
Lifting randomized query complexity to randomized communication

complexity

Anurag Anshu† Naresh B. Goud† Rahul Jain ∗ Srijita Kundu†

Priyanka Mukhopadhyay†

July 1, 2017

Abstract

We show that for a relation f ⊆ {0, 1}n × O and a function g : {0, 1}m × {0, 1}m → {0, 1}
(with m = O(log n)),

R1/3(f ◦ gn) = Ω

(
R1/3(f) ·

(
log

1

disc(Mg)
−O(log n)

))
,

where f ◦ gn represents the composition of f and gn, Mg is the sign matrix for g, disc(Mg) is
the discrepancy of Mg under the uniform distribution and R1/3(f) (R1/3(f ◦ gn)) denotes the
randomized query complexity of f (randomized communication complexity of f ◦gn) with worst
case error 1

3 .
In particular, this implies that for a relation f ⊆ {0, 1}n ×O,

R1/3(f ◦ IPnm) = Ω
(
R1/3(f) ·m

)
,

where IPm : {0, 1}m × {0, 1}m → {0, 1} is the Inner Product (modulo 2) function and m =
O(log(n)).

1 Introduction

Communication complexity and query complexity are two concrete models of computation which
are very well studied. In the communication model there are two parties Alice, with input x
and Bob, with input y, and they wish to compute a joint function f(x, y) of their inputs. In the
query model one party Alice tries to compute a function f(x) by querying bits of a database
string x. There is a natural way in which a query protocol can be viewed as a communication
protocol between Alice, with no input, and Bob, with input x, in which the only communication
allowed is queries to the bits of x and answers to these queries. Given this, we can (informally)
view the query model as a “simpler” sub-model of the communication model. Indeed several
results in query complexity are easier to argue and obtain than the corresponding results in

∗Centre for Quantum Technologies, National University of Singapore and MajuLab, UMI 3654, Singapore.
†Center for Quantum Technologies, National University of Singapore, Singapore.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 54 (2017)

communication complexity. One interesting technique that is often employed with great success
is to first show a result in the query model and then “lift” it to a result in the communication
model via some “lifting theorem”.

One of the first such lifting theorems was shown by Raz and McKenzie [RM99] (and its gen-
eralization by [GPW15]). Raz and McKenzie [RM99] (and the generalization due to [GPW15])
showed that for a relation f ⊆ {0, 1}n × O, the deterministic communication complexity of f
composed with Indexm (with m = poly(n)) is at least the deterministic query complexity of f
times Ω(log n). Here Indexm : [m]×{0, 1}m → {0, 1} is defined as Indexm(x, y) = yx (the xth bit
of y). Subsequently several lifting theorems for different complexity measures have been shown,
for example lifting approximate-degree to approximate-rank [She11], approximate junta-degree
to smooth-corruption-bound [GLM+15] and, more recently, randomized query complexity to
randomized communication complexity using the Indexm function [GPW17] (for m = poly(n)).

Our result

In this work we show lifting of (bounded error) randomized query complexity to (bounded error)
randomized communication complexity. Let Rε(·) denote the randomized query/communication
complexity, as is clear from the context, with worst case error ε. We show the following:

Theorem 1. Let f ⊆ {0, 1}n×O be a relation and g : {0, 1}m×{0, 1}m → {0, 1} be a function
(with m = O(log n)). It holds that

R1/3(f ◦ gn) = Ω

(
R1/3(f) ·

(
log

1

disc(Mg)
−O(log n)

))
,

where Mg is the sign matrix for g and disc(Mg) is the discrepancy of Mg under the uniform
distribution.

In particular, this implies that for a relation f ⊆ {0, 1}n ×O,

R1/3(f ◦ IPnm) = Ω
(
R1/3(f) ·m

)
,

where IPm : {0, 1}m × {0, 1}m → {0, 1} is the Inner Product (modulo 2) function and m =
O(log(n)). In comparison, the Indexm function used by [GPW17] required m = poly(n).

On the other hand it is easily seen with a simple simulation of a query protocol using a
communication protocol that R1/3(f ◦ gn) = O(R1/3(f) ·m).

Our techniques

Our techniques are partly based on the techniques of Raz and McKenzie [RM99] as presented
in [GPW15] with an important modification to deal with distributional error protocols instead
of deterministic protocols. Let T be a deterministic communication protocol tree for f ◦gn (with
log 1

disc(Mg)
= Ω(log n)). We use this to create a randomized query protocol Π (see Algorithm 2)

for f . Let z be an input for which we are supposed to output a b such that (z, b) ∈ f . We start
with the root of T and continue to simulate T (using randomness) till we find a co-ordinate
i ∈ [n] where T has worked enough so that g(xi, yi) is becoming (only slightly) determined.
Using the properties of g we conclude that T must have communicated O(log 1

disc(Mg)
) bits by

now. We go ahead and query zi (the ith bit of z) and synchronize with zi, that is go to the
appropriate sub-event of the current node in T consistent with zi.

To keep the unqueried bits zi (with i belonging to the unqueried interval I) sufficiently
undetermined, we keep track of how much T has worked to determine xi (or yi), using the
conditional probability of xi (or yi), given all possible xI\{i} (or yI\{i}) at other unqueried
locations. When either of the conditional probabilities pA(xi|xI\{i}) or pB(yi|yI\{i}) (where

2

A,B are current rectangles) becomes too high for a sufficiently large number of strings, we
conclude that a query must be made.

Lets suppose that the conditional probability at some location becomes high in A. We
only want to make a query in that part of A where the conditional probability violation takes
place. This eventually lets us compare the number of queries we make with the number of bits
communicated. So within a query subroutine, we first probabilistically split A into the strings
High where the conditional probability becomes too high, and A \ High, where this does not
happen. A query is then made in the High part, and only the xi and yi that are consistent with
the zi (that we learn from the query) are retained and partitioned into a collection of rectangles.
After this, the conditional probability can be restored to a low enough value for the rest of the
indices, and we can move on with communication steps.

As long as we have a bound on the conditional probabilities in the unqueried locations, the
unqueried zi are sufficiently undetermined and we can move from node to node of T according
to the “flow” of T , for every input z. We prove this in Lemma 12 in Section 3. This lets our
algorithm to sample the leaves of T close to the desired probabilities, and thus the correctness
of T on (x, y) in expectation ensures the correctness of our algorithm on z in expectation.

During the course of our simulation, we may end up at some “bad” subevents, where we
will not be able to maintain a sufficiently large number of (x, y) consistent with z. We need to
abort the algorithm on such subevents. When we have a bound on the conditional probability
and we are going with the “flow” of T , we can ensure that the probability of going to such bad
subevents is small. But, if we need to do a series of queries in one go, we will not be able to
maintain the requisite bound on the conditional probabilities in between queries. So it may be
possible that when we do a query and try to synchronize xi and yi with zi, we do not find any
(or sufficiently many) xi and yi that are consistent with zi. In the technical Lemma 7 we show
that there is a way around this: if we do some “preprocessing” on A before carrying out queries,
the probability of this bad subevent happening is still small. The arguments here are similar
to showing that g is a good strong extractor for blockwise sources with appropriate conditional
min-entropy in each block. Thus the algorithm aborts with small probability. Similar arguments
hold for B.

2 Preliminaries

In this section, we present some notations and basic lemmas needed for the proof of our main
result.

Let f ⊆ {0, 1}n×O be a relation. Let ε > 0 be an error parameter. Let the randomized query
complexity, denoted Rε(f), be the maximum number of queries made by the best randomized
query protocol computing f with error at most ε on any input x ∈ {0, 1}n. Let θ be a distribution
on {0, 1}n. Let the distributional query complexity, denoted Dθ

ε(f), be the maximum number of
queries made by the best deterministic query protocol computing f with average error at most
ε under θ. The distributional and randomized query complexities are related by the following
Yao’s Lemma.

Fact 2 (Yao’s Lemma). Let ε > 0. We have Rε(f) = maxθ Dθ
ε(f).

Similarly, we can define randomized and distributional communication complexities with a
similar Yao’s Lemma relating them.

Let λ be a hard distribution on {0, 1}n such that Dλ
1/3(f) = R1/3(f), as guaranteed by Yao’s

Lemma. Let m be an integer. Let g : {0, 1}m ×{0, 1}m → {0, 1} be a function, interpreted as a
gadget. Let G := gn. Define the following distributions:

µ0(x, y) :=
1g(x,y)=0

|g−1(0)|
, µ1(x, y) :=

1g(x,y)=1

|g−1(1)|
.

3

For every z ∈ {0, 1}n, define µz := µz1×µz2× . . .×µzn . The lifted distribution for the composed
relation f ◦ gn is µ := Ez∼λµz.

Let Alice and Bob’s inputs for the composed function be respectively x = (x1, . . . , xn) ∈
({0, 1}m)n and y = (y1, . . . , yn) ∈ ({0, 1}m)n.

We use the following notation, some of which is adapted from notation used in [GPW15].

• For a node v in a communication protocol tree, let Xv×Y v denote its associated rectangle.
If Alice or Bob send the bit b at v, let vb be the corresponding child of v and Xv,b ⊆ Xv

and Y v,b ⊆ Y v be the set of inputs of Alice and Bob respectively on which they send b.

• For a string x ∈ ({0, 1}m)n and an interval I ⊂ [n], let xI be the restriction of x to
the interval I. We use shorthand xi for x{i}. We use similar notation for a string y ∈
({0, 1}m)n.

• For a set A ⊂ ({0, 1}m)n, let AI := {xI : x ∈ A} be the restriction of A to the interval I
and AxI

:= {x′ ∈ A : x′I = xI}. Our convention is for an xI 6∈ AI , AxI
is the null set. We

use similar notation for B.

• For A ⊆ ({0, 1}m)n, we represent the uniform probability distribution on strings x in A
with pA(x). We use similar notation for B.

• For A ⊆ ({0, 1}m)n, an index i ∈ I and xI\{i} ∈ {0, 1}m(|I|−1), let

pmax(A, xI\{i}) := max
xi∈{0,1}m

pA(xi|xI\{i}).

We say a pmax bound of α holds for A with respect to I, if pmax(A, xI\{i}) ≤ α for all i ∈ I
and all such xI\{i}. Similar terminology holds for B.

• For A ⊆ ({0, 1}m)n, I ⊆ [n], let

High(A,α, I) := {x ∈ A : ∃i ∈ I, pA(xi|xI\{i}) > α}.

Similarly, we define High(B,α, I).

• For yi ∈ {0, 1}m and zi ∈ {0, 1}, let U(yi, zi) := {xi ∈ {0, 1}m : g(xi, yi) = zi}. We
use A|U(yi,zi) to denote ∪xi∈U(yi,zi)Axi

. Similarly, for xi ∈ {0, 1}m and zi ∈ {0, 1}, let
V (xi, zi) := {yi ∈ {0, 1}m : g(xi, yi) = zi}. We use B|V (xi,zi) to denote ∪yi∈V (xi,zi)Byi .

• Let Mg represent the sign matrix for the function g. That is, Mg(x, y) = (−1)g(x,y). For

an interval I and xI , yI ∈ {0, 1}m|I|, we define M
⊗|I|
g (xI , yI) := Πi∈IMg(xi, yi). Observe

that M
⊗|I|
g is also a sign matrix.

Discrepancy of Mg, defined below, gives a lower bound on the communication complexity of
g. We consider it with respect to the uniform distribution, although it extends to any general
distribution (see for example, [LSS08]).

Definition 3. Discrepancy of Mg with respect to the uniform distribution is defined as

disc(Mg) :=
1

22m
max

A⊆{0,1}m,B⊆{0,1}m
|
∑

x∈A,y∈B
M(x, y)|.

This definition extends to the matrix M⊗rg , for any integer r > 1, in a natural fashion.
Following lemma follows from [LSS08, Theorems 16,17].

Lemma 4. Let Mg be a sign matrix and r > 1 be an integer. Then it holds that

disc(M⊗rg) ≤ (8 · disc(Mg))
r.

4

For the rest of the proof, we define a parameter β as

β :=
1

2
log

1

disc(Mg)
.

Our working assumption is that β ≥ 100 log n.
We shall use the sets Small(A,A′, I),Small(B,B′, I),UnBalX (A,B, I) and UnBalY(A,B, I)

defined in Lemmas 5 and 7 respectively in our algorithm and analysis.
Following lemma is similar to the Thickness Lemma in [GPW15].

Lemma 5. For A ⊆ ({0, 1}m)n, I ⊆ [n] and A′ ⊆ A, there exists A′′ ⊆ A′ such that for all
i ∈ I and xI\{i} ∈ A′′I\{i}, |A

′′
xI\{i}

| ≥ 1
n3 |AxI\{i} |, and

pA(A′ \A′′) < 1

n2
.

Define Small(A,A′, I) := A′ \A′′.
Similarly, for B ⊆ ({0, 1}m)n, I ⊆ [n] and B′ ⊆ B, there exists B′′ ⊆ B′ such that for all

i ∈ I and yI\{i} ∈ B′′I\{i}, |B
′′
yI\{i}

| ≥ 1
n3 |ByI\{i} |, and

pB(B′ \B′′) < 1

n2
.

Define Small(B,B′, I) := B′ \B′′.

Proof. We prove the statement for the sets A,A′. Similar argument holds for B,B′. The set
A′′ is obtained by running the following algorithm on A′. It is easy to see that the A′′ obtained
satisfies the property required.

Algorithm 1: Decomposing A′ = A′′ ∪ Small(A,A′, I)

1 Initialize A0 = A′, j = 0

2 while |AjxI\{i} | <
1
n3 |AxI\{i} | for some i ∈ I and xI\{i} ∈ A

j
I\{i} do

3 Pick such an i ∈ I and xI\{i}
4 Set Aj+1 = Aj \ {x′ ∈ Aj : x′I\{i} = xI\{i}}
5 end
6 Output A′′ = Aj

To bound the size of Small(A,A′, I), let (ij , x
j
I\{ij}) be the pair picked by the algorithm in the

j-th iteration. Then we have, |AjxI\{ij}
| < 1

n3 |AxI\{ij}
|. Note that a particular xjI\{ij} can only

be removed once in the algorithm, so at most all xI\{i} for all i ∈ I can be removed. So the
total strings removed is at most∑

(ij ,x
j
I\{ij}

)

|Aj
xj
I\{ij}

| < 1

n3

∑
(ij ,x

j
I\{ij}

)

|Axj
I\{ij}

| ≤ 1

n3

∑
i∈I

∑
xI\{i}

|AxI\{i} | =
|I|
n3
|A| ≤ 1

n2
|A|.

This proves the lemma.

Lemma 6. Fix a real number k ∈ (0, 1). Let A,B ⊆ ({0, 1}m)n and I ⊆ [n] be such that
pA(xI) ≤ 2−|I|(m−kβ) for all xI ∈ {0, 1}m|I| and pB(yI) ≤ 2−|I|(m−kβ) for all yI ∈ {0, 1}m|I|.
Then it holds that

|
∑
xI ,yI

pA(xI)pB(yI)M
⊗|I|
g (xI , yI)| ≤ (8 · 2−(2−2k)β)|I|.

5

Proof. First we show that without loss of generality, we can assume that pA(xI) and pB(yI)
are uniform in their support. The probability distributions pA(xI), pB(yI) have min-entropy
at least |I|(m − kβ). Thus, they can be decomposed as a convex combination of probability
distributions having min-entropy at least |I|(m−kβ) which are uniform in their support. Thus,
we write

pA(xI) =
∑
i

λip
i
A(xI), pB(yI) =

∑
j

µjp
j
B(yI), with

∑
i

λi =
∑
j

µj = 1, λi ≥ 0, µj ≥ 0.

We obtain by triangle inequality that

|
∑
xI ,yI

pA(xI)pB(yI)M
⊗|I|
g (xI , yI)| ≤

∑
i,j

λiµj |
∑
xI ,yI

piA(xI)p
j
B(yI)M

⊗|I|
g (xI , yI)|.

Thus, the maximum value is attained at distributions that are uniform in their support.
Thus, assuming that pA(xI) and pB(yI) are uniform in their support, let A′, B′ be their

respective supports. Since the min-entropy of pA(xI) and pB(yI) is at least |I|(m − kβ), we
have that |A′| ≥ 2|I|(m−kβ) and |B′| ≥ 2|I|(m−kβ). Thus,

|
∑
xI ,yI

pA(xI)pB(yI)M
⊗|I|
g (xI , yI)| =

1

|A′||B′|
|

∑
xI∈A′,yI∈B′

M⊗|I|g (xI , yI)|

=
22m|I|

|A′||B′|
· 1

22m|I|
|

∑
xI∈A′,yI∈B′

M⊗|I|g (xI , yI)|

≤ 22m|I|

22|I|(m−kβ)
disc(M⊗|I|g)

≤ 22|I|kβ(8 · disc(Mg))
|I| (Lemma 4)

= (8 · 2−(2−2k)β)|I|

This completes the proof.

Lemma 7. For A,B ⊆ ({0, 1}m)n suppose a pmax bound of 2−m+0.8β holds with respect to
I ⊆ [n]. We say x ∈ UnBalX (A,B, I) if it does not satisfy the property

Pr
yI∼pB

[g|I|(xI , yI) = zI] ∈
1

2|I|
[
1− 2−0.05β , 1 + 2−0.05β

]
∀z ∈ {0, 1}|I|.

We have,
pA(UnBalX (A,B, I)) ≤ 2−0.05β .

Similarly, we say y ∈ UnBalY(A,B, I) if it does not satisfy the property

Pr
xI∼pA

[g|I|(xI , yI) = zI] ∈
1

2|I|
[
1− 2−0.05β , 1 + 2−0.05β

]
∀z ∈ {0, 1}|I|.

We have,
pB(UnBalY(A,B, I)) ≤ 2−0.05β .

Proof. We prove the first part. The second part follows similarly. Fix an interval J ⊆ I. Since a
pmax bound of 2−m+0.8β holds for the given A, we have that for all xJ , pA(xJ) ≤ 2−|J|(m−0.8β).
Consider any subset A′J ⊆ AJ such that pA(A′J) ≥ 2−0.1|J|β . It holds that

pA(xJ |A′J) ≤ 20.1|J|β2−|J|(m−0.8β) = 2−|J|(m−0.9β).

6

Thus, invoking Lemma 6, we obtain

|
∑
xJ ,yJ

pA(xJ |A′J)pB(yJ)M⊗|J|g (xJ , yJ)| ≤ (8 · 2−0.2β)|J|. (1)

Let Bad
(1)
J be the set of all xJ ∈ AJ for which

∑
yJ
pB(yJ)M

⊗|J|
g (xJ , yJ) ≥ (8 · 2−0.2β)|J| and

Bad
(0)
J be the set of all xJ ∈ AJ for which

∑
yJ
pB(yJ)M

⊗|J|
g (xJ , yJ) ≤ −(8 · 2−0.2β)|J|. Let

BadJ := Bad
(1)
J ∪ Bad

(0)
J . From Equation 1, we conclude that pA(Bad

(i)
J) < 2−0.1β|J| for

i ∈ {0, 1}. Thus,

pA(BadJ) ≤ pA(Bad
(1)
J) + pA(Bad

(0)
J) ≤ 2 · 2−0.1β|J|.

Using β ≥ 100 log n, we obtain

pA(∪J⊆IBadJ) ≤
∑
J⊆I

pA(BadJ) ≤ 2

|I|∑
r=1

(
|I|
r

)
2−0.1rβ ≤ 2

n∑
r=1

2r logn−0.1rβ ≤ 2−0.05β .

Now we show that UnBal(A,B, I) ⊆ ∪J⊆IBadJ . For this, we consider an x such that xJ ∈
¬BadJ for all J ⊆ I. That is,

|
∑
yJ

pB(yJ)M⊗|J|(xJ , yJ)| ≤ (8 · 2−0.2β)|J| for all J ⊆ I.

Following claim shows that x /∈ UnBal(A,B, I), which completes the proof. This claim is a
restatement of [GLM+15, Lemma 13].

Claim 8. Consider an x satisfying

|
∑
yJ

pB(yJ)M⊗|J|(xJ , yJ)| ≤ (8 · 2−0.2β)|J| for all J ⊆ I. (2)

It holds that

Pr
yI∼pB

[g|I|(xI , yI) = zI] ∈
1

2|I|
[
1− 2−0.05β , 1 + 2−0.05β

]
∀z ∈ {0, 1}|I|.

Proof. Fix an x satisfying Equation 2. Let χJ(z) := (−1)⊕j∈Jzj be the parity function. The
fact that Mg is the sign matrix for g implies

|
∑
yJ

pB(yJ)χJ

(
g|J|(xJ , yJ)

)
| ≤ (8 · 2−0.2β)|J| for all J ⊆ I. (3)

Let p(zI) be the distribution of zI for the given x and averaged over y ∼ pB , that is p(zI) =
PryI∼pB [g|I|(xI , yI) = zI]. We fourier expand p(zI) :=

∑
J⊆I χJ(zI)p̂(J), where

p̂(J) =
1

2|I|

∑
zI

p(zI)χJ(zI) =
1

2|I|

∑
yJ

pB(yJ)χJ

(
g|J|(xJ , yJ)

)
.

From Equation 3, we have that 2|I||p̂(J)| ≤ (8 · 2−0.2β)|J|. Furthermore, p̂(φ) = 1
2|I|

, where φ is
the empty set. Thus we conclude (using β ≥ 100 log n)

|p(zI)−
1

2|I|
| = |

∑
J⊆I,J 6=φ

χJ(zI)p̂(J)|

≤ 1

2|I|

∑
J⊆I,J 6=φ

(8 · 2−0.2β)|J|

=
(1 + 8 · 2−0.2β)|I| − 1

2|I|

≤ 2logn−0.1β

2|I|
≤ 2−0.05β

2|I|
.

7

This establishes the claim.

3 Proof of main result

We show the following which implies Theorem 1.

Theorem 9. Let f ⊆ {0, 1}n×O be a relation and g : {0, 1}m×{0, 1}m → {0, 1} be a function
(with m = O(log n)). It holds that

Dµ
1/4(f ◦ gn) = Ω(R1/3(f) · (β − 100 log n)),

where β = 1
2 log 1

disc(g) .

Proof. If β ≤ 100 log n, then the statement is trivially true. Thus, we assume β > 100 log n. For
a given relation f , recall the definition of λ (hard distribution for f) and µ (lifted distribution for
f ◦gn) from Section 2. Let T be a deterministic communication tree for f achieving Dµ

1/4(f ◦gn).

Let c := Dµ
1/4(f ◦ gn) be the depth of T . Using our algorithm Π given in Algorithm 2 and

described in the form of a flowchart in Figure 1, we get a randomized query protocol for f
which makes an error of at most 1.1

4 under λ (as implied by Lemma 10) and makes at most
O(c/(β−3 log n)) expected number of queries (as implied by Lemma 16). This can be converted
into an algorithm with O(c/(β−3 log n)) number of queries (in the worst case) and distributional
error 1

3 , using standard application of Markov’s inequality. This shows that

R 1
3
(f) = Dλ

1
3
(f) ≤ O

(
c

β − 3 log n

)
,

which shows the desired.

For an input z, we construct a tree T which represents the evolution of the algorithm Π,
depending on the random choices made by it in steps 4, 24, 11, 31, 14, 34 and the Filter
steps of Algorithm 2. All the nodes of the tree are labeled by unique triplets (A × B, I, v)
where I ⊆ [n] is the current interval, A ⊆ ({0, 1}m)n, B ⊆ ({0, 1}m)n are the current parts of
the rectangle held by Alice and Bob respectively, and v is the current node of T . The root
node is (({0, 1}m)n × ({0, 1}m)n, [n], r) where r is the root of T , and the children of any node
are all the nodes that can be reached from it depending on random choices made. Each edge
is labeled by the conditional probability of the algorithm reaching the child node, conditioned
on it reaching the parent node for that z. The overall probability of the algorithm reaching a
node (A×B, I, v) on input z, denoted by PrT ,z[(A×B, I, v)] is obtained by multiplying all the
conditional probabilities along the path from the root to (A×B, I, v).

Note that there are at most O(n log n) communication steps in T and at most n query steps
in Π (along with a constant number of additional operations for each of these steps).

Error analysis of algorithm Π

In this section we shall prove the following main lemma.

Lemma 10. The algorithm Π makes an error of at most 1/4 + O(log n/n) when input z is
drawn from λ.

8

(A×B, I, v)

(pmax ≤ 2−m+0.73β)

Alice sends bit

Pick b

A← A ∩Xv,b

v ← vb

rel. size

< 1
n2

Abort

Filter
Small(A,A ∩Xv,b, I)

(pmax ≤ 2−m+0.76β)

∃i ∈ I s.t.
|High(A, 2−m+0.7β, i)|

> 1
n3 |A|?

Yes

Filter UnBalX

(pmax ≤ 2−m+0.79β)

Fix such an i

A \High(A, 2−m+0.7β, i) High(A, 2−m+0.7β, i)

Query zi

Pick yi
A×B ←

A|U(yi,zi) ×Byi ,
I ← I \ {i}

bad

yi
Abort

∃i ∈ I s.t.

|High(A, 2−m+0.7β, i)|
> 1

n3 |A|?
No Yes

No

Filter

High(A, 2−m+0.7β, I)

(pmax ≤ 2−m+0.73β)

Bob sends bit

Procedure
similar to

Alice’s side

Figure 1: A flowchart description of the algorithm

9

The proof of this lemma has the following components. First, we prove an Invariance Lemma
which will show that an appropriate pmax bound holds at right steps in the algorithm. Second,
we show a lemma related to the size of |(A×B)∩G(z)| relative to |A×B| at any node of T for
any input z to Π. This lets us do two things: first we can show that the transition probabilities
of Π are almost the same for any z that is consistent with the bits queried so far, and second, we
can show that the probability of the algorithm going to an aborted node is small. This allows
us to argue that the probability of Π reaching a leaf is close to the desired probability. Thus,
the expected value of the error of Π over the leaves is close to the expected value of the error of
T over the leaves, which is small.

Lemma 11 (Invariance Lemma). Throughout the execution of Π, we show the following invari-
ants:

1. pmax bounds of 2−m+0.76β , 2−m+0.79β , 2−m+0.73β and 2−m+0.73β for the current A with
respect to the current interval I hold after steps 27, 29, 41 and 16 respectively;

2. pmax bounds of 2−m+0.76β , 2−m+0.79β , 2−m+0.73β and 2−m+0.73β for the current B with
respect to the current interval I hold after steps 7, 9, 21 and 36 respectively;

Proof. We prove the statement for A. A similar argument holds for B.

1. After step 27: If Abort does not happen here, A is set to A′ = Ab \ Ab|Small(A,Ab,I)

(where we use Ab to denote A ∩Xv,b). For all x ∈ A′ and for all i ∈ I, Lemma 5 implies
that |A′xI\{i}

| ≥ 1
n3 · |AxI\{i} |. Moreover, |A′xI\{i}◦xi

| ≤ |AxI\{i}◦xi
| for every xi, xI\{i}.

Since a pmax bound of 2−m+0.73β holds for A (refer to the topmost node in Flowchart 1),
we have,

max
xi

|A′xI\{i}◦xi
|

|A′xI\{i}
|
≤ max

xi

n3 · |AxI\{i}◦xi
|

|AxI\{i} |
≤ 2−m+0.76β .

Hence, the pmax bound of 2−m+0.76β holds for A′.

After step 29: Here an A for which a pmax bound of 2−m+0.76β holds is set to A′. We have
for every x ∈ A′ and i ∈ I, |A′xI\{i}

| ≥ 1
n3 |AxI\{i} |. Moreover, |A′xI\{i}◦xi

| ≤ |AxI\{i}◦xi
|

for all xi, xI\{i}. So for any xI\{i},

max
xi

|A′xI\{i}◦xi
|

|A′xI\{i}
|
≤ max

xi

n3 · |AxI\{i}◦xi
|

|AxI\{i} |
≤ 2−m+0.79β

due to the pmax bound on A.

After step 41: A similar argument holds here. Since the strings in both High(A, 2−m+0.7β , I)
and Small(A,A\High(A, 2−m+0.7β , I), I) are removed, we have for the remaining strings
in the set A′,

max
xi

|A′xI\{i}◦xi
|

|A′xI\{i}
|
≤ max

xi

n3 · |(A \High(A, 2−m+0.7β , I))xI\{i}◦xi
|

|AxI\{i} |
≤ 2−m+0.73β

by the definition of High(A, 2−m+0.7β , I).

After step 16: The set A is fixed to Axi
, for some xi and i ∈ I, after this step. Since a

pmax bound of 2−m+0.73β held before this step in interval I, and the interval I \ {i} is a
subset of I, the same pmax bound continues to hold.

10

Thus, we conclude that at every step, the pmax bound is at most 2−m+0.8β . We will use this
upper bound below unless more precise upper bound is required.

Lemma 12 (Uniformity lemma). Let (A × B, I, v) be a node of T at which a pmax bound of
2−m+0.8β holds for A,B with respect to I. Then the number of inputs (x, y) in A×B consistent
with z, denoted by ρ(A×B,I)(z) = |(A×B) ∩G−1(z)|, satisfies

ρ(A×B,I)(z) ∈
1

2|I|
[
1− 2−0.04β , 1 + 2−0.04β

]
· |A| · |B|.

Proof. Without loss of generality, we assume I = {1, . . . , l}, which means that the bits of z that
have been queried till now are l+ 1, . . . n. Since Π reaches (A×B, I, v) on z, we must have that
gn−l(x[n]\[l], y[n]\[l]) = z[n]\[l]. We view 1

|A||B|ρ(A×B,I)(z) as a probability distribution over zI ,

which we denote by p(zI). Our bound shall follow by computing p(z1)p(z2|z1) . . . p(zl|z1, . . . zl−1).
Setting I = {1} in Lemma 6, we conclude that

p(z1) =
∑
x1,y1

pA(x1)pB(y1)1g(x1,y1)=z1

=
1

2
+

1− 2z1
2

∑
x1,y1

pA(x1)pB(y1)Mg(x1, y1)

∈ 1

2

[
1− 2−0.05β , 1 + 2−0.05β

]
.

Now, we consider p(z2|z1). For this, it is sufficient to consider p(z2|x1, y1) for any x1 ∈ A{1}, y1 ∈
B{1} satisfying g(x1, y1) = z1. Since a pmax bound of 2−m+0.8β also holds for the sets Ax1

, By1
with respect to I \ {1}, we can appeal to Lemma 6 to conclude that

p(z2|x1, y1) ∈ 1

2

[
1− 2−0.05β , 1 + 2−0.05β

]
=⇒ p(z2|z1) ∈ 1

2

[
1− 2−0.05β , 1 + 2−0.05β

]
.

Proceeding in similar fashion, we conclude that

p(z) ∈ 1

2|I|
[
(1− 2−0.05β)n, (1 + 2−0.05β)n

]
∈ 1

2|I|
[
1− 2logn−0.05β , 1 + 2logn−0.05β

]
.

This completes the proof.

The lemma has the following immediate corollary.

Corollary 13. For any node (A1×B1, I1, v1) and its successor node (A2×B2, I2, v2) such that
a pmax bound of 2−m+0.8β holds for A1, B1 and A2, B2 with respect to I1 and I2 respectively,
the probability that the algorithm Π reaches (A2 × B2, I2, v2), conditioned on it reaching (A1 ×
B1, I1, v1) on any input z, lies in the range

[
1− 2−0.039β , 1 + 2−0.039β

]
· 2−|I1\I2| · |A2| · |B2|

|A1| · |B1|
.

Proof. Note that the transitions in T from (A1 × B1, I1, v1) to (A′1 × B1, I
′
1, v
′
1) and so on

until to (A2 × B2, I2, v2) happen according to the relative sizes of the rectangles. Hence the
probability of these transitions on z are given by ρ(A′

1×B′
1,I1)

(z)/ρ(A1×B1,I1)(z) and so on until
ρ(A2×B2,I2)(z)/ρ(A′

2×B′
2,I

′
2)

(z). So,

Pr
T ,z

[(A2 ×B2, I2, v2)|(A1 ×B1, I1, v1)] =
ρ(A′

1×B′
1,I

′
1)

(z)

ρ(A1×B1,I1)(z)
· . . . ·

ρ(A2×B2,I2)(z)

ρ(A′
2×B′

2,I
′
2)

(z)
=
ρ(A2×B2,I2)(z)

ρ(A1×B1,I1)(z)

11

Appealing to the pmax bound, we can apply Lemma 12 to obtain that for every z,

ρ(A1×B1,I1)(z) ∈
1

2|I1|
[1− 2−0.04β , 1 + 2−0.04β] · |A1| · |B1|

and a similar result holds for (A2×B2, I2, v2). Plugging in the upper and lower bounds for both
these quantities, we get the desired result.

For bounding the probability of the algorithm aborting, we need the following claim.

Claim 14. Consider a tree τ representing a random process with directed edges weighed by the
conditional probability of going to a child node conditioned on being in a parent node. Some of
the nodes are marked as aborted nodes, and we have that for any node, the sum of weights of the
edges going to aborted children be at most δ. If the depth of τ is d, then the overall probability
of the random process reaching an aborted node is at most δ · d.

Proof. We construct a new tree τ ′ in which nodes which are not aborted at a particular level are
coarse-grained into a single node and the aborted nodes are coarse grained into another node
(which we again call abort node). For τ ′, the probability of a node having an aborted child is
still at most δ and the overall probability of reaching an aborted node is at least as large as in
τ . The probability of reaching an aborted node in τ ′ is given by

δ + (1− δ) · δ + (1− δ)2 · δ . . .+ (1− δ)d−1δ ≤ dδ

which gives us the required bound for the probability of reaching an aborted node in τ .

Lemma 15. The overall probability of the algorithm Π aborting on any input z ∈ {0, 1}n is
O(log n/n).

Proof. We will compute the abort probability for steps corresponding to A. A similar argument
holds for B. The algorithm aborts on steps 25, 35 and the Filter steps. We shall consider each
of these separately, and further subdivide the argument into query and communication parts.

First we consider the communication steps. For this, we upper bound the abort probability
for a fixed z, from which the actual abort probability can be upper bounded by averaging over
λ(z).

On steps 25 and 26: We first consider the conditional abort probability on a communication
sub-routine of Alice starting from step 23 and ending at step 26, conditioned on being at a
node (A × B, I) at the beginning of this subroutine at step 23. This gives us the conditional
probability of not aborting at either step 25 or in the Filter procedure in step 26. Note that
a pmax bound of 2−m+0.8β holds at A and a pmax bound of 2−m+0.8β holds for all possible
non-aborting Aj obtained from it at step 26. A pmax bound of 2−m+0.8β holds for B at the
beginning and does not change in these steps. Hence by Corollary 13,∑

non-aborting j

ρ(Aj×B,I)(z)

ρ(A×B,I)(z)
≥ (1− 2−0.039β)

∑
non-aborting j

|Aj |
|A|

.

Note that at first A is partitioned into two subsets A0 and A1 according to the picked b in step
24. At most one of A0 and A1 could have lead to an abort and because of our aborting condition
we have ∑

non-aborting b∈{0,1}

|Ab|
|A|
≥ 1− 1

n2
.

12

Moreover, from Lemma 5,

pA(Small(A,Ab, I)) ≤ 1

n2

which gives us ∑
non-aborting j

|Aj |
|A|

=
∑

non-aborting b∈{0,1}

|Ab \ Small(A,Ab, I)|
|A|

≥
∑

non-aborting b∈{0,1}

1

|A|
(
|Ab| − |Ab ∩ Small(A,Ab, I)|

)
≥
(

1− 1

n2

)
− 2

n2
≥ 1− 3

n2
.

So finally we get,∑
non-aborting j

ρ(Aj×B,I)(z)

ρ(A×B,I)(z)
≥ (1− 2−0.039β)(1− 3n−2) ≥ 1− 3n−2 − 2−0.039β .

Hence, the probability of abort conditioned on reaching this node is at most 4n−2, by the choice
of β.

On steps 29 and 41 (no queries): We can do very similar calculations for the probability
of abort on steps 29, conditioned on the A after step 26. Note that a pmax bound of 2−m+0.8β

holds for both the parent node A in step 26 and the non-aborting child node A′ in step 29.
Hence

ρ(A′×B,I)(z)

ρ(A×B,I)(z)
≥ (1− 2−0.039β) · |A

′|
|A|

.

Now in A′ the strings UnBal(A,B, I) and the strings Small(A,A \UnBal(A,B, I), I) are re-
moved. By Lemma 7, the total probability loss due to removal of the strings in UnBal(A,B, I) is
2−0.05β and the total probability loss due to removal of the strings in Small(A,A\UnBal(A,B, I), I)
is n−2 by Lemma 5. Hence the total conditional probability of aborting is again upper bounded
by O(n−2) by the choice of β. A similar argument holds for the abort probability in step 41 if
there are no queries carried out.

Note that each of the aborts whose conditional probabilities we have calculated so far happen
once after Alice communicates a bit. Since there are at most O(n log n) bits communicated, by
Claim 14, the overall probability of abort in these steps is at most O(log n/n). Now we proceed
to the steps where a query has taken place.

On steps 35 and 41 (at least one query): Now assuming at least one query happens, we
calculate the probability of abort on steps 35 and 41, conditioned on being at a node (A×B, I, v)
before the while loop began. A pmax bound of 2−m+0.8β holds for A,B with respect to I by the
Invariance Lemma. By Lemma 12 we can say,

ρ(A×B,I)(z) ≤
1 + 2−0.04β

2l
|A| · |B| (4)

Warm up, one query: Consider the simplest case where the while loop has only one iteration,
querying say z1 (where we assume, without loss of generality, that {1} ∈ I). In the while loop,
first A is split into A′(= High(A, 2−m+0.7β , {1})) and A\A′. A\A′ exits the while loop without
any queries being done, and then a Filter step is carried out on it, after which a pmax bound of
2−m+0.8β holds by the Invariance Lemma. Suppose the part that is not aborted in the Filter
step is A′′, then |A′′| ≥ (1− 2n−2)|A \ A′|, since at most n−2 fraction is removed in High and

13

Small parts each (for this, notice that at this stage, |High(A \A′, 2−m+0.7β , {i})| ≤ |A\A
′|

n3 for
all i ∈ I). By Lemma 12 we have,

ρ(A′′×B,I)(z) ≥
1− 2−0.04β

2|I|
|A′′| · |B| ≥ (1− 2−0.04β)(1− 2n−2)

2|I|
|A \A′| · |B|.

On A′, z1 is queried and A′ is set to A′|U(y1,z1) depending on the choice of y1 in step 34. Some
of these y1 lead to abort in step 35. Let Ab (representing abort) denote this set of y1, that
is, |A′|U(y1,z1)| ≤ 1

n3 |A′|. The non-aborting part then goes through another Filter step, after

which at most 2n−2 fraction of A′|U(y1,z1) is removed, and it has a pmax bound of 2−m+0.8β with
respect to I \ {1}. So if we let {Ak ×Bk}k denote the rectangles on which a query happens and
which are not aborted on steps 35 or 41, then by Lemma 12,

∑
k

ρ(Ak×Bk,I\{1})(z) ≥
(1− 2−0.04β)(1− 2n−2)

2|I|−1

∑
y1 6∈Ab

|A′|U(y1,z1)| · |By1 |

=
(1− 2−0.04β)(1− 2n−2)

2|I|−1

∑
y1

|A′|U(y1,z1)| · |By1 | −
∑
y1∈Ab

|A′|U(y1,z1)| · |By1 |

 .

We bound each of the summations in the above expression separately. For the first term, note
that ∑

y1

|A′|U(y1,z1)| · |By1 | = |B|
∑
x∈A′

Pr
y1∼pB

[g(x1, y1) = z1] ≥ 1

2
(1− 2−0.05β)|A′| · |B| (5)

where the inequality holds due to Lemma 7. For the second term we have,∑
y1∈Ab

|A′|U(y1,z1)| · |By1 | ≤
1

n3
|A′| · |B|

∑
y1∈Ab

pB(y1) ≤ |A′| · |B| · n−3. (6)

This gives us

∑
k

ρ(Ak×Bk,I\{1})(z) ≥
(1− 2−0.04β)(1− 2n−2)

2|I|
(1− 2−0.05β − 2

n3
)|A′| · |B|.

So the total probability of not aborting is at least∑
k ρ(Ak×Bk,I\{1})(z) + ρ(A′′×B,I)(z)

ρ(A×B,I)(z)

≥ (1− 3n−2) · 1− 2−0.04β

1 + 2−0.04β
· (1− 2−0.05β − 2

n3
)

(
|A′|+ |A \A′|

|A|

)
≥ 1− 6n−2,

for the choice of β. So the conditional probability of aborting in this step is at most 6n−2.

More than one query: For a larger number of queries, there are more possible divisions of A, but
the calculations are similar, applying different cases of Lemma 7. There are different sequences
of queries for the different partitions of the rectangle (A × B) at the beginning of the while
loop. Recall that the unqueried interval for (A × B) is I. To capture the branching sequence,
we consider the subtree T q of T , with root at (A × B, I) (we shall drop the v label) and the
leaves at all the nodes that reach (but do not exit) step 41. For every non-aborting leaf node

14

(AL × BL, IL) of T q, there is a child node (A′L × BL, IL) in T that goes through step 41 and
does not abort. We have the following relation for all leaves L ∈ T q, using Lemma 12,

ρ(A′
L×BL,IL)(z) ≥ (1− 2−0.04β)(1− 2n−2)

2|I\IL|

2|I|
|AL| · |BL|. (7)

Let Leaf(T q) represent the non-aborting leaves of T q. We shall argue that∑
L∈Leaf(T q)

ρ(A′
L×BL,IL)(z) ≥ (1− 4n−2)

1

2|I|
|A||B|.

Combined with Equation 4, this shall allow us to upper bound the probability of abort. To
show the desired inequality, it suffices to lower bound∑

L∈Leaf(T q)

2|I\IL||AL| · |BL|, (8)

To achieve this, we shall evaluate the expression starting from the leaves and going up to the
roots.

We call a node penultimate if it is a parent of a leaf node. Consider a penultimate node
L = (A∗ ×B∗, I∗), which was partitioned into children {(Ak ×Bk, I ′)}k. Suppose the partition
happened through a query step (observe that I ′ is same for each child, as they are all queried
at the same location). Let i = I∗ \ I ′ be the queried location and Abi be the set of aborting
yi’s. Following relation holds using Lemma 7, where the argument is similar to that used in
Equations 5 and 6: ∑

(Ak×Bk,I′)

|Ak||Bk| =
∑

yi /∈Abi

|A∗|U(yi,zi)||B
∗
yi |

≥ 1

2
(1− 2−0.05β − 2

n3
)|A∗||B∗|.

If the children of penultimate node were not formed due to any query step, then none of them
were aborted (abort only occurs at Step 35 within the While loop) and IL did not change. Then
it trivially holds that ∑

(Ak×Bk,I′)

|Ak||Bk| = |A∗||B∗|.

Now, consider the tree T q1 formed by removing all the leafs from T q. Let Leaf(T q1) be the
leaves of T q1 . Above argument allows us to conclude that the summation in Equation 8 is lower
bounded by the following:

(1− 2−0.05β − 2

n3
)

∑
L∈Leaf(T q

1)

2|I\IL||AL| · |BL|,

Continuing the same process, we can reduce the tree till it is just the node (A×B, I). Then
Equation 8 is lower bounded as∑

L∈Leaf(T q)

2|I\IL||AL| · |BL| ≥ (1− 2−0.05β − 2

n3
)n|A||B| ≥ (1− 4n−2)|A||B|,

for the choice of β. This shows that the abort probability is at most 6n−2.
This gives the total probability of the algorithm aborting to be at most O(log n/n).

Now we are in a position to do error analysis for the algorithm.

15

Proof of Lemma 10. The probability that Π makes an error is at most the sum of the probability
that Π aborts, given by Lemma 15, and the probability that it makes an error on a leaf. We
know by Lemma 15 that the overall probability of abort on any z is at most O(log n/n), hence
the overall probability of abort when z is drawn from λ is also at most O(log n/n).

To bound the error at a leaf, let us denote the output of a leaf L of T by bL and probability
that T on input (x, y) drawn uniformly from G−1(z) for a fixed z, reaches leaf L by qLz . By
correctness of T on the distribution µ we have,

Pr
(x,y)∼µ

[((x, y), T (x, y)) ∈ f ◦ gn] = Ez∼λ

 ∑
L:(z,bL)∈f

qLz

 ≥ 3

4
. (9)

Let us further denote the probability of Π reaching a leaf on a fixed input z by q′Lz . We will
lower bound

Pr
z∼λ

[(z,Π(z)) ∈ f] = Ez∼λ

 ∑
L:(z,bL)∈f

q′Lz

 .
Due to (9), it is enough to show that qLz and q′Lz are close. Let the rectangle associated with the
leaf L of T be denoted as AL ×BL. Since T has no internal randomness and conditioned on a
particular z the underlying distribution is uniform in its support, the probability that an input
drawn uniformly from G−1(z) reaches L is given only by the relative number of (x, y) ∈ AL×BL
that are consistent with G−1(z). That is,

qLz =
|(AL ×BL) ∩G−1(z)|

|G−1(z)|
.

Now there are many nodes (Ak ×Bk, Ik, L) in T corresponding to the node L and we have that
AL = (∪kAk)∪ALAbort, BL = (∪kBk)∪BLAbort. Moreover, we know from Corollary 13 that the
probability of Π going to node (Ak × Bk, Ik, L) is proportional to |(Ak × Bk) ∩ G−1(z)| · [1 −
2−0.039β , 1 + 2−0.039β] (the non-aborting leaf nodes all have a pmax bound of 2−m+0.8β for A,B).
So,

q′Lz ≥ (1− 2−0.039β)

∑
(Ak×Bk,Ik,L)∈T |(Ak ×Bk) ∩G−1(z)|

|G−1(z)|

= (1− 2−0.039β)
|(AL ×BL) ∩G−1(z)| − |(ALAbort ×BLAbort) ∩G−1(z)|

|G−1(z)|

= (1− 2−0.039β)qLz − (1− 2−0.039β)
|(ALAbort ×BLAbort) ∩G−1(z)|

|G−1(z)|

We now appeal to Lemma 15 to conclude that overall probability of abort is at most O(logn
n).

This gives us the probability of the algorithm making an error on a leaf to be

1−Ez∼λ

 ∑
L:(z,bL)∈f

q′Lz

 ≤ 1−(1−2−0.039β)Ez∼λ

 ∑
L:(z,bL)∈f

qLz

+O

(
log n

n

)
≤ 1

4
+O

(
log n

n

)
.

Expected number of queries of Π

Lemma 16. The algorithm Π makes at most 2c
0.7β−log 4n expected number of queries, where c is

the number of bits communicated in T in the worst case.

16

Proof. Consider the non-aborting leaf nodes {(Ak ×Bk, Ik, Lk)}k in T , where Lk is a leaf node
of T . In each of Ak, Bk, some strings are fixed in intervals JA, JB respectively (we drop the label
k from these intervals, as it will be clear from context), where JA and JB are disjoint. Moreover
JA ∪ JB = [n] \ Ik.

Assume for simplicity that Ik = {1, 2, . . . |Ik|}, JA = {|Ik| + 1, |Ik| + 2, . . . |Ik| + |JA|} and
JB = {|Ik| + |JA| + 1, |Ik| + |JA| + 2, . . . n}. For any pair of strings (x, y) ∈ Ak × Bk, we have
that,

1

|Ak||Bk|
= pAk

(x)pBk
(y) = pAk

(xIk∪JA)·pAk
(xJB |xIk∪JA)×pBk

(yIk∪JB)·pBk
(yJA |yIk∪JB) (10)

We evaluate the term pAk
(xJB |xIk∪JA) in the following way. Suppose the queries in JB happened

in the sequence {|Ik|+ |JA|+ 1, |Ik|+ |JA|+ 2, . . . n}. Let A′k be the ancestor of Ak when index
{n} was queried. Since Ak ⊆ A′k, we have

pAk
(xJB |xIk∪JA) =

1

|(Ak)xIk∪JA
|
≥ 1

|(A′k)xIk∪JA
|

= pA′
k
(xJB |xIk∪JA).

Now, the fact that the query happened at index {n} implies pA′
k
(xn|xIk∪JA) ≥ 2−m+0.7β . Thus,

pA′
k
(xJB |xIk∪JA) ≥ 2−m+0.7β · pA′

k
(xJB\{n}|xIk∪JA∪{n}). Now, we can consider the ancestor A′′k

of A′k at which xn−1 was queried and further lower bound this quantity. Continuing this way,
we obtain

pAk
(xJB |xIk∪JA) ≥ 2−(m−0.7β)|JB |.

Similar argument for Bk gives us

pBk
(yJA |yIk∪JB) ≥ 2−(m−0.7β)|JA|.

Combining, we obtain

pAk
(xJB |xIk∪JA)pBk

(yJA |yIk∪JB) ≥ 2−(m−0.7β)(|JB |+|JA|).

Now, there is at least one xIk such that pAk
(xIk∪JA) ≥ 2−m·|Ik| (recall that xJA is fixed).

Similarly, there is at least one yIk such that pBk
(yIk∪JB) ≥ 2−m·|Ik| (recall that yJB is fixed).

Thus, collectively, we find from Equation 10 that

1

|Ak||Bk|
≥ 2−2m·|Ik| · 2−(|JA|+|JB |)(m−0.7β).

This implies that

2m(2n−|JA|−|JB |)

|Ak||Bk|
≥ 2m(2n−|JA|−|JB |) · 2−2m·|Ik| · 2−(|JA|+|JB |)(m−0.7β) = 20.7β(|JA|+|JB |).

Taking logarithm on both sides and taking expectation over all (Ak ×Bk, Ik), we get

0.7β · E((Ak×Bk),Ik)(|JA|+ |JB |) ≤ E((Ak×Bk),Ik)

(
log

(
22m·n

|Ak||Bk|

)
−m · (|JA|+ |JB |)

)
. (11)

Now, recall that |JA|+ |JB | is the number of queries in the rectangle (Ak ×Bk). Let

Eq := E((Ak×Bk),Ik)(|JA|+ |JB |)

be the expected number of queries in the algorithm Π. We upper bound the right hand side of
Equation 11. For this, we view the protocol Π as a communication protocol Πcc in the following
sense. Let Alice and Bob publicly share z distributed according to λ. Alice and Bob simulate

17

all the steps in Π, and communicate abort if required. Suppose the players reach steps 10 or 30
during the simulation. If Alice (Bob) finds that there exists an i ∈ I that satisfies the ‘while’
condition, then she (he) communicates i to Bob (Alice) with log n bits. For every query done
by Alice or Bob at some index i, the respective player samples zi from the shared randomness.
If either of Alice and Bob need to fix an xi or yi (respectively), they communicate the fixed
string to the other party with m bits of communication. In similar manner, rest of the steps are
simulated. We find that for each query done in Π, Πcc communicates at most m+ log n+ 2 bits.
Thus, expected number of bits communicated in Πcc is upper bounded by 2c+ (m+ log 4n)Eq,
where the term 2c arise due to the possibility of abort in non-query steps (note that there is at
most one additional abort per communication step). Using Claim 17 below, we conclude

E((Ak×Bk),Ik) log

(
22m·n

|Ak||Bk|

)
≤ 2c+ (m+ log 4n)Eq.

Using this in Equation 11, we obtain

0.7β · Eq ≤ 2c+ (m+ log 4n)Eq −m · Eq =⇒ (0.7β − log 4n)Eq ≤ 2c.

This completes the proof.

Claim 17. The expected number of bits communicated in Πcc is lower bounded by

E((Ak×Bk),Ik) log

(
22m·n

|Ak||Bk|

)
.

Proof. Given the protocol Πcc, we construct a tree T cc as follows. The nodes of tree T cc
are labeled by the rectangles (A × B) that appear in the protocol Πcc. The root node is
(({0, 1}m)n × ({0, 1}m)n). For each node (A × B), its children are the set of all nodes that
are obtained by partitioning (A×B) in the given randomized fashion. We include the aborted
nodes in T cc. Observe that T cc is different from the tree T constructed earlier, in the sense
that the latter is constructed for a fixed z. For a node (A×B) ∈ T cc, let NChild(A×B) be the
number of children of (A×B) (we set this number to 1 for a leaf node). The expected number
of bits communicated in Πcc is equal to

E(A×B)∈T cc logNChild(A×B).

For a node (A×B), let {(Ak ×Bk)}k be the set of its children. Then it holds that∑
(Ak×Bk)

|Ak||Bk|
|A||B|

log
|A||B|
|Ak||Bk|

≤ logNChild(A×B).

Since the transition probability in Πcc from (A×B) to (Ak×Bk) is |Ak||Bk|
|A||B| , the claim concludes.

Acknowledgement

This work is supported by the Singapore Ministry of Education and the National Research Foun-
dation, also through the Tier 3 Grant “Random numbers from quantum processes” MOE2012-
T3-1-009.

18

References

[GLM+15] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman.
Rectangles are nonnegative juntas. In Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’15, pages 257–266, New York, NY,
USA, 2015. ACM.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication
vs. partition number. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 1077–1088, Oct 2015.

[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting
for BPP. 2017. https://arxiv.org/abs/1703.07666.

[LSS08] T. Lee, A. Shraibman, and R. Spalek. A direct product theorem for discrepancy.
In 2008 23rd Annual IEEE Conference on Computational Complexity, pages 71–80,
June 2008.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. Combina-
torica, 19(3):403–435, 1999.

[She11] Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing,
40(6):1969–2000, 2011.

19

Algorithm 2: Randomized query algorithm Π for f

Input: z ∈ {0, 1}n
1 Initialize v as root of the protocol tree T , I = [n], A = ({0, 1}m)n and B = ({0, 1}m)n

2 while v is not a leaf do
3 if Bob sends a bit at v then
4 For b ∈ {0, 1} pick B′ = B ∩ Y v,b with probability |B ∩ Y v,b|/|B|
5 if |B′| < 1

n2 |B| for the picked b then Abort
6 Filter(B′,Small(B,B′, I))
7 Set v ← vb and B ← B′

8 if there is an i ∈ I such that |High(B, 2−m+0.7β, i)| > 1
n3 |B| then

9 Filter (B,UnBalY(A,B, I) ∪ Small(B,B \UnBalY(A,B, I), I))

10 while |High(B, 2−m+0.7β, i)| > 1
n3 |B| for some i ∈ I do

11 Pick B′ = High(B, 2−m+0.7β, i) or B \High(B, 2−m+0.7β, i) with probability

|High(B, 2−m+0.7β, i)|/|B| or 1− |High(B, 2−m+0.7β, i)|/|B| respectively

12 if B′ = High(B, 2−m+0.7β, i) is picked then
13 Query zi
14 Pick xi ∈ {0, 1}m with probability |Axi |/|A|
15 if |B′|V (xi,zi)| <

1
n3 |B′| then Abort

16 Set B ← B′|V (xi,zi), A← Axi and I ← I \ {i}
17 end
18 Set B ← B′

19 end

20 end

21 Filter
(
B,High(B, 2−m+0.7β, I) ∪ Small(B,B \High(B, 2−m+0.7β, I), I)

)
22 end
23 else if Alice sends a bit at v then
24 For b ∈ {0, 1} pick A′ = A ∩Xv,b with probability |A ∩Xv,b|/|A|
25 if |A′| < 1

n2 |A| for the picked b then Abort
26 Filter(A′,Small(A,A′, I))
27 Set v ← vb and A← A′

28 if there is an i ∈ I such that |High(A, 2−m+0.7β, i)| > 1
n3 |A| then

29 Filter (A,UnBalX (A,B, I) ∪ Small(A,A \UnBalX (A,B, I), I))

30 while |High(A, 2−m+0.7β, i)| > 1
n3 |A| for some i ∈ I do

31 Pick A′ = High(A, 2−m+0.7β, i) or A \High(A, 2−m+0.7β, i) with probability

|High(A, 2−m+0.7β, i)|/|A| or 1− |High(A, 2−m+0.7β, i)|/|A| respectively

32 if A′ = High(A, 2−m+0.7β, i) is picked then
33 Query zi
34 Pick yi ∈ {0, 1}m with probability |Byi |/|B|
35 if |A′|U(yi,zi)| <

1
n3 |A′| then Abort

36 Set A← A′|U(yi,zi), B ← Byi and I ← I \ {i}
37 end
38 Set A← A′

39 end

40 end

41 Filter
(
A,High(A, 2−m+0.7β, I) ∪ Small(A,A \High(A, 2−m+0.7β, I), I)

)
42 end

43 end
44 Output as T does on the leaf v.

20

Procedure 3: Filter(T, S)

Input: T ⊆ ({0, 1}m)n and S ⊆ T
1 Pick T ′ = S or T \ S with probability |S|/|T | or 1− |S|/|T | respectively
2 if T ′ = S is picked then Abort
3 Set T ← T ′

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

