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Abstract

For any n-bit boolean function f , we show that the randomized communication complexity of the
composed function f ◦gn, where g is an index gadget, is characterized by the randomized decision
tree complexity of f . In particular, this means that many query complexity separations involving
randomized models (e.g., classical vs. quantum) automatically imply analogous separations in
communication complexity.

1 Introduction

A query-to-communication lifting theorem (a.k.a. communication-to-query simulation theorem)
translates lower bounds on some type of query complexity (a.k.a. decision tree complexity) [Ver99,
BdW02, Juk12] of a boolean function f into lower bounds on a corresponding type of communication
complexity [KN97, Juk12, RY17] of a two-party version of f . See Table 1 for a list of several known
results in this vein. In this work, we show a lifting theorem for bounded-error randomized (i.e.,
BPP-type) query/communication complexity. Such a theorem had been conjectured by [ABB+16b,
BK16, CKLM17, WYY17] and (ad nauseam) by the current authors.

1.1 Our result

For a function f : {0, 1}n → {0, 1} (called the outer function) and a two-party function g : X ×Y →
{0, 1} (called the gadget), their composition f ◦ gn : X n × Yn → {0, 1} is defined by

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Here, Alice holds x ∈ X n and Bob holds y ∈ Yn. Our result is proved for the popular index
gadget Indm : [m]× {0, 1}m → {0, 1} mapping (x, y) 7→ yx. We use BPPdt and BPPcc to denote the
usual bounded-error randomized query and communication complexities. That is, BPPdt(f) is the
minimum cost of a randomized decision tree (distribution over deterministic decision trees) which,
on each input z, outputs f(z) with probability at least 2/3, where the cost is the maximum number
of queries over all inputs and outcomes of the randomness; BPPcc(F ) is defined similarly but with
communication protocols instead of decision trees.

Theorem 1 (Lifting for BPP). Let m = m(n) := n256. For every f : {0, 1}n → {0, 1},

BPPcc(f ◦ Indnm) = BPPdt(f) ·Θ(log n).
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Class Query model Communication model References

P deterministic deterministic [RM99, GPW15, dRNV16,
HHL16, WYY17, CKLM17]

NP nondeterministic nondeterministic [GLM+16, Göö15]

many polynomial degree rank [SZ09, She11, RS10, RPRC16]

many conical junta degree nonnegative rank [GLM+16, KMR17]

PNP decision list rectangle overlay [GKPW17]

Sherali–Adams LP extension complexity [CLRS16, KMR17]

sum-of-squares SDP extension complexity [LRS15]

Table 1: Query-to-communication lifting theorems. The first five are formulated in the language
of boolean functions (as in this paper); the last two are formulated in the language of combinatorial
optimization.

1.2 What does it mean?

The upshot of our lifting theorem is that it automates the task of proving randomized communication
lower bounds: we only need to show a problem-specific query lower bound for f (which is often
relatively simple), and then invoke the general-purpose lifting theorem to completely characterize
the randomized communication complexity of f ◦ Indnm.

Separation results. The lifting theorem is especially useful for constructing examples of two-
party functions that have large randomized communication complexity, but low complexity in some
other communication model. For example, one of the main results of Anshu et al. [ABB+16b]
is a nearly 2.5-th power separation between randomized and quantum (BQPcc) communication
complexities for a total function F :

BPPcc(F ) ≥ BQPcc(F )2.5−o(1). (1)

Previously, a quadratic separation was known (witnessed by set-disjointness). The construction of F
(and its ad hoc analysis) in [ABB+16b] was closely modeled after an analogous query complexity
separation, BPPdt(f) ≥ BQPdt(f)2.5−o(1), shown earlier by [ABK16]. Our lifting theorem can
reproduce the separation (1) by simply taking F := f ◦ Indnm and using the query result of [ABK16]
as a black-box. Here we only note that BQPcc(F ) is at most a logarithmic factor larger than
BQPdt(f), since a protocol can always efficiently simulate a decision tree.

In a similar fashion, we can unify (and in some cases simplify) several other existing results
in communication complexity [Raz99, GJPW15, ABB+16b, BR17], including separations between
BPPcc and the log of the partition number; see Section 5 for details. At the time of the writing, we
are not aware of any new applications implied by our lifting theorem.

Gadget size. A drawback with our lifting theorem is that it assumes gadget size m = poly(n),
which limits its applicability. For example, we are not able to reproduce tight randomized
lower bounds for important functions such as set-disjointness [KS92, Raz92, BJKS04] or gap-
Hamming [CR12, She12, Vid13]. It remains an open problem to prove a lifting theorem for m = O(1)
even for the models studied in [GLM+16, KMR17].
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2 Reformulation

Our lifting theorem holds for all f , even if f is a partial function or a general relation (search
problem). Thus the theorem is not really about the outer function at all; it is about the obfuscating
ability of the index gadget Indm to hide information about the input bits of f . To focus on what is
essential, let us reformulate the lifting theorem in a more abstract way that makes no reference to f .

2.1 Slices

Write G := gn for g := Indm. We view G’s input domain [m]n× ({0, 1}m)n as being partitioned into
slices G−1(z) = {(x, y) : G(x, y) = z}, one for each z ∈ {0, 1}n; see (a) below. We will eventually
consider randomized protocols, but suppose for simplicity that we are given a deterministic protocol
Π of communication cost |Π|. The most basic fact about Π is that it induces a partition of the input
domain into at most 2|Π| rectangles (sets of the form X × Y where X ⊆ [m]n, Y ⊆ ({0, 1}m)n);
see (b) below. The rectangles are in 1-to-1 correspondence with the leaves of the protocol tree,
which are in 1-to-1 correspondence with the protocol’s transcripts (root-to-leaf paths; each path is
a concatenation of messages). Fixing some z ∈ {0, 1}n, we are interested in the distribution over
transcripts that is generated when Π is run on a uniform random input from the slice G−1(z); see
(c) below.

[m]n

({0, 1}m)n

(a) (b) (c)

2.2 The reformulation

We devise a randomized decision tree that on input z outputs a random transcript distributed close
(in total variation distance) to that generated by Π on input (x,y) ∼ G−1(z). (We always use
boldface letters for random variables.)

Theorem 2. Let Π be a deterministic protocol with inputs from the domain of G = gn. There is a
randomized decision tree of cost O(|Π|/ log n) that on input z ∈ {0, 1}n samples a random transcript
(or outputs ⊥ for failure) such that the following two distributions are o(1)-close:

tz := output distribution of the randomized decision tree on input z,

t′z := transcript generated by Π when run on a random input (x,y) ∼ G−1(z).

Moreover, the simulation has “one-sided error”: supp(tz) ⊆ supp(t′z) ∪ {⊥} for every z.

The lifting theorem (Theorem 1) follows as a simple consequence of the above reformulation. For
the easy direction (“≤”), any randomized decision tree for f making c queries can be converted into
a randomized protocol for f ◦ gn communicating c ·O(log n) bits, where the O(log n) factor is the
deterministic communication complexity of the gadget. For the nontrivial direction (“≥”), suppose
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we have a randomized protocol Π (viewed as a probability distribution over deterministic protocols)
that computes f ◦ gn (with error ≤ 1/3, say) and each Π ∼ Π communicates at most |Π| ≤ c bits.
We convert this into a randomized decision tree for f of query cost O(c/ log n) as follows.

On input z:

(1) Pick a deterministic Π ∼ Π (using random coins of the decision tree).
(2) Run the randomized decision tree for Π from Theorem 2 that samples a transcript t ∼ tz(Π).
(3) Output the value of the leaf reached in t.

The resulting decision tree has bounded error on input z:

Pr[ output of decision tree 6= f(z)] = EΠ∼Π

[
Prt∼tz(Π)[ value of leaf in t 6= f(z)]

]
= EΠ∼Π

[
Prt∼t′z(Π)[ value of leaf in t 6= f(z)]± o(1)

]
= EΠ∼Π

[
Pr(x,y)∼G−1(z)[Π(x,y) 6= f(z)]

]
± o(1)

= E(x,y)∼G−1(z)

[
PrΠ[Π(x, y) 6= f(z)]

]
± o(1)

≤ E(x,y)∼G−1(z)[1/3]± o(1)

≤ 1/3 + o(1).

2.3 Extensions

The correctness of our simulation hinged on the property of BPP-type algorithms that the mixture of
correct output distributions is correct. In fact, the “moreover” part in Theorem 2 allows us to get a
lifting theorem for one-sided error (RP-type) and zero-sided error (ZPP-type) query/communication
complexity: if the randomized protocol Π on every input (x, y) ∈ G−1(z) outputs values in {f(z),⊥},
so does our decision tree simulation on input z. Funnily enough, it was previously known that
the existence of a query-to-communication lifting theorem for ZPP (for index gadget) implies
the existence of a lifting theorem for BPP in a black-box fashion [BK16]. We also mention that
Theorem 2 in fact holds with 1/poly(n)-closeness (instead of o(1)) for an arbitrarily high degree
polynomial, provided m is chosen to be a correspondingly high enough degree polynomial in n.

3 Simulation

We now prove Theorem 2. Fix a deterministic protocol Π henceforth. We start with a high-level
sketch of the simulation, and then fill in the details.

3.1 Executive summary

X

Y

G −
1
(z) ∩

X×
Y

The randomized decision tree will generate a random tran-
script of Π by taking a random walk down the protocol
tree of Π, guided by occasional queries to the bits of z.
The design of our random walk is dictated by one (and
only one) property of the slice sets G−1(z):

Uniform marginals lemma (informal):
For every z ∈ {0, 1}n and every rectangle X ×Y where
X is “dense” and Y is “large”, the uniform distribution
on G−1(z)∩X×Y has both of its marginal distributions
close to uniform on X and Y , respectively.
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This immediately suggests a way to begin the randomized simulation. Each node of Π’s protocol tree
is associated with a rectangle X × Y of all inputs that reach that node. We start at the root where,
initially, X × Y = [m]n × ({0, 1}m)n. Suppose Alice communicates the first bit b ∈ {0, 1}. This
induces a partition X = X0 ∪X1 where Xb consists of those inputs where Alice sends b. When Π is
run on a random input (x,y) ∼ G−1(z), the above lemma states that x is close to uniform on X and
hence the branch Xb is taken with probability roughly |Xb|/|X|. Our idea for a simulation is this: we
pretend that x ∼ X is perfectly uniform so that our simulation takes the branch Xb with probability
exactly |Xb|/|X|. It follows that the first bit sent in the two scenarios (tz and t′z) is distributed
close to each other. We can continue the simulation in the same manner, updating X ← Xb (and
similarly Y ← Y b when Bob speaks), as long as X × Y remains “dense× large”.

Largeness. A convenient property of the index gadget is that Bob’s nm-bit input is much longer
than Alice’s n logm-bit input. Consequently, the simulation will not need to go out of its way to
maintain the “largeness” of Bob’s set Y—we will argue that it naturally remains “large” enough
with high probability throughout the simulation.

Density. The interesting case is when Alice’s set X ceases to be “dense”. Our idea is to promptly
restore “density” by computing a density-restoring partition X =

⋃
iX

i with the property that
each Xi is fixed on some subset of blocks Ii ⊆ [n] (which “caused” a density violation), and such
that Xi is again “dense” on the remaining blocks [n] r Ii. Moreover, |Ii| will typically be bounded
in terms of the number of bits communicated so far.

After Alice has partitioned X =
⋃
iX

i we will follow the branch Xi (updating X ← Xi) with
probability |Xi|/|X|; this random choice is justified by the uniform marginals lemma, since it
imitates what would happen on a uniform random input from G−1(z). Since we made Alice’s
pointers Xi

Ii
fixed, say, to value α ∈ [m]Ii , we need to fix the corresponding pointed-to bits on Bob’s

side so as to make the output of the gadgets gn(Xi, Y ) consistent with z on the fixed coordinates.
At this point, our decision tree queries all the bits zIi ∈ {0, 1}Ii and we argue that we can indeed
typically restrict Bob’s set to some still-“large” Y i ⊆ Y to ensure gIi(Xi

Ii
× Y i

Ii
) = {zIi}. Now

that we have recovered “density” on the unfixed blocks, we may continue the simulation as before
(relativized to unfixed blocks).

3.2 Tools

Let us make the notions of “dense” and “large” precise. Let H∞(x) := minx log(1/Pr[x = x])
denote the usual min-entropy of a random variable x. Supposing x is distributed over a set X,
we define the deficiency of x as the nonnegative quantity D∞(x) := log |X| −H∞(x). A basic
property, which we use freely and repeatedly throughout the proof, is that marginalizing x to some
coordinates (assuming X is a product set) cannot increase the deficiency. For a set X we use the
boldface X to denote a random variable uniformly distributed on X.

Definition 1 (Blockwise-density [GLM+16]). A random variable x ∈ [m]J (where J is some index
set) is called δ-dense if for every nonempty I ⊆ J , the blocks xI have min-entropy rate at least δ,
that is, H∞(xI) ≥ δ · |I| logm. (Note that xI is marginally distributed over [m]I .)

Lemma 3 (Uniform marginals; simple version). Suppose X is 0.9-dense and D∞(Y ) ≤ n3. Then
for any z ∈ {0, 1}n, the uniform distribution on G−1(z) ∩X × Y (which is nonempty) has both of
its marginal distributions 1/n2-close to uniform on X and Y , respectively.
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We postpone the proof of the lemma to Section 4, and instead concentrate here on the simulation
itself—its correctness will mostly rely on this lemma. Actually, we need a slightly more general-
looking statement that we can easily apply when some blocks in X have become fixed during the
simulation. To this end, we introduce terminology for such rectangles X × Y . Note that Lemma 4
below specializes to Lemma 3 by taking ρ = ∗n.

Definition 2 (Structured rectangles). For a partial assignment ρ ∈ {0, 1, ∗}n, define its free positions
as free ρ := ρ−1(∗) ⊆ [n], and its fixed positions as fix ρ := [n] r free ρ. A rectangle X × Y is called
ρ-structured if Xfree ρ is 0.9-dense, Xfix ρ is fixed, and each output in G(X × Y ) is consistent with ρ.

Lemma 4 (Uniform marginals; general version). Suppose X × Y is ρ-structured and D∞(Y ) ≤ n3.
Then for any z ∈ {0, 1}n consistent with ρ, the uniform distribution on G−1(z) ∩X × Y (which is
nonempty) has both of its marginal distributions 1/n2-close to uniform on X and Y , respectively.

Illustration of x ∼ X and y ∼ Y where X × Y is ρ-structured for ρ := 10∗∗

x1

x2

x3

x4

fi
xe

d
d
en

se

= y1

= y2

= y3

= y4

1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3.3 Density-restoring partition

Fix some set X ⊆ [m]J . (In our application, J ⊆ [n] will correspond to the set of free blocks during
the simulation.) We describe a procedure that takes X and outputs a density-restoring partition
X =

⋃
iX

i such that each Xi is fixed on some subset of blocks Ii ⊆ J and 0.9-dense on J r Ii. The
procedure associates a label of the form “xIi = αi” with each part Xi, recording which blocks we
fixed and to what value. If X is already 0.9-dense, the procedure outputs just one part: X itself.

While X is nonempty:

(1) Let I ⊆ J be a maximal subset (possibly I = ∅) such that XI has min-entropy rate < 0.9,
and let α ∈ [m]I be an outcome witnessing this: Pr[XI = α] > m−0.9|I|.

(2) Output part X(xI=α) := {x ∈ X : xI = α} with label “xI = α”.
(3) Update X ← X rX(xI=α).

X ∅xI1? xI2? xI3? xI4?

X1 X2 X3 X4

“xI1 = α1” “xI2 = α2” “xI3 = α3” “xI4 = α4”

6= α1 6= α2 6= α3 6= α4

= α1 = α2 = α3 = α4

We collect below the key properties of the partition X =
⋃
iX

i output by the procedure. Firstly,
the partition indeed restores blockwise-density for the unfixed blocks. Secondly, the deficiency
(relative to unfixed blocks) typically decreases proportional to the number of blocks we fixed.
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Lemma 5. Each Xi (labeled “xIi = αi”) in the density-restoring partition satisfies the following.

(Density): Xi
JrIi is 0.9-dense

(Deficiency): D∞(Xi
JrIi) ≤ D∞(X)− 0.1|Ii| logm+ δi where δi := log(|X|/| ∪j≥i Xj |)

Proof. Write X>i :=
⋃
j≥iX

j so that Xi = (X>i |X>i
Ii

= αi). Suppose for contradiction that some

part Xi was not 0.9-dense on J r Ii. Then there is some nonempty K ⊆ J r Ii and an outcome
β ∈ [m]K violating the min-entropy condition: Pr[Xi

K = β] > m−0.9|K|. But this contradicts the
maximality of Ii since the larger set Ii ∪K now violates the min-entropy condition for X>i:

Pr[X>i
Ii∪K = αiβ] = Pr[X>i

Ii
= αi] ·Pr[Xi

K = β] > m−0.9|Ii| ·m−0.9|K| = m−0.9|Ii∪K|.

This proves the first part. The second part is a straightforward calculation (intuitively, going from
X to X>i causes a δi increase in deficiency, going from X>i to Xi causes a ≤ 0.9|Ii| logm increase,
and restricting from J to J r Ii causes a |Ii| logm decrease):

D∞(Xi
JrIi) = |J r Ii| logm− log |Xi|

≤
(
|J | logm− |Ii| logm

)
− log

(
|X>i| · 2−0.9|Ii| logm

)
=
(
|J | logm− log |X|

)
− 0.1|Ii| logm+ log

(
|X|/|X>i|

)
= D∞(X)− 0.1|Ii| logm+ δi.

3.4 The simulation

To describe our simulation in a convenient language, we modify the deterministic protocol Π into a
refined deterministic protocol Π; see Figure 1. Namely, we insert two new rounds of communication
whose sole purpose is to restore density for Alice’s free blocks by fixing some other blocks and Bob’s
corresponding bits. In short, we maintain the rectangle X × Y as ρ-structured for some ρ. Each
communication round of Π is thus replaced with a whole iteration in Π. The new communication
rounds do not affect the input/output behavior of the original protocol: any transcript of Π can be
projected back to a transcript of Π (by ignoring messages sent on lines 14, 16). One way to think
about Π is that it induces a partition of the communication matrix that is a refinement of the one
Π induces. Therefore, for the purpose of proving Theorem 2, we can concentrate on simulating Π in
place of Π. The randomized decision tree becomes simple to describe relative to Π; see Figure 2.

Next, we proceed to show that our randomized decision tree is (1) correct: on input z it samples
a transcript distributed close to that of Π when run on (x,y) ∼ G−1(z), and (2) efficient: the
number of queries it makes is bounded in terms of |Π| (the number of iterations in Π).

3.5 Correctness: Transcript distribution

We show that for every z ∈ {0, 1}n the following distributions are o(1)-close:

t := transcript generated by our simulation of Π with query access to z,

t′ := transcript generated by Π when run on a random input from G−1(z).

The following is the heart of the argument.

Lemma 6. Consider a node v at the beginning of an iteration in Π’s protocol tree, such that z is
consistent with the associated ρ. Suppose X × Y is the ρ-structured rectangle at v, and assume that
D∞(Y ) ≤ n3. Let m and m′ denote the messages sent in this iteration under t and t′ respectively
(conditioned on reaching v). Then
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Refined protocol Π on input (x, y):

1: initialize: v = root of Π, X × Y = [m]n × ({0, 1}m)n, ρ = ∗n
2: while v is not a leaf [ invariant: X × Y is ρ-structured ]
3: let v0, v1 be the children of v
4: if Bob sends a bit at v then
5: let Y = Y 0 ∪ Y 1 be the partition according to Bob’s function at v
6: let b be such that y ∈ Y b

7: B Bob sends b and we update Y ← Y b, v ← vb
8: else Alice sends a bit at v
9: let X = X0 ∪X1 be the partition according to Alice’s function at v

10: let b be such that x ∈ Xb

11: B Alice sends b and we update X ← Xb, v ← vb

12: let X =
⋃
iX

i be such that Xfree ρ =
⋃
iX

i
free ρ is a density-restoring partition

13: let i be such that x ∈ Xi and suppose Xi
free ρ is labeled “xI = α”, I ⊆ free ρ

14: B Alice sends i and we update X ← Xi

15: let s = gI(α, yI) ∈ {0, 1}I
16: I Bob sends s and we update Y ← {y′ ∈ Y : gI(α, y′I) = s}, ρI ← s

17: end if
18: end while
19: output the value of the leaf v

Figure 1: The refined (deterministic) protocol Π. The protocol explicitly keeps track of a rectangle
X × Y consisting of all inputs that reach the current node (i.e., produce the same transcript so
far). The original protocol Π can be recovered by simply ignoring lines 12–16 and text in red. The
purpose of lines 12–16 is to maintain the invariant; they do not affect the input/output behavior.

Randomized decision tree on input z:

To generate a transcript of Π we take a random walk down Π’s protocol tree, guided by
queries to the bits of z. The following defines the distribution of messages to send at each
underlined line.

Lines marked ‘B’: We simulate an iteration of the protocol Π pretending that x ∼ X
and y ∼ Y are uniformly distributed over their domains. Namely, in line 7, we send b
with probability |Y b|/|Y |; in line 11, we send b with probability |Xb|/|X|; in line 14
(after having updated X ← Xb), we send i with probability |Xi|/|X|.

Line marked ‘I’: Here we query zI and send deterministically the message s = zI ; except
if this message is impossible to send (because zI /∈ gI(α, YI)), we output ⊥ and halt the
simulation with failure.

Figure 2: The randomized decision tree with query access to z. Its goal is to generate a random
transcript of Π that is o(1)-close to the transcript generated by Π on a random input (x,y) ∼ G−1(z).
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(i) m and m′ are 1/n2-close,
(ii) with probability at least 1− 4/n2 over m, at least a 2−(n logm+2) fraction of Y is retained.

Before proving the lemma, let us use it to show that t and t′ are o(1)-close. For this, it suffices
to exhibit a coupling such that Pr[t = t′] ≥ 1− o(1). Our coupling works as follows:

Begin at the root, and for each iteration of Π:

(1) Sample this iteration’s messages m and m′ according to an optimal coupling.
(2) If m 6= m′, or if m results in < 2−(n logm+2) fraction of Y being retained (this includes the

simulation’s failure case), then proceed to sample the rest of t and t′ independently.

It follows by induction on k that after the k-th iteration, with probability at least 1− k · 5/n2,

(I) t and t′ match so far,
(II) D∞(Y ) ≤ k · (n logm+ 2) ≤ n3 where Y is Bob’s set under t so far.

This trivially holds for k = 0. For k > 0, conditioned on (I) and (II) for iteration k − 1, the
assumptions of Lemma 6 are met and hence Pr[m = m′] ≥ 1− 1/n2 and

Pr
[
D∞(Y ) ≤ (k − 1) · (n logm+ 2) + (n logm+ 2) = k · (n logm+ 2)

]
≥ 1− 4/n2.

By a union bound, with probability ≥ 1− 5/n2, (I) and (II) continue to hold. Thus,

Pr[(I) and (II) hold after the k-th iteration] ≥ (1− (k − 1) · 5/n2) · (1− 5/n2) ≥ 1− k · 5/n2.

Since there are at most n logm iterations, we indeed always have k · (n logm + 2) ≤ n3 (in (II)),
and in the end we have Pr[t = t′] ≥ 1− (n logm) · 5/n2 ≥ 1− o(1) and thus t and t′ are o(1)-close.

Proof of Lemma 6. Let x := X be uniform over X, and y := Y be uniform over Y , and (x′,y′) be
uniform over G−1(z) ∩X × Y . By Lemma 4, x and x′ are 1/n2-close, and y and y′ are 1/n2-close.

First assume Bob sends a bit at v. Then m is some deterministic function of y, and m′ is the
same deterministic function of y′ (the bit sent on line 7); thus m and m′ are 1/n2-close since y
and y′ are. Also, the second property in the lemma statement trivially holds.

Henceforth assume Alice sends a bit at v. Write m = bis (jointly distributed with x) and
m′ = b′i′s′ (jointly distributed with (x′,y′)) as the concatenation of the three messages sent (on
lines 11, 14, 16). Then bis is some deterministic function of x, and b′i′s′ is the same deterministic
function of x′ (s and s′ depend on z, which is fixed); thus m and m′ are 1/n2-close since x and x′

are. A subtlety here is that there may be outcomes of bi for which s is not defined (there is no
corresponding child in Π’s protocol tree, since Bob’s set would become empty), in which case our
randomized decision tree fails and outputs ⊥. But such outcomes have 0 probability under b′i′, so it
is still safe to say m and m′ are 1/n2-close, treating s as ⊥ if it is undefined.

We turn to verifying the second property. Define Xbi × Y bi ⊆ X × Y as the rectangle at the end
of the iteration if Alice sends b and i, and note that x ∈ Xbi and x′ ∈ Xb′i′ . There is a coupling of
y and y′ such that Pr[y 6= y′] ≤ 1/n2; we may imagine that y is jointly distributed with (x′,y′):
sample (x′,y′) and then conditioned on the outcome of y′, sample y according to the coupling.
Note that for each bi,

Pr[y ∈ Y bi] ≥ Pr[y ∈ Y bi | x′ ∈ Xbi] ·Pr[x′ ∈ Xbi] ≥ Pr[y = y′ | x′ ∈ Xbi] ·Pr[x′ ∈ Xbi]

(since x′ ∈ Xbi implies y′ ∈ Y bi), and so

Prbi∼b′i′
[
Pr[y ∈ Y bi] < Pr[x′ ∈ Xbi]/2

]
≤ Prbi∼b′i′

[
Pr[y 6= y′ | x′ ∈ Xbi] ≥ 1/2

]
≤ 2/n2. (2)
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It is also straightforward to check that

Prbi∼b′i′
[
Pr[x′ ∈ Xbi] < Pr[x ∈ Xbi]/2

]
≤ 1/n2. (3)

Since trivially Pr[x ∈ Xbi] ≥ 1/|X| ≥ 2−n logm, combining (2) and (3) we have

Prbi∼bi
[
Pr[y ∈ Y bi] < 2−(n logm+2)

]
≤ Prbi∼b′i′

[
Pr[y ∈ Y bi] < 2−(n logm+2)

]
+ 1/n2

≤ Prbi∼b′i′
[
Pr[y ∈ Y bi] < Pr[x ∈ Xbi]/4

]
+ 1/n2

≤ Prbi∼b′i′
[
Pr[y ∈ Y bi] < Pr[x′ ∈ Xbi]/2 or Pr[x′ ∈ Xbi] < Pr[x ∈ Xbi]/2

]
+ 1/n2

≤ 2/n2 + 1/n2 + 1/n2.

“One-sided error”. One more detail to iron out is the “moreover” part in the statement of
Theorem 2. The simulation we described does not quite satisfy this condition, but this is simple to
fix: instead of halting with failure only when Y becomes empty, we actually halt with failure when
D∞(Y ) > n3. This does not affect the correctness or efficiency analysis at all, but it ensures that we
only output a transcript if X × Y is ρ-structured and D∞(Y ) ≤ n3 at the end, which by Lemma 4
guarantees that the transcript’s rectangle intersects the slice G−1(z) and thus t ∈ supp(t′).

3.6 Efficiency: Number of queries

We show that our randomized decision tree makes O(|Π|/ log n) queries with high probability. If we
insist on a decision tree that always makes this many queries (to match the statement of Theorem 2),
we may terminate the execution early (with output ⊥) whenever we exceed the threshold. This
would incur only a small additional loss in the closeness of transcript distributions.

Lemma 7. The simulation makes O(|Π|/ log n) queries with probability ≥ 1−min(2−|Π|, 1/nΩ(1)).

Proof. During the simulation, we view the quantity D∞(Xfree ρ) ≥ 0 as a nonnegative potential
function. Consider a single iteration where lines 11, 14, 16 modify the sets X and free ρ.

− In line 11, we shrink X = X0 ∪ X1 down to Xb where Pr[b = b] = |Xb|/|X|. Hence the
increase in the potential function is γb := log(|X|/|Xb|).

− In line 14 (after X ← Xb), we shrink X =
⋃
iX

i down to Xi where Pr[i = i] = |Xi|/|X|.
Moreover, in line 16, |free ρ| decreases by the number of bits we query. Lemma 5 says that the
potential changes by δi−Ω(log n) ·#(queries in this iteration) where δi := log(|X|/|∪j≥iXj |).

We will see later that for any iteration, E[γb],E[δi] ≤ O(1).
For j = 1, . . . , |Π|, letting γj , δj be the random variables γb, δi respectively in the j-th iteration

(and letting γj = δj = 0 for outcomes in which Alice does not communicate in the j-th iteration),
the potential function at the end of the simulation is

∑
j(γj +δj)−Ω(log n) ·#(queries in total) ≥ 0

and hence

E
[
#(queries in total)

]
≤ O(1/ log n) ·

∑
j

(
E[γj ] + E[δj ]

)
≤ O(|Π|/ log n).

By Markov’s inequality, this already suffices to show that with probability ≥ 0.9 (say), the simulation
uses O(|Π|/ log n) queries. To get a better concentration bound, we would like for the γj , δj variables
(over all j) to be mutually independent, which they unfortunately generally are not. However, there
is a trick to overcome this: we will define mutually independent random variables cj ,dj (for all
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j) and couple them with the γj , δj variables in such a way that each γj ≤ cj and δj ≤ dj with
probability 1, and show that

∑
j(cj + dj) is bounded with very high probability, which implies the

same for
∑

j(γj + δj). For each j, do the following.

− Sample a uniform real pj ∈ [0, 1) and define cj := log(1/pj) + log(1/(1− pj)) and let γj := γb
where b = 0 if pj ∈ [0, |X0|/|X|) and b = 1 if pj ∈ [|X0|/|X|, 1) (where X,X0, X1 are
the sets that arise in the first half of the j-th iteration, conditioned on the outcomes of
previous iterations). Note that γj is correctly distributed, and that γj ≤ cj with probability
1 (specifically, if b = 0 then γj = log(|X|/|X0|) ≤ log(1/pj) ≤ cj and if b = 1 then
γj = log(|X|/|X1|) ≤ log(1/(1 − pj)) ≤ cj). Also note that, as claimed earlier, E[γj ] ≤
E[cj ] =

∫ 1
0

(
log(1/p)+log(1/(1−p))

)
dp = 2/ ln 2 ≤ O(1). For future use, note that E

[
2cj/2

]
=∫ 1

0 (p(1− p))−1/2 dp = π ≤ O(1).

− Sample a uniform real qj ∈ [0, 1) and define dj := log(1/(1 − qj)) and let δj := δi where i
is such that qj falls in the i-th interval, assuming we have partitioned [0, 1) into half-open
intervals with lengths |Xi|/|X| in the natural left-to-right order (where X,X1, X2, . . . are the
sets that arise in the second half of the j-th iteration, conditioned on the outcomes of the
first half and previous iterations). Note that δj is correctly distributed, and that δj ≤ dj
with probability 1 (specifically, if i = i then δj = log(|X|/| ∪j≥i Xj |) ≤ log(1/(1− qj)) = dj).
Also note that, as claimed earlier, E[δj ] ≤ E[dj ] ≤ E[cj ] ≤ O(1). For future use, note that
E
[
2dj/2

]
≤ E

[
2cj/2

]
≤ O(1).

Now for some sufficiently large constants C,C ′ we have

Pr
[
#(queries in total) > C ′ · |Π|/ log n

]
≤ Pr

[∑
j(γj + δj) > C · |Π|

]
≤ Pr

[∑
j(cj + dj) > C · |Π|

]
= Pr

[
2
∑

j(cj+dj)/2 > 2C·|Π|/2
]

≤ E
[
2
∑

j(cj+dj)/2
]
/2C·|Π|/2

=
(∏

j E
[
2cj/2

]
·E
[
2dj/2

])
/2C·|Π|/2

≤
(
O(1)/2C/2

)|Π|
≤ 2−|Π|.

If |Π| ≤ o(log n) then a similar calculation shows that Pr
[
#(queries in total) ≥ 1

]
≤ 1/nΩ(1).

4 Uniform Marginals Lemma

Lemma 4 (Uniform marginals; general version). Suppose X × Y is ρ-structured and D∞(Y ) ≤ n3.
Then for any z ∈ {0, 1}n consistent with ρ, the uniform distribution on G−1(z) ∩X × Y (which is
nonempty) has both of its marginal distributions 1/n2-close to uniform on X and Y , respectively.

We prove a slightly stronger statement formulated in Lemma 8 below. For terminology, we say a
distribution D1 is ε-pointwise-close to a distribution D2 if for every outcome, the probability under
D1 is within a factor 1± ε of the probability under D2. As a minor technicality (for the purpose of
deriving Lemma 4 from Lemma 8), we say that a random variable x ∈ [m]J is δ-essentially-dense if
for every nonempty I ⊆ J , H∞(xI) ≥ δ · |I| logm− 1 (the difference from Definition 1 is the “−1”);
we also define ρ-essentially-structured in the same way as ρ-structured but requiring Xfree ρ to be
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only 0.9-essentially-dense instead of 0.9-dense. The following strengthens a lemma from [GKPW17],
which implied that G(X,Y ) has full support over the set of all z consistent with ρ.

Lemma 8 (Pointwise uniformity). Suppose X × Y is ρ-essentially-structured and D∞(Y ) ≤ n3 + 1.
Then G(X,Y ) is 1/n3-pointwise-close to the uniform distribution over the set of all z consistent
with ρ.

Proof of Lemma 4. Let (x,y) be uniformly distributed over G−1(z) ∩X × Y . We show that x is
1/n2-close to X; a completely analogous argument works to show that y is 1/n2-close to Y . Let
E ⊆ X be any test event. Replacing E by X rE if necessary, we may assume |E| ≥ |X|/2. Since
X × Y is ρ-structured, E × Y is ρ-essentially-structured. Hence we can apply Lemma 8 in both the
rectangles E × Y and X × Y :

Pr[x ∈ E] =
|G−1(z) ∩ E × Y |
|G−1(z) ∩X × Y |

=
(1± 1/n3) · 2−|free ρ| · |E × Y |
(1± 1/n3) · 2−|free ρ| · |X × Y |

= (1± 3/n3) · |E|/|X| = |E|/|X| ± 1/n2.

4.1 Overview for Lemma 8

A version of Lemma 8 (for the inner-product gadget) was proved in [GLM+16, §2.2] under the
assumption that X and Y had low deficiencies: D∞(XI),D∞(YI) ≤ O(|I| log n) for free blocks I.
The key difference is that we only assume D∞(YI) ≤ n3 + 1. We still follow the general plan
from [GLM+16] but with a new step that allows us to reduce the deficiency of Y .

Fourier perspective. The idea in [GLM+16] to prove that z := G(X,Y ) is pointwise-close to
uniform is to study z in the Fourier domain, and show that z’s Fourier coefficients (corresponding
to free blocks) decay exponentially fast. That is, for every nonempty I ⊆ free ρ we want to show
that the bias of ⊕(zI) (parity of the output bits zI) is exponentially small in |I|. Tools tailor-made
for this situation exist: various “Xor lemmas” are known to hold for communication complexity
(e.g., [Sha03]) that apply as long as XI and YI have low deficiencies. All this is recalled in Section 4.2.
This suggests that all that remains is to reduce our case of high deficiency (of YI) to the case of low
deficiency.

Reducing deficiency via buckets. For the moment assume I = [n] for simplicity of discussion.
Our idea for reducing the deficiency of YI = Y is as follows. We partition each m-bit string in
Y ∈ ({0, 1}m)n into m1/2 many buckets each of length m1/2. We argue that Y can be expressed as
a mixture of distributions y, where y has few of its buckets fixed in each string yi, and for any way
of choosing an unfixed bucket for each yi, the marginal distribution of y on the union T of these
buckets has deficiency as low as D∞(yT ) ≤ 1. Correspondingly, we argue that X may be expressed
as a mixture of distributions x that have a nice form:

x1

x2

x3

= y1

= y2

= y3

I ′

T2

T3

fixed

fixed

fixed

1st bucket 2nd bucket 3rd bucket 4th bucket
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Here each pointer xi ranges over a single bucket Ti. Moreover, for a large subset I ′ ⊆ [n] of
coordinates, Ti is unfixed in yi for i ∈ I ′, and hence y has deficiency ≤ 1 on the union of these
unfixed buckets. The remaining few i ∈ [n] r I ′ are associated with fixed pointers xi = xi pointing
into fixed buckets in y. Consequently, we may interpret (x,y) as a random input to Indn

m1/2 by

identifying each bucket Ti with [m1/2]. In this restricted domain, we can show that (⊕ ◦ gn)(x,y) is
indeed very unbiased: the fixed coordinates do not contribute to the bias of the parity, and (xI′ ,yI′)
is a pair of low-deficiency variables for which an Xor lemma type calculation applies. The heart of
the proof will be to find a decomposition of X × Y into such distributions x× y.

In the remaining subsections, we carry out the formal proof of Lemma 8.

4.2 Fourier perspective

Henceforth we abbreviate J := free ρ. We employ the following calculation from [GLM+16], whose
proof is reproduced in Section 4.6 for completeness. Here χ(z) := (−1)⊕(z).

Lemma 9 (Pointwise uniformity from parities). If a random variable zJ over {0, 1}J satisfies∣∣E[χ(zI)
]∣∣ ≤ 2−5|I| logn for every nonempty I ⊆ J , then zJ is 1/n3-pointwise-close to uniform.

To prove Lemma 8, it suffices to take zJ = gJ(XJ ,YJ) above and show for every ∅ 6= I ⊆ J ,∣∣E[χ(gI(XI ,YI))
]∣∣ ≤ 2−5|I| logn. (4)

In our high-deficiency case, we have

(i) D∞(XI) ≤ 0.1|I| logm+ 1,
(ii) D∞(YI) ≤ n3 + 1.

Low-deficiency case. As a warm-up, let us see how to obtain (4) by imagining that we are in
the low-deficiency case, i.e., replacing assumption (ii) by

(ii′) D∞(YI) ≤ 1.

We present a calculation that is a very simple special case of, e.g., Shaltiel’s [Sha03] Xor lemma for
discrepancy (relative to uniform distribution).

Let M be the communication matrix of g := Indm but with {+1,−1} instead of {0, 1} entries.
The operator 2-norm of M is ‖M‖ = 2m/2 since the rows are orthogonal and each has 2-norm 2m/2.
The |I|-fold tensor product of M then satisfies

∥∥M⊗|I|∥∥ = 2|I|m/2 by the standard fact that the

2-norm behaves multiplicatively under tensor product. Here M⊗|I| is the communication matrix
of the 2-party function χ ◦ gI . We think of the distribution of XI as an m|I|-dimensional vector
DXI

, and of the distribution of YI as a (2m)|I|-dimensional vector DYI
. Letting H2 (≥ H∞) denote

Rényi 2-entropy, by (i) we have∥∥DXI

∥∥ = 2−H2(XI)/2 ≤ 2−H∞(XI)/2 ≤ 2−(|I| logm−0.1|I| logm−1)/2 = 2−0.45|I| logm+1/2.

Similarly, by (ii′) we would have∥∥DYI

∥∥ ≤ 2−(|I|m−1)/2 = 2−|I|m/2+1/2.

The left side of (4) is now∣∣∣D>XI
M⊗|I|DYI

∣∣∣ ≤ ∥∥DXI

∥∥ · ∥∥M⊗|I|∥∥ · ∥∥DYI

∥∥ ≤ 2−0.45|I| logm+1/2 · 2|I|m/2 · 2−|I|m/2+1/2

= 2−0.45|I| logm+1 ≤ 2−5|I| logn. (5)

Therefore our goal becomes to reduce (via buckets) from case (ii) to case (ii′).
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4.3 Buckets

We introduce some bucket terminology for random (x,y) ∈ [m]I × ({0, 1}m)I .

− Each string yi is partitioned into m1/2 buckets each of length m1/2.

− We think of xi as a pair `iri where `i specifies which bucket and ri specifies which element
of the bucket. (Or, viewing xi ∈ {0, 1}logm, `i ∈ {0, 1}(logm)/2 would be the left half and
ri ∈ {0, 1}(logm)/2 would be the right half.) Thus x = `r where the random variable ` ∈ [m1/2]I

picks a bucket for each coordinate, and the random variable r ∈ [m1/2]I picks an element from
each of the buckets specified by `. Every outcome ` of ` has an associated bucket union (one
bucket for each string) given by T` :=

⋃
i∈I({i} × T`i) where T`i ⊆ [m] is the bucket specified

by `i. Here a bit index (i, j) ∈ I × [m] refers to the j-th bit of the string yi.

4.4 Focused decompositions

Our goal is to express the product distribution XI × YI as a convex combination of product
distributions x× y that are focused, which informally means that many pointers in x point into
buckets that collectively have low deficiency in y, and the remaining pointers produce constant
gadget outputs. A formal definition follows.

Definition 3. A product distribution x× y over [m]I × ({0, 1}m)I is called focused if there is a
partial assignment σ ∈ {0, 1, ∗}I such that, letting I ′ := freeσ, we have: |I ′| ≥ |I|/2, and gI(x,y) is
always consistent with σ, and for each i ∈ I ′, xi = `iri is always in a specific bucket T`i ⊆ [m], and

(i∗) D∞(xI′) ≤ 0.6|I ′| logm1/2 with respect to×i∈I′ T`i ,
(ii∗) D∞(yT ) ≤ 1 where T :=

⋃
i∈I′({i} × T`i).

We elaborate on this definition. Since gI(x,y) is always consistent with σ, the coordinates
fixσ = I r I ′ are irrelevant to the bias of the parity of gI(x,y). For each i ∈ I ′, we might as well
think of the domain of xi as T`i instead of [m], and of the domain of yi as {0, 1}T`i instead of
{0, 1}m. Hence, out of the |I ′|m bits of yI′ , the only relevant ones are the |I ′|m1/2 bits indexed by
T . We may thus interpret (xI′ ,yT ) as a random input to IndI

′

m1/2 . In summary,∣∣E[χ(gI(x,y))
]∣∣ =

∣∣E[χ(gI
′
(xI′ ,yI′))

]∣∣ =
∣∣E[χ(IndI

′

m1/2(xI′ ,yT ))
]∣∣. (6)

If x×y is focused, then the calculation leading to (5) can be applied to xI′×yT with m replaced
by m1/2, |I| replaced by |I ′| ≥ |I|/2, and min-entropy rate 0.9 replaced by 0.4, to show that

value of (6) ≤ 2−0.2|I′| logm1/2+1 ≤ 2−(0.2/4)|I| logm+1 ≤ 2−5|I| logn−1. (using m = n256)

Lemma 10. The product distribution XI × YI can be decomposed into a mixture of product
distributions Ed∼d[xd×yd] over [m]I × ({0, 1}m)I (d stands for “data”) such that xd×yd is focused
with probability at least 1− 2−5|I| logn−1 over d ∼ d.

Using Lemma 10, which we prove in the following subsection, we can derive (4):∣∣E[χ(gI(XI ,YI))
]∣∣ ≤ Ed∼d

∣∣E[χ(gI(xd,yd))
]∣∣

≤ Pr[d is not focused] + max
focused d

∣∣E[χ(gI(xd,yd))
]∣∣

≤ 2−5|I| logn−1 + 2−5|I| logn−1 = 2−5|I| logn.
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4.5 Finding a focused decomposition

We now prove Lemma 10. By assumption, XI = `r is 0.9-essentially-dense (since XJ is) and
D∞(YI) ≤ D∞(Y ) ≤ n3 + 1. We carry out the decomposition in the following three steps. Define
ε := 2−5|I| logn−1.

Claim 11. YI can be decomposed into a mixture of distributions Ec∼c[yc] over ({0, 1}m)I such that
with probability at least 1− ε/3 over c ∼ c,

(P1) each string in yc has at most 2n3 fixed buckets,
(P2) each bucket union T` not containing fixed buckets has D∞(ycT`) ≤ 1.

Claim 12. For any c satisfying (P1), with probability at least 1− ε/3 over ` ∼ `,

(Q1) the bucket union T` contains at most |I|/2 fixed buckets of yc,
(Q2) D∞(r | ` = `) ≤ 0.25|I| logm1/2.

Claim 13. For any c and ` satisfying (Q1), (Q2), letting

I∗ :=
{
i ∈ I : the `i bucket of yci is fixed

}
and I ′ := I r I∗,

with probability at least 1 − ε/3 over rI∗ ∼ (rI∗ | ` = `), we have D∞(rI′ | ` = `, rI∗ = rI∗) ≤
0.6|I ′| logm1/2.

We now finish the proof of Lemma 10 assuming these three claims. Take d :=
(
c, `, rI∗); that

is, the data d ∼ d is sampled by first sampling c ∼ c, then ` ∼ `, then rI∗ ∼ (rI∗ | ` = `), where
I∗ implicitly depends on c and `. Take yd := yc and xd := (XI | ` = `, rI∗ = rI∗), and note that
Ed∼d[xd × yd] indeed forms a decomposition of XI × YI . By a union bound, with probability at
least 1− ε over d ∼ d, the properties of all three claims hold, in which case we just need to check
that xd × yd is focused.

Since for each i ∈ I∗, xdi ∈ T`i and ydi,T`i
are both fixed, we have that gI

∗
(xdI∗ ,y

d
I∗) is fixed and

hence gI(xd,yd) is always consistent with some partial assignment σ with fixσ = I∗ and freeσ = I ′.
We have |I ′| ≥ |I|/2 by (Q1). For each i ∈ I ′, note that xdi is always in T`i since we conditioned
on ` = `. Note that (i∗) for xd holds by Claim 13. To see that (ii∗) for yd holds, pick any `′ that
agrees with ` on I ′ and such that for every i ∈ I∗, the `′i bucket of ydi is not fixed—thus, the bucket
union T`′ contains no fixed buckets of yd—and note that D∞(ydT ) ≤ D∞(ydT`′

) ≤ 1 by (P2).

Proof of Claim 11. We use a process highly reminiscent of the “density-restoring partition” process
described in Section 3.3. We maintain an event E which is initially all of ({0, 1}m)I .

While Pr[YI ∈ E] > ε/3:

(1) Choose a maximal set of pairwise disjoint bucket unions T = {T`1 , . . . , T`k} with the property
that D∞(Y∪T | E) > k (possibly T = ∅) and let β ∈ {0, 1}∪T be an outcome witnessing this:

Pr[Y∪T = β | E] > 2−(k|I|m1/2−k).
(2) Output the distribution (YI | Y∪T = β, E) with associated probability Pr[Y∪T = β, E] > 0.
(3) Update E ←

{
yI ∈ E : y∪T 6= β

}
.

Output the distribution (YI | E) with associated probability Pr[YI ∈ E] if the latter is nonzero.

The distributions output throughout the process are the yc’s; note that with the associated
probabilities, they indeed form a decomposition of YI . Each time (1) is executed, we have

k < D∞(Y∪T | E) ≤ D∞(YI) + log(1/Pr[YI ∈ E]) ≤ n3 + 1 + log(3/ε) ≤ 2n3.
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Also, any yc = (YI | Y∪T = β, E) output in (2) has the property that for any bucket union T` not
containing fixed buckets, D∞(ycT`) ≤ 1. To see this, first note that T` is disjoint from ∪T since the

latter buckets are fixed to β. If D∞(ycT`) > 1 were witnessed by some γ ∈ {0, 1}T` , then

Pr[Y(∪T )∪T` = βγ | E] = Pr[Y∪T = β | E] ·Pr[YT` = γ | Y∪T = β, E]

> 2−(k|I|m1/2−k) · 2−(|I|m1/2−1) = 2−((k+1)|I|m1/2−(k+1))

and so D∞(Y(∪T )∪T` | E) > k+1, which would contradict the maximality of k since {T`1 , . . . , T`k , T`}
is a set of pairwise disjoint bucket unions.

Proof of Claim 12. Assume that for each coordinate i ∈ I, yci has at most 2n3 fixed buckets.
Since XI is 0.9-essentially-dense, ` is 0.8-essentially-dense (for each nonempty H ⊆ I, we have
D∞(`H) ≤ D∞(XH) ≤ 0.1|H| logm+ 1 = 0.2|H| logm1/2 + 1). Thus, the probability that T` hits
fixed buckets in all coordinates in some set H ⊆ I is at most the number of ways of choosing a fixed
bucket from each of those coordinates (≤ (2n3)|H|) times the maximum probability that T` hits all

the chosen buckets (≤ 2−(0.8|H| logm1/2−1) since ` is 0.8-essentially-dense). We can now calculate

Pr[T` hits ≥ |I|/2 fixed buckets] ≤
∑

H⊆I,|H|=|I|/2 Pr[T` hits fixed buckets in coordinates H]

≤
( |I|
|I|/2

)
· (2n3)|I|/2 · 2−(0.8(|I|/2) logm1/2−1)

≤ 2|I| · 21.5|I| logn+1 · 2−(51.2|I| logn−1) (using m = n256)

≤ 2|I|−49.7|I| logn+2

≤ ε/6

For convenience, we assumed above that |I| is even; if |I| is odd (including the case |I| = 1), the
same calculation works with d|I|/2e instead of |I|/2.

(Q2) follows by a direct application of the chain rule for min-entropy [Vad12, Lemma 6.30]: with
probability at least 1− ε/6 over ` ∼ `, we have

D∞(r | ` = `) ≤ D∞(XI) + log(6/ε) ≤
(
0.1|I| logm+ 1

)
+
(
5|I| log n+ 4

)
≤ 0.25|I| logm1/2.

By a union bound, with probability at least 1− ε/3 over `, (Q1) and (Q2) hold simultaneously.

Proof of Claim 13. This is again a direct application of the chain rule for min-entropy: with
probability at least 1− ε/3 over rI∗ ∼ (rI∗ | ` = `), we have

D∞(rI′ | ` = `, rI∗ = rI∗) ≤ D∞(r | ` = `) + log(3/ε)

≤
(
0.25|I| logm1/2

)
+
(
5|I| log n+ 3

)
≤ 0.6|I ′| logm1/2

where the middle inequality uses (Q2), and the last inequality uses (Q1) (|I ′| ≥ |I|/2) and
m = n256.

4.6 Pointwise uniformity from parities

Lemma 9 (Pointwise uniformity from parities). If a random variable zJ over {0, 1}J satisfies∣∣E[χ(zI)
]∣∣ ≤ 2−5|I| logn for every nonempty I ⊆ J , then zJ is 1/n3-pointwise-close to uniform.
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Proof (from [GLM+16, §2.2]). We let ε := 1/n3 and write zJ as z throughout the proof. We think
of the distribution of z as a function D : {0, 1}J → [0, 1] and write it in the Fourier basis as

D(z) =
∑

I⊆J D̂(I)χI(z)

where χI(z) := (−1)⊕(zI) and D̂(I) := 2−|J |
∑

z D(z)χI(z) = 2−|J | ·E[χI(z)]. Note that D̂(∅) = 2−|J |

becauseD is a distribution. Our assumption says that for all nonempty I ⊆ J , 2|J |·|D̂(I)| ≤ 2−5|I| logn,
which is at most ε2−2|I| log |J |. Hence,

2|J |
∑

I 6=∅ |D̂(I)| ≤ ε
∑

I 6=∅ 2−2|I| log |J | = ε
∑|J |

k=1

(|J |
k

)
2−2k log |J | ≤ ε

∑|J |
k=1 2−k log |J | ≤ ε.

We use this to show that
∣∣D(z)− 2−|J |

∣∣ ≤ ε2−|J | for all z ∈ {0, 1}J , which proves the lemma. To this

end, let U denote the uniform distribution (note that Û(I) = 0 for all nonempty I ⊆ J) and let 1z
denote the indicator for z defined by 1z(z) = 1 and 1z(z

′) = 0 for z′ 6= z (note that |1̂z(I)| = 2−|J |

for all I). We can now calculate∣∣D(z)− 2−|J |
∣∣ =

∣∣〈1z,D〉 − 〈1z,U〉∣∣ = |〈1z,D − U〉| = 2|J | · |〈1̂z, D̂ − Û〉|

≤ 2|J | ·
∑

I 6=∅|1̂z(I)| · |D̂(I)| =
∑

I 6=∅|D̂(I)| ≤ ε2−|J |.

5 Applications

In this section, we collect some recent results in communication complexity, which we can derive
(often with simplifications) from our lifting theorem.

Classical vs. quantum. Anshu et al. [ABB+16b] gave a nearly 2.5-th power total function
separation between quantum and classical randomized protocols. Our lifting theorem can reproduce
this separation by lifting an analogous separation in query complexity due to Aaronson, Ben-David,
and Kothari [ABK16]. Let us also mention that Aaronson and Ambainis [AA15] have conjectured
that a slight generalization of Forrelation witnesses an O(log n)-vs-Ω̃(n) quantum/classical query
separation. If true, our lifting theorem implies that “2.5” can be improved to “3” above; see [ABK16]
for a discussion. (Such an improvement is not black-box implied by the techniques of Anshu et
al. [ABB+16b].)

Raz [Raz99] gave an exponential partial function separation between quantum and classi-
cal randomized protocols. Our lifting theorem can reproduce this separation by lifting, say,
the Forrelation partial function [AA15], which witnesses a 1-vs-Ω̃(

√
n) separation for quan-

tum/classical query complexity. However, qualitatively stronger separations are known [KR11,
Gav16] where the quantum protocol can be taken to be one-way or even simultaneous.

Partition numbers. Anshu et al. [ABB+16b] gave a nearly quadratic separation between (the
log of) the two-sided partition number (number of monochromatic rectangles needed to partition
the domain of F ) and randomized communication complexity. This result now follows by lifting an
analogous separation in query complexity due to Ambainis, Kokainis, and Kothari [AKK16].

In [GJPW15], a nearly quadratic separation was shown between (the log of) the one-sided
partition number (number of rectangles needed to partition F−1(1)) and randomized communication
complexity. This separation question can be equivalently phrased as proving randomized lower
bounds for the Clique vs. Independent Set game [Yan91]. This result now follows by lifting an
analogous separation in query complexity, obtained in several papers [GJPW15, ABB+16a, ABK16];
it was previously shown using the lifting theorem of [GLM+16], which requires a query lower bound
in a model stronger than BPPdt.
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Approximate Nash equilibria. Babichenko and Rubinstein [BR17] showed a randomized com-
munication lower bound for finding an approximate Nash equilibrium in a two-player game. Their
approach was to show a lower bound for a certain query version of the PPAD-complete End-of-Line
problem, and then lift this lower bound into communication complexity using [GLM+16]. However,
as in the above Clique vs. Independent Set result, the application of [GLM+16] here requires that the
query lower bound is established for a model stronger than BPPdt, which required some additional
busywork. Our lifting theorem can be used to streamline their proof.
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