
Non-Adaptive Data Structure Bounds for Dynamic Predecessor
Search

Joseph Boninger and Joshua Brody and Owen Kephart
Swarthmore College, Swarthmore PA 19081, USA

Abstract

In this work, we continue the examination of the role non-adaptivity plays in maintaining dynamic data structures,
initiated by Brody and Larsen [2]. We consider nonadaptive data structures for predecessor search in the w-bit cell
probe model. Predecessor search is one of the most well-studied data structure problems. For this problem, using
non-adaptivity comes at a steep price. We provide exponential cell probe complexity separations between (i) adaptive
and non-adaptive data structures and (ii) non-adaptive and memoryless data structures for predecessor search.

A classic data structure of van Emde Boas [13] solves dynamic predecessor search in Oplog logmq probes; this
data structure is adaptive. For dynamic data structures which make nonadaptive updates, we show the cell probe com-
plexity is O

´

mint
logm

logpw{ logmq
, n logm

w
u

¯

. We also give a nearly-matching Ω
´

mint
logm
logw

, n logm
w logw

u

¯

lower bound.
We also give an Ωpmq lower bound for memoryless data structures.

Our lower bound technique is tailored to nonadaptive (as opposed to memoryless) updates and should be of
independent interest.

1 Introduction
The goal in a dynamic data structure problem is to maintain a set of data that changes over time, while supporting
queries and updates to this data structure. A natural objective is to support both efficient queries and efficient updates.
Often, either one is easily accomplished, but for many dynamic data structure problems, the optimal worst-case runtime
on the maximal query/update time is polynomial. Nevertheless, proving such a data structure lower bound appears
well beyond our current understanding. In fact, the highest lower bound for any dynamic data structure is currently
Ωpplog n{ log lognq2q [8, 4, 16]. Identifying a dynamic data structure problem which has a provably polynomial lower
bound on either query or update time is one of the biggest open problems in data structures.

Given the current difficulty in showing large data structure lower bounds, it is natural to ask if one can prove large
lower bounds for restricted classes of data strucutres. Brody and Larsen [2] initiated a study of data structure bounds
for non-adaptive data structures. In a non-adaptive data structure, the memory cells probed during a query or update is
chosen in advance, independent of the contents of those cells. For many data structure problems, the optimal solution
is indeed non-adaptive. Brody and Larsen [2] showed polynomial lower bounds for a large class of problems, both
for when queries are non-adaptive and when updates are non-adaptive. It is worth noting that their lower bounds for
non-adaptive updates were under an even more severe restriction called memoryless updates.

1.1 The Cell Probe Model.
In the cell probe model defined by Yao [17], a data structure consists of a series of memory cells or words, each storing
a w-bit integer. We assume there are at most 2w cells in the data structure, so that each cell can be addressed using
a single w-bit integer. When a query or update is executed, a number of cells are probed. During a query or update,
which cell is probed next may depend arbitrarily on previous computation, and similarly what is written to a cell during
an update may also depend arbitrarily on previous computation in the update. We define the query complexity of a
data strucutre, denoted tq , as the maximum number of cells probed during a query. Similarly, the update complexity,
denoted tu, is the maximum number of cells probed during an update. As mentioned previously, it is often easy to

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 50 (2017)

design data structures that have either low tq or low tu; our goal is to minimize the cell probe complexity of a data
structure, defined as maxttq, tuu.

Cell probe complexity measures only the number of memory accesses used by the data structure. All other compu-
tation is not counted and essentially given for free. In particular, no assumption is made about what CPU computations
are allowed. The generality of the cell probe model makes it ideally suited for studying lower bounds; these lower
bounds will apply to other compution models which make more CPU assumptions.

1.2 Non-Adaptive Data Structures
Given the current barriers in proving high cell probe lower bounds for dynamic data structures, it makes sense to study
restricted classes of data structures. Non-adaptivity is a natural restriction. We examine several different kinds of
non-adaptivity, listed below.

• Non-Adaptive Query Algorithm. A cell probe data structure has a non-adaptive query algorithm if the cells
probed when answering a query depend only on the query itself, and not on the contents of previously probed
cells.

• Non-Adaptive Update Algorithm. A cell probe data structure has a non-adaptive update algorithm if the cells
probed when answering an update depend only on the update itself, and not on the contents of previously probed
cells.

• Memoryless Update Algorithm. A cell probe data structure has a memoryless update algorithm if the update
algorithm is non-adaptive, and additionally the contents written to a cell depend only on the current contents of
the cell and the update itself, and not on contents of other cells previously probed during the update operation.

A non-adaptive data structure is a cell probe data structure that has non-adaptive queries and updates. Similarly, a
memoryless data structure is a cell probe data structure that has non-adaptive queries and memoryless updates.

The study of non-adaptivity in data structures is of both theoretical and practical interest. Our orginial motivation
in examining non-adaptive data structures was to generalize the class of non-adaptive strucutres on which we can prove
lower bounds, with an eye towards proving polynomial lower bounds on dynamic data structures. This work expands
the range of non-adaptive data structures for which we can prove strong lower bounds.

From a more practical perspective, there are many real-world computational settings where the number of memory
accesses does not capture the true performance of a data structure or algorithm. Instead, the computational bottleneck
is the rounds of communication between disk and memory (e.g. the external memory or I/O model [1, 15, 14]) or
between different processors (distributed/parallel computation [6, 7, 12]) This is directly related to how adaptive the
algorithm or data structures are. We anticipate that a better understanding of the role non-adaptivity plays in data
structures will shed further insight into data structures for other models of computation as well.

1.3 Predecessor Search and Our Results
In this work, we primarily focus on two dynamic data structure problems: PREDECESSOR and MAX. In the PREDE-
CESSOR data structure problem, we are to maintain a dynamic set of up to n elements T Ď rms1, initially empty, with
updates Insertpiq,Deletepiq which insert/delete i from T . Each query Predpiq should return the largest x P T that
is less than or equal to i. In the MAX problem, we again maintain a dynamic set T Ă rms with the same insert and
delete operations. Additionally, there is a single query Maxpq, which must return the largest element in T .

In either problem, we assume that each element of the universe rms can fit into a single cell of memory; i.e., we
assume that w ě logm. We make a further reasonable assumption that w ď m0.25.

Predecessor search is one of the most well-studied data structure problems, and it deserves a complete study.
Moreover, it is a common component in other data structure problems such as binary search trees. In this way, our
lower bounds are likely to apply to other data structure problems as well.

As mentioned previously, van Emde Boas trees [13] is an adaptive data structure for PREDECESSOR with cell
probe complexity Oplog logmq. Our main result shows that adaptivity is crucial for such an upper bound.

1We use rms to denote the set t1, . . . ,mu, and ry, zs to denote the set of integers ty, y ` 1, . . . , zu.

2

Theorem 1. Let α :“ mintn,w{2u. Then, any non-adaptive data structure solving PREDECESSOR with tu “
Oplogmq must satisfy

tq ě
α logm

2w logpw ¨ tuq
.

Corollary 2. Fix any nonadaptive data structure for the dynamic predecessor problem with query time tq , and update
time tu, and suppose that w “ Θplogmq. If n ě w{2 then we have

maxptq, tuq “ Ω

ˆ

logm

log logm

˙

.

If n ă w{2, then we have

maxptq, tuq “ Ω

ˆ

n

log logm

˙

.

Is our non-adaptive lower bound the best possible? Our next result shows that it is close to optimal.

Theorem 3. There exists a non-adaptive data structure for PREDECESSOR with tq, tu “ O
´

logm
logpw{ logmq

¯

.

When w “ Θplogmq and n is large, our non-adaptive data structure bounds are loose by a factor of log logm.
When n is large and w ě plogmq1`Ωp1q, our bounds are tight. For smaller values of n, our non-adaptive data structure
is suboptimal, as the trivial data structure which stores an array of up to n values and probes the entire data structure
on each operation uses n logpmq{w words. In this case, our lower bound is off by a factor of logw.

Either way, Theorem 1 can be seen to interpolate between our non-adaptive data structure from Theorem 3 and the
trivial upper bound, allowing for a smooth tradeoff between n and m.

Finally, we give a very strong lower bound for memoryless data structures solving MAX. Note that MAX is
essentially PREDECESSOR with a further restriction that Predpmq is the only query allowed, so this lower bound
holds for PREDECESSOR as well.

Theorem 4. Any memoryless data structure for MAX must have maxttq, tuu “ Ωpm{wq.

Note that for small values of n, this lower bound is much higher than the cell probe complexity of the first trivial
solution. This is a clean illustration of what is not possible to do with memoryless data structures.

1.4 Previous Results
The study of dynamic data structures, and data structures for predecessor search, has a long history; here we give
a brief synopsis. Yao [17] introduced the cell probe model and gave cell probe bounds for the membership prob-
lem. Fredman and Saks [5] created the chronogram technique and showed Ωplogpnq{ log logpnqq bounds for several
dynamic data structure problems, including partial sums. This remained the highest lower bound for any dynamic
data structures problem until Pǎtraşcu and Demaine gave an Ωplog nq bound for dynamic connectivity. Pǎtraşcu and
Thorup [9, 10] gave strong deterministic and randomized lower bounds for static predecessor search. Pǎtraşcu also
developed an exciting line of attack for dynamic data structure lower bounds by connecting several conjectured hard
problems to a communication problem called Multiphase. Pǎtraşcu conjectured a strong communication lower bound
for Multiphase and showed that this lower bound implies polynomial lower bounds for several dynamic data struc-
tures. Chattopadhyay et al. [3] disproved the strongest of Pǎtraşcu’s conjectures for Multiphase, but not in a way which
invalidates the implication for poylnomial data structure lower bounds.

The highest lower bounds to date for any dynamic data structure is the Ωpplogpnq{ log logpnqq2q bound of Larsen [8]
for dynamic range counting. A similar lower bound was later given by Clifford et al. [4] for Matrix Vector Multiplica-
tion and Pǎtraşcu’s Multiphase problem.

Brody and Larsen [2] initiated the study of non-adaptive bounds for dynamic data structures and showed poylno-
mial lower bounds for a number of problems including Multiphase. The techniques in Chattopadhyay et al. [3], which
preceded [2], give the same lower bounds. Neither of these works showed lower bounds for non-adaptive (but not
memoryless) updates.

3

Remark 1. We recently became aware of a paper by Ramamoorthy and Rao [11] that also proves nonadaptive data
structure bounds for Predecessor Search. Ramamoorthy and Rao consider a similar set of secondary problems (median,
minimum vs. maximum) and obtain similar bounds. Our analysis and bounds provide tradeoffs between the universe
size m, word size w, and maximum number of items in the set n; Ramamoorthy and Rao consider only the first two
parameters.

In both works, the lower bounds for predecessor search apply even when inerstions are the only updates. An
important distinction is that the bound for predecessor search of Ramamoorthy and Rao only require queries to be
non-adaptive; we require both queries and insertions to be non-adaptive.

Both papers have been developed independently and in parallel.

1.5 Our Techniques
For the non-adaptive data structure lower bound (Theorem 1), we prove something stronger than is stated in the
theorem. Specifically, we show that there must be a large set of cells C along with a set A Ď rms that is reasonably
large such that for each i P A, Predpiq queries every cell in C. We build this set C iteratively by using the pigeonhole
principle along with an encoding argument.

For complete details, see Section 2; we give a high-level sketch here. We begin with C :“ H and A “ rms, and
consider the first update Insertp1q. This update has the potential to affect every query. Furthermore, for any operation,
the set of cells probed are fixed and chosen in advance. Therefore, for each i P A, the cells probed by Predpiq and by
Insertp1q must intersect. Insertp1q probes at most tu cells, so by the pigeonhole principle, there must be some cell c
that is probed by Insertp1q and by at least m{tu queries. We fix that cell and set A :“ ti : Predpiq probes cu.

Next, we claim that if C is not too large and A is not too small, then there must be some j P A and a not-too-small
fraction of A such that Insertpjq and Predpiq insersect outside of C. This claim, formalized in Lemma 8, is nontrivial
and is our main technical tool. We prove this using an encoding argument—essentially, we show that if there was
no such update, then C would contain at least « logpmq2 bits of information, contradicting the assumption that |C|
is small. From here we apply another pigeonhole argument to show that there must be some cell outside of c that is
probed by a large enough fraction of the remaining queries. Alternating applications of the pigeonhole argument and
our main technical lemma allows us to grow C iteratively, up to a size of |C| ě α logm

2w logpw¨tuq
.

Theorems 3 and 4 use more standard techniques. Our Oplogmq non-adaptive data structure uses range trees,
and our Ωpm{wq lower bound on memoryless data structures uses a direct encoding argument—we’re able to use a
memoryless data structure for MAX to encode an arbitrary subset of rms, requiring m{w words.

Before getting into the lower bound proofs, we summarize the encoding arguments common to data structure lower
bounds.2

The Coding Lower Bound. In a typical encoding argument, an encoder is tasked with communicating information
(say, an element x P S from a finite set) to a decoder. The encoder can encode this information in any number of ways,
as long as the decoder can unambiguously recover the information. In order for the decoder to recover the encoder’s
input, the encoder must at a minimum send a different message for each distinct input.

When applying encoding arguments to show lower bounds, the encoder uses a data structure to encode an arbitrary
element from S. If the data structure was unreasonably efficient, then the length of the encoding would be to short
for the decoder to recover the input without error. We conclude that the data structure cannot be too efficient. This
intuition is formalized in the definition and fact below.

Definition 1.1 (Encoding Procedure). An encoding procedure for a finite set S is a pair of functions ENC : S Ñ
t0, 1uk,DEC : t0, 1uk Ñ S such that for all x P S, we have

DECpENCpxqq “ x .

The length of the encoding is k.

2Encoding arguments are often phrased in terms of input distributions and Shannon entropy. In this work, we focus on deterministic data
structure bounds, and simplify the Coding Lower Bound accordingly.

4

The key feature of an encoding procedure is that the encoder must send a different message for each element of S.
Otherwise, the decoder cannot decode without error.

Fact 5. [Coding Lower Bound]
In any encoding procedure for a finite set S, the length of the encoding must be at least logpSq.

1.6 Roadmap
We prove Theorems 1, 3, and 4 in Sections 2, 3, and 4 respectively, and introduce notation relevant for each theorem
in the relevant sections.

2 Non-Adaptive Lower Bound for PREDECESSOR

For our non-adaptive lower bound, it is helpful to work with a more symmetric “wrap-around” variation of the standard
PREDECESSOR problem. In this variation, we define Predpiq to be equal to

1. the largest x ď i in T , if such an element exists,

2. the largest x P T , if T is nonempty but contains no elements ď i, or

3. K if T is empty.

It is easy to see that this variation affects the cell probe complexity by at most a factor of 2. We resist notation
expansion and in this Section use PREDECESSOR to denote this wrap-around variation. The symmetry of this version
of PREDECESSOR will be useful because each update has the potential to affect any query.

For this lower bound, we will need to compare the sets of cells probed by different updates and queries. It will be
helpful to introduce some notation to make this argument easier to express.

For any i, j P rms, we let uj and qi denote Insertpjq and Predpiq respectively. By convention, we use a subscript
j to refer to updates and i to refer to queries. We use Uj and Qi to denote the set of cells probed by uj , qi respectively.
We’ll also abuse notation a bit and use A Ď rms to denote both a subset of indices and the corresponding subset of
queries or updates.

Theorem 6. [Restatement of Theorem 1] Let α :“ mintn,w{2u. Any nonadaptive data structure solving dynamic
predecessor with update time tu “ Oplogmq, and query time tq must satisfy

tq ě
α logm

2w logpw ¨ tuq
.

Corollary 7. Fix any nonadaptive data structure for the dynamic predecessor problem with query time tq , and update
time tu. If n ě w{2 then we have

maxptq, tuq “ Ω

ˆ

logm

log logm

˙

.

If n ă w{2, then we have

maxptq, tuq “ Ω

ˆ

n logm

w logw

˙

.

If furthermore w “ Θplogmq, then we have maxttq, tuu “ Ωpn{ log logmq.

The proof of Theorem 1 depends on the following technical lemma, whose proof we defer to Subsection 2.1.

Lemma 8 (Main Technical Lemma). Let C be a set of cells in the data structure, and let A Ď rms. If

1. |A| ě
?
m,

2. |C| ď α logm
5w , and

5

3. for all i P A, qi probes all cells in C,

then there exists j P A and a subset A1 Ď A such that |A1| ě |A|
w2 and for each i P A1 there is a cell c R C such that

uj and qi both probe c.

At a high level, this lemma says that if we have a large enough set of queries A and a small enough set of cells
C such that each query in A probes each cell in C, then there must be an update uj that has a nontrivial intersection
outside of C with a large subset of A.

Proof of Theorem 1. We prove this theorem by induction. Fix an arbitrary non-adaptive data structure for PREDECES-
SOR. As mentioned in the introduction, we’ll prove this theorem by iteratively growing a large set of cells C in the
data structure and a not-too-small set of queries A such that each query in A probes each cell in C. If we can grow the
set of cells until |C| “ α logm

2w logpw¨tuq
while keeping the set of queries nonempty, the theorem will follow.

This intuition is captured by the following inductive claim.

Claim 9. For all integers 1 ď k ď α logm
2w logpw¨tuq

, there is a set of k cells C and a set queries A Ď rms such that

1. |A| ě m
w2pk´1qtku

2. C Ď Qi for all i P A.

Setting k “ α logm
2w logpw¨tuq

proves the theorem.
It remains to prove the claim. First, we prove the base case of k “ 1. Fix an arbitrary update uj , and note that Uj

must intersect Qi for each i P rms. Otherwise, the contents of the cells queried by qi would be the same for the empty
set and for T “ tju, but Predpiq “ K when the set is empty, and Predpiq “ j when the set is tju. Note also that
|Uj | ď tu, so by the pigeonhole principle, there must be a cell c P Uj probed by at least m{tu queries i P rms. Fix this
cell c, define C :“ tcu, and let A be the set of queries that probe c. This set of cells C and queries A fit the premise of
Claim 9, completing the base case.

For the induction hypothesis, assume Claim 9 holds for some arbitrary k ă α logm
2w logpw¨tuq

.
In the induction step, we’ll show that Claim 9 holds for k ` 1 as well. By the induction hypothesis, there is a set

of k cells Ck and queries Ak such that |Ak| ě m{pw2pk´1qtkuq and Ck Ď Qi for all i P A. To invoke Lemma 8, |Ak|
must be at least

?
m. This holds as long as k À logpmq

2 logpw2tuq
, which is valid since α ď w{2.

By Lemma 8, there is an update j P Ak and subsetA1k Ă Ak such that |A1k| ě |Ak|{w
2 and for each i P A1k there is

a cell c R Ck such that uj and qi both probe c. Next, we again use the pigeonhole principle. Since |UjzC| ď |Uj | ď tu,
there must be a cell c P UjzC and a set A2k Ď A1k such that |A2k| ě |A

1
k|{tu and such that for each i P A2k, Qi probes

c. Set Ck`1 :“ C Y tcu and Ak`1 :“ |A2k|. Note that |Ak`1| ě |Ak|{w
2tu and that Ck`1 Ď Qi for all i P Ak`1.

The sets Ck`1, Ak`1 fit the premise of Claim 9 for k ` 1, completing the induction step.

2.1 Proof of Main Technical Lemma
We prove Lemma 8 using an encoding argument—we show that if the lemma is false, then we can use C to encode
more than |C| ¨ w bits of information, a contradiction.

Before delving into the technical details of the proof, we introduce some notation. Say that a set of cells C satisfies
puj , qiq if Uj XQi Ď C; that is, if C contains all cells probed by both uj and qi. Similarly, for a set T Ď rms, say that
C satisfies pT, qiq if C satisfies puj , qiq for all j P T . Lemma 8 states that there is j P A and a large subset A1 Ď A
(with |A1| ě |A|{w2) such that for all i P A1, C fails to satisfy puj , qiq.

Proof of Lemma 8. Towards a contradiction, assume that for all j P A, there are less than |A|{w2 queries i P A such
that the given set of cells C fails to satisfy puj , qiq. We’ll then use the data structure and C to encode the following
set:

S :“ tT Ď A : |T | “ α and |j ´ j1| ě
|A|

w
for all j, j1 P T u .

S is the set of all possible “spread-out” subsets of A with size α.

6

Claim 10. |S| ě 2
α logpmq

4 .

Proof. We construct a subset of S with the desired size. Let x1, . . . , xα be arbitrary elements of t1, . . . , |A|{wu. Set
yi :“ p2i´1q|A|

w ` xi, and set T :“ tyiu. Note that y1 ą
|A|
w , yα ď

p2α´1q|A|
w `

|A|
w “

2α|A|
w ď |A|, and that by

definition of T we have

2i´ 1

w
|A| ă yi ď

2i

w
|A| “

2pi` 1q ´ 1

w
|A| “

|A|

w
ď yi`1 ´

|A|

w
.

This means that yi`1 ´ yi ě
|A|
w for all i, hence T is a valid element of S. There are |A|

w choices for each xi, and α
elements of T , so there are p|A|{wqα choices for T . Thus, we have

|S| ě
ˆ

|A|

w

˙α

“ 2α logp|A|{wq ě 2
α
4 logpmq ,

where the final inequality holds because w ď m1{4 and |A| ě
?
m.

Encoding Procedure. Given an arbitrary T P S, the encoder takes the non-adaptive data structure, initially storing
an empty set. She then inserts each j P T . After performing all insertions, the encoder sends the contents of each cell
in C.

Decoding Procedure. The decoder first takes the non-adaptive data structure, initialized to store the empty set.
Then, she overwrites the contents of each cell in C using the encoder’s message. The decoder then executes qi for
each i P A and outputs the set of all elements that appear at least |A|2w times as answers; that is, the decoder returns the
set T 1 :“ tj P A : there are at least |A|2w elements i with Query(i) ““ ju.

Analysis. It is easy to see that the length of the encoding is w ¨ |C| ď α logpmq
5 bits, since the encoder sends the

memory contents of each cell in C. Next, we claim that the deocder correctly recovers T . By assumption, we have that
for all j P A, the set of cells C satisfies puj , qiq for all but at most |A|w2 queries. Therefore, for any T P S, C satisfies
pT, qiq for all but at most |A|w2 α ă

|A|
2w queries i P A.

Now, consider what happens when C satisfies pT, qiq. For any j P T , C contains all cells probed by both uj and
qi. Since this holds for all j P T , C contains all cells that changed during insertions that were probed by qi. Thus the
decoder can correctly compute qi when C satisfies pT, qiq.

When C does not satisfy pT, qiq, then the decoder is not guaranteed to correctly compute qi; we assume without
loss of generality that this is an error. The decoder executes query qi for each i P A, but computes this query incorrectly
whenever C does not satisfy pT, qiq. Moreover, since the decoder does not know T in advance, she cannot know a
priori which queries failed. We claim that because less than |A|

2w queries are not satisfied, the decoder still has enough
information to recover T .

To see this, take any j P T . By construction, |j ´ j1| ě |A|
w for any j, j1 P T . Hence j is the correct answer to

query qi for all i P rj, j ` |A|
w ´ 1s. Even if all errors were in this range, there would still be more than |A|

2w queries for
which the decoder correctly computes j. Hence, the decoder will place j P T 1. Conversely, consider any j R T . Then,
j is not a correct answer for any query. In the worst case, the decoder computes j for each possible query on which
she errs. Since there are less than |A|

2w such queries, the decoder will not place j P T 1. The decoder adds j to T 1 if and
only if j P T , hence the decoder correctly outputs T .

We’ve shown how to encode an arbitrary T P S using w ¨ |C| bits. By Fact 5 and Claim 10, we must have

w ¨ |C| ě logp|S|q ě α logm

4
.

Therefore, we must have |C| ě α logpmq
4w , contradicting our assumption that |C| ď α logm

5w .

3 Non-Adaptive Upper Bound

In this section, we give an Op logm
logpw{ logmq q non-adaptive upper bound for PREDECESSOR by using a form of range

tree.

7

Proof of Theorem 3. We first handle the case wherew “ logm, so each cell stores a single element from the universe
rms. Then, we adjust the construction to handle w ąą logm.

Let k be the least integer such that 2k ě m. Our data structure consists of a complete binary tree with 2k leaves,
labeled 1, . . . , 2k. At each node v in the tree, we store the largest i such that (i) i P T and (ii) i is a descendant of v.
If no such i exists, we store K. Note that each leaf i stores either i or K, and that the root node stores the maximal
element of T . Additionally, an interior node v with children l, r stores the maximum of what is contained in the cells
of l, r, treating K as 0. In other words, maxpvq :“ maxtmaxplq,maxprqu.

To execute Insertpiq, for each node v on the path from i to the root (including leaf i), the data structure checks to
see if i is now the largest element among descendents of v and updates appropriately if so. Note that the set of nodes
probed corresponds to all nodes on the path from leaf i to the root. This is fixed in advance, so Insertpiq is indeed a
non-adaptive update.3

Implementing Deletepiq is similar. Using the invariant that a the cell corresponding to node v maintains the max
of whatever is stored in its children, the data structure must query both children of node v. This must happen for each
node v on the path from leaf i up to the root, resulting in twice as many cell probes as an insert. However, as with
insertions, which cells to probe are known in advance, so the data structure remains non-adaptive. Unlike insertions,
these updates are not memoryless, since updating node v depends on the deletion, the current contents of the cell, and
the contents of both children.

To implement Predpiq, we traverse the path from the root down to leaf i. Each time we take the right child, the data
structure queries the cell corresponding to the left child. We also query the node corresponding to leaf i, and return
the maximal element found, or K if all queried cells returned K. In this way, the range t1, . . . , iu is partitioned into a
series of subranges, with at most one subrange per level of the binary tree. This sketch describes the query algorithm
as walking down the tree, but the nodes that are queried depend only on i itself, and so they can be again chosen in
advance.

Insertions, deletions, and queries can all be performed non-adaptively by querying at most two cells per level of
the tree. The tree has size 2k ă 2 ¨m, so the height is at most k “ Oplogmq. Since each operation probes at most two
cells per level of the range tree, the query complexity is also Oplogmq.

Finally, suppose that w ąą logm. In this case, we can pack w{ logm elements into a single word. Fix h such that
2h “ w{ logm, so that h “ logpw{ logmq. We modify the original range tree argument to pack subtrees of height h
into a single cell. So, for example, one cell stores the root value and all values of nodes less than h away from the root.
For each node at level h of the range tree, we store in a single cell all descendants at distance less than h from this node,
and so on. Insertions, deletions, and queries happen as before, but the w-bit memory cell containing the value stored
at each node is probed as opposed to the node itself. We still probe at most 2 cells per level, but this time, our “cells”
consume h levels of the original range tree. As a result, our new query complexity is O

´

logm
h

¯

“ O
´

logm
logpw{ logmq

¯

.

4 Memoryless Lower Bound for PREDECESSOR

Our final result is a strong lower bound for the cell probe complexity of memoryless data structures that solve PRE-
DECESSOR. In fact, our result is a lower bound for a simpler problem MAX. MAX easily reduces to PREDECESSOR,
so the lower bound applies to both problems.

Proof of Theorem 4. The proof is a simple encoding argument. Let the encoder be given a set T Ď rms, and let D be
a memoryless data structure for MAX.

The encoder encodes T by first preprocessing a copy of D and then inserting each element in T one at a time into
D. She then writes the contents of each cell probed by Max. Call these cells CMax. Because the query algorithm
is non-adaptive, CMax can be determined without knowledge of their contents and will not change regardless of any
updates that occur.

3In fact, insertions in this data structure are memoryless, since each cell update depends only on the insertion and the current contents of the cell.

8

The decoding protocol is as follows. The decoder preprocesses her own copy of D and initializes T 1 “ H. Then,
she writes to the cells in CMax using the encoding provided by the encoder. The decoder then performs the following
until k “ 0:

1. Run Maxpq on D. Let k be the value returned by Maxpq.

2. If k “ K, the decoder ends the decoding algorithm and outputs T 1.

3. If k ą 0, the decoder adds k to T 1, emulates Deletepkq on D, and repeats the process.

Note that the decoder cannot completely execute the Deletepkq operations, but does not need to. Since queries
and updates are non-adaptive, she knows which cells get probed by Deletepkq. Additionally, since the updates are
memoryless, the contents of each cell written by Deletepkq are a function of Deletepkq and the current contents of the
cell. The decoder only needs to maintain the cells probed by Maxpq. Since she is given the initial contents of these
cells by the encoder, and since she knows which update operations to perform, she can maintain the contents of the
cells probed by Maxpq. The decoder might not be able to maintain cells outside of CMax that are probed by updates,
but she does not need to, since these cells are not queried by Maxpq. By repeating this process as long as Max returns
nonzero elements, the decoder can recover all of T .

We now analyze the length of the encoding to determine a lower bound on tq . The encoder sends w bits for each
cell in CMax. Since |CMax| “ tq by definition, the length of the encoding is wtq . The encoding is for an arbitrary
subset S Ď rms, so by the coding lower bound, any encoding must be at least m bits long. Thus, we get wtq ě m,
hence tq ě m{w.

References
[1] Alok Aggarwal, Jeffrey Vitter, et al. The input/output complexity of sorting and related problems. Communica-

tions of the ACM, 31(9):1116–1127, 1988.

[2] Joshua Brody and Kasper Green Larsen. Adapt or die: Polynomial lower bounds for non-adaptive dynamic data
structures. Theory of Computing, 11(19):471–489, 2015.

[3] Arkadev Chattopadhyay, Jeff Edmonds, Faith Ellen, and Toniann Pitassi. Upper and lower bounds on the power
of advice. SIAM Journal on Computing, 45(4):1412–1432, 2016.

[4] Raphael Clifford, Allan Grønlund, and Kasper Green Larsen. New unconditional hardness results for dynamic
and online problems. In Proc. 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 1089–1107. IEEE, 2015.

[5] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data structures. In Proc. 21st ACM
ACM Symposium on Theory of Computing (STOC), pages 345–354. ACM, 1989.

[6] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic networks. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 513–522. ACM, 2010.

[7] Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms. ACM SIGACT News, 42(1):82–
96, 2011.

[8] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Proc. 44th ACM Symposium on
Theory of Computing (STOC), pages 85–94, 2012.

[9] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc. 38th ACM Symposium
on Theory of Computing (STOC), pages 232–240, 2006.

[10] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors. In Proc. 18th
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 555–564, 2007.

9

[11] Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. Non-adaptive data structure lower bounds for median
and predecessor search from sunflowers. https://eccc.weizmann.ac.il/report/2017/040/, 2017.

[12] Nir Shavit. Data structures in the multicore age. Communications of the ACM, 54(3):76–84, 2011.

[13] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proc. 16th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 75–84, 1975.

[14] Elad Verbin and Qin Zhang. The limits of buffering: a tight lower bound for dynamic membership in the external
memory model. SIAM Journal on Computing, 42(1):212–229, 2013.

[15] Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with massive data. ACM Comput-
ing surveys (CsUR), 33(2):209–271, 2001.

[16] Omri Weinstein and Huacheng Yu. Amortized dynamic cell-probe lower bounds from four-party communication.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 305–314. IEEE,
2016.

[17] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM (JACM), 28(3):615–628, 1981.

10

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

