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Abstract

We show that if a Boolean function f : {0, 1}n → {0, 1} can be computed by a
monotone real circuit of size s using k-ary monotone gates then f can be computed by
a monotone real circuit of size O(snk−2) which uses unary or binary monotone gates
only. This partially solves an open problem presented in [2]. In fact, in size O(snk−1),
the circuit uses only unary monotone gates and binary addition. We also show that if
the monotone Karchmer-Wigerson game of f can be solved by a real communication
protocol of size s then f can be computed by a monotone real circuit of the same size.

1 Introduction

In this note, we present some structural properties of the computational model of mono-
tone real circuits. Motivated by proof complexity applications, monotone real circuits were
introduced in [8] where an exponential lower bound was obtained for this model; a similar
lower bound was independently obtained in [3]. The first issue we address here is the arity of
gates used in computation. Monotone real circuits, in their usual definition, use binary (and
unary) gates over the reals. But if we allow, say, ternary gates, can we significantly speed-up
the computation? For Boolean circuits, or circuits involving functions over a finite domain,
the answer is obvious: every ternary gate can be expressed as a composition of a constant
number of binary gates, so using ternary gates can give an advantage of at most a constant
factor. In the case of computations over the reals, or any infinite ordered set, an analogous
statement is far from obvious. In [2], the possibility of gate-by-gate by simulation was stated
as an open problem. We don’t know how to solve this problem, but we nevertheless show
that ternary gates, or gates of not too large an arity, indeed cannot substantially speed-up
real computations. We also show that the only gates needed are monotone unary gates and
binary additions. This is interesting in comparison with Kolmogorov’s superposition theo-
rem [1, 6] which states that every k-ary continuous function can be expressed using unary
continuous functions and addition.
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Second, we give a correspondence between monotone real circuits and real communication
protocols. This resembles a similar correspondence between Boolean circuits and PLS-based
protocols of Razborov [10], and, more closely, the construction of Kraj́ıček [7] (see also [9,
11]). The motivation is the following. In [5], Karchmer and Wigderson characterized Boolean
circuit depth in terms of deterministic complexity of certain communication games. This
game-theoretic viewpoint has been very useful both in proving lower bounds and constructing
upper bounds on circuit depth. The constructions in [10, 7] are intended to give a similar
interpretation of Boolean circuit size in terms of games. This is useful especially when
proving feasible interpolation theorems in various proof systems. We now give a similar
characterization of monotone real circuits in terms of real games. As in [7] or [9], such a
characterization can be directly used to give a simple proof of feasible interpolation in the
Cutting Planes proof system, or applied to the related notion of ”unsatisfiability certificates”
introduced in [4].

2 Simulation of monotone real circuits of higher fan-in

by circuits with fan-in 2

For x, y ∈ Rn, we write x ≤ y if xi ≤ yi for every coordinate i ∈ [n] = {1, . . . , n}. A function
f : S ⊆ Rn → R will be called monotone, if for every x, y ∈ S, x ≤ y implies f(x) ≤ f(y).
We remark that, assuming sup{|f(x)| : x ∈ S} < ∞, f is monotone iff it is a restriction of
some total monotone function g : Rn → R. Since we will usually deal with a finite S, the
distinction between partial/total functions is hence quite unimportant.1

A k-ary monotone real circuit is a finite directed acyclic graph with every node of in-
degree at most k. It has one output node of out-degree zero. Nodes of in-degree zero are
called input nodes and are labelled with variables. Every other node v of in-degree p is
labelled with a (total) monotone function gv : Rp → R. The size of the circuit is the number
of its gates. The circuit computes a function f : Rn → R in the obvious way: an input
labelled with xi computes xi, otherwise a node labelled with gv computes gv(f1, . . . , fp)
where f1, . . . , fp are the functions computed by its predecessors. We say that the circuit
computes a partial function, if the output node computes some extension of it.

Our main result is:

Theorem 1. Assume that f : {0, 1}n → {0, 1} can be computed by a k-ary monotone real
circuit of size s. Then f can be computed by a binary monotone real circuit of size O(snk−2).
Moreover, increasing the size to O(snk−1), we can assume that the circuit uses only unary
gates and binary additions.

Here, binary addition is a fan-in 2 gate that adds the two real numbers. In the rest of
this section, we prove Theorem 1.

Lemma 2. Let S0, . . . , Sm be finite subsets of Rk, k ≥ 1, such that Si ⊆ (i, i + 1)k for
every i and let S :=

⋃m
i=0 Si. Assume that f : S → R is a monotone function such that

1Also, the assumption sup{|f(x)| : x ∈ S} <∞ could be removed, had we decided to work over R∪{±∞}.
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f(Si) ⊆ {2i, 2i + 1} for every i. Then there exist monotone functions g, h such that for all
〈x1, . . . , xk〉 ∈ S,

f(x1, . . . , xk) = g(x1 + h(x2, . . . , xk)).

Note that even the case m = 0 and k = 2 is interesting: a monotone f : S ′×S ′ → {0, 1},
S ′ ⊆ R finite, can be computed using one binary addition and unary monotone gates.

Proof. We identify R × Rk−1 with Rk. Let Xi := {x ∈ R : ∃y ∈ Rk−1, 〈x, y〉 ∈ Si} and
Yi := {y ∈ Rk−1 : ∃x ∈ R, 〈x, y〉 ∈ Si} be the projections of Si to first coordinate, and the
last k − 1 coordinates, respectively. Let Y :=

⋃m
i=0 Yi. For y ∈ Y , let

α(y) := min ({x ∈ Xi : f(x, y) = 2i+ 1} ∪ {i+ 1}) , if y ∈ Yi.

This guarantees that, for every 〈x, y〉 ∈ Si, f(x, y) = 2i+1 iff x ≥ α(y). Since |x−α(y)| < 1,
we can write

f(x, y) = b(2i+ 1 + x− α(y))c , for every 〈x, y〉 ∈ S .
Since f was a monotone function, −α is a monotone function on each of the sets Yi. Define

h(y) := 2i+ 1− α(y) , if y ∈ Yi .

The function is monotone on every set Yi. Moreover, since h(Si) ⊆ [i, i + 1], h is monotone
on the whole of Y . This gives the expression f(x, y) = bx+ h(y)c as required.

Lemma 3. Let f : S → T be a monotone function where S ⊆ Rk and T ⊆ R are finite sets.
Let t := dlog2 |T |e. Then f can be computed by a monotone real circuit of size O(k(t − 1))
such that the circuit uses only unary gates, binary addition gates, and t gates of arity k− 1.

Proof. W.l.o.g., we can assume that S ⊆ (0, 1)k and T = {0, 1, . . . , 2t − 1}. The circuit
is constructed by induction with respect to t. For t = 0, the function is constant. If
t = 1, this is simply Lemma 2 (with m = 0). Assume that t > 1 and Let f ′ := b1

2
fc.

Hence, f ′ : S → {0, . . . , 2t−1 − 1} and assume we have constructed a circuit for f ′. For
z = 〈x1, . . . , xk〉, define i + z := 〈i + x1, . . . , i + xk〉, and let Si := {i + z : z ∈ S}. Define

h :
⋃2t−1−1

i=0 Si → {0, . . . , 2t+1 − 1} by putting, for z ∈ Si of the form z = i+ z′,

h(z) := 2i if f(z′) ≤ 2i
2i+ 1 if f(z′) ≥ 2i+ 1 .

The function is monotone on each of the sets Si, and since h(Si) ⊆ [2i, 2i+1], it is monotone

on the whole
⋃2t−1−1

i=0 Si The definition guarantees that, for all z′ ∈ S,

f(z′) = h(f ′(z′) + z′). (1)

By Lemma 2, h can be computed by a circuit with 3 non-input gates, such that the circuit
uses one binary addition, one unary gate, and one gate of arity k − 1. Hence, by (1), f can
be computed from f ′ using one additional (k− 1)-ary gate and k+ 2 binary addition/unary
gates. This gives the required circuit for f .
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Theorem 4. Let f : S → R be a monotone function where S ⊆ Rk is a finite set. Then
f can be computed by a binary monotone real circuit of size O(log2(|S|)k−2). Moreover,
increasing the size to O(log2(|S|)k−1), we can assume that the circuit uses only unary gates
and binary additions.

Proof. We prove the “moreover” part, the rest is similar. Let λ(k,m) denote the minimum
s, such that for every S ⊆ Rk with |S| ≤ 2m and every monotone function f : S → R, f can
be computed by a circuit of size ≤ s with only unary gates and binary additions. If m ≤ 1,
it is easy to show that λ(k,m) = 2. (For then S consists of at most two points x, y. If f is
non-constant, we can assume f(x) < f(y), hence for some coordinate xi < yi, and we can
write f as a function of this coordinate only.) Hence we assume m ≥ 2.

If k = 1, λ(k,m) = 2. If k > 1, the previous lemma gives

λ(k,m) ≤ ckm+mλ(k − 1,m) , (2)

for a suitable constant c ≥ 2. This is seen as follows: given f : S → R, its range has size
at most |S|. The lemma then shows that f can be computed using cmk additions, unary
gates, and m gates of arity k − 1. The latter gates can be restricted to domain of size at
most |S|, as only that many values can appear in the computation of f . (2) has a solution
λ(k,m) ≤ c1m

k−1 − c2(k + 1) with c2 > 0 a sufficiently large constant. Setting c1 > 0 to
satisfy the initial condition λ(1,m) = 2 gives λ(k,m) ≤ c1m

k−1.

Proof of Theorem 1. Given a monotone real circuit computing f : {0, 1}n → {0, 1}, we can
assume that every gate in the circuit has domain of size at most |{0, 1}n| = 2n, and apply
the previous theorem.

3 Simulation of monotone real protocols by circuits

The following is a modification of a concept defined by Kraj́ıček in [7], Definition 2.1.

Definition. A real protocol of degree k is a directed acyclic graph G = (V,E) and a set of
functions r0v, r

1
v : {0, 1}n → R for every v ∈ V , such that

(i). G has one source v0 (a node of in-degree zero) and the out-degree of every vertex is at
most k,

(ii). for every sink ` (a node of out-degree zero) there exists a variable xi with r0` = r1` = xi.

Let f be a partial monotone Boolean function in n variables. We say that the protocol solves
the monotone KW game for f (or simply solves f), if for every x ∈ f−1(0) and y ∈ f−1(1),

(a) r0v0(x) < r1v0(y),

(b) for every v ∈ V with p ≥ 1 children u1, . . . , up , if r0v(x) < r1v(y) then there exists ui with
r0ui

(x) < r1ui
(y).
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The size of a protocol is the number of vertices.2

Let us motivate the definition. Recall the monotone Karchmer-Wigderson game for f :
Player I has input x such that f(x) = 0 and Player II an input y with f(y) = 1. They are
supposed to agree on some bit s.t. xi < yi. We say that a vertex v is feasible for x, y, if
r0v(x) < r1v(y) holds. Condition (a) says that v0 is feasible for every x ∈ f−1(0), y ∈ f−1(1).
Condition (b) says that if v is feasible for x, y then at least one of its children is feasible for
x, y. Given x ∈ f−1(0) and y ∈ f−1(1), we can traverse the graph from the source to a sink
` using only vertices feasible for x, y. Since ` is feasible, we have xi = r0` (x) < r1` (y) = yi,
hence xi < yi. In this sense, the protocol solves the KW game for f .

Given a k-ary monotone real circuit computing f , we can convert it to a protocol of
degree k solving f : the underlying graph will be the same (with reversed direction of edges)
and both functions r0v, r

1
v can be set equal to fv, the function computable by the subcircuit

rooted at v. To show that a protocol can be converted to a circuit is less obvious and is the
essence of the next theorem.

Theorem 5. Given a real protocol P solving f , there exists a monotone real circuit C
computing f such that the underlying graph of C is the same as the graph of P (with reversed
direction of edges).

Proof. Assume that f and a protocol P are as above. Suppose w.l.o.g. that r0v(z), r1v(z) ≥ 0
for all v ∈ V and z ∈ {0, 1}n. For every v ∈ V , define a function fv : {0, 1}n → R inductively
as follows. Given z ∈ {0, 1}n,

(i). if ` is a sink, f`(z) := r0` (z) = r1` (z),

(ii). for v ∈ V with children u1, . . . , up ,

fv(z) := max{r1v(w) : w ∈ f−1(1) , ∀i∈[p]fui
(z) ≥ r1ui

(w)} , (3)

where we put fv(z) := 0 if the maximum is over the empty set.

We now claim that for every x ∈ f−1(0), y ∈ f−1(1) and v ∈ V

fv(x) ≤ r0v(x) , (4)

r1v(y) ≤ fv(y) . (5)

This is proved by induction on depth. If v is a sink, both statements are clear. Suppose that
v is as in (ii) and (4),(5) hold for the children of v. If y ∈ f−1(1), we can set w := y in (3)
to obtain fv(y) ≥ r1v(y), proving (5). In order to prove (4), suppose that x ∈ f−1(0) and,
for the sake of contradiction, fv(x) > r0v(x). Hence, (3) shows there exists w ∈ f−1(1) such
that r1v(w) > r0v(x) and for every ui, fui

(x) ≥ r1ui
(w). On the the other hand, condition (b)

demands that there exists some ui with r0ui
(x) < r1ui

(w). This gives fui
(x) > r0ui

(x), contrary
to the inductive assumption.

2Note that the functions r0v (r1v) need only be defined on f−1(0) (respectively on f−1(1)).
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To conclude the theorem, note that by (3), fv(z) can be computed from fu1(z), . . . , fup(z)
by a single p-ary monotone gate. Hence, fv0 can be computed by a k-ary monotone real circuit
whose underlying graph is the same as that of P . Finally, (4), (5) and (a) give fv0(x) < fv0(y)
for every x ∈ f−1(0) and y ∈ f−1(1). Hence, we can compute f as

f(z) =

{
0 if fv0(z) < t
1 if fv0(z) ≥ t ,

where t := miny∈f−1(1) fv0(y) (this does not require an additional gate).

Combined with Theorem 1, this implies.

Corollary 6. Let f be an n-bit monotone Boolean function and let P be a real protocol for
f of degree k solving f . Then f can be solved by

(i). a protocol with the same graph as P such that for every v ∈ V , r0v = r1v is a monotone
function,

(ii). a protocol of degree 2 and size O(snk−2).

In [7], Definition 1.1, Kraj́ıček also introduced the following game. Two players commu-
nicate in rounds. In a given round of communication, Player I generates a real number a0
and Player II a number a1. They privately send the numbers to a referee, who in turn tells
them whether a1 < a2 or not. Based on this information, the players proceed to the next
round. Formally, the game is given by a binary tree T with two functions s0v, s

1
v : {0, 1}n → R

for every non-leaf vertex v. From a vertex v ∈ T , the protocol continues to the left-hand
child if s0v(x) > s1v(y), and to the right-hand child otherwise.

Given a tree-like real protocol of degree 2 (according to our definition), we can easily
transform it into a protocol of the type defined by Kraj́ıček: for a non-leaf vertex v with
the right-hand child u, put s0v := r0u and s1v := r1u. However, we conjecture that the converse
simulation without an essential increase of the depth is impossible.

4 Some observations

In [2], the following open problem was posed: over R, can every monotone k-ary function be
expressed as a composition of binary and unary monotone functions? Theorem 4 is a small
step towards answering the question. Here are some relevant observations:

Proposition 7. (i). There exists a monotone function f : S × S → R with S ⊆ R of size
3 such that f cannot be written as f = g(h1(x) + h2(y)) with g monotone (and h1, h2
arbitrary).

(ii). There exists a monotone function f : R2 → {0, 1} such that f cannot be written as a
composition of unary monotone functions and addition over R.
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(iii). There exists a real closed field R ⊇ R such that for every monotone f : R2 → {0, 1},
there exist monotone functions g : R → {0, 1} , h1, h2 : R → R such that f =
g(h1(x) + h2(y)).

In (iii), we extend the definition of monotone function to any ordered set, in an obvious
way.

Proof. Part (ii). Recall that a function g : R → R is Borel measurable, if for every open
set its preimage under g is a Borel set. We only need to know that every monotone/anti-
monotone g is Borel measurable (because it is continuous everywhere, up to countably many
points), and that Borel functions are closed under composition and addition. Pick A ⊆ R
which is not a Borel set and let χA be its characteristic function. For x, y ∈ R, define

f(x, y) :=


0 if x+ y < 1
χA(x) if x+ y = 1
1 if x+ y > 1 .

The function is monotone and χA(x) = f(x, 1−x). Hence, f(x, 1−x) is not a Borel function
and so f cannot be expressed as a composition of unary monotone functions and addition.

To prove (i) and (iii), we first make quite a general observation. Suppose that 〈R, 0,+〉
is a linearly ordered Abelian group and that f : S × S → R is a monotone function with
S ⊆ R possibly infinite. With f we associate the following set of linear inequalities L(f).
For every a in S introduce new constant symbols αa and βa, and let

L(f) := {αa1 + βb1 < αa2 + βb2 : a1, b1, a2, b2 ∈ S , f(a1, b1) < f(a2, b2)} .

Furthermore, let

L+(f) := L(f) ∪ {αa1 ≤ αa2 , βa1 ≤ βa2 : a1 ≤ a2 ∈ S} .

It can be easily shown that:

Claim. f can be written as f = g(h1(x) + h2(y)) with g : R → R monotone iff L(f) has a
solution over R. Similarly, for h1, h2 monotone and the system L+(f).

In order to prove (i), let S := {1, 2, 3} and let the value of f(i, j) be given by the i, j-entry
of the matrix  0 0 2

1 1 2
1 3 3

 .

Then f is monotone, whereas L(f) has no solution over R (or any ordered extension of R).
For, we can assume α1, β1 = 0, and the system then contains inequalities

β2 < α2 , α3 < β3 , α2 + β3 < α3 + β2

with no solution.
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For (iii), fix f : R2 → {0, 1} monotone. By Lemma 2 with m = 0, every finite subset of
L+(f) has a solution over R. By compactness of first-order logic, L+(f) has a solution over
some extension R of R. Here, we can impose any reasonable first-order properties on R, as
well as to achieve the statement for all monotone f simultaneously.

Part (i) shows that in Lemma 2, some bound on range of f is necessary even for m = 0.
Part (ii) shows that addition and unary monotone functions are not enough to capture
general monotone functions over R. Part (iii) is problematic in a different way: it indicates
that the question “how can we express monotone functions in terms of simpler ones” may
depend on which extension of R we have in mind.
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