ∆(x, y)’s efficiently as follows: First
divide each ∆(x, y) by 2. The resulting values are still integer since each ∆(x, y) is even by assumption.
Next observe that

∑
(x,y) ∆(x, y)/2 = kB/2 as each ρh adds B to

∑
(x,y) ∆(x, y). Thus we need to specify

a sequence of B2 non-negative integers that sum to kB/2. It is well known that the number of such

integer sequences is
(
B2+kB/2−1

kB/2

)
, thus we can specify all ∆(x, y)’s using a total of lg

(
B2+kB/2−1

kB/2

)
bits.

Finally, for each pair (x, y) in lexicographic order (i.e. first ordered by x, then by y), if ∆(x, y) > 0,
append ∆(x, y) lg k bits to the encoding, specifying the set of ∆(x, y) indices h amongst {1, . . . , k} that have
ρh(x) = y. Clearly the set ρ1, . . . , ρk can be recovered from this encoding. The number of bits used is upper

bounded by lg
(
B2+kB/2−1

kB/2

)
+ kB lg k, meaning that the number of distinct ρ1, . . . , ρk is upper bounded by(

B2+kB/2−1
kB/2

)
kkB . We therefore conclude that

Pr[E] ≤

(
B2+kB/2−1

kB/2

)
kkB

(B!)k

≤

(
e(B2+kB/2)

kB/2

)kB/2
kkB

BkB

=

(
2e(B2 + kB/2)

)kB/2
kkB

BkB(kB)kB/2

We now fix k = B/16 (we assume k is a even and remark that this can always be achieved by blowing up
w and tu by constant factors to ensure that B = (wtu)8 is a power of 2). For this value of k, the above is
bounded by:

Pr[E] ≤
(
8B2

)kB/2
kkB

BkB(16k2)kB/2

= 2−kB/2 = 2−B
2/32.

Next recall that the permutations assigned to the chunks are independent. Using the fact that there
are diB

di−1 chunks, we conclude that the probability that all edges occur an even number of times in

qS1 , qS2 , . . . , qSk is less than 2−(B2/32)diB
di−1

. Therefore, we get that

Γ ≤ |Q∗|k(1/2)(diB
di+1)/32.

Using that PrUi
[Mπ∗(Ui) = m] ≥ | supp(Mπ∗(Ui))|−1ε/2, we conclude that

E
Ui

[|〈ψUi , χm〉|k |Mπ∗(Ui) = m] ≤ 2ε−1|Q∗|k(1/2)(diB
di+1)/32| supp(Mπ∗(Ui))|.

30

By convexity of xk and Jensen’s inequality, we have

E
Ui

[|〈ψUi , χm〉| |Mπ∗(Ui) = m]k ≤ 2ε−1|Q∗|k(1/2)(diB
di+1)/32| supp(Mπ∗(Ui))|.

Taking the k’th root, we get

E
Ui

[|〈ψUi
, χm〉| |Mπ∗(Ui) = m] ≤ (2ε−1)1/k|Q∗|(1/2)(diB

di+1)/(32k)| supp(Mπ∗(Ui))|1/k.

Using that EUi [|〈ψUi , χMπ∗ (Ui)〉| |Mπ∗(Ui) = m] ≥ ε|Q∗|, we conclude that

ε|Q∗| ≤ (2ε−1)1/k|Q∗|(1/2)(diB
di+1)/(32k)| supp(Mπ∗(Ui))|1/k ⇒

ε2 ≤ 2(1/2)(diB
di+1)/(32k)| supp(Mπ∗(Ui))|1/k.

Assuming ε ≥ (1/2)(diB
di+1)/(128k), we must have:

| supp(Mπ∗(Ui))|1/k ≥ 2(diB
di+1)/(64k)−1.

Taking logs, we conclude that

lg2 (| supp(Mπ∗(Ui))|) = Ω(diB
di+1) = Ω(ni).

The contrapositive says that assuming lg2 (| supp(Mπ∗(Ui))|) = o(ni), we must have ε ≤ 2−(diB
di+1)/(128k).

Inserting k = B/16, this becomes ε ≤ 2−(diB
di)/8.

7 Reductions

This section presents the reductions used to prove the various lower bounds discussed in Section 1.2.

7.1 2D Range Parity and 2D Rectangle Stabbing

As argued in Section 1.2, a folklore reduction shows that 2D range counting and 2D rectangle stabbing
are equivalent problems. The same goes for 2D range parity and 2D rectangle parity, where 2D rectangle
parity is the version of rectangle stabbing where we need only return the parity of the number of rectangles
containing the query point q. Thus we start by giving a reduction from parity searching in Butterfly graphs
to 2D rectangle parity.

Recall that in parity searching in Butterfly graphs (see Section 6.2), we have ` Butterfly graphs G`, . . . , G1

where all Gi’s have the same degree B, but varying depths d`, . . . , d1. Initially all edges of all Butterflies
have weight 0. An update is specified by an index i ∈ {1, . . . , `}, an edge (u, v) ∈ Gi and a weight y ∈ {0, 1}.
It has the effect of changing the weight of the edge (u, v) ∈ Gi to z(u,v) ← y. A query is specified by two
indices s, t ∈ [Bd`] and the answer to the query is:

⊕̀
i=1

⊕
(u,v)∈pi(s,t)

z(u,v)

where pi(s, t) is the set of edges on the path from the source si = bs/Bd`−dic to the sink ti =
←−−−−−−−
bt/Bd`−dic in

Gi.
We want to show that we can solve this problem using a dynamic data structure for 2D rectangle

parity. To do this, we associate a rectangle with each edge (u, v) in some Gi. Let j denote the level of
u and j + 1 the level of v. Recall the notation from Section 1.2 and let û = (. . . , wj−1, wj , wj+1, . . .) ∈
[B]di denote the vector corresponding to u and v̂ = (. . . , wj−1, w

′
j , wj+1, . . .) ∈ [B]di denote the vector

31

corresponding to v. The crucial property of the Butterfly graph is that the set of source-sink pairs (si, ti)
in Gi that have their unique path routing through the edge (u, v) are precisely those pairs (si, ti) where
si ∈ (?, . . . , ?, wj , wj+1, . . . , wdi−1) ⊆ [B]di and ti ∈ (w0, . . . , wj−1, w

′
j , ?, . . .) ⊆ [B]di .

Now recall that from a query (s, t) ∈ [Bd`]× [Bd`] to parity searching in Butterfly graphs, we must sum

the weights along the paths between the source-sink pairs si = bs/Bd`−dic and ti =
←−−−−−−−
bt/Bd`−dic in Gi for each

i = 1, . . . , `. If we write (s, t) ∈ [Bd`]×[Bd`] as the vectors s = (ws0, . . . , w
s
d`−1) and t = (wt0, . . . , w

t
d`−1) where

ws0 and wt0 are the least significant digits of s and t in base B, then we have that si = (wsd`−di , . . . , w
s
d`−1)

and ti = (wtd`−1, . . . , w
t
d`−di). We conclude that the weight of the edge (u, v) in Gi must be counted iff

• wsk+(d`−di) = wk for all k = j, . . . , di − 1.

• wtd`−1−k = wk for k = 0, . . . , j − 1.

• wtd`−j−1 = w′j .

But s and t are integers in [Bd`] and the above requirements are thus captured precisely by:

• s ∈
[∑di−1

k=j wkB
k+(d`−di),

∑di−1
k=j wkB

k+(d`−di) +
∑j−1+(d`−di)
k=0 (B − 1)Bk

]
.

• t ∈
[
w′jB

d`−j−1 +
∑j−1
k=0 wkB

d`−1−k, w′jB
d`−j−1 +

∑j−1
k=0 wkB

d`−1−k +
∑d`−j−2
k=0 (B − 1)Bk

]
.

This is equivalent to the point (s, t) being inside a 2D rectangle that depends only on (u, v) and i. We denote

this rectangle by R
(u,v)
i . Our reduction now goes as follows: On an update setting the weight of an edge

(u, v) in Gi to 0, we do nothing. If the update sets the weight to 1, we insert the rectangle R
(u,v)
i . To answer

a query (s, t) to parity searching in Butterfly graphs, we simply ask the 2D rectangle parity query (s, t).
Correctness follows immediately by the above arguments and the fact that the definition of parity searching
in Butterfly graphs from Section 1.2 requires that any edge has its weight set at most once. To the worried

reader, note that translating an edge (u, v) in Gi to R
(u,v)
i does not require any memory lookups, it is purely

computational. Thus in the cell probe model, the translation is free of charge.
For completeness, we also sketch the reduction from 2D rectangle parity to 2D range parity: On an

insertion of a rectangle R = [x1, x2] × [y1, y2], we insert four points in the 2D range parity data structure,
one roughly at each corner of R. The observation is that a point q is inside R iff it dominates only x1 (if
we ignore q lying on one of the sides of R). Additionally, if q is not inside R, then it dominates an even
number of corners of R. Hence the parity of the number of rectangles stabbed is the same as the parity of
the number of points dominated if we replace each rectangle with a point at each corner. The only minor
issue is when q lies on one of the sides of R. We give a full reduction also handling this case in the following:

Recall we require coordinates to be integer. From the rectangle R, we insert the four points p1 =
(2x1, 2y1), p2 = (2x1, 2y2 + 1), p3 = (2x2 + 1, 2y1), p4 = (2x2 + 1, 2y2 + 1). For a 2D rectangle parity query
point q = (x, y), we ask the 2D parity counting query (2x, 2y). The factors of 2 and the additive +1 is used
to handle the “on one of the sides” case. The crucial observation is that

x ∈ [x1, x2]⇔ 2x1 ≤ 2x ≤ 2x2 < 2x2 + 1.

Similarly
y ∈ [y1, y2]⇔ 2y1 ≤ 2y ≤ 2y2 < 2y2 + 1.

Also, if x > x2 then 2x > 2x2 + 1 and if y > y2 then 2y > 2y2 + 1 because all coordinates were integer. It
follows that if q is inside the rectangle R, then (2x, 2y) dominates precisely p1. If x < x1 or y < y1, then
(2x, 2y) dominates none of the points p1, p2, p3 and p4. If x > x2 but y1 ≤ y ≤ y2, then (2x, 2y) dominates
precisely p1 and p3. If x1 ≤ x ≤ x2 and y > y2, then (2x, 2y) dominates precisely p1 and p2. Finally,
if x > x2 and y > y2, then (2x, 2y) dominates all the points p1, p2, p3 and p4. We conclude that (2x, 2y)
dominates an odd number of points amongst p1, p2, p3 and p4 iff q is inside the rectangle R. Hence the result
of the 2D range parity query is the same as the result of the 2D rectangle parity query. This concludes the
proof of Theorem 4.

32

7.2 Range Selection and Range Median

In this section, we show that a data structure for dynamic range selection solves parity searching in Butterfly
graphs. Recall that in range selection, we are given an array A = {A[0], . . . , A[n−1]} of integers, initially all
0. A query is triple (i, j, k). The goal is to return the index of the k’th smallest element in {A[i], . . . , A[j]},
breaking ties arbitrarily. We prove our lower bound for the special case of prefix selection in which we force
i = 0 and where we are required to return only whether the k’th smallest element is stored in an evenly
indexed position or an odd one.

We start by describing our reduction in the setting where we need to return the whole index of the k’th
smallest element, not just the parity. At the end, we argue that all we really need is the parity of the
position. Our reduction starts by re-executing the reduction to 2D rectangle parity from Section 7.1. That

is, each edge (u, v) of a Butterfly graph Gi is mapped to a rectangle R
(u,v)
i such that a query (s, t) to parity

searching in Butterfly graphs must sum the weight z(u,v) of (u, v) iff the point (s, t) is inside the rectangle

R
(u,v)
i . We will also use the fact that the proof of our lower bound for parity searching in Butterfly graphs

is for a distribution where every edge has its weight set before we query. Thus for our reduction, it suffices
to show that we can solve the parity searching query (s, t) after a sequence of updates that have set the
weight of every edge of every Gi. Finally, we also exploit that the rectangles obtained by reduction from the

Butterfly graphs have the property that R
(u,v)
i and R

(x,y)
j are disjoint if i = j and the edges (u, v) and (x, y)

are at the same depth of the Butterfly graph Gi. This implies that any point is contained in no more than
∆ :=

∑`
i=1 di = O(lg2 n) rectangles, one for each layer of each Butterfly (di is the depth of Butterfly Gi).

The instance we create is the concatenation of two arrays B and A, i.e. C := B ◦ A. By concatenation,
we simply mean that C[i] := B[i] in case i ∈ [|B|] and otherwise C[i] := A[i− |B|].

The B array. The array B is quite simple. If n denotes the total number of rectangles, then B has 4n∆
entries. We think of B as being partitioned into batches of (∆ + 1) entries, where the j’th batch consists of
entries B[(∆ + 1)j], B[(∆ + 1)j + 1], . . . , B[(∆ + 1)(j + 1)− 1]. We set the entries of B during epoch ` (the
biggest epoch), such that each update of epoch ` sets O(∆) entries of B. This means that the worst case
update time of the data structure goes up by a factor O(∆) = O(lg2 n). The values assigned to the entries of
B are as follows: In the j’th batch, we set the values to B[(∆ + 1)j + i]← (∆ + 2)j + i+ 1 for i = 0, . . . ,∆.

The A array. From each rectangle R
(u,v)
i = [x1, x2]×[y1, y2], we define the four points p1 = (2x1, 2y1), p2 =

(2x1, 2y2 +1), p3 = (2x2 +1, 2y1) and p4 = (2x2 +1, 2y2 +1). Then by the arguments of the previous section,

a query point (s, t) is inside R
(u,v)
i iff (2s, 2t) dominates only p1. Otherwise, (2s, 2t) dominates either

precisely {p1, p2}, {p1, p3} or {p1, p2, p3, p4}. Let P be the collection of all points p1, p2, p3, p4 defined from

the rectangles R
(u,v)
i for every i = 1, . . . , ` and every edge (u, v) ∈ Gi. Note that P may contain duplicates.

We keep the duplicates, so P is multi-set and |P | = 4n. Also observe that the collection P is fixed and
independent of any weights assigned to edges, it is merely a predefined set of points. For each point p ∈ P ,
define rankx(p) to be the rank of p.x amongst all x-coordinates of points in P . Since several points may
have the same x-coordinate, we break ties in some arbitrary but fixed manner such that all ranks are unique
integers from 0 to |P | − 1. Our maintained array A has one entry for each point p ∈ P , namely entry
A[rankx(p)]. We similarly define ranky(p) for each p, such that ranky(p) is the rank of p.y amongst all
y-coordinates of points in P . Again, we break ties in some arbitrary but fixed manner. Note that rankx(p)
and ranky(p) are fixed and independent of any weights assigned to edges.

Initially all entries of A are 0. On an update setting the weight of R
(u,v)
i to 1, we do the updates:

• A[rankx(p1)]← ranky(p1)(∆ + 2).

• A[rankx(p2)]← |P |(∆ + 2).

• A[rankx(p3)]← |P |(∆ + 2).

• A[rankx(p4)]← ranky(p4)(∆ + 2).

33

On an update setting the weight of R
(u,v)
i to 0, we instead do the updates:

• A[rankx(p1)]← |P |(∆ + 2).

• A[rankx(p2)]← ranky(p2)(∆ + 2).

• A[rankx(p3)]← ranky(p3)(∆ + 2).

• A[rankx(p4)]← |P |(∆ + 2).

Conceptually, think of the above choices as inserting the points p1 and p4 on a weight of 1, and inserting
the points p2 and p3 on a weight of 0. Setting the remaining entries to |P |(∆ + 2) can be thought of as
disregarding these entries in selection queries.

Answering the Query. On a query (s, t), we compute the index j ∈ [|P |] such that all points p in P
with p.x ≤ 2s have rankx(p) ≤ j and all points p in P with p.x > 2s have rankx(p) > j. Note that this
index is completely determined from the query (s, t) and does not depend on any weights assigned. Since
computation is free in the cell probe model, computing j is free of charge. Similarly, we can compute the
index h ∈ [|P |] such that all points p ∈ P with p.y ≤ 2t have ranky(p) ≤ h and all points p ∈ P with p.y > 2t
have ranky(p) > h.

The crucial observation is that if we disregard the rectangles R
(u,v)
i containing (s, t) (i.e. disregard the

corresponding entries in A), then we know exactly what value of k that makes the query (0, j+ |B|, k) return
the index r := h(∆ + 1) + ∆. Note that this index is the last index in the h’th batch of B.

To see how one can determine this value of k without knowing the weights, first note that the value
of k resulting in the answer r to the query (0, j + |B|, k), is precisely the value k such that entry B[r]
stores the k’th smallest element amongst B[0], . . . , B[|B| − 1], A[0], . . . , A[j]. We thus need to argue that
the number of entries amongst B[0], . . . , B[|B| − 1], A[0], . . . , A[j] that stores a value less than or equal to
B[r] = h(∆ + 2) + ∆ + 1 is independent of the weights assigned during updates (ignoring entries of A

corresponding to rectangles R
(u,v)
i containing (s, t) of course).

It is clear that the number of entries amongst B[0], . . . , B[|B| − 1] that stores a value less than or equal
to B[r] is independent of the weights since it is precisely the r+ 1 entries B[0], . . . , B[r]. Thus what remains
is to argue that we can also compute the number of such entries amongst A[0], . . . , A[j].

To compute it for A[0], . . . , A[j], examine every rectangle R
(u,v)
i not containing (s, t). Let p1, p2, p3, p4

be the points defined from R
(u,v)
i above. By the arguments earlier, we have that (2s, 2t) dominates either

{p1, p2}, {p1, p3} or {p1, p2, p3, p4}. Now observe that rankx(pi) ≤ j iff pi.x ≤ 2s and ranky(pi) ≤ h iff
pi.y ≤ 2t. This means that if we perform the update A[rankx(pi)]← ranky(pi)(∆ + 2), then A[rankx(pi)] is
amongst entries A[0], . . . , A[j] and stores a value less than or equal to B[r] = h(∆ + 2) + ∆ + 1 iff (2s, 2t)
dominates pi. Also, if we instead performed the update A[rankx(pi)]← |P |(∆+2), then A[rankx(pi)] > B[r].
Now examine the two different update strategies depending on whether the edge (u, v) is assigned the weight
1 or 0. The crucial property of our reduction is that precisely one of {p1, p2} is updated as A[rankx(pi)]←
ranky(pi)(∆+2). Similarly, precisely one of {p1, p3} is updated as A[rankx(pi)]← ranky(pi)(∆+2). Finally,

precisely two of {p1, p2, p3, p4} are updated as A[rankx(pi)] ← ranky(pi)(∆ + 2). Thus for each R
(u,v)
i not

containing (s, t), we know exactly how many of the corresponding entries of A that is amongst A[0], . . . , A[j]
and which store a value less than or equal to B[r], independently of the weights assigned. Thus it follows
that if we disregard entries of A corresponding to rectangles containing (s, t), we know the value k such that
the selection query (0, j + |B|, k) returns the index r = h(∆ + 1) + ∆.

Let k be the value computed above (without any cell probes), i.e. k is the integer such that the selection
query (0, j + |B|, k) returns the index r = h(∆ + 1) + ∆. Recall that B[r] is the last index in the h’th
chunk of B, and this chunk consists of the entries B[h(∆ + 1) + i] = h(∆ + 2) + i + 1 for i = 0, . . . ,∆. To
answer the parity searching query (s, t), we run the range selection query (0, j + |B|, k). If the rectangles
containing (s, t) were not there, the data structure would return r. Now examine the change in the answer

to the query (0, j + |B|, k) as we perform the updates corresponding to rectangles R
(u,v)
i containing (s, t).

34

For such rectangles, (2s, 2t) dominates exactly {p1} and thus by the arguments above, the four entries
A[rankx(p1)], A[rankx(p2)], A[rankx(p3)], A[rankx(p4)] corresponding to p1, p2, p3 and p4 have the property
that precisely entry A[rankx(p1)] is amongst A[0], . . . , A[j] and stores a value less than or equal to B[r] if

the weight assigned to R
(u,v)
i is 1. If the weight assigned to R

(u,v)
i is 0, then none of the entries have that

property. Since we are selecting for the k’th smallest element in B[0], . . . , B[|B| − 1], A[0], . . . , A[j], we get
that the first rectangle containing (s, t) and being assigned the weight 1 changes the answer to the query
(0, j + |B|, k) to r − 1. The next changes the answer to r − 2 and so forth. Crucially, we know that (s, t) is
contained in at most ∆ rectangles. Therefore, the index returned will be exactly r−m where m is the number
of rectangles containing (s, t) and being assigned the weight 1. The chunks of ∆ + 1 entries thus prevents
“overflows” in some sense, ensuring that each rectangle stabbed having weight 1 decrements the returned
index by exactly 1. Since r := h(∆+2)+∆+1 is completely determined from the query alone, and the data
structure returns the value r −m, it follows that we can compute ((r −m) mod 2) + (r mod 2) = (−m
mod 2) = (m mod 2), which is the answer to the parity searching query. Note that this computation needs
only the parity of the index (r −m) returned by the query. This concludes the proof of Theorem 5.

Acknowledgement

We are very grateful to Rocco Servedio and Oded Regev for insightful discussions on the Peak-to-Average
Lemma, and in particular, to Alexander Sherstov for observing and sharing with us the proof of the lower
bound (Claim 1 in Appendix B).

References

[Aga04] Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry,
Second Edition., pages 809–837. 2004.

[BCdWZ99] Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for small-error
and zero-error quantum algorithms. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 358–368, 1999.

[BGJS11] Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders. Towards
optimal range medians. Theoretical Computer Science, 412(24):2588–2601, May 2011.

[CGL15] Raphaël Clifford, Allan Grønlund, and Kasper Green Larsen. New unconditional hardness
results for dynamic and online problems. In Proc. 56th IEEE Symposium on Foundations of
Computer Science, 2015.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 345–354,
1989.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 1994.

[GM07] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures.
Theoretical Computer Science, 379:405–417, July 2007.

[JL11] Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and median: Tight cell
probe lower bounds and adaptive data structures. In Proc. 22nd ACM/SIAM Symposium on
Discrete Algorithms, pages 805–813, 2011.

35

[JMS04] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast algorithms
for multidimensional dominance reporting and counting. In Proc. 15th International Symposium
on Algorithms and Computation, pages 558–568, 2004.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any characteristic. In
Proc. 49th IEEE Symposium on Foundations of Computer Science, pages 146–155, 2008.

[Lar12a] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 85–94, 2012.

[Lar12b] Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In Proc. 53rd
IEEE Symposium on Foundations of Computer Science, pages 293–301, 2012.

[Lar13] Kasper Green Larsen. Models and Techniques for Proving Data Structure Lower Bounds. PhD
thesis, Aarhus University, 2013.

[Mil95] Peter Bro Miltersen. On the cell probe complexity of polynomial evaluation. Theoretical Com-
puter Science, 143:167–174, May 1995.

[Pat07] Mihai Patrascu. Lower bounds for 2-dimensional range counting. In Proc. 39th ACM Symposium
on Theory of Computation, pages 40–46, 2007.

[Pǎt08] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. In Proc. 49th IEEE Sym-
posium on Foundations of Computer Science, pages 434–443, 2008.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages
20–29, 2004.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
J. Comput., 35(4):932–963, 2006.

[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor search via
metric expansion. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, pages 805–814, 2010.

[Tho13] Mikkel Thorup. Mihai Pǎtraşcu: Obituary and open problems. Bulletin of the EATCS, 109:7–
13, 2013.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(13):1–336, 2012.

[WY16] Omri Weinstein and Huacheng Yu. Amortized dynamic cell-probe lower bounds from four-party
communication. In Proc. 57th IEEE Symposium on Foundations of Computer Science, pages
305–314, 2016.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981.

[Yin10] Yitong Yin. Cell-probe proofs. ACM Transactions on Computation Theory, 2:1:1–1:17, Novem-
ber 2010.

A Proof of Lemma 2 [BCdWZ99]

Lemma 2 (restated). For any k and M satisfying 2 ≤ M ≤ 2O(k), there exists a polynomial Q =
Qk,M (x1, . . . , xk) such that

(i) Q has total degree O(
√
k lgM);

36

(ii) |Q(0k)| ≥M ;

(iii) ∀x ∈ {0, 1}k \ {0k}, |Q(x)| ≤ 1;

(iv) The sum of absolute values of all coefficients is at most exp(
√
k lgM).

The main idea is to design a lower degree univariate polynomial that takes large value at 0, takes small
value at every integer between 1 and k, and has small coefficients. Then apply this polynomial on the
Hamming weight of x, i.e., x1 + · · · + xk. To design such a polynomial, we are going to use Chebyshev
polynomials.10 The high-level idea is to first take a Chebyshev polynomial P that is large at 0, and is small
in [t, k] for some parameter t. Then for each integer i between 1 and t − 1, we design another polynomial
that vanishes at i, is not small at 0, and is not large in [i+ 1, k]. Finally, we multiply all these polynomials
together, which will produce a polynomial with the claimed properties.

Proof. If M ≥ 20.05k, the statement is trivial, as we can simply set Q = M ·
∏k
i=1(1 − xi). Thus, in the

following we are going to assume M ≤ 20.05k.
In order to bound the sum of coefficients, let us define the following function on polynomials. For a

polynomial P on l variables such that P (x) =
∑
I∈Nl αIx

I , define C(P, s) to be the sum of coefficients of P
weighted by exponentials of the total degrees:

C(P, s) :=
∑
I∈Nl
|αI |s|I|.

Equivalently, C(P, s) is P evaluated on xi = s for all i, after replacing each coefficient by its absolute value.
Also, the last property in the statement is equivalent to C(Q, 1) ≤ exp(

√
k lgM). It is easy to verify the

function C has the following properties:

(a) C(P1 + P2, s) ≤ C(P1, s) + C(P2, s);

(b) C(P1 · P2, s) ≤ C(P1, s) · C(P2, s);

(c) For univariate P1, C(P1 ◦ P2, s) ≤ C(P1, C(P2, s)).

Now consider the (univariate) Chebyshev polynomials Tn recursively defined as follows:

• T0(x) = 1;

• T1(x) = x;

• Tn+1(x) = 2xTn(x)− Tn−1(x).

It is well-known that Tn is a degree-n polynomial satisfying

• |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1;

• |Tn(−1− ε)| = |Tn(1 + ε)| ≥ 1
2e
n
√
ε for 0 ≤ ε < 0.1.

We have C(T0, s) = 1, C(T1, s) = s, and

C(Tn+1, s) ≤ 2s · C(Tn, s) + C(Tn−1, s).

By induction, we have C(Tn, s) ≤ (2s+ 1)n. We are going to construct Q based on Chebyshev polynomials.
Let t be an integer parameter to be set later. Consider the following (univariate) polynomials:

• let P (x) = Tn((x− k)/(k − t)) for n = d
√
k/t− 1 ln 2Me;

10Note that the (standard) Chebyshev polynomials satisfying the second and third properties must have degree Θ(
√
k lgM),

which is prohibitively large for our application.

37

• For each i = 1, 2, . . . , t− 1, let Qi(x) = (Tn((x− k)/(k − i))− Tn(−1))/2 for n = d2
√
k/i− 1e.

It is easy to verify that, as long as t ≤ 0.05k, we have

• |P (0)| ≥M , |P (x)| ≤ 1 for x ∈ [t, k];

• C(P, k) ≤ C(Tn, 2k/(k − t)) ≤ 6
√
k/t−1 ln 2M+1 by Property (c) above;

• |Qi(0)| ≥ 1, Qi(i) = 0 and |Qi(x)| ≤ 1 for x ∈ [i+ 1, k];

• C(Qi, k) ≤ (C(Tn, 2k/(k − i)) + 1)/2 ≤ 62
√
k/i−1+1.

Finally, we are going to set t = lgM(≤ 0.05k), and define the polynomial Q as follows:

Q(x1, . . . , xk) := (P ·Q1 ·Q2 · · · · ·Qt−1)(x1 + x2 + · · ·+ xk).

In the following, we prove Q has the claimed properties.

(i) The degree of Q is

O(
√
k/t lgM +

t−1∑
i=1

√
k/i) = O(

√
k/t lgM +

√
kt) = O(

√
k lgM).

(ii) |Q(0k)| = |P (0) ·Q1(0) · · ·Qt−1(0)| ≥M .

(iii) For x such that x1 + · · · + xk = |x| < t, we have Q(x) = 0, since Q|x|(x) = 0. Otherwise, |P (x)| ≤ 1
and |Qi(x)| ≤ 1. We also have |Q(x)| ≤ 1.

(iv) By Property (b) above, we have C(P ·Q1 · · ·Qt−1, k) ≤ exp(
√
k lgM). Thus, by Property (c), we have

C(Q, 1) ≤ C(P ·Q1 · · ·Qt−1, k) ≤ exp(
√
k lgM)

as claimed.

B Tightness of the Peak-to-Average Lemma

In this section we show that Lemma 1 is tight, in the sense that there is a function f : {−1, 1}k 7→ R
satisfying the premise of the lemma yet the average value of f conditioned on any subset of o(

√
k lg 1/ε)

coordinates is 0. In other words, conditioning on o(
√
k lg 1/ε) coordinates of f provides no advantage at all

in predicting the value of f , despite the fact that ‖f‖∞ ≥ ε.
The key for constructing our tight counter example is the following claim, which relies on the well known

fact that the ε-approximate degree of the ANDk function is Θ(
√
k lg 1/ε). The following elegant corollary

was pointed out to us by Alexander Sherstov (private communication):

Claim 1. For every ε > 2−O(k), there is a univariate polynomial Q : [k] → R of degree at most k −
Ω(
√
k lg 1/ε) satisfying

|Q(0)| > ε ·
k∑
i=0

∣∣∣∣(ki
)
·Q(i)

∣∣∣∣ = ε.

38

Let us first see why this claim implies the existence of our desired function f . To this end, assume w.l.o.g
that k is even and let Q be the univariate polynomial obtained from Claim 1, and define the multivariate
polynomial fQ : {−1, 1}k → R as

fQ(x1, . . . , xk) := Q(|x|) ·
k∏
i=1

xi,

where |x| := k/2 +
∑k
i=1 xi/2 is the number of 1 coordinates in x ∈ {−1, 1}k. By Claim 1, the total degree

of Q (now as a multivariate polynomial) is still at most r := k−Ω(
√
k lg 1/ε). Writing Q(|x|) as the sum of

its monomials and recalling that x2
i = 1 over {−1, 1}, observe that multiplying each monomial by

∏k
i=1 xi

simply “inverts” each monomial
∏
i∈S xi to the monomial

∏
i/∈S xi. Since each monomial of Q was of degree

at most r = k−Ω(
√
k lg 1/ε), this implies that all monomials of fQ are of degree at least k−r = Ω(

√
k lg 1/ε).

In particular, it follows that for any subset of coordinates Y ⊂ [k], |Y | = o
(√

k · lg 1/ε
)

, the average value

of fQ conditioned on coordinates in Y is

∑
y∈{−1,1}Y

∣∣∣∣∣∣
∑
x|Y =y

fQ(x)

∣∣∣∣∣∣ = 0,

since each monomial of fQ is of degree Ω(
√
k lg 1/ε), hence conditioning on any o

(√
k · lg 1/ε

)
of its coor-

dinates has 0 correlation with the value of the monomial.
To see why fQ satisfies the two premises of Lemma 1, first observe that the conclusion of Claim 1 implies

that ‖fQ‖1 =
∑k
i=0

(
k
i

)
· |Q(i)| = 1, as required by the first condition of the lemma. To see why the second

premise of the lemma holds, we have

|fQ(−1, . . . ,−1)| := |Q(0)| ·

∣∣∣∣∣
k∏
i=1

xi

∣∣∣∣∣ = |Q(0)| > ε ,

where the last inequality follows from Claim 1. In particular, maxx |fQ(x)| ≥ |fQ(−1, . . . ,−1)| ≥ ε, as the
premise of the Peak-to-Average Lemma requires. Hence, to complete the proof of our lower bound, it remains
to prove Claim 1.

Proof of Claim 1. Thought the proof we represent polynomials P : [k] 7→ R by their corresponding “truth
tables” over the domain [k] (i.e., a vector in Rk+1). For example, the function ANDk : [k] 7→ {0, 1} is
represented by the vector (1, 0, . . . , 0). Denote by Bε(ANDk) the `∞ ball of radius ε centered at (1, 0, . . . , 0),
i.e., the convex set of (truth-tables of) functions that point-wise ε-approximate the ANDk function on [k],
and denote by Pd the set of all (truth-tables of) real polynomials of degree ≤ d over the domain [k]. It is
not hard to verify that under our representation, the set Pd is also convex (since degree-d polynomials are
closed under convex combinations). It is well known (e.g., Theorem 3 in [BCdWZ99]) that the lowest degree
of a univariate real polynomial that point-wise approximates the ANDk function to within additive error ε is
Θ(
√
k lg 1/ε) (for every ε > 2−O(k)), hence if we set d = 1

C ·
√
k lg 1/ε for a large enough constant C, the two

(convex) sets Bε(ANDk) and Pd are disjoint. In this case, Farkas’ Lemma implies that there is some separating
hyperplane ψ ∈ Rk+1 of unit norm (‖ψ‖1 = 1) and some b ≥ 0, for which: (i) 〈P,ψ〉 ≤ b for all P ∈ Pd;
and (ii) 〈g, ψ〉 > b ≥ 0 for all g ∈ Bε(ANDk). Note that the first condition actually implies that ψ must be
orthogonal to all of Pd, i.e., 〈P,ψ〉 = 0, since degree-d polynomials are closed under scaling and negations (so
if 〈P,ψ〉 = b 6= 0 for some degree-d polynomial P , then 〈c·P,ψ〉 = c·b for any c > 0, and c·P ∈ Pd). Moreover,
the second condition in particular holds for the vector g∗ ∈ Bε(ANDk) defined by g∗(i) := −sgn(ψ(i)) · ε for

every i 6= 0 and g∗(0) := 1 − ε, in which case 〈g∗, ψ〉 = (1 − ε)ψ(0) − ε ·
∑k
i=0 ψ(i) = |ψ(0)| − ε · ‖ψ‖1. In

conclusion, from the above two conditions we can derive that:

(1) 〈P,ψ〉 = 0 for all P ∈ Pd;

39

(2) |ψ(0)| > ε · ‖ψ‖1 ;

(3) ‖ψ‖1 = 1 .

It is a well known fact11 that every ψ that satisfies (1) must be of the form:

ψ(i) =

(
k

i

)
(−1)i ·Q(i), (11)

for all i ∈ [k], where Q is some degree ≤ (k − d)-polynomial (again, recall we are representing polynomials
by their corresponding truth tables). Substituting this fact in (2), we conclude that there is a polynomial of
degree at most k − d = k − Ω(

√
k lg 1/ε), satisfying∣∣∣∣(k0
)

(−1)0 ·Q(0)

∣∣∣∣ > ε ·
k∑
i=0

∣∣∣∣(ki
)

(−1)i ·Q(i)

∣∣∣∣ .
⇔|Q(0)| > ε ·

k∑
i=0

∣∣∣∣(ki
)
·Q(i)

∣∣∣∣ = ε,

since
∑k
i=0

∣∣∣(ki) ·Q(i)
∣∣∣ = ‖ψ‖1 = 1, as claimed.

11This is a straightforward corollary of the combinatorial identity
∑
i

(k
i

)
(−1)i(a0 + a1i+ a2i2 . . .+ aki

k) = (−1)kk!ak (for
arbitrary (a0, . . . , ak), see e.g., Equation (5.42) in [GKP94]). Indeed, for any P ∈ Pd and ψ of the form (11),

∑
i P (i) · ψ(i) =(k

i

)
(−1)i(Q · P)(i), so whenever deg(Q) < k − d, we have deg(P ·Q) < k hence the kth coefficient is 0 and the above identity

implies 〈P, ψ〉 = 0 for any P ∈ Pd. The other direction follows from the observation that the orthogonal subspace to Pd has
dimension k − d, and indeed the space spanned by the polynomials in (11) (ranging over all Q’s of degree at most k − d) has
the latter dimension.

40

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

