
Optimal Unateness Testers for Real-Valued Functions:

Adaptivity Helps∗

Roksana Baleshzar † Deeparnab Chakrabarty ‡ Ramesh Krishnan S. Pallavoor †

Sofya Raskhodnikova † C. Seshadhri §

Abstract

We study the problem of testing unateness of functions f : {0, 1}d → R.We give a O(d
ε ·log d

ε)-

query nonadaptive tester and a O(d
ε)-query adaptive tester and show that both testers are

optimal for a fixed distance parameter ε. Previously known unateness testers worked only for
Boolean functions, and their query complexity had worse dependence on the dimension both
for the adaptive and the nonadaptive case. Moreover, no lower bounds for testing unateness
were known1. We also generalize our results to obtain optimal unateness testers for functions
f : [n]d → R.

Our results establish that adaptivity helps with testing unateness of real-valued functions on
domains of the form {0, 1}d and, more generally, [n]d. This stands in contrast to the situation
for monotonicity testing where there is no adaptivity gap for functions f : [n]d → R.

1 Introduction

We study the problem of testing whether a given real-valued function f on domain [n]d, where
n, d ∈ N, is unate. A function f : [n]d → R is unate if for every coordinate i ∈ [d], the func-
tion is either nonincreasing in the ith coordinate or nondecreasing in the ith coordinate. Unate
functions naturally generalize monotone functions, which are nondecreasing in all coordinates, and
b-monotone functions, which have a particular direction in each coordinate (either nondecreasing
or nondecreasing), specified by a bit-vector b ∈ {0, 1}d. More precisely, a function is b-monotone
if it is nondecreasing in coordinates i with bi = 0 and nonincreasing in the other coordinates.
Observe that a function f is unate iff there exists some b ∈ {0, 1}d for which f is b-monotone.

A tester [36, 27] for a property P of a function f is an algorithm that gets a distance parameter
ε ∈ (0, 1) and query access to f . It has to accept with probability at least 2/3 if f has property P
and reject with probability at least 2/3 if f is ε-far (in Hamming distance) from P. We say that f
is ε-far from P if at least an ε fraction of values of f must be modified to make f satisfy P. A tester
has one-sided error if it always accepts a function satisfying P, and has two-sided error otherwise.

∗Preliminary (much weaker) versions of this paper were posted as [16] and [2].
†Computer Science and Engineering, Pennsylvania State University. Email: rxb5410@cse.psu.edu, ramesh@psu.edu,

sofya@cse.psu.edu. The work of these authors was partially supported by NSF award CCF-1422975.
‡Microsoft Research, Bangalore. Email: deeparnab@gmail.com.
§Computer Science, University of California, Santa Cruz. Email: sesh@ucsc.edu.
1Concurrent work by Chen et al. [19] proves an Ω(d/ log2 d) lower bound on the nonadaptive query complexity of

testing unateness of Boolean functions. Our stronger lower bounds are for real valued functions.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 49 (2017)

A nonadaptive tester makes all its queries at once, while an adaptive tester can make queries after
seeing answers to the previous ones.

Testing of various properties of functions, including monotonicity (see, e.g., [26, 21, 22, 33, 24,
23, 28, 1, 29, 3, 8, 7, 10, 13, 9, 6, 14, 15, 12, 18, 17, 31, 4, 5, 20, 34] and recent surveys [35, 11]),
the Lipschitz property [30, 13, 9], bounded-derivative properties [12], and unateness [26, 32], has
been studied extensively over the past two decades. Even though unateness testing was initially
discussed in the seminal paper by Goldreich et al. [26] that gave first testers for properties of
functions, relatively little is known about testing this property. All previous work on unateness
testing focused on the special case of Boolean functions on domain {0, 1}d. The domain {0, 1}d is
called the hypercube and the more general domain [n]d is called the hypergrid. Goldreich et al. [26]

provided a O(d
3/2

ε)-query nonadaptive tester for unateness of Boolean functions on the hypercube.

Recently, Khot and Shinkar [32] improved the query complexity to O(d log d
ε), albeit with an adaptive

tester.
In this paper, we improve upon both these works, and our results hold for a more general class

of functions. Specifically, we show that unateness of real-valued functions on hypercubes can be
tested nonadaptively with O(dε log d

ε) queries and adaptively with O(dε) queries. More generally, we

describe a O(dε · (log d
ε + log n))-query nonadaptive tester and a O(d logn

ε)-query adaptive tester of
unateness of real-valued functions over hypergrids.

In contrast to the state of knowledge for unateness testing, the complexity of testing mono-
tonicity of real-valued functions over the hypercube and the hypergrid has been resolved. For
constant distance parameter ε, it is known to be Θ(d log n). Moreover, this bound holds for all
bounded-derivative properties [12], a large class that includes b-monotonicity and some properties
quite different from monotonicity, such as the Lipschitz property. Amazingly, the upper bound for
all these properties is achieved by the same simple and, in particular, nonadaptive, tester. Even
though proving lower bounds for adaptive testers has been challenging in general, a line of work,
starting from Fischer [23] and including [8, 14, 12], has established that adaptivity does not help
for this large class of properties. Since unateness is so closely related, it is natural to ask whether
the same is true for testing unateness.

We answer this in the negative: we prove that any nonadaptive tester of real valued functions
over the hypercube (for some constant distance parameter) must make Ω(d log d) queries. More
generally, it needs Ω(d(log d+ log n)) queries for the hypergrid domain. These lower bounds com-
plement our algorithms, completing the picture for unateness testing of real-valued functions. From
a property testing standpoint, our results establish that unateness is different from monotonicity
and, more generally, any derivative-bounded property.

1.1 Formal Statements and Technical Overview

Our testers are summarized in the following theorem, stated for functions over the hypergrid do-
mains. (Recall that the hypercube is a special case of the hypergrid with n = 2.)

Theorem 1.1. Consider functions f : [n]d → R and a distance parameter ε ∈ (0, 1/2).
1. There is a nonadaptive unateness tester that makes O(dε (log d

ε + log n)) queries2.

2. There is an adaptive unateness tester that makes O(d logn
ε) queries.

2For many properties, when the domain is extended from the hypercube to the hypergrid, testers incur an extra multiplicative
factor of logn in the query complexity. This is the case for our adaptive tester. However, note that the complexity of nonadaptive
unateness testing (for constant ε) is Θ(d(log d+ logn)) rather than Θ(d log d logn).

2

Both testers have one-sided error.

Our main technical contribution is the proof that the extra Ω(log d) is needed for nonadaptive
testers. This result demonstrates a gap between adaptive and nonadaptive unateness testing.

Theorem 1.2. Any nonadaptive unateness tester (even with two-sided error) for real-valued func-
tions f : {0, 1}d → R with distance parameter ε = 1/8 must make Ω(d log d) queries.

The lower bound for adaptive testers is an easy adaptation of the monotonicity lower bound in [14].
We state this theorem for completeness and prove it in Appendix A.1.

Theorem 1.3. Any unateness tester for functions f : [n]d → R with distance parameter ε ∈ (0, 1/4)

must make Ω
(
d logn
ε − log 1/ε

ε

)
queries.

Theorems 1.2 and 1.3 directly imply that our nonadaptive tester is optimal for constant ε, even
for the hypergrid domain. The details appear in Appendix A.2.

1.1.1 Overview of Techniques

We first consider the hypercube domain. For each i ∈ [d], an i-edge of the hypercube is a pair (x, y)
of points in {0, 1}d, where xi = 0, yi = 1, and xj = yj for all j ∈ ([d]\{i}). Given an input function
f : {0, 1}d → R, we say an i-edge (x, y) is increasing if f(x) < f(y), decreasing if f(x) > f(y), and
constant if f(x) = f(y).

Our nonadaptive unateness tester on the hypercube uses the work investment strategy from [6]
(also refer to Section 8.2.4 of Goldreich’s book [25]) to “guess” a good dimension where to look for
violations of unateness (specifically, both increasing and decreasing edges). For all i ∈ [d], let αi be
the fraction of the i-edges that are decreasing, βi be the fraction of the i-edges that are increasing,
and µi = min(αi, βi). The dimension reduction theorem from [12] implies that if the input function
is ε-far from unate, then the average of µi over all dimensions is at least ε

4d . If the tester knew
which dimension had µi = Ω(ε/d), it could detect a violation with high probability by querying
the endpoints of O(1/µi) = O(d/ε) uniformly random edges. However, the tester does not know
which µi is large and, intuitively, nonadaptively checks the following log d different scenarios, one
for each k ∈ [log d]: exactly 2k different µi’s are ε/2k, and all others are 0. This leads to the query
complexity of O(d log d

ε).
With adaptivity, this search through log d different scenarios is not required. A pair of queries

in each dimensions detects influential coordinates (i.e., dimensions with many non-constant edges),
and the algorithm focuses on finding violations among those coordinates. This leads to the query
complexity of O(d/ε), removing the log d factor.

It is relatively easy to extend (both adaptive and nonadaptive) testers from hypercubes to
hypergrids by incurring an extra factor of log n in the query complexity. The role of i-edges is
now played by i-lines. An i-line is a set of n domain points that differ only on coordinate i. The
domain [n] is called a line. Monotonicity on the line (a.k.a. sortedness) can be tested with O(logn

ε)
queries, using, for example, the classical tree tester from [22]. Instead of sampling a random i-edge,
we sample a random i-line ` and run the tree tester on the restriction f|` of function f to the line
`. This is optimal for adaptive testers, but, interestingly, not for nonadaptive testers. We show
that for each function f on the line that is ε-far from unateness, one of the two scenarios happen:
(1) the tree tester is likely to find a violation of unateness; (2) function f is increasing (and also

3

decreasing) on a constant fraction of pairs in [n]. This new angle on the classical tester allows us to
replace the factor (log d)(log n) with log d+ log n in the query complexity. Thus, the nonadaptive
complexity becomes O(d(log d+ log n)), which we show is optimal.

The nonadaptive lower bound. Our most significant finding is the log d gap in the query
complexity between adaptive and nonadaptive testing of unateness. By previous work [23, 14],
it suffices to prove lower bounds for comparison-based testers, i.e., testers that can only perform
comparisons of the function values at queried points, but cannot use the values themselves. Our
main technical contribution is the Ω(d log d) lower bound for nonadaptive comparison-based testers
of unateness on hypercube domains.

Intuitively, we wish to construct K = Θ(log d) families of functions where, for each k ∈ [K],
functions in the kth family have 2k dimensions i with µi = Θ(1/2k), while µi = 0 for all other
dimensions. What makes the construction challenging is the existence of a single, universal non-
adaptive O(d)-tester for all b-monotonicity properties, proven in [12]. In other words, there is a
single distribution on O(d) queries that defines a nonadaptive property tester for b-monotonicity,
regardless of b. Since unateness is the union of all b-monotonicity properties, our construction must
be able to fool such algorithms. Furthermore, nonadaptivity must be critical, since we obtained a
O(d)-query adaptive tester for unateness.

Another obstacle is that once a tester finds a non-constant edge in each dimension, the prob-
lem reduces to testing b-monotonicity for a vector b determined by the directions (increasing or
decreasing) of the non-constant edges. That is, intuitively, most edges in our construction must
be constant. This is one of the main technical challenges. The previous lower bound constructions
for monotonicity testing [8, 14] crucially used the fact that all edges in the hard functions were
non-constant.

We briefly describe how we overcome the problems mentioned above. By Yao’s minimax princi-
ple, it suffices to construct Yes and No distributions that a deterministic nonadaptive tester cannot
distinguish. First, for some parameter m, we partition the hypercube into m subcubes based of
the first log2m most significant coordinates. Both distributions, Yes and No, sample a uniform
k from [K], where K = Θ(log d), and a set R ⊆ [d] of cardinality 2k. Furthermore, each subcube
j ∈ [m] selects an “action dimension” rj ∈ R uniformly at random. For both distributions, in any
particular subcube j, the function value is completely determined by the coordinates not in R, and
the random coordinate rj ∈ R. Note that all the i-edges for i ∈ (R \ {rj}) are constant. Within
the subcube, the function is a linear function with exponentially increasing coefficients. In the Yes
distribution, any two cubes j, j′ with the same action dimension orient the edges in that dimen-
sion the same way (both increasing or both decreasing), while in the No distribution each cube
decides on the orientation independently. The former correlation maintains unateness while the
latter independence creates distance to unateness. We prove that to distinguish the distributions,
any comparison-based nonadaptive tester must find two distinct subcubes with the same action
dimension rj and, furthermore, make a specific query (in both) that reveals the coefficient of rj .
We show that, with o(d log d) queries, the probability of this event is negligible.

2 Upper Bounds

In this section, we prove parts 1-2 of Theorem 1.1, starting from the hypercube domain.
Recall the definition of i-edges and i-lines from Section 1.1.1 and what it means for an edge to

be increasing, decreasing, and constant.

4

The starting point for our algorithms is the dimension reduction theorem from [12]. It bounds
the distance of f : [n]d → R to monotonicity in terms of average distances of restrictions of f to
one-dimensional functions.

Theorem 2.1 (Dimension Reduction, Theorem 1.8 in [12]). Fix a bit vector b ∈ {0, 1}d and a
function f : [n]d → R which is ε-far from b-monotonicity. For all i ∈ [d], let µi be the average
distance of f|` to bi-monotonicity over all i-lines `. Then,

d∑
i=1

µi ≥
ε

4
.

For the special case of the hypercube domains, i-lines become i-edges, and the average distance
µi to bi-monotonicity is the fraction of i-edges on which the function is not bi-monotone.

2.1 The Nonadaptive Tester over the Hypercube

We now describe Algorithm 1, the nonadaptive tester for unateness over the hypercubes.

Algorithm 1: The Nonadaptive Unateness Tester over Hypercubes

input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 for r = 1 to d3 log(4d/ε)e do

2 repeat sr = d16d ln 4
ε·2r e times

3 Sample a dimension i ∈ [d] uniformly at random.
4 Sample 3 · 2r i-edges uniformly and independently at random and reject if there

exists an increasing edge and a decreasing edge among the sampled edges.

5 accept

It is evident that Algorithm 1 is a nonadaptive, one-sided error tester. Furthermore, its query
complexity is O

(
d
ε log d

ε

)
. It suffices to prove the following.

Lemma 2.2. If f is ε-far from unate, Algorithm 1 rejects with probability at least 2/3.

Proof. Recall that αi is the fraction of i-edges that are decreasing, βi is the fraction of i-edges that
are increasing and µi = min(αi, βi).

Define the d-dimensional bit vector b as follows: for each i ∈ [d], let bi = 0 if αi < βi and
bi = 1 otherwise. Observe that the average distance of f to bi-monotonicity over a random i-edge
is precisely µi. Since f is ε-far from being unate, f is also ε-far from being b-monotone. By
Theorem 2.1,

∑
i∈[d] µi ≥

ε
4 . Hence, Ei∈[d][µi] ≥ ε

4d . We now apply the work investment strategy
due to Berman et al. [6] to get an upper bound on the probability that Algorithm 1 fails to reject.

Theorem 2.3 ([6]). For a random variable X ∈ [0, 1] with E[X] ≥ µ for µ < 1
2 , let pr = Pr[X ≥

2−r] and δ ∈ (0, 1) be the desired error probability. Let sr = 4 ln 1/δ
µ·2r . Then,

d3 log(1/µ)e∏
i=1

(1− pr)sr ≤ δ.

5

Consider running Algorithm 1 on a function f that is ε-far from unate. Let X = µi where i is
sampled uniformly at random from [d]. Then E[X] ≥ ε

4d . Applying the work investment strategy
(Theorem 2.3) on X with µ = ε

4d , we get that the probability that, in some iteration, Step 3 samples
a dimension i such that µi ≥ 2−r is at least 1− δ. We set δ = 1/4. Conditioned on sampling such
a dimension, the probability that Step 4 fails to obtain an increasing edge and a decreasing edge
among its 3 · 2r samples is at most 2 (1− 2−r)

3·2r ≤ 2e−3 < 1/9, as the fraction of both increasing
and decreasing edges in the dimension is at least 2−r. Hence, the probability that Algorithm 1
rejects f is at least 3

4 ·
8
9 = 2

3 , which completes the proof of Lemma 2.2.

2.2 The Adaptive Tester over the Hypercube

We now describe Algorithm 2, an adaptive tester for unateness over the hypercube domain with
good expected query complexity. The final tester is obtained by repeating this tester and accepting
if the number of queries exceeds a specified bound.

Algorithm 2: The Adaptive Unateness Tester over Hypercubes

input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-edge ei uniformly at random.
4 if ei is non-constant (i.e., increasing or decreasing) then
5 Sample i-edges uniformly at random till we obtain a non-constant edge e′i.
6 reject if one of the edges ei, e

′
i is increasing and the other is decreasing.

7 accept

Claim 2.4. The expected number of queries made by Algorithm 2 is 40d/ε.

Proof. Consider one iteration of the repeat-loop in Step 1. We prove that the expected number of
queries in this iteration is 4d. The total number of queries in Step 3 is 2d, as 2 points per dimension
are queried. Let Ei be the event that edge ei is non-constant and Ti be the random variable for
the number of i-edges sampled in Step 5. Then E[Ti] = 1

αi+βi
= 1

Pr[Ei]
. Therefore, the expected

number of all edges sampled in Step 5 is
∑d

i=1 Pr[Ei] ·E[Ti] =
∑d

i=1 Pr[Ei] · 1
Pr[Ei]

= d. Hence, the

expected number of queries in Step 5 is 2d. Since there are 10/ε iterations in Step 1, the expected
number of queries in Algorithm 2 is 40d/ε.

Claim 2.5. If f is ε-far from unate, Algorithm 2 accepts with probability at most 1/6.

Proof. First, we bound the probability that a violation of unateness is detected in some dimension
i ∈ [d] in one iteration of the repeat-loop. Consider the probability of finding a decreasing i-
edge in Step 3, and an increasing i-edge in Step 5. The former is exactly αi, and the latter is
βi

αi+βi
. Therefore, the probability we detect a violation from dimension i is 2αiβi

αi+βi
≥ min(αi, βi) =

µi. The probability that we fail to detect a violation in any of the d dimensions is at most∏d
i=1(1− µi) ≤ exp

(
−
∑d

i=1 µi
)
, which is at most e−ε/4 by Theorem 2.1 (Dimension Reduction).

By Taylor expansion of e−ε/4, the probability of finding a violation in one iteration is at least
1 − e−ε/4 ≥ ε

4 −
ε2

32 >
ε
5 . The probability that Algorithm 2 does not reject in any iteration is at

most (1− ε/5)10/ε < 1/6.

6

Proof of Theorem 1.1, Part 2 (for the special case of the hypercube domain). We run Algorithm 2,
aborting and accepting if we ever make more than 240d/ε queries. By Markov’s inequality, the
probability of aborting is at most 1/6. By Claim 2.5, if f is ε-far from unate, Algorithm 2 accepts
with probability at most 1/6. The theorem follows by a union bound.

2.3 Extension to Hypergrids

We start by establishing terminology for lines and pairs. Consider a function f : [n]d → R. Recall
the definition of i-lines from Section 1.1.1. A pair of points that differ only in coordinate i is called
an i-pair. An i-pair (x, y) with xi < yi is called increasing if f(x) < f(y), decreasing if f(x) > f(y),
and constant if f(x) = f(y).

Algorithm 3: Tree Tester

input : Query access to a function h : [n] 7→ R.

1 Pick x ∈ [n] uniformly at random.
2 Let Qx ⊆ [n] be the set of points visited in a binary search for x. Query h on all points in

Qx.
3 If there is an increasing pair in Qx, set dir← {↑}; otherwise, dir← ∅.
4 If there is a decreasing pair in Qx, update dir← dir ∪ {↓}.
5 Return dir.

The main tool for extending Algorithms 1 and 2 to work on hypergrids is the tree tester,
designed by Ergun et al. [22] to test monotonicity of functions h : [n] → R. We modify the tree
tester to return information about directions it observed instead of just accepting or rejecting. See
Algorithm 3. The following lemma summarizes the guarantee of the tree tester.

Lemma 2.6 ([22, 12]). If h : [n] 7→ R is ε-far from monotone (respectively, antimonotone), then
the output of Algorithm 3 on h contains ↓ (respectively, ↑) with probability at least ε.

Algorithm 4: The Adaptive Unateness Tester over Hypergrids

input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-line `i uniformly at random.
4 Let diri be the output of Algorithm 3 on f|`i .

5 if diri 6= ∅ then
6 Sample i-lines uniformly at random and run Algorithm 3 on f restricted to each

line until it returns a non-empty set. Call it dir′i.
7 If diri ∪ dir′i = {↑, ↓}, reject.

8 accept

Our hypergrid testers are stated in Algorithms 4 and 5. Next, we explain how Lemma 2.6 and
Theorem 2.1 are used in the analysis of the adaptive tester. For a dimension i ∈ [d], let αi and
βi denote the average distance of f|` to monotonicity and antimonotonicity, respectively, over all

7

Algorithm 5: The Nonadaptive Unateness Tester over Hypergrids

input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 220/ε times
2 for i = 1 to d do
3 Sample an i-line ` uniformly at random.
4 Reject if Algorithm 3, on input f|`, returns {↑, ↓}.
5 for r = 1 to d3 log(200d/ε)e do

6 repeat sr = d800d ln 4
ε·2r e times

7 Sample a dimension i ∈ [d] uniformly at random.
8 Sample 3 · 2r i-pairs uniformly and independently at random.
9 If we find an increasing and a decreasing pair among the sampled pairs, reject.

10 accept

i-lines `. Then µi := min(αi, βi) is the average fraction of points per i-line that needs to change to
make f unate. Define the b-vector with bi = 0 if αi < βi, and bi = 1 otherwise. By Theorem 2.1,
if f is ε-far from unate, and thus ε-far from b-monotone, then

∑d
i=1 µi ≥ ε/4. By Lemma 2.6, the

probability that the output of Algorithm 3 on f|` contains ↓ (respectively, ↑), where ` is a uniformly
random i-line, is at least αi (respectively, βi). The rest of the analysis of Algorithm 4 is similar to
that in the hypercube case.

Proof of Theorem 1.1, Part 2. The tester is Algorithm 4. As in the proof of Claim 2.4, the expected
running time of Algorithm 4 is at most (40d log n)/ε. The proof of Claim 2.5 carries over almost
word-to-word. Fix dimension i. The probability that ↓∈ diri in Step 4 is at least αi. The probability
that ↑∈ dir′i in Step 6 is at least βi

αi+βi
. The rest of the calculation is identical to that of the proof

of Claim 2.5.

To analyze the nonadaptive tester, we prove Lemma 2.7, which demonstrates the power of the
tree tester and may be of independent interest.

Lemma 2.7. Consider a function h : [n] → R which is ε-far from monotone (respectively, anti-
monotone). At least one of the following holds:

1. Pr[Algorithm 3, on input h, returns {↑, ↓}] ≥ ε/25.
2. Pru,v∈[n][(u, v) is a decreasing (respectively, increasing) pair] ≥ ε/25.

Proof. Let T be a balanced binary search tree consisting of elements in [n], such that the set of
points visited in a binary search for some x ∈ [n] corresponds to a path from the root to the node
containing x in T . Let Qx denote the set of points visited in a binary search for x ∈ [n]. For
x, y ∈ [n], denote the least common ancestor of x and y by lca(x, y).

Let W↑↓ be a set of points x such that Qx contains both an increasing and a decreasing pair
(with respect to h). If |W↑↓| ≥ εn

10 , then Case 1 of Lemma 2.7 holds. We may therefore assume that
|W↑↓| < εn

10 . Let E be the event that for any u, v ∈ [n] such that u < v, the pair (u, v) is decreasing.
We will prove that Pr[E] ≥ ε/25.

Let W↓ be that set of points x ∈ [n] such that Qx contains a decreasing pair. Similarly, define
the set W↑. Let Wc denote the set of points x such that h|Qx

is constant.

Claim 2.8 ([22]). The function h restricted to the set W↑ ∪Wc is monotone.

8

Proof. The proof is by contradiction. Suppose x, y ∈ (W↑ ∪Wc) such that x < y, but h(x) > h(y).
Consider z = lca(x, y). Either h(x) > h(z) or h(z) > h(y), contradicting the fact that x, y ∈
W↑ ∪Wc.

By symmetry, the function h restricted to the set W↓ ∪Wc is antimonotone.
A priori, points in W↑ and W↓ could be interspersed. The next claim shows that they are in

different halves of the tree T .

Claim 2.9. If x ∈W↓ and y ∈W↑, then lca(x, y) is the root of T (which is equal to dn/2e).

Proof. Suppose not. Let z := lca(x, y) and w be the parent of z. Consider the case where z is the
left child of w, x lies in the left subtree of z and y lies in the right subtree of z. (All the other cases
have analogous proofs.) Observe that all points in Qy lie in the interval [z, w]. Both w and z are in
Qx as well as in Qy. As x ∈W↑ and y ∈W↓, it must be the case that h(w) = h(z). Since y /∈W↑↓,
for all p ∈ Qy, we have h(p) = h(w). This contradicts the fact that y ∈W↑.

In all cases, we conclude that either x /∈ W↓ or y /∈ W↑. Thus, z cannot have a parent, and
z = dn/2e.

Claim 2.10. Let g : [n] 7→ R be an antimonotone function and dist(g, constant) denote the fraction
of points that need to be changed so that g is a constant function. If g is antimonotone, and
dist(g, constant) ≥ ρ, where ρ ≤ 1

2 , then

Pr
u,v∈[n]:u<v

[(u, v) is decreasing] ≥ ρ

2
.

Proof. The probability that g(u) 6= g(v) is at least ρ(1− ρ) which is at least ρ
2 when ρ ≤ 1

2 . Since
g is antimonotone, (u, v) is a decreasing pair.

Let L (respectively, R) be the set of points in [n]\W↑↓ in the left (respectively, right) subtree of the
root. Define µL := |L|/n; similarly, define µR. Observe that both µL and µR are at least 1

2 −
ε
10 .

By Claims 2.8 and 2.9, h|L (and h|R) is either monotone or antimonotone. Now, if any of these
two functions were antimonotone and ε

2 -far from being constant (w.l.o.g., assume h|L satisfies the
condition), then by Claim 2.10, we would have

Pr[E] ≥ Pr
u<v

[(u, v) is decreasing and u, v ∈ L] ≥ ε

4
·
(

1

2
− ε

10

)2

≥ ε

25
.

Assume that this doesn’t occur. We have two cases.
Case 1. Both h|L and h|R are ε

2 -close3 to being constant. In this case, at least (1− ε
2)|L| points of

L evaluate to a constant C1, and at least (1− ε
2)|R| points of R evaluate to constant C2. We must

have C1 > C2, for otherwise, we can make h monotone by changing only ε
2 · (|R|+ |L|) + εn

10 < εn
points, which is a contradiction. Hence,

Pr[E] ≥ Pr
u<v

[h(u) = C1 and h(v) = C2] ≥
(

1− ε

2

)2
µLµR >

1

4
·
(

1

2
− ε

10

)2

≥ ε

25
.

3A function h is ε-close to a property P if it is sufficient to change at most ε-fraction of values in h to make it
satisfy P.

9

Case 2. At least one of the functions is ε
2 -far from being constant and is monotone. W.l.o.g.,

assume h|L satisfies this condition. Note that all points in L are only in W↑∪Wc, and so, all points
in R must be in W↓ ∪Wc. This implies that h|R is antimonotone. (Note that a constant function
is also antimonotone.) But then, h|R must be ε

2 -close to being constant. Then at least (1 − ε
2)|R|

points in R evaluate to a constant, say C. Let U denote the set of points in L whose values are
strictly greater than C. Since h|L is monotone, we can make h monotone by deleting all points in
U,W↑↓, and the points in R that do not evaluate to C. The total number of points to be deleted is
at most |U |+ εn

10 + εn
2 , which must be at least εn, as h is ε-far from monotone. Hence, |U | > εn/3.

Therefore,

Pr[E] ≥ Pr
u<v

[u ∈ U and h(v) = C] ≥ ε

3
·
(

1− ε

2

)
µR >

ε

25
.

This completes the proof of Lemma 2.7.

We now analyze Algorithm 5. It is evident that it has one-sided error and makes O(dε (log n +

log d
ε)) queries. It suffices to prove the following.

Theorem 2.11. If f : [n]d 7→ R is ε-far from unate, then Algorithm 5 rejects with probability at
least 2/3.

Proof. For any line `, we define the following quantities.
• α`: the distance of f|` to monotonicity.
• β`: the distance of f|` to antimonotonicity.
• σ`: the probability that Algorithm 3, on input f|`, returns {↑, ↓}.
• δ`: the probability that a uniformly random pair in ` is decreasing.
• λ`: the probability that a uniformly random pair in ` is increasing.

Let Li be the set of i-lines. By Theorem 2.1,

1

nd−1

d∑
i=1

min

∑
`∈Li

α`,
∑
`∈Li

β`

 ≥ ε

4
.

By Lemma 2.7, for every line `, we have σ` + δ` ≥ α`/25 and σ` + λ` ≥ β`/25. Also note,

1

nd−1

d∑
i=1

∑
`∈Li

σ` + min

∑
`∈Li

δ`,
∑
`∈Li

λ`

 ≥ 1

nd−1

d∑
i=1

min

∑
`∈Li

(σ` + δ`),
∑
`∈Li

(σ` + λ`)


Combining these bounds, we obtain that the LHS is at least ε/100. Note that the first term, which
is equal to

∑d
i=1 E`∈Li

[σ`], is the expected number of times a single iteration of Steps 2-4 rejects.
If this quantity is at least ε/200, then the tester rejects with probability at least 2/3. If not, then
we have n−(d−1)

∑d
i=1 min(

∑
`∈Li

δ`,
∑

`∈Li
λ`) ≥ ε/200. Using a calculation identical to that of the

proof of Lemma 2.2, the probability that Step 9 rejects in some iteration is at least 2/3.

3 The Lower Bound for Nonadaptive Testers over Hypercubes

In this section, we prove Theorem 1.2, which gives a lower bound for nonadaptive unateness testers
for functions over the hypercube.

10

Previous work of [14] on lower bounds for monotonicity testing shows that, for a special class
of properties, which includes unateness, it is sufficient to prove lower bounds for comparison-based
testers. Comparison-based testers base their decisions only on the order of the function values at
queried points, and not on the values themselves.

We first state the reduction to comparison-based testers from [14]. Let a (t, ε, δ)-tester for a
property P be a t-query tester, with distance parameter ε, that errs with (two-sided) probability
at most δ. Consider functions of the form f : D → R, where D is an arbitrary partial order (in
particular the hypergrid/cube). A property P is invariant under monotone transformations if, for
all strictly increasing maps φ : R→ R and all functions f , dist(f,P) = dist(φ ◦ f,P). In particular,
unateness is invariant under monotone transformations.

Theorem 3.1 (implicit in Theorem 2.1 of [14]). Let P be a property invariant under monotone
transformations. Suppose there exists a nonadaptive (resp., adaptive) (t, ε, δ)-tester for P. Then
there exists a nonadaptive (resp., adaptive) comparison-based (t, ε, 2δ)-tester for P.

Our main lower bound theorem is stated next. In the light of the previous discussion, it implies
Theorem 1.2.

Theorem 3.2. Any nonadaptive comparison-based tester for unateness of functions f : {0, 1}d → R
must make Ω(d log d) queries.

By Theorem 3.1 and Yao’s minimax principle [37], it suffices to prove the lower bound for deter-
ministic, nonadaptive, comparison-based testers over a known distribution of functions. It may be
useful for the reader to recall the sketch of the main ideas given in Section 1.1.1. For convenience,
assume d is a power of 2 and let d′ := d+ log2 d. We will focus on functions h : {0, 1}d′ → R, and
prove the lower bound of Ω(d log d) for this class of functions, as Ω(d log d) = Ω(d′ log d′).

3.1 The Hard Distributions

We first partition {0, 1}d′ into d subcubes based on the most significant log2 d bits. More precisely,
for i ∈ [d], the ith subcube is defined as

Ci := {x ∈ {0, 1}d′ : val(xd′xd′−1 · · ·xd+1) = i− 1},

where val(z) denotes the integer equivalent to the binary string z. Specifically, val(zpzp−1 . . . z1) =∑p
i=1 zi2

i−1.
Let m = d. We denote the set of indices of the subcube by [m] and the set of dimensions by

[d]. We use i, j ∈ [m] to index subcubes, and a, b ∈ [d] to index dimensions. We now define a series
of random variables, where each subsequent variable may depend on the previous ones.
• k: a number picked uniformly at random from

[
1
2 log2 d

]
.

• R: a uniformly random subset of [d] of size 2k.
• ri: for each i ∈ [m], ri is picked from R uniformly and independently at random.
• αb: for each b ∈ [d], αb is picked from {−1,+1} uniformly and independently at random.

(Note: αb only needs to be defined for each b ∈ R. We define it over [d] just so that it is
independent of R.)
• βi: for each i ∈ [m], βi is picked from {−1,+1} uniformly and independently at random.

11

We denote by S the tuple (k,R, {ri}), also referred to as the shared randomness. We use T to refer
to the entire set of random variables. Given T , define the following functions:

fT (x) :=
∑

b∈[d′]\R

xb3
b + αri · xri3ri , where i is the subcube with x ∈ Ci.

gT (x) :=
∑

b∈[d′]\R

xb3
b + βi · xri3ri , where i is the subcube with x ∈ Ci.

The distribution Yes generates fT and the distribution No generates gT .
In all cases, the function restricted to any subcube Ci is linear. Consider some dimension b ∈ R.

There can be numerous ri’s that are equal to b. For fT , in all of these subcubes, the coefficient of
xri has the same sign, namely αri . For gT , the coefficient βi is potentially different, as it depends
on the actual subcube.

Claim 3.3. Every f ∈ supp(Yes) is unate.

Proof. Fix some f ∈ supp(Yes). Since f restricted to any Ci is linear, it suffices to argue that the
coefficient of any xb (when it is non-zero) has the same sign, in all Ci’s. For any b ∈ [d′] \ R, the
coefficient of xb is always 3b. If b ∈ R, then the coefficient is either 0 or 3bαb.

Claim 3.4. A function g ∼ No is 1
8 -far from unate with probability at least 9/10.

Proof. Fix T = T . Condition on any choice of k and R. Note that |R| ≤
√
d. For any r ∈ R, let

Ar = {i : ri = r} denote the set of subcube indices with ri = r. Observe that E[|Ar|] ≥ m/
√
d =√

d. By a Chernoff bound and union bound, for all r ∈ R, we have |Ar| ≥
√
d/2 with probability

at least 1− d exp(−
√
d/8).

Condition on the event that |Ar| ≥
√
d/2 for all r ∈ R. For each i ∈ Ar, there is a random

choice of βi. Partition Ar into A+
r and A−r , depending on whether βi is +1 or −1. Again, by a

Chernoff bound and union bound, for all r ∈ R, we have min(|A+
r |, |A−r |) ≥ |Ar|/4 with probability

at least 1− d exp(−
√
d/32). Thus, we can assume the above event holds with probability at least

1 − d(exp(−
√
d/8) + exp(−

√
d/32)), which is at least 9/10, for large enough d and for any choice

of k and R.
Denote the size of any subcube Ci by s. In gT , for all i ∈ A+

r , all r-edges in Ci are increasing,
whereas, for all j ∈ A−r , all r-edges in Cj are decreasing. To make gT unate, we must make all
these edges have the same direction (i.e., increasing or decreasing). This requires modifying at least
s
2 ·min(|A+

r |, |A−r |) ≥
s|Ar|

8 values in gT . Summing over all r, we need to change at least s
8

∑
r |Ar|

values. Since the Ar’s partition the set of subcubes, this corresponds to at least a 1
8 -fraction of the

domain.

3.2 From Functions to Signed Graphs that are Hard to Distinguish

For convenience, denote x ≺ y if val(x) < val(y). Note that ≺ forms a total ordering on {0, 1}d′ .
Given x ≺ y ∈ {0, 1}d′ and a function h : {0, 1}d′ → R, define sgnh(x, y) to be 1 if h(x) < h(y), 0 if
h(x) = h(y), and −1 if h(x) > h(y).

Any deterministic, nonadaptive, comparison-based tester is defined as follows: It makes a set
of queries Q and decides whether or not the input function h is unate depending on the

(|Q|
2

)
-

comparisons in Q. More precisely, for every pair (x, y) ∈ Q ×Q, x ≺ y, we insert an edge labeled

12

with sgnh(x, y). Let this signed graph be called GQh . Any nonadaptive, comparison-based algorithm
can be described as a partition of the universe of all signed graphs over Q into GY and GN . The
algorithm accepts the function h iff GQh ∈ GY .

Let GQ
Y be the distribution of the signed graphs GQh when h ∼ Yes. Similarly, define GQ

N when
h ∼ No. Our main technical theorem is Theorem 3.5, which is proved in Section 3.3.

Theorem 3.5. For small enough δ > 0 and large enough d, if |Q| ≤ δd log d, then ‖GQ
Y −G

Q
N‖TV =

O(δ).

We now prove that Theorem 3.5 implies Theorem 3.2, the main lower bound.

Proof of Theorem 3.2. Consider the distribution over functions where with probability 1/2, we
sample from Yes and with the remaining probability we sample from No. By Theorem 3.1 and
Yao’s minimax principle, it suffices to prove that any deterministic, nonadaptive, comparison-based
tester making at most δd log d queries (for small enough δ > 0) errs with probability at least 1/3.
Now, note that

Pr[error] =
1

2
· Pr
h∼Yes

[GQh ∈ GN] +
1

2
· Pr
h∼No

[GQh ∈ GY and h is
1

8
-far from unate].

By Theorem 3.5, the first term is at least 1
2 ·
(

Prh∼No[GQh ∈ GN]−O(δ)
)

, and by Claim 3.4, the

second term is at least 1
2 ·
(

Prh∼Yes[G
Q
h ∈ GY]−O(δ)− 1

10

)
. Summing them up, we get Pr[error] ≥

1
2 −O(δ)− 1

20 which is at least 1
3 for small enough δ.

The proof of Theorem 3.5 is naturally tied to the behavior of sgnh. Ideally, we would like to
say that sgnh(x, y) is almost identical regardless of whether h ∼ Yes or h ∼ No. Towards this, we
determine exactly the set of pairs (x, y) that potentially differentiate Yes and No.

Claim 3.6. For all h ∈ supp(Yes) ∪ supp(No), for all x ∈ Ci and y ∈ Cj such that i < j, we have
sgnh(x, y) = 1.

Proof. For any h, we can write h(x) as
∑

b>d 3b · xb +
∑

b≤d cb(x) · 3b · xb, where cb : {0, 1}d′ →
{−1, 0,+1}. Thus, h(y) − h(x) =

∑
b>d 3b(yb − xb) +

∑
b≤d 3b(cb(y) · yb − cb(x) · xb). Recall that

x ∈ Ci, y ∈ Cj , and j > i. Let q denote the most significant bit of difference between x and y.
We have q > d, and yq = 1 and xq = 0. Note that for b ≤ d, |cb(y) · yb − cb(x) · xb)| ≤ 2. Thus,
h(y)− h(x) ≥ 3q − 2

∑
b<q 3b > 0.

Thus, comparisons between points in different subcubes reveal no information about which dis-
tribution h was generated from. Therefore, the “interesting” pairs that can distinguish whether
h ∼ Yes or h ∼ No must lie in the same subcube. The next claim shows a further criterion that
is needed for a pair to be interesting. We first define another notation.

Definition 3.7. For any setting of the shared randomness S, subcube Ci, and points x, y ∈ Ci, we
define tiS(x, y) to be the most significant coordinate of difference (between x, y) in ([d] \R) ∪ {ri}.

Note that S determines R and {ri}. For any T that extends S and any function, the restriction
to Ci is unaffected by the coordinates in R \ ri. Thus, tiS(x, y) is the first coordinate of difference
that is influential in Ci.

13

Claim 3.8. Fix some S, subcube Ci, and points x, y ∈ Ci. Let c = tiS(x, y), and assume x ≺ y.
For any T that extends S:
• If c 6= ri, then sgnfT (x, y) = sgngT (x, y) = 1.
• If c = ri, sgnfT (x, y) = αc and sgngT (x, y) = βi.

Proof. Assume x ∈ Ci. Recall that fT (x) =
∑

b∈[d′]\R xb3
b+αri ·xri3ri and gT (x) =

∑
b∈[d′]\R xb3

b+
βi · xri3ri .

First, consider the case c 6= ri. Thus, c /∈ R. Observe that xb = yb, for all b > c such that b /∈ R.
Furthermore, xc = 0 and yc = 1. Thus, fT (y)− fT (x) > 3c −

∑
b<c 3b > 0. An identical argument

holds for gT .
Now, consider the case c = ri. Thus, fT (y) − fT (x) = αc3

c +
∑

b<c,b/∈R(yb − xb)3b. Using the
same geometric series arguments as above, sgnfT (x, y) = αc. An analogous argument shows that
sgngT (x, y) = βi

3.3 Proving Theorem 3.5: Good and Bad Events

For a given Q, we first identify certain “bad” values for S, on which Q could potentially distin-
guish between fS and gS . We will prove that the probability of a bad S is small for a given Q.
Furthermore, we show that Q cannot distinguish between fS and gS for any good S. We set up
some definitions.

Definition 3.9. Given a pair (x, y), define cap(x, y) to be the 5 most significant coordinates4 in
which they differ. We say (x, y) captures these coordinates. For any set S ⊆ {0, 1}d′, define
cap(S) :=

⋃
x,y∈S cap(x, y) to be the coordinates captured by the set S.

Fix any Q. We set Qi := Q ∩ Ci. We define two bad events for S.

• Abort Event A: There exists x, y ∈ Q with cap(x, y) ⊆ R.

• Collision Event C: There exists i, j ∈ [d] with ri = rj , ri ∈ cap(Qi) and rj ∈ cap(Qj).

If the abort event doesn’t occur, then for any pair (x, y), the sign sgnh(x, y) is determined by
cap(x, y) for any h ∈ supp(Yes)∪ supp(No). The heart of the analysis lies in Theorem 3.10, which
states that the bad events happen rarely. Theorem 3.10 is proved in Section 3.4.

Theorem 3.10. If |Q| ≤ δd log d, then Pr[A ∪ C] = O(δ).

When neither the abort nor the collision events happen, we say S is good for Q. Next, we show
that conditioned on a good S, the set Q cannot distinguish f ∼ Yes from g ∼ No.

Lemma 3.11. For any signed graph G over Q,

Pr
f∼Yes

[GQf = G|S is good]= Pr
g∼No

[GQg = G|S is good].

Proof. We first describe the high level ideas in the proof. As stated above, when the abort event
doesn’t happen, the sign sgnh(x, y) is determined by cap(x, y) for any h ∈ supp(Yes) ∪ supp(No).
Furthermore, a pair (x, y) has a possibility of distinguishing (that is, the pair is interesting) only
if x, y ∈ Ci and ri ∈ cap(x, y). Focus on such interesting pairs. For such a pair, both sgnfT (x, y)

4There is nothing special about the constant 5. It just needs to be sufficiently large.

14

and sgngT (x, y) are equally likely to be +1 or −1. Therefore, to distinguish, we would need two
interesting pairs, (x, y) ∈ Ci and (x′, y′) ∈ Cj with i 6= j. Note that, when g ∼ No, the signs
sgngT (x, y) and sgngT (x′, y′) are independently set, whereas when f ∼ Yes, the signs are either the
same when ri = rj , or independently set. But if the collision event doesn’t occur, we have ri 6= rj
for interesting pairs in different subcubes. Therefore, the probabilities are the same.

We now prove the lemma formally. Condition on a good S. Note that the probability of the
Yes distribution depends solely on {αb} and that of the No distribution depends solely on {βi}.

Consider any pair (x, y) ∈ Q × Q with x ≺ y. We can classify it into three types: (i) x
and y are in different subcubes, (ii) x and y are both in Ci, and tiS(x, y) 6= ri, (iii) x and y are
both in Ci, and tiS(x, y) = ri. For convenience, we refer to the third type as interesting pairs. Let
h ∈ supp(Yes|S)∪supp(No|S). For the first and second types of pairs, by Claim 3.6 and Claim 3.8,
we have sgnh(x, y) = 1. For interesting pairs, by Claim 3.8, sgnh(x, y) must have the same label for
all pairs in Qi ×Qi. Thus, any G whose labels disagree with the above can never be GQf or GQg .

Fix a signed graph G. For any pair (x, y) ∈ Q × Q, where x ≺ y, let w(x, y) be the label in
G. Furthermore, for all interesting pairs in the same Qi, w(x, y) has the same label, denoted wi.
Let I denote the set of subcubes with interesting pairs. At this point, all of our discussion depends
purely on S and involves no randomness.

Now we focus on g ∼ (No|S).

Pr
g∼(No|S)

[GQg = G] = Pr
[∧
i∈I

∧
x,y∈Qi

tiS(x,y)=ri

(w(x, y) = sgngT (x, y))
]

= Pr
[∧
i∈I

∧
x,y∈Qi

tiS(x,y)=ri

(w(x, y) = βi)
]

(by Claim 3.8)

= Pr
[∧
i∈I

(wi = βi)
]

Observe that each βi is chosen uniformly and independently at random from {−1,+1}, and so this
probability is exactly 2−|I|.

The analogous expressions for f ∼ (Yes|S) yield:

Pr
f∼(Yes|S)

[GQf = G] = Pr
[∧
i∈I

(wi = αri)
]

Note the difference here: if multiple ri’s are the same, the individual events are not independent
over different subcubes. This is precisely what the abort and collision events capture. We formally
argue below.

Consider an interesting pair (x, y) ∈ Qi × Qi. Since the abort event A does not happen,
cap(x, y) * R. If tiS(x, y) = ri /∈ cap(x, y), then there is a coordinate of R that is more significant
that tiS(x, y). This contradicts the definition of the latter; so ri ∈ cap(x, y) ⊆ cap(Qi). Equivalently,
a subcube index i ∈ I iff ri ∈ cap(Qi).

Since the collision event C does not happen, for any j ∈ [m] where rj = ri, rj /∈ cap(Qj).
Alternately, for i, i′ ∈ I, ri 6= ri′ . Thus, Pr[

∧
i∈I(wi = αri)] =

∏
i∈I Pr[wi = αri] = 2−|I|.

Now, we are armed to prove Theorem 3.5.

15

Proof of Theorem 3.5. Given any subset of signed graphs, G, it suffices to upper bound∣∣∣∣ Pr
f∼Yes

[GQf ∈ G]− Pr
f∼No

[GQf ∈ G]

∣∣∣∣ ≤ ∑
good S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQf ∈ G|S]− Pr
f∼No

[GQf ∈ G|S]

)∣∣∣∣
+
∑

bad S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQf ∈ G|S]− Pr
f∼No

[GQf ∈ G|S]

)∣∣∣∣ .
The first term of the RHS is 0 by Lemma 3.11. The second term is at most the probability of bad
events, which is O(δ) by Theorem 3.10.

3.4 Bounding the Probability of Bad Events: Proof of Theorem 3.10

We prove Theorem 3.10 by individually bounding Pr[A] and Pr[C].

Lemma 3.12. If |Q| ≤ δd log d, then Pr[A] ≤ d−1/4.

Proof. Fix any choice of k (in S). For any pair of points x, y ∈ Q, we have Pr[cap(x, y) ⊆ R] ≤
(2k

d−5)5. Since d− 5 ≥ d/2 for all d ≥ 10 and k ≤ (log2 d)/2, the probability is at most 32d−5/2. For

a large enough d, a union bound over all pairs in Q × Q, which are at most d2 log2 d in number,
completes the proof.

The collision event is more challenging to bound, and is actually the heart of the lower bound.
We start by showing that, if each Qi captures few coordinates, then the collision event has low
probability. A critical point is the appearance of d log d in this bound.

Lemma 3.13. If
∑

i |cap(Qi)| ≤M , then Pr[C] = O
(

M
d log d

)
.

Proof. For any r ∈ [d], define Ar := {j : r ∈ cap(Qj)} to be the set of indices of Qj ’s that capture
coordinate r. Let ar := |Ar|. Define n` := |{r : ar ∈ (2`−1, 2`]}|. Observe that

∑
`≤log2 d

n`2
` ≤

2
∑

r∈[d] ar ≤ 2M .
Fix k. For r ∈ [d], we say the event Cr occurs if (a) r ∈ R, and (b) there exists i, j ∈ [d] such that

ri = rj = r, and ri ∈ cap(Qi) and rj ∈ cap(Qj). By the union bound, Pr[C|k] ≤
∑d

r=1 Pr[Cr|k].
Let us now compute Pr[Cr|k]. Only sets Qj ’s with j ∈ Ar are of interest, since the others do

not capture r. Event Cr occurs if at least two of these sets have ri = rj = r. Hence,

Pr[Cr|k] = Pr[r ∈ R] · Pr[∃i, j ∈ Ar : ri = rj = r | r ∈ R]

=
2k

d
·
∑
c≥2

(
ar
c

)(
1

2k

)c(
1− 1

2k

)ar−c
. (1)

A fixed r is in R with probability
(
d−1
2k−1

)
/
(
d
2k

)
= 2k

d . Given that |R| = 2k, the probability that

ri = r is precisely 2−k.
If ar ≥ 2k

4 , then we simply upper bound (1) by 2k

d . For ar <
2k

4 , we upper bound (1) by

2k

d

(
1− 1

2k

)ar ∑
c≥2

(
ar ·

1

2k
·
(

1− 1

2k

)−1
)c
≤ 2k

d

∑
c≥2

(ar
2k−1

)c
≤ 8a2

r

2kd
.

16

Summing over all r and grouping according to n`, we get

Pr[C|k] ≤
d∑
r=1

Pr[Cr|k] ≤
∑

r:ar≥2k−2

2k

d
+

8

d

∑
r:ar<2k−2

a2
r

2k
≤ 2k

d

∑
`>k−2

n` +
8

d

k−2∑
`=1

n`2
2`−k.

Averaging over all k, we get

Pr[C] =
2

log2 d

(log2 d)/2∑
k=1

Pr[C|k] ≤ 16

d log2 d

(log2 d)/2∑
k=1

(
k−2∑
`=1

n`2
2`−k +

∑
`>k−2

n`2
k

)

=
16

d log2 d

(log2 d)/2∑
`=1

n`
∑
k≥`+2

22`−k +

log2 d∑
`=1

n`
∑
k<`+2

2k

 . (2)

Now,
∑

k≥`+2 22`−k ≤ 2` and
∑

k<`+2 2k ≤ 4 ·2`. Substituting, Pr[C] ≤ 80
d log2 d

∑log2 d
`=1 n`2

` ≤ 160M
d log2 d

,
proving the lemma.

We are now left to bound
∑

i |cap(Qi)|. This is done by the following combinatorial lemma.

Lemma 3.14. Let V be a set of vectors over an arbitrary alphabet and any number of dimensions.
For any natural number c and x, y ∈ V , let capc(x, y) denote the (set of) first c coordinates at
which x and y differ. Then |capc(V)| ≤ c(|V | − 1).

Proof. We construct c different edge-colored graphs G1, . . . , Gc over the vertex set V . For every
coordinate i ∈ capc(V), there must exist at least one pair of vectors x, y such that i ∈ capc(x, y).
Thinking of each capc(x, y) as an ordered set, find a pair (x, y) where i appears “earliest” in
capc(x, y). Let the position of i in this capc(x, y) be denoted t. We add edge (x, y) to Gt, and color
it i. Note that the same edge (x, y) cannot be added to Gt with multiple colors, and hence all Gt’s
are simple graphs. Furthermore, observe that each color is present only once over all Gt’s.

We claim that each Gt is acyclic. Suppose not. Let there be a cycle C and let (x, y) be the
edge in C with the smallest color i. Clearly, xi 6= yi since i ∈ capc(x, y). There must exist another
edge (u, v) in C such that ui 6= vi. Furthermore, the color of (u, v) is j > i. Thus, j is the tth entry
in capc(u, v). Note that i ∈ capc(u, v) and must be the sth entry for some s < t. But this means
that the edge (u, v) colored i should be in Gs, contradicting the presence of (x, y) ∈ Gt.

We wrap up the bound now.

Lemma 3.15. If |Q| ≤ δd log d, then Pr[C] = O(δ).

Proof. Lemma 3.14 applied to each Qi, yields
∑

i |cap(Qi)| ≤ 5|Qi| = 5|Q|. An application of
Lemma 3.13 completes the proof.

4 Acknowledgments

We thank Oded Goldreich for useful discussions and Meiram Murzabulatov for participation in
initial discussions on this work.

17

References

[1] Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.

[2] Roksana Baleshzar, Meiram Murzabulatov, Ramesh Krishnan S. Pallavoor, and Sofya
Raskhodnikova. Testing unateness of real-valued functions. CoRR, abs/1608.07652, 2016.

[3] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidimen-
sional bin-packing problems. Inf. Comput., 196(1):42–56, 2005.

[4] Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on the hyper-
cube. Theory of Computing, 11:403–412, 2015.

[5] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings, ACM Symposium on Theory of Computing (STOC), pages 1021–1032, 2016.

[6] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings,
ACM Symposium on Theory of Computing (STOC), pages 164–173, 2014.

[7] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

[8] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communica-
tion complexity. Computational Complexity, 21(2):311–358, 2012.

[9] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing proper-
ties of functions over hypergrid domains. In Proceedings, IEEE Conference on Computational
Complexity (CCC), pages 309–320, 2014.

[10] Jop Briët, Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Monotonicity test-
ing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[11] Deeparnab Chakrabarty. Monotonicity testing. In Encyclopedia of Algorithms, pages 1352–
1356. Springer, 2016.

[12] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. In Proceedings,
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1809–1828, 2015.

[13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings, ACM Symposium on Theory of Com-
puting (STOC), pages 419–428, 2013.

[14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014.

[15] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions
over the hypercube. SIAM J. Comput., 45(2):461–472, 2016.

18

[16] Deeparnab Chakrabarty and C. Seshadhri. A Õ(n) non-adaptive tester for unateness. Elec-
tronic Colloquium on Computational Complexity (ECCC), 23:133, 2016. Also appeared as
arXiv report 1608.06980.

[17] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) O(n1/2) non-adaptive queries. In Proceedings, ACM Symposium on
Theory of Computing (STOC), pages 519–528, 2015.

[18] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 286–295, 2014.

[19] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: New lower bounds for
testing monotonicity and unateness. CoRR, abs/1702.06997, 2017. To appear in STOC 2017.

[20] Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-
resilient property testing. In Proceedings, International Colloquium on Automata, Languages
and Processing (ICALP), pages 91:1–91:15, 2016.

[21] Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. Proceedings, International
Workshop on Randomization and Approximation Techniques in Computer Science (RAN-
DOM), pages 97–108, 1999.

[22] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. System Sci., 60(3):717–751, 2000.

[23] Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–
116, 2004.

[24] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings, ACM Sym-
posium on Theory of Computing (STOC), pages 474–483, 2002.

[25] Oded Goldreich. Introduction to Property Testing (working draft). 2015. URL: www.wisdom.
weizmann.ac.il/~oded/PDF/pt-v1.pdf.

[26] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000.

[27] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[28] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007.

[29] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44–67, 2008.

[30] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.

19

www.wisdom.weizmann.ac.il/~oded/PDF/pt-v1.pdf
www.wisdom.weizmann.ac.il/~oded/PDF/pt-v1.pdf

[31] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperi-
metric type theorems. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 52–58, 2015.

[32] Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, pages 37:1–37:7, 2016.

[33] Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Combin. Theory Ser. A,
94(2):399–404, 2001.

[34] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized prop-
erty testing of functions. In Proceedings, Innovations in Theoretical Computer Science (ITCS),
2017.

[35] Sofya Raskhodnikova. Testing if an array is sorted. In Encyclopedia of Algorithms, pages
2219–2222. Springer, 2016.

[36] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[37] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 222–227, 1977.

A Missing Details from the Main Body

A.1 The Lower Bound for Adaptive Testers over Hypergrids

We show that every unateness tester for functions f : [n]d 7→ R requires Ω
(
d logn
ε − log 1/ε

ε

)
queries

for ε ∈ (0, 1/4) and prove Theorem 1.3.

Proof of Theorem 1.3. By Yao’s minimax principle and the reduction to testing with comparison-
based testers from [14] (stated for completeness in Theorem 3.1), it is sufficient to give a hard input
distribution on which every deterministic comparison-based tester fails with probability more than
2/3. We use the hard distribution constructed by Chakrabarty and Seshadhri [14] to prove the
same lower bound for testing monotonicity. Their distribution is a mixture of two distributions,
Yes and No, on positive and negative instances, respectively. Positive instances for their problem
are functions that are monotone and, therefore, unate; negative instances are functions that are
ε-far from monotone. We show that their No distribution is supported on functions that are ε-far
from unate, i.e., negative instances for our problem. Then the required lower bound for unateness
follows from the fact that every deterministic comparison-based tester needs the stated number of
queries to distinguish Yes and No distributions with high enough probability.

We start by describing the Yes and No distribution used in [14]. We will define them as
distributions on functions over the hypercube domain. Next, we explain how to convert functions
over hypercubes to functions over hypergrids.

20

Without loss of generality, assume n is a power of 2 and let ` := log2 n. For any z ∈ [n], let
bin(z) denote the binary representation of z− 1 as an `-bit vector (z1, . . . , z`), where z1 is the least
significant bit.

We now describe the mapping used to convert functions on hypergrids to functions on hy-
percubes. Let φ : [n]d → {0, 1}d` be the mapping that takes y ∈ [n]d to the concatenation
of bin(y1), . . . , bin(yd). Any function f : {0, 1}d` 7→ R can be easily converted into a function
f̃ : [n]d 7→ R, where f̃(y) := f(φ(y)).

Let m := d`. For x ∈ {0, 1}m, let val(x) =
∑m

i=1 xi2
i−1 denote the value of the binary number

represented by vector x. For simplicity, assume 1/ε is a power of 2. Partition the set of points
x ∈ {0, 1}m according to the most significant log(1/2ε) dimensions. That is, for k ∈ {1, 2, . . . , 1/2ε},
let

Sk := {x : val(x) ∈ [(k − 1) · ε2m+1, k · ε2m+1 − 1]}.

The hypercube is partitioned into 1/2ε sets Sk of equal size, and each Sk forms a subcube of
dimension m′ = m− log(1/ε) + 1.

We now describe the Yes and No distributions for functions on hypercubes. The Yes distri-
bution consists of a single function f(x) = 2val(x). The No distribution is uniform over m′/2ε
functions gj,k, where j ∈ [m′] and k ∈ [1/2ε], defined as follows:

gj,k(x) =

{
2val(x)− 2j − 1 if xj = 1 and x ∈ Sk;
2val(x), otherwise.

To get the Yes and No distributions for the hypergrid, we convert f to f̃ and each function gj,k
to g̃j,k, using the transformation defined before.

Chakrabarty and Seshadhri [14] proved that f is monotone and each function g̃j,k is ε-far from
monotone. It remains to show that functions g̃j,k are also ε-far from unate.

Claim A.1. Each function g̃j,k is ε-far from unate.

Proof. To prove that g̃j,k is ε-far from unate, it suffices to show that there exists a dimension i,
such that there are at least ε2d` increasing i-pairs and at least ε2d` decreasing i-pairs w.r.t. g̃j,k
and that all of these i-pairs are disjoint. Let u, v ∈ [n]d be two points such that φ(u) and φ(v)
differ only in the jth bit. Clearly, u and v form an i-pair, where i = dj/`e. Now, if φ(u), φ(v) ∈ Sk
and u ≺ v, then g̃j,k(v) = g̃j,k(u)− 1. So, the i-pair (u, v) is decreasing. The total number of such
i-pairs is 2d`−log(1/2ε)−1 = ε2d`. If φ(u), φ(v) ∈ Sk′ where k′ 6= k, then the i-pair (u, v) is increasing.
Clearly, there are at least ε2d` such i-pairs. All the i-pairs we mentioned are disjoint. Hence, g̃j,k
is ε-far from unate.

This completes the proof of Theorem 1.3.

A.2 The Lower Bound for Nonadaptive Testers over Hypergrids

The lower bound for nonadaptive testers over hypergrids follows from a combination of the lower
bound for nonadaptive testers over hypercube and the lower bound for adaptive testers over hy-
pergrids.

Theorem A.2. Any nonadaptive unateness tester (even with two-sided error) for real-values func-
tions f : [n]d 7→ R must make Ω(d(log n+ log d)) queries.

21

Proof. Fix ε = 1/8. The proof consists of two parts. The lower bound for adaptive testers is also
a lower bound for nonadaptive tester, and so, the bound of Ω(d log n) holds. Next, we extend the
Ω(d log d) lower bound for hypercubes. Assume n to be a power of 2. Define function ψ : [n] 7→ {0, 1}
as ψ(a) := 1[a > n/2] for a ∈ [n]. For x = (x1, x2, . . . , xd) ∈ [n]d, define the mapping Ψ : [n]d 7→
{0, 1}d as Ψ(x) := (ψ(x1), ψ(x2), . . . , ψ(xd)). Any function f : {0, 1}d 7→ R can be extended to
f̃ : [n]d 7→ R using the mapping f̃(x) = f(Ψ(x)) for all x ∈ [n]d. The proof of Theorem 3.2
goes through for hypergrids as well, and so we have an Ω(d log d) lower bound. Combining the
two lower bounds, we get a bound of Ω(d · max{log n, log d}), which is asymptotically equal to
Ω(d(log n+ log d)).

22

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

