
A Nearly Optimal Lower Bound on the Approximate Degree of AC0

Mark Bun∗

mbun@cs.princeton.edu
Justin Thaler†

justin.thaler@georgetown.edu

Abstract

The approximate degree of a Boolean function f : {−1, 1}n → {−1, 1} is the least degree of a real
polynomial that approximates f pointwise to error at most 1/3. We introduce a generic method for
increasing the approximate degree of a given function, while preserving its computability by constant-
depth circuits.

Specifically, we show how to transform any Boolean function f with approximate degree d into a
function F on O(n · polylog(n)) variables with approximate degree at least D = Ω(n1/3 · d2/3). In
particular, if d = n1−Ω(1), then D is polynomially larger than d. Moreover, if f is computed by a
polynomial-size Boolean circuit of constant depth, then so is F .

By recursively applying our transformation, for any constant δ > 0 we exhibit an AC0 function of
approximate degree Ω(n1−δ). This improves over the best previous lower bound of Ω(n2/3) due to
Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of n that holds for any
function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width.

We describe several applications of these results. We give:

• For any constant δ > 0, an Ω(n1−δ) lower bound on the quantum communication complexity of a
function in AC0.

• A Boolean function f with approximate degree at least C(f)2−o(1), where C(f) is the certificate
complexity of f . This separation is optimal up to the o(1) term in the exponent.

• Improved secret sharing schemes with reconstruction procedures in AC0.

1 Introduction

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least
degree of a real polynomial that approximates f pointwise to error at most ε. By convention, d̃eg(f) is
used to denote d̃eg1/3(f), and this quantity is referred to without qualification as the approximate degree

of f . The choice of the constant 1/3 is arbitrary, as d̃eg(f) is related to d̃egε(f) by a constant factor for
any constant ε ∈ (0, 1). Any Boolean function f has an exact representation as a multilinear polynomial of
degree at most n, so the approximate degree of f is always at most n.

Approximate degree is a natural measure of the complexity of a Boolean function, with a wide variety
of applications throughout theoretical computer science. For example, upper bounds on approximate degree
underly many state-of-the-art learning algorithms [8, 32–35, 40, 45], algorithmic approximations for the
inclusion-exclusion principle [31, 48], and algorithms for differentially private data release [22, 65]. Very
recently, approximate degree upper bounds have also been used to show new complexity-theoretic lower
∗Princeton University.
†Georgetown University.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 51 (2017)

bounds. In particular, upper bounds on the approximate degree of Boolean formulae underly the best known
lower bounds on the formula complexity and graph complexity of explicit functions [61–63].

Meanwhile, lower bounds on approximate degree have enabled significant progress in quantum query
complexity [2,4,9], communication complexity [16,23,26–28,43,47,50,51,53], circuit complexity [38,49],
oracle separations [11, 15], and secret-sharing [14]. In particular, approximate degree has been established
as one of the most promising tools available for understanding the complexity of constant-depth Boolean
circuits1 (captured by the complexity class AC0). Indeed, approximate degree lower bounds lie at the heart
of the best known bounds on the complexity of AC0 under measures such as sign-rank, discrepancy and
margin complexity, Majority-of-Threshold and Threshold-of-Majority circuit size, and more.

Despite all of these applications, progress in understanding approximate degree has been slow and diffi-
cult. As noted by many authors, the following basic problem remains unresolved [10, 14, 18–21, 46, 57].

Problem 1. Is there a constant-depth circuit in n variables with approximate degree Ω(n)?

Prior to this work, the best result in this direction was Aaronson and Shi’s well-known Ω(n2/3) lower
bound on the approximate degree of the Element Distinctness function (ED for short). In this paper, we
nearly resolve Open Problem 1. Specifically, for any constant δ > 0, we exhibit an explicit constant-depth
circuit C with approximate degree Ω(n1−δ). Moreover, the circuit C that we exhibit has depth O(log(1/δ)).
Our lower bound also applies to DNF formulae of polylogarithmic width (and quasipolynomial size).

Applications. We describe several consequences of the above results in complexity theory and cryptogra-
phy. (Nevertheless, the list of applications we state here is not exhaustive.) We state these results somewhat
informally in this introduction, leaving details to Section 5. Specifically:

• For any constant δ > 0, we obtain an Ω(n1−δ) lower bounds on the quantum communication com-
plexity of AC0. This nearly matches the trivial O(n) upper bound that holds for any function.

• We exhibit a function f with approximate degree at least C(f)2−o(1), where C(f) is the certificate
complexity of f . This separation is optimal up to the o(1) term in the exponent. The previous best
result was a power-7/6 separation, reported by Aaronson et al. [3].

• We give improved secret sharing schemes with reconstruction procedures in AC0.

While the first and third applications follow by combining our approximate degree lower bounds with
prior works in a black box manner [14, 50], the second application requires some additional effort.

1.1 Prior Work on Approximate Degree

1.1.1 Early Results via Symmetrization

The notion of approximate degree was introduced in seminal work of Nisan and Szegedy [39], who proved
a tight Ω(n1/2) lower bound on the approximate degree of the functions ORn and ANDn.2 Nisan and
Szegedy’s proof exploited a powerful technique known as symmetrization, which was introduced in the late
1960’s by Minsky and Papert [38]. Until recently, symmetrization was the primary tool available for proving
approximate degree lower bounds [4, 5, 11, 41, 42, 45].

Symmetrization arguments proceed in two steps. First, a polynomial p on n variables (which is assumed
to approximate the target function f) is transformed into a univariate polynomial q in such a way that

1In this paper, all circuits are Boolean and of polynomial size unless otherwise specified.
2Whenever it is not clear from context, we use subscripts to denote the number of variables on which a function is defined.

2

deg(q) ≤ deg(p). Second, a lower bound on deg(q) is proved, using techniques tailored to the analysis of
univariate polynomials.

Although powerful, symmetrization is inherently lossy: by turning a polynomial p on n variables into
a univariate polynomial q, information about p is necessarily thrown away. Hence, several works identified
the development of non-symmetrization techniques for lower bounding the approximate degree of Boolean
functions as an important research direction (e.g., [1,47,54]). A relatively new such lower-bound technique
called the method of dual polynomials plays an essential role in our paper.

1.2 The Method of Dual Polynomials and the AND-OR Tree

A dual polynomial is a dual solution to a certain linear program capturing the approximate degree of any
function. These polynomials act as certificates of the high approximate degree of a function. Strong LP
duality implies that the technique is lossless, in contrast to symmetrization. That is, for any function f and
any ε, there is always some dual polynomial ψ that witnesses a tight ε-approximate degree lower bound for
f .

A dual polynomial that witnesses the fact that d̃egε(fn) ≥ d is a function ψ : {−1, 1}n → {−1, 1}
satisfying three properties:

•
∑

x∈{−1,1}n ψ(x) · f(x) > ε. If ψ satisfies this condition, it is said to be well-correlated with f .

•
∑

x∈{−1,1}n |ψ(x)| = 1. If ψ satisfies this condition, it is said to have `1-norm equal to 1.

• For all polynomials p : {−1, 1}n → R of degree less than d, we have
∑

x∈{−1,1}n p(x) ·ψ(x) = 0. If
ψ satisfies this condition, it is said to have pure high degree at least d.

One success story for the method of dual polynomials is the resolution of the approximate degree of
the two-level AND-OR tree. For many years, this was the simplest function whose approximate degree
resisted characterization by symmetrization methods [5, 39, 54, 58]. Given two functions fM , gN , let f ◦
g : {−1, 1}M ·N → {−1, 1} denote their block composition, i.e., f ◦ g = f(g, . . . , g).

Theorem 1. The approximate degree of the function ANDM ◦ ORN is Θ(
√
M ·N).

Ideas pertaining to both the upper and lower bounds of Theorem 1 will be useful to understanding the
results in this paper. The upper bound of Theorem 1 was established by Høyer, Mosca, and de Wolf [30], who
designed a quantum query algorithm to prove that d̃eg(ANDM ◦ ORN) = O(

√
MN). Later, Sherstov [55]

proved the following more general result.

Theorem 2 (Sherstov [55]). For any Boolean functions f, g, we have d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)).

Sherstov’s remarkable proof of Theorem 2 is via a technique we call robustification. This approximation
technique will be an important source of intuition for our new results.

Robustification. Sherstov [55] showed that for any polynomial p : {−1, 1}M → {−1, 1}, and every δ >
0, there is a polynomial probust of degree O(deg(p) + log(1/δ)) that is robust to noise in the sense that
|p(y) − probust(y + e)| < δ for all y ∈ {−1, 1}M , and e ∈ [−1/3, 1/3]M . Hence, given functions fM , gN ,
one can obtain an (ε + δ)-approximating polynomial for the block composition fM ◦ gN as follows. Let p
be an ε-approximating polynomial for fM , and q a (1/3)-approximating polynomial for gN . Then the block
composition p∗ := probust(q, . . . , q) is an (ε + δ)- approximating polynomial for fM ◦ gN . Notice that the
degree of p∗ is at most the product of the degrees of probust and q.

3

Sherstov [52] and the authors [17] independently used the method of dual polynomials to obtain the
matching Ω(

√
M ·N) lower bound of Theorem 1. These lower bound proofs work by constructing (ex-

plicitly in [17] and implicitly in [52]) an optimal dual polynomial ψAND-OR for the AND-OR tree. Specif-
ically, ψAND-OR is obtained by taking dual polynomials ψAND, ψOR respectively witnessing the fact that
d̃eg(ANDM) = Ω(

√
M) and d̃eg(ORN) = Ω(

√
N), and combining them in a precise manner.

For arbitrary Boolean functions f and g, this method of combining dual polynomials ψf and ψg to obtain
a dual polynomial ψf ?ψg for f ◦ g was introduced in earlier line of work by Shi and Zhu [59], Lee [36] and
Sherstov [54]. Specifically, writing x = (x1, . . . , xM) ∈

(
{−1, 1}N

)M ,

(ψf ? ψg)(x) := 2M · ψf (. . . , sgn(ψg(xi)), . . .) ·
M∏
i=1

|ψg(xi)|.

This technique of combining dual witnesses, which we call the “dual block” method, will also be central to
this paper. The lower bound of [17, 52] was obtained by refining the analysis of ψf ? ψg from [54] in the
case where f = ANDM and g = ORN .

As argued in subsequent work of Thaler [64, Section 1.2.4], the combining method ψf ?ψg is specifically
tailored to showing optimality of the polynomial approximation p∗ for f ◦ g obtained via robustification.
This assertion can be made precise via complementary slackness: the dual solution ψf ? ψg can be shown
to obey complementary slackness in an approximate (yet precise) sense with respect to the solution to the
primal linear program corresponding to p∗.

1.2.1 Additional Prior Work

The method of dual polynomials has recently been used to establish a number of new lower bounds for
approximate degree [15, 18, 24, 40, 54, 56, 64]. All of these results focus on block composed functions, and
can be viewed as hardness amplification results. Specifically, they show that the block composition f ◦ g
is strictly harder to approximate by low-degree polynomials (requiring either higher degree or higher error)
than either f or g individually. These results have enabled progress on a number of open questions regarding
the complexity of AC0, as well as oracle separations involving the polynomial hierarchy and various notions
of statistical zero-knowledge proofs.

Recently, a handful of works have proved stronger hardness amplification results for approximate degree
by moving beyond block composed functions [19, 42]. These papers use very different techniques than
the ones we introduce in this work, as they are focused on a different form of hardness amplification for
polynomial approximation (specifically, they amplify approximation error instead of degree).

1.3 Our Results and Techniques

A major technical hurdle to progress on Problem 1 is the need to go beyond the block composed functions
that were the focus of prior work. Specifically, Theorem 2 implies that the approximate degree of fM ◦ gN
(viewed as a function of the number of inputs M · N) is never higher than the approximate degree of
fM or gN individually (viewed as a function of M and N respectively). For example, if fM and gN
both have approximate degree equal to the square root of the number of inputs (i.e., d̃eg(fM) = O(

√
M)

and d̃eg(gN) = O(
√
N)), then the block composition fM ◦ gN has the same property (i.e., d̃eg(fM ◦

gN) = O(
√
M ·N)). Our results introduce an analysis of non-block-composed functions that overcomes

this hurdle.

4

Quantitatively, our main lower bounds for constant-depth circuits and DNFs are as follows. To obtain
the tightest possible results for a given circuit depth, our analysis pays close attention to whether a circuit C
is monotone (C is said to be monotone if it contains no NOT gates).

Theorem 3. Let k ≥ 1 be any constant integer. Then there is an (explicitly given) monotone circuit on
n · log4k−4(n) variables of depth 2k, with AND gates at the bottom, which computes a function with ap-
proximate degree Ω(n1−2k−1/3k · log3−2k+2/3k(n)).

For example, Theorem 3 implies a Boolean circuit of depth 6 on n variables with approximate degree
Ω̃(n23/27) = Ω̃(n0.851...).

Theorem 4. Let k ≥ 1 be any constant integer. Then there is an (explicitly given) monotone DNF on
n · log4k−4(n) variables of width O

(
log2k−1(n)

)
(and size 2O(log2k(n))) which computes a function with

approximate degree Ω(n1−2k−1/3k · log3−2k+2/3k(n)).

Theorems 3 and 4 are in fact corollaries of a more general hardness amplification theorem. This result
shows how to take any Boolean function f and transform it into a related function g on roughly the same
number of variables that has significantly higher approximate degree (unless the approximate degree of f is
already Ω̃(n)). Moreover, if f is computed by a low-depth circuit, then g is as well.

Theorem 5. Let f : {−1, 1}n → {−1, 1} with d̃eg(f) = d. Then f can be transformed into a related
function g : {−1, 1}m → {−1, 1} with m = O(n log4 n) and d̃eg(g) = Ω(n1/3 · d2/3 · log n). Moreover, g
satisfies the following additional properties.

• If f is computed by a circuit of depth k, then g is computed by a circuit of depth k + 3. (1)

• If f is computed by a monotone circuit of depth k with AND gates at the bottom,

then g is computed by a monotone circuit of depth k + 2 with AND gates at the bottom. (2)

• If f is computed by monotone DNF of width w, then g is computed by monotone DNF of

width O(w · log2 n). (3)

1.3.1 Hardness Amplification Construction

The goal of this subsection is to convey the main ideas underlying the transformation of f into the harder-
to-approximate function g in the statement of Theorem 5. We focus on illustrating these ideas when we start
with the function f = ANDR, where we assume for simplicity that R is a power of 2. Let n = N logR for
a parameter N to be determined later.3 Consider the function

SURJECTIVITY : {−1, 1}n → {−1, 1}

(SURJN,R for short) defined as follows. SURJN,R interprets its input s as a list ofN numbers (s1, . . . , sN)
from a range [R]. The function SURJN,R(s) = −1 if and only if every element of the range [R] appears at
least once in the list.4

When we apply Theorem 5 to f = ANDR, the harder function g we construct is precisely SURJN,R
(for a suitable choice of N ≤ Õ(R)). Before describing our transformation for general f , we provide some
intuition for why SURJN,R is harder to approximate than ANDR.

3All logarithms in this paper are taken in base 2.
4As is standard, we associate −1 with logical TRUE and +1 with logical FALSE throughout.

5

s1 s2 s3 s4 s5 s6

y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26 y31 y32 y33 y34 y35 y36

AND	

OR	 OR	 OR	

(Each	sj	∈	[R])	 2	 1	 2	 1	 3	 3	

1	 -1	 1	 -1	 1	 1	 -1	 1	 -1	 1	 1	 1	 1	 1	 1	 1	 -1	 -1	

AND	

OR	 OR	 OR	

Figure 1: Depiction of Equation (4) when N = 6 and R = 3.

Getting to Know SURJECTIVITY. It is known that d̃eg(SURJN,R) = Ω̃(n2/3) when R = N/2 [4].
We do not improve this lower bound for SURJN,R, but we give a much more general and intuitive proof
for it. The best known upper bound on d̃eg(SURJN,R) is the trivial O(n) that holds for any function on n
variables.

Although this upper bound is trivial, the following is an instructive way to achieve it. For (i, j) ∈
[R]× [N], let5

yij(s) =

{
−1 if sj = i

1 otherwise.

Observe that yij(s) is exactly computed by a polynomial in s of degree at most logR, as yij(s) depends on
only logR bits of s. For brevity, we will typically denote yij(s) by yij , but the reader should always bear in
mind that yij is a function of s.

Clearly, it holds that:

SURJN,R(s)=ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1, . . . , yR,N)). (4)

Equality (4) is depicted in Figure 1 in the special case N = 6, R = 3. Let p∗ be the polynomial approxima-
tion of degree O(

√
R ·N) for the block composed function ANDR ◦ ORN obtained via robustification (cf.

Section 1.2). Then
p∗(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N)

approximates SURJN,R, and has degree O(deg(p∗) · logR). If N = O(R), then this degree bound is
O(N logR) = O(n).

Our analysis in the proof of Theorem 5 is tailored to showing a sense in which this robustification-
based approximation method is nearly optimal. Unsurprisingly, our analysis makes heavy use of the dual
block method of combining dual witnesses [36, 54, 59], as this method is tailored to showing optimality of
robustification-based approximations (cf. Section 1.2). However, there are several technical challenges to
overcome, owing to the fact that Equation (4) does not express SURJ as a genuine block composition (since
a single bit of the input s ∈ {−1, 1}N ·logR affects R of the variables yij).

5We clarify that earlier work [5] using similar notation reverses the roles of i and j in the definition of yij(s). We depart from
the convention of earlier work because it simplifies the expression of the harder function g exhibited in Theorem 5.

6

The Transformation for General Functions. Recall from the preceding discussion that when applying our
hardness-amplifying transformation to the function f = ANDR, the harder function (on n = N · logR bits,
for someN = Õ(R)) takes the form SURJN,R = ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N)).
This suggests that for general functions f : {−1, 1}R → {−1, 1}, one should consider the transformed
function

F (s) := f(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1, . . . , yR,N)).

Unfortunately, this simple candidate fails spectacularly. Consider the particular case where f = ORR. It is
easy to see that

ORR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1, . . . , yR,N))

evaluates to −1 on all inputs s ∈ {−1, 1}N ·logR. Hence, it has (exact) degree equal to 0.
Fortunately, we are able to show that a modification of the above candidate does work for general

functions fR. Let R′ = R logR. Still simplifying, but only slightly, the harder function that we exhibit is
g : {−1, 1}N ·log(R′) → {−1, 1} defined via:

g(s) = (f ◦ ANDlogR)(ORN (y1,1,. . . ,y1,N),. . . ,ORN (yR′,1,. . ., yR′,N)).

1.3.2 Hardness Amplification Analysis

For expository purposes, we again describe the main ideas of our analysis in the case where f = ANDR.
Recall that in this case, the harder function g exhibited in Theorem 5 is SURJN,R on n = N · logR bits.
Moreover, in order to approximate SURJN,R, it is sufficient to approximate the block composed function
ANDR ◦ ORN . This can be done by a polynomial of degree O(

√
R ·N) using robustification.

The goal of our analysis is to show that there is a sense in which this approximation method for
SURJN,R is essentially optimal. Quantitatively, our analysis yields an Ω(R2/3) lower bound on the ap-
proximate degree of SURJN,R.

At a high level, our analysis proceeds in two stages. In the first stage (Section 3), we give a reduction
showing that to approximate SURJN,R(x), it is necessary to approximate ANDR ◦ORN , under the promise
that the input has Hamming weight at most N . This reduction is somewhat subtle, but conceptually crucial
to our results. Nevertheless, at the technical level, it is a straightforward application of a symmetrization
argument due to Ambainis [5].

In the second stage (Section 4), we prove that approximating ANDR ◦ ORN under the above promise
requires degree Ω(R2/3). Executing this second stage is the more technically involved part of our proof,
and we devote the remainder of this informal overview to it. Specifically, for some N = Õ(R), we must
construct a dual polynomial ψAND-OR witnessing the fact that d̃eg(ANDR ◦ ORN) = Ω(R2/3), such that
ψAND-OR is supported exclusively on inputs of Hamming weight at most N .

As a first attempt, one could consider the dual polynomial ψAND ?ψOR (cf. Section 1.2) used in our prior
work [17] to lower bound the approximate degree of the AND-OR tree. Unfortunately, this dual polynomial
has inputs of Hamming weight as large as Ω(R ·N) in its support.

Our strategy for handling this issue is to modify ψAND ? ψOR by post-processing it to zero out all of the
mass it places on inputs of Hamming weight more thanN . This must be done without significantly affecting
its pure high degree, its `1-norm, or its correlation with ANDR ◦ ORN . In more detail, let |y| denote the
Hamming weight of an input y ∈ {−1, 1}R·N , and suppose that we can show∑

|y|>N

|(ψAND ? ψOR)(y)| � R−D. (5)

7

Intuitively, if Inequality (5) holds for a large value of D, then inputs of Hamming weight greater than N are
not very important to the dual witness ψAND ? ψOR, and hence it is plausible that the lower bound witnessed
by ψAND ? ψOR holds even if such inputs are ignored completely.

To make the above intuition precise, we use a result of Razborov and Sherstov [44] to establish that
Inequality (5) implies the existence of a (explicitly given) function ψcorr : {−1, 1}N ·R → {−1, 1} such that:

• ψcorr(y) = ψAND ? ψOR(y) for all |y| > N ,

• ψcorr has pure high degree D, and

•
∑
|y|>N |ψcorr(y)| � R−D.

Let ψAND-OR = C · (ψAND ? ψOR − ψcorr), where C ≥ 1− o(1) is chosen so that the resulting function
has `1-norm equal to 1. Then ψAND-OR has:

1. Pure high degree min{D,
√
R ·N},

2. The same correlation, up to a factor of 1− o(1), as ψAND ? ψOR has with ANDR ◦ ORN , and

3. Support restricted to inputs of Hamming weight at most N .

Hence, Step 2 of the proof is complete if we can show that Inequality (5) holds for D = Ω(R2/3).
Unfortunately, Inequality (5) does not hold unless we modify the dual witness ψOR to satisfy additional
properties. First, we modify ψOR so that

ψOR is supported only on inputs of Hamming weight at most R1/3. (6)

Moreover, we further ensure that ψOR is biased toward inputs of low Hamming weight in the sense that

For all t ≥ 0,
∑
|x|=t

|ψOR(x)| . 1/(t+ 1)2. (7)

We can guarantee that both Conditions (6) and (7) hold while still ensuring that ψOR has pure high degree
Ω(R1/6), as well as the same `1-norm and correlation with ORN . (The fact that this modified dual polyno-
mial ψOR has pure high degree Ω(R1/6) rather than Ω(R1/2) is the reason we are only able to establish an
Ω(R2/3) lower bound on the approximate degree of SURJN,R, rather than Ω(R).)

We now explain why these modifications imply that Inequality (5) holds for D = Ω(R2/3). Recall that

(ψAND ? ψOR)(y1, . . . , yR) = 2R · ψAND(. . . , sgn (ψOR(yi)) , . . .) ·
R∏
i=1

|ψOR(yi)|.

For intuition, let us focus on the final factor in this expression,
∏R
i=1 |ψOR(yi)|. Since ψOR has `1-norm

equal to 1, the function |ψOR| is a probability distribution, and
∏R
i=1 |ψOR(yi)| is a product distribution

over
(
{−1, 1}N

)R. At a high level, our analysis shows that this product distribution is “exponentially more
biased” toward inputs of low Hamming weight than is ψOR itself.

More specifically, Conditions (6) and (7) together imply that, if y = (y1, . . . , yR) ∈ {−1, 1}N ·R is
drawn from the product distribution

∏R
i=1 |ψOR(yi)|, then the probability that y has Hamming weight more

than N = Õ(R) is dominated by the probability that roughly R2/3 of the yi’s each have Hamming weight
close to R1/3 (and the remaining yi’s have low Hamming weight). But then Condition (7) ensures that the
probability that this occurs is at most R−Ω(R2/3).

8

1.4 Paper Organization

Section 2 covers technical preliminaries. Stage 1 of the proof of our main hardness amplification theorem,
Theorem 5, is completed in Section 3. In Section 4, we execute Stage 2 of the proof of Theorem 5, and use it
to establish Theorems 3 and 4 from the introduction. Finally, Section 5 describes applications of our results
to complexity theory and cryptography.

2 Preliminaries

We begin by formally defining the notion of approximate degree of any partial function defined on a subset
of Rn. Throughout, for any subset X ⊆ Rn and polynomial p : X → R, we use deg(p) to denote the total
degree of p, and refer to this without qualification as the degree of p.

Definition 6. Let X ⊆ Rn, and let f : X → {−1, 1}. The ε-approximate degree of f , denoted d̃egε(f), is
the least degree of a real polynomial p : Rn → R such that |p(x) − f(x)| ≤ ε for all x ∈ X . We refer to
such a p as an ε-approximating polynomial for f . We use d̃eg(f) to denote d̃eg1/3(f).

We highlight two slightly non-standard aspects of Definition 6. The first is that it considers subsets of
Rn rather than {−1, 1}n. This level of generality has been considered in some prior works [5, 21, 54], and
we will require it in our proof of Theorem 5 (cf. Section 3). Second, our definition of an ε-approximating
polynomial p for f above does not place any restriction on p(x) for x outside of the domain of f . This is
in contrast to some other works (e.g. [15, 20, 28, 53]) that do require p(x) to be bounded for some inputs
x outside of the domain of f . Our definition is the most natural and convenient for the purposes of our
analyses.

Strong LP duality implies the following characterization of approximate degree (see, e.g., [50]).

Theorem 7. Let X be a finite subset of Rn, and let f : X → {−1, 1}. Then d̃egε(f) ≥ d if and only if there
exists a function ψ : X → R satisfying the following properties.∑

x∈X
ψ(x) · f(x) > ε, (8)

∑
x∈X
|ψ(x)| = 1, and (9)

For every polynomial p : X → R of degree less than d,
∑
x∈X

p(x) · ψ(x) = 0. (10)

For functions ψ1 : X → R and ψ2 : X ′ → R defined on finite domains X ,X ′ with X ⊆ X ′, we define

〈ψ1, ψ2〉 :=
∑
x∈X

ψ1(x) · ψ2(x),

and we refer to this as the correlation of ψ1 with ψ2. (We define 〈ψ1, ψ2〉 similarly if instead X ′ ⊆ X .)
An equivalent way to define 〈ψ1, ψ2〉 is to first extend the domain of ψ1 to X ′ by setting ψ1(x) = 0 for all
x ∈ X ′ \ X , and then define

〈ψ1, ψ2〉 :=
∑
x∈X ′

ψ1(x) · ψ2(x).

9

We refer to the right hand side of Equation (9) as the `1-norm of ψ, and denote this quantity by ‖ψ‖1. If
ψ satisfies Equation (10), it is said to have pure high degree at least d.

Additional Notation. For an input x ∈ {−1, 1}n, we use |x| to denote the Hamming weight of x, i.e.,
|x| :=

∑n
i=1(1 − xi)/2. Let {−1, 1}N≤k := {x ∈ {−1, 1}N : |x| ≤ k}. We denote the set {1, . . . , N} by

[N] and the set {0, . . . , N} by [N]0. Given t ∈ R, we define sgn(t) to equal 1 if t > 0 and to equal −1
otherwise. The function 1N : {−1, 1}N → {−1, 1} denotes the constant function that always evaluates to
1. We denote by 1N the N -dimensional vector with all entries equal to 1.

Minsky-Papert Symmetrization. The following well-known lemma is due to Minsky and Papert [38].

Lemma 8. Let p : {−1, 1}n → {−1, 1} be an arbitrary polynomial. Then there is a univariate polynomial
q : R→ R of degree at most deg(p) such that

q(t) =
1(
n
t

) ∑
x∈{−1,1}n : |x|=t

p(x)

for all t ∈ [n]0.

2.1 The Dual Block Method

This section collects definitions and preliminary results on the dual block method [36,54,59] for constructing
dual witnesses for a block composed function F ◦ f by combining dual witnesses for F and f respectively.

Definition 9. Let Ψ : {−1, 1}M → R and ψ : {−1, 1}m → R be functions that are not identically
zero. Let x = (x1, . . . , xM) ∈ ({−1, 1}m)M . Define the dual block composition of Ψ and ψ, denoted
Ψ ? ψ : ({−1, 1}m)M → R, by

(Ψ ? ψ)(x1, . . . , xM) = 2M ·Ψ(. . . , sgn (ψ(xi)) , . . .) ·
M∏
i=1

|ψ(xi)|.

Proposition 10. The dual block composition satisfies the following properties:

Preservation of `1-norm: If ‖Ψ‖1 = 1 and ‖ψ‖1 = 1, then

‖Ψ ? ψ‖1 = 1. (11)

Multiplicativity of pure high degree: If 〈Ψ, P 〉 = 0 for every polynomial P : {−1, 1}M → {−1, 1} of
degree less than D, and 〈ψ, p〉 = 0 for every polynomial p : {−1, 1}m → {−1, 1} of degree less than d,
then for every polynomial q : {−1, 1}m·M → {−1, 1},

deg q < D · d =⇒ 〈Ψ ? ψ, q〉 = 0. (12)

Associativity: For every ζ : {−1, 1}mζ → R, ϕ : {−1, 1}mϕ → R, and ψ : {−1, 1}mψ → R, we have

(ζ ? ϕ) ? ψ = ζ ? (ϕ ? ψ). (13)

10

Proof. Properties (11) and (12) appear in [54, Proof of Theorem 3.3]. Proving that Property (13) holds is a
straightforward if tedious calculation that we now perform. Below, we will write an input

x = (x1, . . . , xmζ) = ((x1,1, . . . , x1,mϕ), . . . , (xmζ ,1, . . . , xmζ ,mϕ)),

where each xi,j ∈ {−1, 1}mψ . We expand

((ζ ? ϕ) ? ψ)(x1,1, . . . , xmζ ,mϕ) = 2mζ ·mϕ · (ζ ? ϕ)(. . . , sgn (ψ(xi,j)) , . . .) ·
mζ∏
i=1

mϕ∏
j=1

|ψ(xi,j)|

= 2mζ ·mϕ ·

(
2mζ ·ζ(. . . , sgn (ϕ(. . . , sgn (ψ(xi,j)) , . . .)) , . . .)·

mζ∏
i=1

|ϕ(. . . , sgn (ψ(xi,j)) , . . .)|

)
·
mζ∏
i=1

mϕ∏
j=1

|ψ(xi,j)|

= 2mζ · ζ(. . . , sgn (ϕ(. . . , sgn (ψ(xi,j)) , . . .), . . .) ·
mζ∏
i=1

2mϕ · |ϕ(. . . , sgn (ψ(xi,j)) , . . .)|
mϕ∏
j=1

|ψ(xi,j)|

= 2mζ · ζ(. . . , sgn ((ϕ ? ψ) (xi)) , . . .) ·

mζ∏
i=1

|(ϕ ? ψ)(xi)|

= (ζ ? (ϕ ? ψ))(x1, . . . , xmζ).

The following proposition identifies conditions under which a dual witness ψ for the large (1/3)-
approximate degree of a function f can be transformed, via dual block composition with a certain function
Ψ: {−1, 1}M → {−1, 1}, into a dual witness for the large (1 − 2−Ω(M))-approximate degree of the block
composition ANDM ◦ f .

Proposition 11 (Bun and Thaler [18]). Let m,M ∈ N. There exists a function Ψ : {−1, 1}M → R with the
following properties. Let f : {−1, 1}m → {−1, 1} be any function. Let ψ : {−1, 1}m → R be any function
such that 〈ψ, f〉 ≥ 1/3, ‖ψ‖1 = 1, and ψ(x) ≥ 0 whenever f(x) = 1. Then

〈Ψ ? ψ,ANDM ◦ f〉 ≥ 1− (2/3)M , (14)

‖Ψ ? ψ‖1 = 1, (15)

〈Ψ,1M 〉 = 0. (16)

The following proposition roughly states that if ψ and Ψ are dual polynomials that are well-correlated
with f and F respectively, then the dual block composition Ψ?ψ is well-correlated with the block composed
functionF◦f . There is, however, a potential loss in correlation that is proportional to the number of variables
on which F is defined.

Proposition 12 (Sherstov [54]). Let f : {−1, 1}m → {−1, 1} and F : {−1, 1}M → {−1, 1}, and let ε, δ >
0. Let ψ : {−1, 1}m → {−1, 1} be a function with ‖ψ‖1 = 1 and 〈ψ, f〉 ≥ 1 − δ. Let Ψ: {−1, 1}M →
{−1, 1} be a function with ‖Ψ‖1 = 1 and 〈Ψ, F 〉 ≥ ε. Then

〈Ψ ? ψ, F ◦ f〉 ≥ ε− 4Mδ.

11

3 Connecting Symmetric Properties and Block Composed Functions

In this section, we execute Stage 1 of our program for proving our main hardness amplification theorem,
Theorem 5. Throughout this entire section, fix an arbitrary function FR : {−1, 1}R → {−1, 1}. (In
order to prove Theorem 5, we will ultimately set R = 10 · n · log n, and take FR = f ◦ AND10 logn for
f : {−1, 1}n → {−1, 1}.)

Our analysis relies on several intermediate functions, which we now define and analyze. All of these
functions are variants of the function FR ◦ ORN .

3.1 The First Function: Block Composition Under a Promise

We define a promise variant of the function FR ◦ ORN as follows.

Definition 13. Fix positive numbers N and R. Recall that {−1, 1}N ·R≤N denotes the subset of {−1, 1}N ·R

consisting of vectors of Hamming weight at most N . Define G≤N to be the partial function obtained from
FR ◦ ORN by restricting its domain to {−1, 1}N ·R≤N .

Our goal is to reduce establishing Theorem 5 to establishing a lower bound on the approximate degree
of G≤N . Specifically, we prove the following theorem relating the approximate degree of G≤N to that of a
function g which is not much more complex than FR:

Theorem 14. Let G≤N : {−1, 1}N ·R≤N → {−1, 1} be as in Definition 13. There exists a function
g : {−1, 1}12·N ·dlog(R+1)e → {−1, 1} such that

d̃egε(g) ≥ d̃egε(G
≤N) · dlog(R+ 1)e. (17)

Moreover:

• If FR is computed by a circuit of depth k, then g is computed by a circuit of depth k + 2. (18)

• If FR is computed by a monotone circuit of depth k, then g is computed by a monotone

circuit of depth k + 2 with AND gates at the bottom. (19)

• If FR is computed by a monotone DNF of width w, then g is computed by a monotone

DNF of width O(w · logR). (20)

3.2 The Second Function: A Property of Evaluation Tables

Consider a vector s = (s1, . . . , sN) ∈ [R]N0 . Observe that s can be thought of as the evaluation table of a
function fs : [N] → [R]0 defined via fs(i) = si. The second function Gprop that we define (cf. Definition
16 below) can be thought of as a property of such a function fs.

In order to define Gprop, it is useful to describe such a function fs as follows.

Definition 15. Fix any s ∈ [R]N0 . For (i, j) ∈ [R]0×[N], define Y (s) = (. . . , Yij(s), . . .) ∈
(
{−1, 1}N

)R+1

where

Yij(s) =

{
−1 if sj = i

1 otherwise.

12

Observe that any vector y = (. . . , yij , . . .) ∈
(
{−1, 1}N

)R+1 equals Y (s) for some s ∈ [N]R+1 if and
only if y satisfies the following condition:

For every j ∈ [N], there exists exactly one value of i in [R]0 such that yij = −1. (21)

Accordingly, the domain of our second function Gprop is the subset of
(
{−1, 1}N

)R+1 satisfying Condition
(21).

Definition 16. Let DN,R be the subset of
(
{−1, 1}N

)R+1 of vectors satisfying Condition (21). We re-
fer to any function from DN,R to {−1, 1} as a property of functions [N] → [R]0. Define the property
Gprop : DN,R → {−1, 1} via: Gprop(y0, y1, . . . , yR) := FR(ORN (y1), . . . ,ORN (yR)).

One may view Gprop as a property of functions fs : [N] → [R]0 as follows. The property Gprop first
obtains a vector of R bits (b1, . . . , bR), one for each of the R non-zero range items 1, . . . , R, and then feeds
these bits into FR. Here, the bit bi for range item i is obtained by testing whether i appears in the image of
fs (any occurrences of range item 0 are effectively ignored by Gprop).

The following lemma establishes that Gprop satisfies a basic symmetry condition. This holds regardless
of the base function FR used to define Gprop.

Lemma 17. For a permutation σ : [N]→ [N] and a vector yi ∈ {−1, 1}N , let σ(yi) := (yi,σ(1), . . . , yi,σ(N)).
Then Gprop(y0, . . . , yR) = Gprop(σ(y0), . . . , σ(yR)).

Proof. Immediate from Definition 16 and the fact that ORN depends only on the Hamming weight of its
input.

Viewing Gprop as a property of functions fs : [N] → [R]0, Lemma 17 simply states that Gprop is
invariant under permutations of the domain of fs.

3.3 The Third Function: A Symmetrized Property

To define our third function G̃prop, it is useful to consider yet another representation of a function fs : [N]→
[R]0.

Definition 18. Given s ∈ [R]N0 , and its associated function fs, let Zi(s) = |f−1
s (i)|, and define Z(s) =

(Z0(s), . . . , ZR(s)).

That is, each function Zi(s) counts the number of of inputs j ∈ [N] such that fs(j) = i. Observe that a
vector z = (z0, . . . , zR) ∈ [N]R+1

0 equals Z(s) for some s ∈ [R]N0 if and only if

z0 + · · ·+ zR = N. (22)

Accordingly, the domain upon which our third function G̃prop is defined is the subset of [N]R+1
0 satisfying

Equation (22).

Definition 19. Let D̃N,R be the subset of [N]R+1
0 ⊂ RR+1 consisting of all vectors z = (z0, . . . , zR)

satisfying Equation (22). Define G̃prop : D̃N,R → {−1, 1} as follows. For any z ∈ D̃N,R, let s be an
arbitrary vector such that Z(s) = z. Define G̃prop(z) = Gprop(Y (s)), where Y (s) is as in Definition 15.

The function G̃prop is well-defined, as Lemma 17 implies that for any pair s, s′ ∈ [R]N0 such that
Z(s) = Z(s′), it holds that Gprop(Y (s)) = Gprop(Y (s′)). It is straightforward to see that the following is
an alternative definition of G̃prop on its domain D̃N,R:

G̃prop(z0, . . . , zR) = FR(I>0(z1), . . . , I>0(zR)), (23)

where I>0(zi) = 1 if zi = 0 and is equal to −1 otherwise.

13

Relating the Approximate Degrees of Gprop and G≤N . The following lemma is implicit in the proof
of [5, Lemma 3.4]. It states that G̃prop is no harder to approximate by low-degree polynomials than is
Gprop.

Lemma 20 (Ambainis [5]). Let Gprop : DN,R → {−1, 1} be any property of functions fs : [N] → [R]0
that is symmetric with respect to permutations of the domain of fs. Let p be a polynomial of degree d that
ε-approximates Gprop on its domain DN,R. Then there exists a polynomial p̃ : RR+1 → R of degree at most
d that ε-approximates G̃prop on its domain D̃N,R.

The following theorem is the technical heart of this section.

Theorem 21. Let ε > 0. Then d̃egε(G
prop) ≥ d̃egε(G

≤N).

Proof. Recall that the domain of Gprop is the subset DN,R of
(
{−1, 1}N

)R+1 of vectors satisfying Condi-
tion (21), and the domain of G≤N is {−1, 1}N ·R≤N = {x ∈ ({−1, 1}N)R : |x| ≤ N}. Let p : DN,R → R be
a polynomial of degree d that ε-approximates Gprop. We will construct a polynomial q : {−1, 1}N ·R≤N → R
of degree at most d that ε-approximates G≤N .

By Lemma 20, there exists a polynomial p̃ : RR+1 → R of degree at most d such that

|p̃(z0, . . . , zR)− G̃prop(z0, . . . , zR)| ≤ ε whenever (z0, . . . zR) ∈ D̃N,R. (24)

For each i = 0, . . . , R, define a function Ti : {−1, 1}N ·R≤N → [N]0 by Ti(x) = |{j : xij = −1}| =
1
2(N −

∑N
j=1 xij). Now define the polynomial q : {−1, 1}N ·R≤N → R by

q(x) = p̃

(
N −

R∑
i=1

Ti(x), T1(x), . . . , TR(x)

)
.

Since each of the functions Ti is linear, the polynomial q has degree at most d.
We now verify that

|q(x)−G≤N (x)| ≤ ε for all x ∈ {−1, 1}N ·R≤N . (25)

Fix some x = (x1, . . . , xR) ∈ {−1, 1}N ·R≤N . Then

G̃prop

(
N −

R∑
i=1

Ti(x), T1(x), . . . , TR(x))

)
= FR(I>0(T1(x)), . . . , I>0(TR(x)))

= FR(ORN (x1), . . . ,ORN (xR))

= G≤N (x).

Here, the first equality holds by combining Equation (23) with the fact that
(
N −

∑R
i=1 Ti(x), T1(x), . . . , TR(x)

)
is a sequence of non-negative numbers summing to N and hence is in the domain D̃N,R of G̃prop. The sec-
ond equality holds by definition of I>0. The third equality holds by definition of G≤N and {−1, 1}N ·R≤N .

Property (25) now follows by definition of q and Property (24).

14

3.4 The Final Function: From a Property to a Circuit

Recall that our goal in this section is to prove Theorem 14 reducing our main hardness amplification theorem
(Theorem 5) to a lower bound on the approximate degree of G≤N . Theorem 14 refers to a total function
g on m = O(n log4 n) bits. But none of the first three functions defined in this section (i.e., G≤N , Gprop,
and G̃prop) are total functions on bits. Hence, we still need to construct a function g with domain {−1, 1}m,
with circuit depth or DNF width not much higher than that of FR. (Recall that the function g referred to in
Theorem 5 will ultimately be obtained in Section 4 by applying the construction here with R = 10n log n,
and FR = f ◦ AND10 logn).

Our function g will interpret its input u ∈ {−1, 1}m as specifying a list s of N numbers from the set
[R]0, and will output Gprop(Y (s)). There are many ways to translate u into the list s. It turns out that
a relatively simple translation method suffices to ensure Property (18) of Theorem 14, i.e., that if FR is
computed by a circuit of depth k, then g is computed by a circuit of depth k + 2. We will begin by showing
how to construct an auxiliary function g∗ that is already enough to satisfy Property (18). Slightly more effort
will then be required to modify g∗ to construct g establishing Properties (19) and (20) of Theorem 14.

3.4.1 Definition of g∗

Definition 22. Fix positive integers N , R, and k with k ≥ dR + 1e. Let m = N · k, and fix any function
φ : {−1, 1}k → [R]0. We associate an input u = (u1, . . . , uN) ∈

(
{−1, 1}k

)N with the vector su ∈ [R]N0
defined as su = (φ(u1), . . . , φ(uN)). Let Y : [R]N0 → DN,R be as in Definition 15. Given any property
G : DN,R → {−1, 1}, define Gφ : {−1, 1}m → {−1, 1} by Gφ(u) = G(Y (su)).

The following lemma is a restatement of [46, Theorem 3.2].

Lemma 23 (Sherstov [46]). Let k = 6dlog(R+ 1)e. There exists an (explicitly given) surjection

φ : {−1, 1}k → [R]0

such that the following holds. For every property G : DN,R → {−1, 1} and ε > 0,

d̃egε(Gφ) ≥ d̃egε(G) · dlog(R+ 1)e.

The following corollary defines the function g∗ and uses Lemma 23 to show that a lower bound on the
approximate degree of G≤N implies a lower bound on the approximate degree of g∗.

Corollary 24. Fix an integerN > 0. LetG≤N : {−1, 1}N ·R≤N → {−1, 1} be as in Definition 13,Gprop : DN,R →
{−1, 1} be as in Definition 16, and φ be as in Lemma 23. Let m = 6N · dlog(R + 1)e, and define
g∗ : {−1, 1}m → {−1, 1} to equal Gprop

φ as per Definition 22. Then for every ε > 0,

d̃egε(g
∗) ≥ d̃egε(G

≤N) · dlog(R+ 1)e. (26)

Moreover, if FR is computed by Boolean circuit of depth k and size poly(R), then g∗ is computed by
circuit of depth k + 2 and size poly(R,N).

Proof. Inequality (26) follows by combining Lemma 23 and Theorem 21.
We now turn to showing that if FR is computed by a circuit of small depth then g∗ is as well. Con-

sider an input u = (u1, . . . , uN) ∈
(
{−1, 1}6dlog(R+1)e)N , and recall that we associate u with the vector

15

(φ(u1), . . . , φ(uN)) ∈ [R]N0 . The output g(u) is obtained by applying FR to a sequence of bits (b1, . . . , bR),
where bi = −1 if and only if there exists a j ∈ [N] such that φ(uj) = i.

Since φ is a function on just 6dlog(R+1)e bits, each bit bi is computed by a DNF Ci of width 6dlog(R+
1)e, and hence size at most O(N ·R12).

Hence, if FR is computed by a Boolean circuit C of size S = poly(R) and depth k, then by replacing
each input bi to C with the DNF Ci, one obtains a circuit C∗ for g∗ of size at mostO(S·N ·R12) = poly(R,N)
and depth k + 2.

3.4.2 Definition of g

Even if FR is a DNF of polylogarithmic width, the function g∗ defined in Corollary 24 may not be. However,
it is not hard to see that if FR is a monotone DNF of polylogarithmic width w, then g∗ is a (non-monotone)
DNF of width at most O(w · log n). Indeed, in this case the circuit C∗ for g∗ constructed in the proof of
Corollary 24 is an OR − AND − OR − AND circuit with all negations at the input level. Each AND gate
in the second level from the top has fan-in at most w, and the bottom AND gates each have fan-in at most
w′ = 6dlog(R + 1)e. Any such circuit can be transformed into a (non-monotone) DNF of width at most
w · w′ = O(w · logR).

Unfortunately, this observation is still not enough for us to eventually obtain our desired n1−δ lower
bounds for polylogarithmic width DNFs (cf. Theorem 4). To obtain such lower bounds, we need to re-
cursively apply our hardness amplification methods, and hence we need the harder function g to itself be a
monotone DNF. Our definition of g achieves this by applying a simple transformation to g∗. This transfor-
mation has appeared in related contexts [25, Proof of Lemma 3].

Definition 25. Fix FR : {−1, 1}R → {−1, 1}, and let g∗ : {−1, 1}m → {−1, 1} be as in Definition 22.
Let C∗ be any circuit computing g∗ such that all negations in Cg appear at the inputs. Let g : {−1, 1}2m →
{−1, 1} be the monotone function defined as follows. Associate each of the first m inputs to g with an input
to g∗, and each of the last m inputs to g with the negation of an input to g∗. Then g is obtained from g∗ by
replacing each literal of C∗ with the corresponding (unnegated) input to g.

We now complete the proof of Theorem 14.

Proof of Theorem 14. We begin by establishing Expression (17). Let p : {−1, 1}2m → R be a degree d
polynomial approximating g to error ε. Then one can turn p into a polynomial q : {−1, 1}m → {−1, 1}
of degree at most d approximating g∗ to the same error by simply replacing each input to p with the cor-
responding input (or its negation) to g∗. It follows that d̃egε(g) ≥ d̃egε(g

∗). The inequality in Expression
(17) follows from Corollary 24.

Property (18) is immediate from Corollary 24, since the construction of Definition 25 does not change
the circuit depth of C∗.

The discussion preceding the statement of Definition 25 revealed that, if FR is a monotone DNF of poly-
logarithmic width w, then g∗ is a (non-monotone) DNF of width at most O(w · logR). It is then immediate
from the definition of g that g is a monotone DNF of width O(w · logR). This yields Property (20).

By similar reasoning, if FR is computed by a monotone circuit of depth k, then g∗ is computed by a
circuit of depth k + 2 with AND gates at the bottom, and all negations at the inputs. It is then immediate
from the definition of g that g is computed by a monotone circuit of depth k + 2 with AND gates at the
bottom. This establishes Property (19), completing the proof.

16

4 Analyzing Block Composed Functions On Low Hamming Weight Inputs

To complete the proof of Theorem 5, we combine the following theorem with Theorem 14.

Theorem 26. Let fn : {−1, 1}n → {−1, 1} be any function. Let N = c · n log3 n for a sufficiently large
constant c > 0. Let G≤N : {−1, 1}10·N ·n·logn

≤N → {−1, 1} equal fn ◦AND10 logn ◦ORN restricted to inputs

in {−1, 1}10·N ·n·logn
≤N = {x ∈ {−1, 1}10·N ·n·logn : |x| ≤ N} (cf. Definition 13). Then d̃eg(G≤N) ≥

n1/3 · d̃eg(fn)2/3.

The primary goal of this section is to prove Theorem 26. Before embarking on this proof, we use it to
complete the proofs of Theorems 3-5 from Section 1.3.

Proof of Theorem 5 assuming Theorem 26. We begin by establishing Property (1) in the conclusion of The-
orem 5. Let R = 10 · n · log n and FR := fn ◦ AND10·logn. Applying Corollary 24 to FR yields a function
g on O(N logR) = O(n log4 n) variables satisfying

d̃egε(g) ≥ d̃egε(G
≤N) · dlog(R+ 1)e ≥ Ω

(
n1/3 · d̃eg(fn)2/3 · log n

)
,

where the final inequality holds by Theorem 26. Suppose fn is computed by polynomial size Boolean circuit
C of depth k. Then FR is computed by polynomial-size Boolean circuit of depth k + 1, and Property (18)
of Theorem 14 guarantees that g is computed by polynomial size Boolean circuit of depth k + 3. Hence, g
satisfies Property (1) as desired.

To establish Property (2), suppose that fn is computed by a monotone circuit of depth k with AND gates
at the bottom. Then FR is computed by such a circuit as well. Property (19) of Theorem 14 then implies
that g is computed by a circuit of depth k + 2 with AND gates at the bottom.

To establish Property (3), observe that if fn is computed by a monotone DNF of width w, then FR is
computed by a monotone DNF of width O(w · log n), and Property (20) of Theorem 14 implies that g is
computed by a monotone DNF of width O(w · log2 n).

Proof of Theorems 3 and 4 assuming Theorem 5. One can almost obtain Theorems 3 and 4 by recursively
applying Theorem 5, starting in the base case with the function ORn. However, to obtain stronger degree
lower bounds for a given circuit depth or DNF width, we instead use the following well-known result
of Aaronson and Shi [4] regarding the approximate degree of (the negation of) the well-known Element
Distinctness function.

Lemma 27 (Sherstov [46], refining Aaronson and Shi [4]). There is a function ED : {−1, 1}n → {−1, 1}
such that d̃eg(ED) = Ω(n2/3 log1/3 n). Moreover, ED is computed by a monotone DNF of polynomial size
and width O(log n).

Proof. If the word monotone were omitted from the conclusion, this would be a restatement of [46, Theorem
3.3]. Using the same technique as in Definition 25, the non-monotone DNF constructed in [46, Theorem
3.3] can be transformed into a monotone DNF satisfying the same properties.

17

Lemma 27 immediately implies Theorems 3 and 4 in the case k = 1. Assume by way of induction
that Theorem 3 holds for an integer k ≥ 1. That is, there exists a function f (k) on n · log4k−4(n) vari-
ables, computed by monotone circuit of depth 2k with AND gates at the bottom, with approximate degree
Ω(n1−2k−1/3k · log3−2k+2/3k(n)). By applying Theorem 5 to f (k), one obtains (by Property (2)) a func-
tion f (k+1) on n · log4k(n) variables, computed by a monotone circuit of depth 2k + 2 with AND gates at
the bottom, with approximate degree Ω(n1−2k/3k+1 · log3−2k+3/3k+1

(n)). The function f (k+1) satisfies the
conclusion of Theorem 3, completing the inductive proof of Theorem 3.

Similarly, assume by way of induction that Theorem 4 holds for an integer k ≥ 1, for a DNF f (k). By
applying Theorem 5 to f (k), one obtains (by Property (3)) a function f (k+1) satisfying the conclusion of
Theorem 4 for integer k + 1.

4.1 Organization of the Proof of Theorem 26

Our proof of Theorem 26 entails using a dual witness for the approximate degree of fn to construct a dual
witness for the higher approximate degree ofG≤N . For expository purposes, we think about the construction
of a dual witness for G≤N as consisting of four steps.

Step 1. Let d = d̃eg(fn). We begin by constructing a dual witness ϕ for the Ω
(√

k
)

-approximate degree

of the ORN function when restricted to inputs of Hamming weight at most k = (n/d)2/3. This construction
closely mirrors previous constructions of Špalek [60] and Bun and Thaler [18]. However, we need ϕ to
satisfy an additional metric condition that is not guaranteed by these prior constructions. Specifically, we
require that the total `1 weight that ϕ places on the t’th layer of the Hamming cube should be upper bounded
by O(1/(t+ 1)2).

Step 2. We apply the error amplification construction of Proposition 11 to transform ϕ into a new dual
polynomial ψ that witnesses the fact that the (1− δ)-approximate degree of the function AND10 logn ◦ORN
remains Ω(

√
k), even with error parameter δ ≤ 1/N2.

Step 3. We appeal to the degree amplification construction of Proposition 12 to combine ψ from Step 2
with a dual witness Ψ for the high approximate degree of fn. This yields a dual witness ζ showing that the
approximate degree of the composed function fn ◦ AND10 logn ◦ ORN is Ω(d ·

√
k) = Ω(n1/3 · d2/3).

Step 4. Using a construction of Razborov and Sherstov [44], we zero out the mass that ζ places on inputs
of Hamming weight larger than N , while maintaining its pure high degree and correlation with G≤N . This
yields the final desired dual witness ζ̂ for G≤N .

4.2 Step 1: A Dual Witness for ORN

Proposition 28. Let k,N ∈ N with k ≤ N . Then there exist a constant c1 ∈ (0, 1) and a function
ψ : {−1, 1}N≤k → {−1, 1} such that:

〈ψ,ORN 〉 ≥ 1/3 (27)

‖ψ‖1 = 1 (28)

For any polynomial p : {−1, 1}N → R, deg p < c1
√
k =⇒ 〈ψ, p〉 = 0 (29)

18

ψ(1N) > 0 (30)∑
|x|=t

|ψ(x)| ≤ 5/(t+ 1)2 ∀t = 0, 1, . . . , k (31)

For intuition, we mention that Properties (27)-(30) amount to a dual formulation of the fact that the
“one-sided” approximate degree of ORN is Ω(

√
k), even under the promise that the input has Hamming

weight at most k.6 Property (31) is an additional metric condition that we require later in the proof.
The key to proving Proposition 28 is the following explicit construction of a univariate function from

first principles. The construction closely follows previous work of Špalek [60] and Bun and Thaler [18], and
appears in Appendix A.

Lemma 29. Let k ∈ N. There exists a constant c1 ∈ (0, 1) and a function ω : {0, 1, . . . , k} → R such that

ω(0)−
k∑
t=1

ω(t) ≥ 1/3 (32)

k∑
t=0

|ω(t)| = 1 (33)

For all univariate polynomials q : R→ R, deg q < c1

√
k =⇒

k∑
t=0

ω(t) · q(t) = 0 (34)

ω(0) > 0 (35)

ω(t) ≤ 5/(t+ 1)2 ∀t = 0, 1, . . . , k (36)

Proof of Proposition 28. Let ω be the function guaranteed by Lemma 29. Consider the functionψ : {−1, 1}N≤k →
{−1, 1} defined by

ψ(x) =
1(
N
|x|
) · ω(|x|).

That ψ satisfies Conditions (27), (28), (30), and (31) is immediate from the definition of ψ and Properties
(32), (33), (35), and (36) of ω. Property (29) is a consequence of Minsky-Papert symmetrization. Specif-
ically, for any polynomial p : {−1, 1}N → R, Lemma 8 implies that there is a univariate polynomial q of
degree at most deg(p) such that for all t ∈ [N]0, we have q(t) =

(
N
t

)−1∑
x∈{−1,1}N : |x|=t p(x). Hence,∑

x∈{−1,1}N ψ(x) · p(x) =
∑N

t=0 ω(t) · q(t) = 0, where the final equality holds by Property (34).

4.3 Steps 2 and 3: A Preliminary Dual Witness for G = fn ◦ AND10 logn ◦ ORN
Recall that our ultimate goal in this section is to construct a dual witness for the veracity of Theorem 26.
Here, we begin by defining a preliminary dual witness ζ. While ζ itself is insufficient to witness the veracity
of Theorem 26, we will ultimately “post-process” ζ into the desired dual witness ζ̂. We start by fixing
choices of several key parameters:

6One-sided approximate degree is a variant of approximate degree defined in, e.g., [18]. We will not need the primal formulation
of approximate degree in this work, and therefore omit a formal definition of this notion.

19

• d = d̃eg2/3(fn).

• k = b(n/d)1/3c2

• D = c1

√
k · d = O(n1/3 · d2/3), where c1 is the constant from Lemma 29

• R = 10n log n

• N = dc2R log2Re, where c2 is a universal constant to be determined later (cf. Proposition 31)

• m = R ·N

To state our construction of a preliminary dual witness ζ, we begin with the following objects:

• A dual witness ϕ : {−1, 1}n → R for the fact that d̃eg2/3(fn) ≥ d. By Theorem 7, ϕ satisfies the
following conditions.

〈ϕ, fn〉 ≥ 2/3 (37)

‖ϕ‖1 = 1 (38)

For any polynomial p : {−1, 1}n → R, deg p < d =⇒ 〈ϕ, p〉 = 0 (39)

• The function Ψ : {−1, 1}10 logn → R whose existence is guaranteed by Proposition 11.

• The dual witness ψ : {−1, 1}N → R for ORN guaranteed by Proposition 28, using the choice of the
parameter k above.

We apply dual block composition sequentially to the three dual witnesses to obtain a function ζ =
ϕ ?Ψ ? ψ. This function is well-defined because dual block composition is associative (Proposition 10).

Proposition 30. The dual witness ζ = ϕ ?Ψ ? ψ satisfies the following properties:

〈ζ,G〉 ≥ 1/2 (40)

‖ζ‖1 = 1 (41)

For all polynomials p : (({−1, 1}N)10 logn)n → R, deg p < D =⇒ 〈ζ, p〉 = 0. (42)

Proof. It is easiest to reason about these properties by regarding ζ as ϕ ? (Ψ ? ψ). To this end, let ξ :
({−1, 1}N)10 logn → R denote Ψ ? ψ. Then ξ satisfies the following properties:

〈ξ,AND10 logn ◦ ORN 〉 ≥ 1− 1

24n
(43)

‖ξ‖1 = 1 (44)

deg p < c1
√
k =⇒ 〈ξ, p〉 = 0. (45)

Property (43) follows from Expression (14) of Proposition 11, together with Properties (27), (28),
and (30) of the dual witness ψ for ORN . Property (44) follows from Property (11) of dual block com-
position (cf. Proposition 10), and the fact that both Ψ and ψ have unit `1-norm (Equations (15) and (28)).
Finally, Property (45) is a consequence of Property (12) of dual block composition (cf. Proposition 10),

20

together with Properties (16) and (29), which state that Ψ and ψ have pure high degree at least 1 and c1

√
k,

respectively.
We now verify Properties (40)-(42) of ζ = ϕ ? ξ. Property (40) follows from Proposition 12, together

with Properties (37) and (38) of ϕ and Properties (43) and (44) of ξ. Property (41) follows from Prop-
erty (11) of dual block composition (cf. Proposition 10), and the fact that both ϕ and ξ have unit `1-norm
(Equations (38) and (44)). Finally, Property (42) follows from Property (12) (cf. Proposition 10) of dual
block composition, together with Properties (39) and (45) of the pure high degrees of ϕ and ξ, respec-
tively.

4.4 Step 4: Constructing the Final Dual Witness

For a fixed number N ∈ N, let X = {−1, 1}N ·10 logn·n
≤N = {x ∈ (({−1, 1}N)10 logn)n : |x| ≤ N}.

Recall that this set X is the same one that appears in Definition 13 when applied to the function FR :=
fn ◦ AND10 logn on R = 10n log n variables.

Proposition 31. Let ζ : (({−1, 1}N)10 logn)n → R be as constructed in Proposition 30. Then there exists
a constant c2 > 0 such that, for N = dc2R log2Re and sufficiently large n,∑

x/∈X

|ζ(x)| ≤ (2NR)−2R/k ≤ (2NR)−2D. (46)

Proof. For the proof of Proposition 31, it is now useful to regard the dual witness ζ as the iterated dual
block composition (ϕ ? Ψ) ? ψ. In this proof, let us denote Φ := ϕ ? Ψ. Then Φ : {−1, 1}R → R where
R = 10n log n.

Write ψ as a difference of non-negative functions ψ+1 − ψ−1. Since ψ has strictly positive pure high
degree, it is in particular orthogonal to the constant function 1N , and hence ‖ψ+1‖1 = ‖ψ−1‖1 = 1/2.
Recalling that ψ(x) = ω(|x|)/

(
N
|x|
)

where ω : [k]0 → R is given in Lemma 29, we may analogously write
ω = ω+1 − ω−1 where ω+1 and ω−1 are non-negative functions satisfying

k∑
t=0

ω+1(t) =
k∑
t=0

ω−1(t) = 1/2. (47)

By the definition of dual block composition, we have

ζ(x1, . . . , xR) = 2R · Φ(. . . , sgn (ψ(xi)) , . . .) ·
R∏
i=1

|ψ(xi)|.

Consequently,

∑
x/∈X

|ζ(x)| = 2R
∑

z∈{−1,1}R
|Φ(z)|

 ∑
(x1,...,xR)/∈X s.t.

sgn(ψ(x1))=z1,...,sgn(ψ(xR))=zR

R∏
i=1

|ψ(xi)|

= 2R

∑
z∈{−1,1}R

|Φ(z)|

 ∑
(x1,...,xR)/∈X

R∏
i=1

ψzi(xi)

= 2R

∑
z∈{−1,1}R

|Φ(z)|

 ∑
(x1,...,xR)/∈X

R∏
i=1

ωzi(|xi|)(
N
|xi|
)
 . (48)

21

Observe that for any (t1, . . . , tR) ∈ [k]R0 , the number of inputs (x1, . . . , xR) ∈
(
{−1, 1}N

)R such that
|xi| = ti for all i ∈ [R] is exactly

∏R
i=1

(
N
ti

)
. Hence, defining

P = {(t1, . . . , tR) ∈ [k]R0 : t1 + · · ·+ tR > N},

we may rewrite Expression (48) as

2R
∑

z∈{−1,1}R
|Φ(z)|

 ∑
(t1,...,tR)∈P

R∏
i=1

ωzi(ti)

 .

To control this quantity, we appeal to the following combinatorial lemma, whose proof we defer to Sec-
tion 4.5.

Lemma 32. Let k,R ∈ N with k ≤ N . There is a constant α > 0 such that the following holds. Let
N = dαR log2Re. Let ηi : [k]0 → R, for i = 1, . . . R, be a sequence of non-negative functions where for
every i,

k∑
r=0

ηi(r) ≤ 1/2 (49)

ηi(r) ≤ 5/(r + 1)2 ∀r = 0, 1, . . . , k. (50)

Let P = {~t = (t1, . . . , tR) ∈ [k]R0 : t1 + · · ·+ tR > N}. Then

∑
~t∈P

R∏
i=1

ηi(ti) ≤ 2−R · (2NR)−2R/k.

Observe that the functions ωzi satisfy Condition (49) (cf. Equation (47)) and Condition (50) (cf. Prop-
erty (36)). We complete the proof of Proposition 31 by letting c2 equal the constant α appearing in the
statement of Lemma 32, and bounding

2R
∑

z∈{−1,1}R
|Φ(z)|

∑
~t∈P

R∏
i=1

ωzi(ti)

 ≤ 2R
∑

z∈{−1,1}R
|Φ(z)| ·

(
2−R · (2NR)−2R/k

)
= (2NR)−2R/k ≤ (2NR)−2D.

Here, the equality appeals to the fact that ‖Φ‖1 = 1 (by Property (11) of Proposition 10), and the last
inequality holds for sufficiently large n by virtue of the fact that R/k = Θ(n1/3d2/3 log n), while D =
O(n1/3d2/3) for the values of R and D specified at the start of Section 4.3.

We are now in a position to construct our final dual witness for the high approximate degree of G≤N .
This dual witness ζ̂ is obtained by modifying ζ to zero out all of the mass it places on inputs of total
Hamming weight larger than N . This zeroing process is done in a careful way so as not to decrease the pure
high degree of ζ, nor to significantly affect its correlation with G≤N . The technical tool that enables this
process is a construction of Razborov and Sherstov [44].

22

Lemma 33 (cf. [44, Proof of Lemma 3.2]). Let D,m ∈ N with 0 ≤ D ≤ m − 1. Then for every y ∈
{−1, 1}m with |y| > D, there exists a function φy : {−1, 1}m → R such that

φy(y) = 1 (51)

|x| > D,x 6= y =⇒ φy(x) = 0 (52)

deg p < D =⇒ 〈φy, p〉 = 0 (53)∑
|x|≤D

|φy(x)| ≤ 2D
(
|y|
D

)
. (54)

Proposition 34. There exists a function ν : (({−1, 1}N)10 logn)n → R such that

For all polynomials p : (({−1, 1}N)10 logn)n → R, deg p < D =⇒ 〈ν, p〉 = 0 (55)

‖ν‖1 ≤ 1/10 (56)

|x| > N =⇒ ν(x) = ζ(x), (57)

where ζ is as in Proposition 30.

Proof. Define

ν(x) =
∑

y:|y|>N

ζ(y)φy(x),

where φy is as in Lemma 33 with m and D set as at the beginning of Section 4.3. Property (55) follows
immediately from Property (53) and linearity. By Proposition 31 and Property (54), we have

‖ν‖1 ≤
∑

y:|y|>N

|ζ(y)| · 2D ·
(
|y|
D

)
≤ (2NR)−2D · 2D ·mD

≤ (2m)−2D · (2m)D

≤ 1/10,

establishing Property (56). Finally, Property (57) follows from (51) and (52), together with the fact that
D < N .

Combining Proposition 34 with Proposition 30 allows us to complete the proof of Theorem 26, which
was the goal of this section.

Proof of Theorem 26. Let ζ = ϕ ? Ψ ? ψ be as defined in Section 4.3, and let ν be the correction object
constructed in Proposition 34. Observe that ‖ζ−ν‖1 > 0, as ‖ζ‖1 = 1 (cf. Equality (41)) and ‖ν‖1 ≤ 1/10
(cf. Inequality (56)). Define the function

ζ̂(x) =
ζ(x)− ν(x)

‖ζ − ν‖1
.

23

Since ν(x) = ζ(x) whenever |x| > N (cf. Equation (57)), the function ζ̂ is supported on the set X . By
Theorem 7, to show that it is a dual witness for the high approximate degree of G≤N , it suffices to show that
ζ̂ satisfies the following three properties:

〈ζ̂, G≤N 〉 ≥ 1/3 (58)

‖ζ̂‖1 = 1 (59)

For all polynomials p : (({−1, 1}N)10 logn)n → R, deg p < D =⇒ 〈ζ̂, p〉 = 0. (60)

We establish (58) by computing

〈ζ̂, G≤N 〉 =
1

‖ζ − ν‖1
〈ζ − ν,G≤N 〉

=
1

‖ζ − ν‖1
〈ζ − ν,G〉 since ζ = ν outside X

=
1

‖ζ − ν‖1
(〈ζ,G〉 − 〈ν,G〉)

≥ 1

‖ζ − ν‖1
(〈ζ,G〉 − ‖ν‖1)

≥ 1

‖ζ − ν‖1
(1/2− 1/10) by (40) and (56)

≥ 1

‖ζ‖1 + ‖ν‖1
(1/2− 1/10)

≥ 1

1 + 1/10
(1/2− 1/10) by (41) and (56)

≥ 1

3
.

Equation (59) is immediate from the definition of ζ̂. Finally, (60) follows from (42), (55), and linearity.

4.5 Proof of Lemma 32

All that remains to complete the proof of Theorem 26 is to establish the deferred combinatorial lemma from
Section 4.4. We begin by stating a two simple lemmas.

Lemma 35. Let k, n ∈ N with k ≤ n. Then
(
n
k

)
≤
(
en
k

)k.

Lemma 36. Let m ∈ N. Then
∞∑
r=m

r−2 ≤ 2

m
.

Proof. We calculate

∞∑
r=m

r−2 ≤
∞∑
r=m

2

r(r + 1)
= 2

∞∑
r=m

(
1

r
− 1

r + 1

)
=

2

m
.

24

We are now ready to prove Lemma 32, which we restate below for the reader’s convenience.

Lemma 32. Let k,R ∈ N with k ≤ N . There is a constant α > 0 such that the following holds. Let
N = dαR log2Re. Let ηi : [k]0 → R, for i = 1, . . . R, be a sequence of non-negative functions where for
every i,

k∑
r=0

ηi(r) ≤ 1/2 (49)

ηi(r) ≤ 5/(r + 1)2 ∀r = 0, 1, . . . , k. (50)

Let P = {~t = (t1, . . . , tR) ∈ [k]R0 : t1 + · · ·+ tR > N}. Then

∑
~t∈P

R∏
i=1

ηi(ti) ≤ 2−R · (2NR)−2R/k.

Proof. Define a universal constant

C =

∞∑
s=1

1

s log2(2s)
.

Note that C <∞ by, say, the Cauchy condensation test.
We begin with a simple, but important, structural observation about the set P . Let t = (t1, . . . , tR) ∈

[k]R0 be a sequence such that t1 + · · · + tR > N . Let M = bN2kc. Then we claim that there exists an
s ∈ {M . . . , R} such that ti ≥ N/(2Cs log2(2s)) for at least s indices i ∈ [R]. To see this, assume without
loss of generality that the entries of ~t are sorted so that t1 ≥ t2 ≥ · · · ≥ tR. Then there must exist an s ≥M
such that ts ≥ N/(2Cs log2(2s)). Otherwise, because no ti can exceed k, we would have:

t1 + · · ·+ tR < M · k +
∞∑
s=1

N

2Cs log2(2s)
≤ N

2
+
N

2C
·
∞∑
s=1

1

s log2(2s)
=
N

2
+
N

2
= N.

Since the entries of ~t are sorted, the preceding values t1, . . . , ts−1 ≥ N/(2Cs log2(2s)) as well.
For each subset S ⊆ [R], define

PS = {~t ∈ P : ti ≥ N/
(
2C|S| log2(2|S|)

)
for all indices i ∈ S}.

The observations above guarantee that for every ~t = (t1, . . . , tR) ∈ P , there exists some set S of size at

25

least s ∈ {M, . . . , R} such that ti ≥ N/(2Cs log2(2s)) for all i ∈ S. Hence,

∑
~t∈P

R∏
i=1

ηi(ti) ≤
R∑

s=M

∑
S⊆[R]:|S|=s

∑
~t∈PS

R∏
i=1

ηi(ti)

≤
R∑

s=M

(
R

s

) k∑
r=dN/(2Cs log2(2s))e

ηi(r)

s(

k∑
r=0

ηi(r)

)R−s

≤ 2−R
R∑

s=M

(
R

s

) k∑
r=dN/(2Cs log2(2s))e

10(r + 1)−2

s

by Properties (49) and (50)

≤ 2−R
R∑

s=M

(
Re

s

)s(40Cs log2(2s)

N

)s
by Lemmas 35 and 36

≤ 2−R
R∑

s=M

4−s setting N = d(160Ce) ·R log2(2R)e

≤ 2−R · 2−M .

The claim follows as long as M = bN2kc ≥ 2 log(2NR) ·R/k, which is true for the setting of N chosen
above.

5 Applications

5.1 Approximate Rank and Quantum Communication Complexity of AC0

For a matrix F ∈ {−1, 1}N×N , the ε-approximate rank of F , denoted rankε(F), is the least rank of a matrix
A ∈ RN×N such that |Aij − Fij | ≤ ε for all (i, j) ∈ [N] × [N]. Sherstov’s pattern matrix method [50]
allows one to translate approximate degree lower bounds into approximate rank lower bounds in a black-
box manner. Moreover, the logarithm of the approximate rank of a communication matrix is known to
lower bound its quantum communication complexity, even when prior entanglement is allowed [37]. By
combining the pattern matrix method with Theorems 3 and 4, we obtain the following corollary.

Corollary 37. For any constant δ > 0, there is an AC0 function F : {−1, 1}n × {−1, 1}n → {−1, 1} such
that [F (x, y)]x,y has approximate rank rank1/3(F) ≥ exp(n1−δ). Similarly, there is a DNF F : {−1, 1}n×
{−1, 1}n → {−1, 1} of width polylog(n) (and quasipolynomial size) such that [F (x, y)]x,y has approxi-
mate rank at least exp(n1−δ). Moreover, the quantum communication complexity of F (with arbitrary prior
entanglement), denoted Q∗1/3(F), is Ω(n1−δ).

Proof. Let f be the AC0 function, or low-width DNF, with (1/2)-approximate degree at least n1−δ whose
existence is guaranteed by Theorem 3 or Theorem 4 respectively. The pattern matrix method [50, Theorem
8.1] implies that the function F : {−1, 1}4n × {−1, 1}4n → {−1, 1} given by

F (x, y) = f
(
. . . ,∨4

j=1 (xi,j ∧ yi,j) . . .
)

satisfies rank1/3(F) ≥ exp(Ω(n1−δ)). Moreover, if f is computed by a Boolean circuit of depth k and
polynomial size, then F is computed by a Boolean circuit of polynomial size and depth k + 2. Similarly, if

26

f is computed by a DNF formula of width w, then F is computed by a DNF formula of width O(w). The
claimed lower bound on Q∗1/3(F) follows from the fact that for any 2n × 2n matrix F , we have Q∗1/3(F) ≥
Ω(log rank1/3(F))−O(log n) [37].

The best previous lower bound on the approximate rank and quantum communication complexity of
an AC0 function was exp

(
Ω̃(n2/3)

)
and Ω̃(n2/3) respectively. This follows from combining the Element

Distinctness lower bound (Theorem 27), with the pattern matrix method [50].

5.2 Nearly Optimal Separation Between Certificate Complexity and Approximate Degree

Certificate complexity, approximate degree, Fourier degree, block sensitivity, and deterministic, random-
ized, and quantum query complexities are all natural measures of the complexity of Boolean functions, with
many applications in theoretical computer science. While it is known that all of these measures are poly-
nomially related, much effort has been devoted to understanding the maximal possible separations between
these measures. Ambainis et al. [7], building on techniques of Göös, Pitassi, and Watson [29], recently
made remarkable progress in this direction, establishing a number of surprising separations between several
of these measures. Subsequent work by Aaronson, Ben-David, and Kothari [3] unified and strengthened a
number of these separations.

Let f : {−1, 1}n → {−1, 1} be a (total) Boolean function. In this section, we study the relationship
between certificate complexity, denoted C(f) and defined below, and approximate degree. We build on
Theorem 4 to construct a function F : {−1, 1}n → {−1, 1} with d̃eg(F) = n1−o(1) and certificate com-
plexity n1/2+o(1). The function F exhibits what is essentially the maximal possible separation between
these two measures, as it is known that d̃eg(f) = O(C(f)2) for all Boolean functions f .7 The best previous
separation was reported by Aaronson et al. [3], who gave a function f with d̃eg(f) = Ω̃(C(f)7/6).

Theorem 38. There is a Boolean function F : {−1, 1}n → {−1, 1} such that d̃eg(F) ≥ C(F)2−o(1).

Certificate complexity definitions. Let f : {−1, 1}n → {−1, 1}, and let x ∈ {−1, 1}n. A subset
S ⊆ {1, . . . , n} is a (−1)-certificate (respectively, (+1)-certificate) for f at x if for all inputs y ∈ {−1, 1}n
such that yi = xi for all i ∈ S, it holds that f(y) = f(x) = −1 (respectively, f(y) = f(x) = 1).
For any x ∈ {−1, 1}n, let C(f, x) denote the minimum size of a certificate for f at x. Define C(f) :=
maxx∈{−1,1}n C(f, x). Define the (−1)-certificate complexity of f to beC−1(f) := maxx∈f−1(−1)C(f, x),
and the (+1)-certificate complexity of f to be C+1(f) := maxx∈f−1(+1)C(f, x).

5.2.1 Warm-Up: A Power 3/2 Separation

Before proving Theorem 38, we begin by proving a weaker separation that illustrates most of the ideas in
our construction.

Proposition 39. There is a Boolean function F : {−1, 1}n → {−1, 1} such that d̃eg(F) ≥ C(F)3/2−o(1).

Proof. While Theorem 4 is stated only for constant k ≥ 1, the proof is easily seen to hold when k is a
function of n. In particular, explicitly accounting for the constant factor loss that occurs in each step of the
inductive proof of Theorem 4, we obtain the following statement that holds even if k grows with n.

7This follows by combining the relationship D(f) ≤ C(f)·bs(f) [9] with the relationships bs(f) ≤ C(f) and d̃eg(f) ≤ D(f).

27

Theorem 40 (Generalized Version of Theorem 4). For any integer k ≥ 1, there is an (explicitly given)
monotone DNF on n · log4k−4(n) variables of width O(log2k−1(n)) that computes a function with approxi-
mate degree 2−O(k) · n1−2k−1/3k · log3−2k+2/3k(n).

Applying Theorem 40 for an appropriately chosen k = O(log log n) yields a function f : {−1, 1}M →
{−1, 1} that is computed by a DNF onM ≤ n·logO(k)(n) ≤ n1+o(1) variables with widthO(logO(k)(n)) ≤
Mo(1). Equivalently, C−1(f) ≤Mo(1). Moreover, d̃eg(f) ≥ n1−o(1) ≥M1−o(1).

Let MAJ10 logM denote the Majority function on 10 logM bits. The following result is implicit in [15,
Theorem 4.2].

Lemma 41 (Bouland et al. [15]). Let f : {−1, 1}M → {−1, 1}. Then

d̃egε(MAJ10 logM ◦ f) ≥ d̃eg(f)

for ε = 1− 1/M2.

Now consider the block-composed function F = ANDM ◦ MAJ10 logM ◦ f . This is a function on
10M2 logM variables, and Lemma 41 together with Proposition 12 implies that

d̃eg(F) ≥M1/2 · d̃eg(f) ≥M3/2−o(1). (61)

We now show that the function F has certificate complexityC(F) ≤M1+o(1). Let F̂ = MAJ10 logM ◦f .
Then C−1(F̂) ≤ 5 logM · C−1(f) = Mo(1); this uses the fact that in order to certify that MAJ10 logM

evaluates to−1, it is enough to certify that at least half of its inputs are equal to−1. And, trivially,C+1(F̂) ≤
10M logM .

Any input z to ANDM has a certificate S such that zi = +1 for at most one index i ∈ S. By composing
certificates, it follows that

C(F) ≤ C+1(F̂) +M · C−1(F̂) ≤M1+o(1). (62)

Combining (61) and (62) completes the proof of Proposition 39.

5.2.2 A Nearly Quadratic Separation

To improve Proposition 39 to a nearly quadratic separation, we replace ANDM in the definition of F with a
function f∗ defined on roughlyM variables, such that d̃eg(f∗) ≥M1−o(1). This function f∗ must moreover
possess certificates satisfying the same key property as the AND function. Namely, every input z to f∗ must
have a certificate S such that zi = +1 for only a small (as we will see, Mo(1)) number of indices i ∈ S.

Construction of f∗. While the function f : {−1, 1}M → {−1, 1} considered in the proof of Proposi-
tion 39 satisfies the requisite approximate degree bound, it lacks the key property regarding its certificates.
Hence, we must modify the function f to obtain a suitable function f∗. The modification we use general-
izes a technique introduced by Aaronson et al. [3, Theorem 8] to give separations between quantum query
complexity and certificate complexity, Fourier degree, and approximate degree.

28

Definition 42. Let f : {−1, 1}n → {−1, 1} be computed by a DNF formula Cf of width w. We define a
function f∗ : {−1, 1}2n → {−1, 1} as follows. Let each of the first n inputs to f∗ be associated with an
input to f , and each of the last n inputs of f∗ be associated with the negation of an input to f . For an
i ∈ [n], let (xi, xn+i) be the pair of inputs to f∗ corresponding to the ith input to f , and say that the pair is
balanced if exactly one of xi, xn+i is equal to −1 (and exactly one is equal to +1).

For an input x ∈ {−1, 1}2n, define γ(x) ∈ {−1,+1,⊥}n by

(γ(x))i =

−1 if (xi, xn+i) is balanced and xi = −1,

+1 if (xi, xn+i) is balanced and xn+i = −1,

⊥ otherwise.

We say a clause of the DNF formula Cf is satisfied by a vector y ∈ {−1,+1,⊥}n if every literal in that
clause is satisfied by y (if yi =⊥, then any literal corresponding to an input i or its negation is automatically
unsatisfied). Define f∗ : {−1, 1}2n → {−1, 1} by:

f∗(x) =

{
−1 if there is a clause of Cf that is satisfied by γ(x), and for all i ∈ [n], (xi, xn+i) 6= (+1,+1).

+1 otherwise.

Let ε > 0 and suppose p : {−1, 1}2n → R is a polynomial with |p(x) − f∗(x)| ≤ ε for every
x ∈ {−1, 1}2n. Then the polynomial q : {−1, 1}n → R defined by q(y) = p(y1, . . . , yn,−y1, . . . ,−yn)
satisfies |q(y) − f(y)| ≤ ε for all y ∈ {−1, 1}n, since the definition of f∗ guarantees that f(y) =
f∗(y1, . . . , yn,−y1, . . . ,−yn). Hence, for every ε > 0, we have

d̃egε(f
∗) ≥ d̃egε(f). (63)

Completing the Proof of Theorem 38. Let f∗ denote the function obtained by applying Definition 42 to
the function f : {−1, 1}M → {−1, 1} described in the proof of Proposition 39. Recall that f is computed
by a DNF Cf of width Mo(1). Hence f∗ is a function on 2M variables, and by Inequality (63),

d̃eg(f∗) ≥ d̃eg(f) ≥M1−o(1).

We now argue that every input x to f∗ has a certificate S in which at most Mo(1) entries of x|S are
equal to +1. To see this, first let x be any input in (f∗)−1 (−1). Then by definition of f∗, it suffices
to certify that (a) there is a clause of Cf that is satisfied by γ(x) and (b) there is no i ∈ [M] such that
(xi, xM+i) = (+1,+1). Letting w denote the width of Cf , condition (a) can be certified by providing at
most 2w = Mo(1) indices of x, and condition (b) can be certified by supplying all of the coordinates of x
that are equal to −1.

Now suppose that x is an input in (f∗)−1(+1). There are two kinds of such inputs to certify. The first
kind is any input x with (xi, xM+i) = (+1,+1) for some i ∈ [M]. Such an input can be certified by
providing xi and xM+i. The second kind is an input such that for all i ∈ [M], the pair (xi, xM+i) has at
least one coordinate equal to −1, yet no clause of Cf is satisfied by γ(x). This kind of input can be certified
by providing the indices of all (−1)’s in the input x. Such a certificate is enough to reveal (γ(x))i for all
i under the assumption that every pair (xi, xM+i) with exactly one (−1) provided is balanced. While this
certificate does not prove that every pair (xi, xM+i) is actually balanced, it is still enough to prove that there
is no clause of Cf that is satisfied. This is because changing a pair (xi, xM+i) from balanced to unbalanced
cannot cause an unsatisfied clause of Cf to become satisfied.

29

To summarize, the value of f∗(x) can always be certified by providing at most Mo(1) indices of x that
are equal to +1. To complete our construction, let F = f∗ ◦ F̂ , where F̂ = MAJ10 logM ◦ f . This is
a function on M2+o(1) variables. With the aforementioned property of the certificates of f∗ in hand, the
argument that d̃eg(F) ≥ C(F)2−o(1) is identical to that of the previous section. Indeed, by composing
certificates for f∗ and F̂ , one obtains

C(F) ≤Mo(1) · C+1(F̂) +M · C−1(F̂) ≤M1+o(1). (64)

Since d̃eg(f∗) ≥M1−o(1), Lemma 41 and Proposition 12 imply that

d̃eg(F) ≥M2−o(1). (65)

Combining Equations (64) and (65) completes the proof of Theorem 38.

5.3 Secret Sharing Schemes

Bogdanov et al. [14] observed that for any f : {−1, 1}n → {−1, 1} and integer d > 0, any dual polynomial
µ for the fact that d̃egε(f) ≥ d leads to a scheme for sharing a single secret bit b ∈ {−1, 1} among n
parties as follows. Decompose µ as µ+ − µ−, where µ+ and µ− are non-negative functions with ‖µ+‖1 =
‖µ0‖1 = 1/2. Then in order to split b among n parties, one draws an input x = (x1, . . . , xn) ∈ {−1, 1}n
from the distribution 2 · µb, and gives bit xi to the ith party. In order to reconstruct b, one simply applies f
to (x1, . . . , xn).

Because µ is ε-correlated with f , the probability of correct reconstruction if the bit is chosen at ran-
dom is at least (1 + ε)/2 (and the the reconstruction advantage, defined to equal Prx∼µ+ [f(x) = 1] −
Prx∼µ− [f(x) = 1], is at least ε). The fact that µ has pure high degree at least d means that any subset
of shares of size less than d provides no information about the secret bit b. We direct the interested reader
to [14] for further details.

Hence, an immediate corollary of our new approximate degree lower bounds for AC0 is the following.

Corollary 43. For any arbitrarily small constant δ > 0, there is a secret sharing scheme that shares a single
bit b among n parties by assigning a bit xi to each party i. The scheme satisfies the following properties.

(a) The reconstruction procedure is computed by an AC0 circuit.

(b) The reconstruction advantage is at least 0.49.

(c) Any subset of shares of size less than d = Ω(n1−δ) provides no information about the secret bit b.

The above corollary improves over an analogous result of Bogdanov et al. [14], who used the Element
Distinctness lower bound (cf. Theorem 27) to give a scheme for which subsets of shares of size less than
d = Ω(n2/3) provides no information about the secret bit b.

To make the secret sharing scheme of Corollary 43 explicit, one needs an explicit dual polynomial
witnessing our new approximate degree lower bounds for AC0 (cf. Theorem 3). Strictly speaking, our proof
of Theorem 3 does not achieve this, owing to the primal-based symmetrization step of Section 3. However,
this issue is easily addressed.

In more detail, recall that Theorem 26 establishes that there is an AC0 function

G≤N : {−1, 1}N ′≤N → {−1, 1}

30

for some N ′ > N , such that G≤N has approximate degree at least Ω(N1−δ). In fact, the proof of Theorem
26 constructs an explicit dual polynomial ψ witnessing this approximate degree bound. Definition 22 and
Corollary 24 define an associated function g∗ : {−1, 1}m → {−1, 1}, form = Õ(N), such that d̃egε(g

∗) ≥
d̃egε(G

≤N) · dlog(R + 1)e. A natural averaging construction shows how to translate the dual polynomial
ψ : {−1, 1}N ′≤N → R for G≤N into a dual polynomial φ : {−1, 1}m → R for g∗. The analysis in the proof
of Theorem 21 can then be used to show that this transformation preserves pure high degree, and that the
correlation of φ with g∗ is the same as the correlation of ψ with G≤N . (These remarks also apply to the
augmented construction of g in Definition 25.)

We further believe that closer inspection of this dual witness should show that shares from the resulting
scheme can be sampled by an AC0 circuit.

6 Future Directions

6.1 Stronger Results for Constant Error Approximation

Throughout this section, δ denotes an arbitrarily small positive constant. While our Ω(n1−δ) lower bound on
the approximate degree of AC0 comes close to resolving Problem 1 from the introduction, we fall short of a
complete solution. Can our techniques be refined to give an Ω(n) lower bound on the approximate degree
of a function in AC0? Even the approximate degree of the SURJECTIVITY function remains unresolved.
It is reasonable to conjecture that this function has essentially maximal approximate degree, Ω(n), yet our
methods do not improve on the known Ω(n2/3) lower bound for this function.

It would also be very interesting to extend our Ω(n1−δ) lower bounds for DNFs of polylogarithmic width
and quasipolynomial size to DNFs of polynomial size (and ideally of logarithmic width). Currently, the best
known lower bound on the approximate degree of polynomial size DNFs remains Ω̃(n2/3) for Element
Distinctness.

For any constant integer k > 0, the k-sum function is a DNF of width O(log n) that might have ap-
proximate degree Ω(nk/(k+1)) [6, 13]. Another candidate DNF that might have approximate degree poly-
nomially larger than Ω(n2/3) is the k-distinctness function for k ≥ 3. (The best known upper bound on
the approximate degree of the k-distinctness function is O(n1−2k−2/(2k−1)); this bound approaches n3/4 as
k →∞ [12].) However, we believe that substantially new techniques will be required to resolve the approx-
imate degree of these specific candidates. As explained in Section 1.3.1, our analysis is tailored to showing
(near-)optimality of robustification-based approximating polynomials for the functions we consider, in a
sense that can be made precise via complementary slackness. But the best known approximating polyno-
mials for k-sum and k-distinctness are derived from sophisticated quantum algorithms [6,12]. In particular,
they are not constructed via robustification. Hence, we expect that any proof of a novel approximate degree
lower bound for these functions will have to look very different than our own, as they will have to implicitly
engage with non-robustification based approximating polynomials.

6.2 Stronger Results for Large Error Approximation

Another open direction is to strengthen our ε-approximate degree lower bounds on AC0 from ε = 1/3 to ε
much closer to 1. For example, the following two variants of Problem 1 from the introduction are open.

Problem 2. Is there a constant-depth circuit in n variables with ε-approximate degree Ω(n), for (say)
ε = 1− 2−Ω(n)?

Problem 3. Is there a constant-depth circuit in n variables with ε-approximate degree Ω(n), for any ε < 1?

31

Problem 3 is equivalent to asking whether there is an AC0 function with linear threshold degree. Resolv-
ing Problems 2 and 3 would have a wide variety of consequences in computational learning theory, circuit
complexity, and communication complexity (see, e.g., [15, 19, 57] and the references therein).

Despite attention by many researchers, the best known lower bounds in the directions of Problems 3 and
4 are:

(a) For any constant Γ > 0, a depth-3 circuit with ε-approximate degree Ω(n1/2−δ) for ε = 1− 2−n
Γ

[19],

(b) A depth-3 circuit with threshold degree Ω(n3/7) [46], and

(c) A depth-4 circuit with threshold degree Ω(n1/2) [46].

We believe that the following three results in the directions of Problems 2 and 3 should be achievable via
relatively modest extensions of our techniques.

First, it should be possible to nearly resolve Problem 2 as follows. Recall from Section 1.2.1 that our
recent work [19] also proved stronger hardness amplification results for approximate degree by moving
beyond block composed functions. The methods of [19] amplify approximation error but not degree, while
in this paper we amplify degree but not approximation error. We believe that it is possible to combine the two
sets of techniques to exhibit a function in AC0 on n variables with ε-approximate degree at least n1−δ, even
for ε = 1−2−Ω(n1−δ). Such a result would translate in a black-box manner into lower bounds of 2Ω(n1−δ) on
the margin complexity, (multiplicative inverse of) discrepancy, threshold weight, and Majority-of-Threshold
circuit size of AC0, nearly matching trivial 2O(n) upper bounds.

Second, we are confident that the polylogarithmic width DNF f : {−1, 1}n → {−1, 1} of approximate
degree Ω(n1−δ) exhibited in Theorem 4 in fact has large one-sided approximate degree [18]. Moreover, this
should be provable via a modest extension of our techniques. Combining such a lower bound with a result
of Sherstov [57] would imply that ANDn1−δ ◦ f has threshold degree Ω(n1−δ), thereby yielding a depth
three circuit (of quasipolynomial size) on N = n2−2δ variables with threshold degree Ω(N1/2−δ).

Third, we believe that the following function g on O(n log4 n) variables has threshold degree Ω(n3/5).
Let fn = ANDn1/5◦ORn2/5◦ANDn2/5 , and let g be the harder function obtained by applying the construction
of Theorem 5 to fn. Note that g is computed by a circuit of depth 5.

Sherstov [57] constructed a dual polynomial ψ witnessing the fact that

deg± (ANDn1/5 ◦ ORn2/5 ◦ ANDn2/5 ◦ ORn2/5) = Ω(n3/5).

(Note that this block composed function is defined over n7/5 variables.) In order to show that g likewise
has threshold degree Ω(n3/5), our results from Section 3 imply that it is enough to “zero out” the mass that
ψ places on inputs of Hamming weight larger than a suitable threshold N = Õ(n), without affecting the
sign of ψ on the remaining inputs. We believe that is possible to achieve this via a refinement of the zeroing
technique used in this work.

A final ambitious direction. A more ambitious direction toward resolving Problems 2 and 3 would be to
obtain a version of our hardness amplification result (Theorem 5) that (a) applies to threshold degree rather
than approximate degree and (b) can be applied recursively. This would allow one to obtain an Ω(n1−δ)
lower bound on the threshold degree of AC0, nearly resolving Problem 3 above.

One might hope to obtain such a result by extending the above envisioned analysis for obtaining an
Ω(n3/5) threshold degree lower bound, so as to allow recursive application of the construction and analysis.

32

However, we believe that achieving this goal will require substantial new ideas. The only available tech-
niques for recursively amplifying threshold degree bounds are due to Sherstov [46,57], who considers block
composed functions of the form OR ◦ f . Specifically, he uses a dual witness for the outer function OR to
“amplify the efficacy” of a dual witness for the inner function f .

In contrast, our recursive construction in this paper considers block compositions of the form f ◦ OR,
and uses a dual witness for the inner function OR to “amplify the efficacy” of a dual witness for the outer
function f . This difference appears to prevent us from combining the methods of [57] with our own in a
manner that would enable recursive application. Finding a way to reconcile the two approaches may present
a promising avenue for obtaining a (near-)resolution of Problem 3.

Acknowledgements. We are grateful to Shalev Ben-David for illuminating conversations regarding separa-
tions between approximate degree and certificate complexity, and to Robin Kothari and Sasha Sherstov for
valuable comments on an earlier version of this manuscript.

References

[1] Scott Aaronson. The polynomial method in quantum and classical computing. In 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, page 3, 2008.

[2] Scott Aaronson. Impossibility of succinct quantum proofs for collision-freeness. Quantum Information
& Computation, 12(1-2):21–28, 2012.

[3] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using cheat
sheets. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 863–876, 2016.

[4] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness
problems. J. ACM, 51(4):595–605, 2004.

[5] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element
distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

[6] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210–239,
2007.

[7] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris Smotrovs.
Separations in query complexity based on pointer functions. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 800–813, 2016.

[8] Andris Ambainis, Andrew M. Childs, Ben Reichardt, Robert Spalek, and Shengyu Zhang. Any and-
or formula of size n can be evaluated in time n1/2+o(1) on a quantum computer. SIAM J. Comput.,
39(6):2513–2530, 2010.

[9] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower
bounds by polynomials. J. ACM, 48(4):778–797, 2001.

33

[10] Paul Beame and Widad Machmouchi. The quantum query complexity of AC0. Quantum Information
& Computation, 12(7-8):670–676, 2012.

[11] Richard Beigel. Perceptrons, PP, and the Polynomial Hierarchy. Computational Complexity, 4:339–
349, 1994.

[12] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-
23, 2012, pages 207–216. IEEE Computer Society, 2012.

[13] Aleksandrs Belovs and Robert Spalek. Adversary lower bound for the k-sum problem. In Robert D.
Kleinberg, editor, Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January
9-12, 2013, pages 323–328. ACM, 2013.

[14] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded indistinguisha-
bility and the complexity of recovering secrets. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Com-
puter Science, pages 593–618. Springer, 2016.

[15] Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vasudevan. On SZK
and PP. Electronic Colloquium on Computational Complexity (ECCC), 23:140, 2016.

[16] Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On computation and communication
with small bias. In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16
June 2007, San Diego, California, USA, pages 24–32. IEEE Computer Society, 2007.

[17] Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and markov-bernstein in-
equalities. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
ICALP (1), volume 7965 of Lecture Notes in Computer Science, pages 303–314. Springer, 2013.

[18] Mark Bun and Justin Thaler. Hardness amplification and the approximate degree of constant-
depth circuits. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lec-
ture Notes in Computer Science, pages 268–280. Springer, 2015. Full version available at
http://eccc.hpi-web.de/report/2013/151.

[19] Mark Bun and Justin Thaler. Approximate degree and the complexity of depth three circuits. Electronic
Colloquium on Computational Complexity (ECCC), 23:121, 2016.

[20] Mark Bun and Justin Thaler. Dual polynomials for Collision and Element Distinctness. Theory of
Computing, 12(16):1–34, 2016.

[21] Mark Bun and Justin Thaler. Improved bounds on the sign-rank of AC0. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55
of LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

34

[22] Karthekeyan Chandrasekaran, Justin Thaler, Jonathan Ullman, and Andrew Wan. Faster private release
of marginals on small databases. CoRR, abs/1304.3754, 2013.

[23] Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity of disjointness. Elec-
tronic Colloquium on Computational Complexity (ECCC), 15(002), 2008.

[24] Lijie Chen. Adaptivity vs. postselection, and hardness amplification for polynomial approximation. In
27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016,
Sydney, Australia, pages 26:1–26:12, 2016.

[25] Andrew M. Childs, Shelby Kimmel, and Robin Kothari. The quantum query complexity of read-many
formulas. In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012 - 20th Annual European
Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7501 of Lecture Notes
in Computer Science, pages 337–348. Springer, 2012.

[26] Matei David and Toniann Pitassi. Separating NOF communication complexity classes RP and NP.
Electronic Colloquium on Computational Complexity (ECCC), 15(014), 2008.

[27] Matei David, Toniann Pitassi, and Emanuele Viola. Improved separations between nondeterministic
and randomized multiparty communication. TOCT, 1(2), 2009.

[28] Dmitry Gavinsky and Alexander A. Sherstov. A separation of NP and coNP in multiparty communi-
cation complexity. Theory of Computing, 6(1):227–245, 2010.

[29] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition number.
In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 1077–1088, 2015.

[30] Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-error inputs. In
Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata,
Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Nether-
lands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer Science, pages
291–299. Springer, 2003.

[31] Jeff Kahn, Nathan Linial, and Alex Samorodnitsky. Inclusion-exclusion: Exact and approximate.
Combinatorica, 16(4):465–477, 1996.

[32] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnostically learn-
ing halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008.

[33] Varun Kanade and Justin Thaler. Distribution-independent reliable learning. In Maria-Florina Balcan
and Csaba Szepesvári, editors, Proceedings of The 27th Conference on Learning Theory, COLT 2014,
Barcelona, Spain, June 13-15, 2014, volume 35 of JMLR Proceedings, pages 3–24. JMLR.org, 2014.

[34] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2õ(n
1/3). J. Comput. Syst. Sci.,

68(2):303–318, 2004.

[35] Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision lists and
parities. Journal of Machine Learning Research, 7:587–602, 2006.

[36] Troy Lee. A note on the sign degree of formulas. CoRR, abs/0909.4607, 2009.

35

[37] Troy Lee and Adi Shraibman. An approximation algorithm for approximation rank. In Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18
July 2009, pages 351–357, 2009.

[38] Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computational geometry. MIT
Press, 1969.

[39] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials. Computa-
tional Complexity, 4:301–313, 1994.

[40] Ryan O’Donnell and Rocco A. Servedio. New degree bounds for polynomial threshold functions.
Combinatorica, 30(3):327–358, 2010.

[41] Ramamohan Paturi. On the degree of polynomials that approximate symmetric boolean functions
(preliminary version). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria,
British Columbia, Canada, pages 468–474. ACM, 1992.

[42] Vladimir V. Podolskii. A uniform lower bound on weights of perceptrons. In Edward A. Hirsch,
Alexander A. Razborov, Alexei L. Semenov, and Anatol Slissenko, editors, Computer Science - Theory
and Applications, Third International Computer Science Symposium in Russia, CSR 2008, Moscow,
Russia, June 7-12, 2008, Proceedings, volume 5010 of Lecture Notes in Computer Science, pages
261–272. Springer, 2008.

[43] Anup Rao and Amir Yehudayoff. Simplified lower bounds on the multiparty communication complex-
ity of disjointness. Electronic Colloquium on Computational Complexity (ECCC), 21:60, 2014.

[44] Alexander A. Razborov and Alexander A. Sherstov. The sign-rank of AC0. SIAM J. Comput.,
39(5):1833–1855, 2010.

[45] Rocco A. Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and weight-degree
tradeoffs for polynomial threshold functions. In Shie Mannor, Nathan Srebro, and Robert C.
Williamson, editors, COLT, volume 23 of JMLR Proceedings, pages 14.1–14.19. JMLR.org, 2012.

[46] A. A. Sherstov. The power of asymmetry in constant-depth circuits. In FOCS, 2015. Full version
available at http://eccc.hpi-web.de/report/2015/147/.

[47] Alexander A. Sherstov. Communication lower bounds using dual polynomials. Bulletin of the EATCS,
95:59–93, 2008.

[48] Alexander A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions. Compu-
tational Complexity, 18(2):219–247, 2009.

[49] Alexander A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113–
2129, 2009.

[50] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000, 2011.

[51] Alexander A. Sherstov. The multiparty communication complexity of set disjointness. In Howard J.
Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 525–548. ACM, 2012.

36

[52] Alexander A. Sherstov. Approximating the AND-OR Tree. Theory of Computing, 9(20):653–663,
2013.

[53] Alexander A. Sherstov. Communication lower bounds using directional derivatives. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 921–930. ACM, 2013.

[54] Alexander A. Sherstov. The intersection of two halfspaces has high threshold degree. SIAM J. Comput.,
42(6):2329–2374, 2013.

[55] Alexander A. Sherstov. Making polynomials robust to noise. Theory of Computing, 9:593–615, 2013.

[56] Alexander A. Sherstov. Optimal bounds for sign-representing the intersection of two halfspaces by
polynomials. Combinatorica, 33(1):73–96, 2013.

[57] Alexander A. Sherstov. Breaking the Minsky-Papert barrier for constant-depth circuits. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 223–232. ACM, 2014.

[58] Yaoyun Shi. Approximating linear restrictions of boolean functions. 2002. Manuscript. Available
online at: web.eecs.umich.edu/ shiyy/mypapers/linear02-j.ps.

[59] Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed functions. Quan-
tum Information & Computation, 9(5):444–460, 2009.

[60] Robert Spalek. A dual polynomial for OR. CoRR, abs/0803.4516, 2008.

[61] Avishay Tal. Shrinkage of de morgan formulae from quantum query complexity. Electronic Collo-
quium on Computational Complexity (ECCC), 21:48, 2014.

[62] Avishay Tal. The bipartite formula complexity of inner-product is quadratic. Electronic Colloquium
on Computational Complexity (ECCC), 23:181, 2016.

[63] Avishay Tal. Computing requires larger formulas than approximating. Electronic Colloquium on
Computational Complexity (ECCC), 23:179, 2016.

[64] Justin Thaler. Lower bounds for the approximate degree of block-composed functions. Electronic
Colloquium on Computational Complexity (ECCC), 21:150, 2014. To appear in ICALP, 2016.

[65] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releasing
marginals. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Au-
tomata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 810–
821. Springer, 2012.

A A Refined Dual Witness for OR

Our goal is to prove the following equivalent formulation of Lemma 29.

37

Lemma 44. Let k ∈ N. There exists a constant c1 ∈ (0, 1) and a function ω : {0, 1, . . . , k} → R such that

ω(0)−
k∑
t=1

ω(t) ≥ 1

3
‖ω‖1 (66)

For all univariate polynomials q : R→ R, deg p < c1
√
k =⇒

k∑
t=0

ω(t) · q(t) = 0 (67)

ω(0) > 0 (68)

ω(t) ≤ 5‖ω‖1
(t+ 1)2

∀t = 0, 1, . . . , k (69)

In the proof of Lemma 44, we make use of the following combinatorial identity.

Fact 45. Let k ∈ N, and let p be a polynomial of degree less than k. Then
k∑
t=0

(−1)t
(
k

t

)
p(t) = 0.

Proof of Lemma 29. Let c = 25 below. Let m = b
√
k/cc and define the set

T = {1, 2} ∪ {ci2 : 0 ≤ i ≤ m}.

Note that |T | = Ω(
√
k). Define the polynomial

ω(t) =
(−1)t+(k−m)

k!

(
k

t

) ∏
r∈[k]0\T

(t− r).

It is immediate from Fact 45 that ω satisfies (67) for c1 = 1/
√
c. By inspection, we have ω(0) > 0 and

ω(1) < 0.
Expanding out the binomial coefficient reveals that

|ω(t)| =

∏

r∈T\{t}

1
|t−r| for t ∈ T,

0 otherwise.

For t = 1, we observe

|ω(1)|
ω(0)

=
2
∏m
i=1 ci

2∏m
i=1(ci2 − 1)

= 2

m∏
i=1

i2

i2 − 1/c
≥ 2.

On the other hand, for t = 2, we have

|ω(2)|
ω(0)

=
2
∏m
i=1 ci

2

2
∏m
i=1(ci2 − 2)

=

(
m∏
i=1

i2 − 2/c

i2

)−1

≤

(
1−

m∑
i=1

2

ci2

)−1

≤
(

1− π2

3c

)−1

=
3c

3c− π2
(70)

38

where the first inequality follows from the fact that
∏m
i=1(1− ai) ≥ 1−

∑m
i=1 ai for ai ∈ (0, 1).

For t = cj2 with j ≥ 1, we get

|ω(t)|
ω(0)

=
2
∏m
i=1 ci

2

(cj2 − 1)(cj2 − 2)
∏
i∈[m]\{j} |ci2 − cj2|

=
2(m!)2

(c2j4 − 3cj2 + 2)
∏
i∈[m]\{j}(i+ j)|i− j|

=
2(m!)2

(c2j4 − 3cj2 + 2)(m+ j)!(m− j)!

≤ 2

c2j4 − 3cj2 + 2

where the last inequality follows because

(m!)2

(m+ j)!(m− j)!
=

m

m+ j
· m− 1

m+ j − 1
· . . . · m− j + 1

m+ 1

is a product of factors that are each smaller than 1. Since

|ω(cj2)|
‖ω‖1

≤ |ω(t)|
ω(0)

≤ 2

c2j4 − 3cj2 + 2
≤ 5

(cj2 + 1)2

for c ≥ 8, this establishes (69).
What remains is to perform the correlation calculation to establish (66). First, observe that the total

contribution of t > 2 to ‖ω‖1/ω(0) is at most∑
t>2

|ω(t)|
ω(0)

=
m∑
j=1

2

c2j4 − 3cj2 + 2
<
∞∑
j=1

2

cj2
<
π2

3c
. (71)

Next, we calculate

ω(0)−
k∑
t=1

ω(t) ≥ ω(0)− ω(1)−

(
k∑
t=2

|ω(t)|

)

≥ ω(0)− ω(1)−
(
ω(2) + ω(0) · π

2

3c

)
by (71)

≥ −ω(1) + ω(0)

(
1− 3c

3c− π2
− π2

3c

)
by (70)

≥ −ω(1)− 1

3
ω(0) by our choice of c = 25. (72)

On the other hand,

‖ω‖1 ≤ ω(0)− ω(1) + ω(2) + ω(0) · π
2

3c
by (71)

≤ −ω(1) + ω(0)

(
1 +

3c

3c− π2
+
π2

3c

)
by (70)

≤ −ω(1) +
7

3
ω(0) since c = 25. (73)

39

Combining (72) and (73), and using the fact that −ω(1) ≥ 2ω(0) shows that

ω(0)−
∑k

t=1 ω(t)

‖ω‖1
≥
−ω(1)− 1

3ω(0)

−ω(1) + 7
3ω(0)

≥ 1

3
.

This establishes (66), completing the proof.

40

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

