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Abstract

We show that for any (partial) query function f : {0, 1}n → {0, 1}, the randomized com-
munication complexity of f composed with Indexnm (with m = poly(n)) is at least the random-
ized query complexity of f times log n. Here Indexm : [m] × {0, 1}m → {0, 1} is defined as
Indexm(x, y) = yx (the xth bit of y).

Our proof follows on the lines of Raz and Mckenzie [RM99] (and its generalization due
to [GPW15]), who showed a lifting theorem for deterministic query complexity to deterministic
communication complexity. Our proof deviates from theirs in an important fashion that we con-
sider partitions of rectangles into many sub-rectangles, as opposed to a particular sub-rectangle
with desirable properties, as considered by Raz and McKenzie. As a consequence of our main
result, some known separations between quantum and classical communication complexities
follow from analogous separations in the query world.

1 Introduction

Communication complexity and query complexity are two concrete models of computation which
are very well studied. In the communication model there are two parties Alice, with input x
and Bob, with input y, and they wish to compute a joint function f(x, y) of their inputs. In the
query model one party Alice tries to compute a function f(x) by querying bits of a database
string x. There is a natural way in which a query protocol can be viewed as a communication
protocol between Alice, with no input, and Bob, with input x, in which the only communication
allowed is queries to the bits of x and answers to these queries. Given this, we can (informally)
view the query model as a “simpler” sub-model of the communication model. Indeed several
results in query complexity are easier to argue and obtain than the corresponding results in
communication complexity. One interesting technique that is often employed with great success
is to first show a result in the query model and then “lift” it to a result in the communication
model via some “lifting theorem”.
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One of the first such lifting theorems was shown by Raz and McKenzie [RM99] (and its
generalization by [GPW15]). For a (partial) query function f : {0, 1}n → {0, 1} and a commu-
nication function g : {0, 1}m × {0, 1}k → {0, 1} let the composed function f ◦ gn be defined as
f ◦ gn((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), . . . , g(xn, yn)). Raz and McKenzie [RM99] (and the
generalization due to [GPW15]) showed that for every query function f : {0, 1}n → {0, 1} the
deterministic communication complexity of f composed with Indexm (with m = poly(n)) is at
least the deterministic query complexity of f times log n. Here Indexm : [m]×{0, 1}m → {0, 1} is
defined as Indexm(x, y) = yx (the xth bit of y). Subsequently several lifting theorems for differ-
ent complexity measures have been shown, example lifting approximate-degree to approximate-
rank [She11] and approximate junta-degree to smooth-corruption-bound [GLM+15] etc.

Our result

In this work we show lifting of (bounded error) randomized query complexity to (bounded error)
randomized communication complexity. For a (partial) query function f : {0, 1}n → {0, 1} let
the randomized query complexity with (worst-case) error ε > 0 of f be denoted Rε(f). Similarly
for a communication function g : {0, 1}m×{0, 1}k → {0, 1}, let the randomized communication
complexity with (worst-case) error ε > 0 of g be denoted Rε(g). We show the following.

Theorem 1. For all (partial) functions f : {0, 1}n → {0, 1},

R1/4(f ◦ Indexnm) = Ω(R1/3(f) · log n),

where m = poly(n) 1.

On the other hand it is easily seen with a simple simulation of a query protocol using a
communication protocol that R1/3(f ◦ Indexnm) = O(R1/3(f) · logm). This implies R1/3(f ◦
Indexnm) = Θ(R1/3(f) · log n) with m = poly(n).

Our result implies a recent result of [ABBD+16] where they exhibited a power 2.5 separation
between classical randomized and quantum communication complexities for a total function. It
also implies exponential separation between two-round quantum communication complexity and
randomized communication complexity first shown by [Raz99]

Our techniques

Our techniques are partly based on the techniques of Raz and McKenzie [RM99] as presented
in [GPW15] with an important modification to deal with distributional error protocols instead
of deterministic protocols. Let T be a deterministic communication protocol tree for f ◦ Indexnm
(with m = poly(n)). We use this to create a randomized query protocol Π (see Algorithm 2)
for f . Let z be an input for which we are supposed to output f(z). We start with the root
of T and continue to simulate T (using randomness) till we find a co-ordinate i ∈ [n] where
T has worked enough so that Indexm(xi, yi) is becoming (only slightly) determined. Using the
properties of Indexm we conclude that T must have communicated O(log n) bits by now. We
go ahead a query zi (the ith bit of z) and synchronize with zi, that is go to the appropriate
sub-event of the current node in T consistent with zi.

To keep the unqueried bits zi sufficiently undetermined, firstly we need the number of possible
yi in each of these locations to be large. Since the set of y is exponentially larger than the set
of x to begin with, the communication protocol lets us do this for free. To make sure zi is not
too determined by xi, we need to make some effort. Suppose the set of unqueried indices in z
is I ⊆ [n]. The parameter we use to keep track of how much T has worked to determine xi,

1We state our result for Boolean functions f , however it holds for general relations. Moreover, for convenience we
use a partial version of the Indexn

m function defined on the subset Balnm of {0, 1}mn that only contains strings with
an equal number of 0’s and 1’s in every block.
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is the conditional probability (within the set A of all possible x at this point) of a particular
value of xi, given a particular value xI\{i} at other unqueried locations. When this conditional
probability pA(xi|xI\{i}) becomes too high for a sufficiently large number of strings, we conclude
that we cannot maintain the conditional probability to be low for this i any more and a query
must be made.

However, we only want to make a query in that part of A where the conditional probability
violation takes place – this eventually lets us compare the number of queries we make with the
number of bits communicated. So within a query subroutine, we first probabilistically split A
into the strings High where the conditional probability becomes too high, and A \High, where
this does not happen, according to their respective sizes. A query is then made in the High
part, and only the xi and yi that are consistent with the zi that we learn from the query are
retained – in such a way that they still form a rectangle. After we have done the High, A\High
splitting and querying in all indices where the conditional probability pA(xi|xI\{i}) was too high
for many strings, the conditional probability can be restored to a low enough value for the rest
of the indices, and we can move on with communication steps.

As long as we have a bound pmax on the maximum pA(xi|xI\{i}) in A and the set B of all
possible y is large, the unqueried zi are sufficiently undetermined and we can move from node
to node of T according to the “flow” of T , for every input z. We prove this in parts in the
Partition Lemma 5 in section 2 and Lemma 11 in section 3. This lets our algorithm sample
the leaves of T close to their original probabilities, and thus the correctness of T on (x, y) in
expectation ensures the correctness of our algorithm on z on expectation.

During the course of our simulation, we may end up at some “bad” subevents, where we
will not be able to maintain a sufficiently large number of (x, y) consistent with z. We need to
abort the algorithm on such subevents. When we have a pmax bound, B is large and we are
going with the “flow” of T , we can ensure that the probability of going to such bad subevents
is small. But, if we need to do a series of queries in one go, we will not be able to maintain
the requisite pmax bound in between queries. So it may be possible that when we do a query
and try to synchronize xi and yi with zi, we do not find any (or sufficiently many in the form
of a rectangle) xi and yi that are consistent with zi. In the technical Lemma 7 we show that
there is a way around this, that in fact if we do some “preprocesing” on A before carrying out
queries, the probability of this bad subevent happening is still small. Thus the algorithm does
not abort with high probability, and ends up at the leaves with the correct probabilities.

2 Preliminaries

In this section, we present some notations and basic lemmas needed for the proof of our main
result.

Let f : {0, 1}n → {0, 1} be a (partial) function. Let ε > 0 be an error parameter. Let the
randomized query complexity, denoted Rε(f), be the maximum number of queries made by the
best randomized query protocol computing f with error at most ε on any input x ∈ {0, 1}n.
Let θ be a distribution on {0, 1}n. Let the distributional query complexity, denoted Dθ

ε(f), be
the maximum number of queries made by the best deterministic query protocol computing f
with average error at most ε under θ. The distributional and randomized query complexities
are related by the following Yao’s Lemma.

Fact 2 (Yao’s Lemma). Let ε > 0. We have Rε(f) = maxθ Dθ
ε(f).

Similarly, we can define randomized and distributional communication complexities with a
similar Yao’s Lemma relating them.

Let λ be a hard distribution on {0, 1}n such that Dλ
1/3(f) = R1/3(f), as guaranteed by

Yao’s Lemma. Let m = n100 and let Balm ⊂ {0, 1}m be the set of all strings of length m with
equal number of 0’s and 1’s. Observe that |Balm| =

(
m
m/2

)
≥ 2m/

√
m. The notation Balnm
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will refer to the set Balm × Balm × . . .Balm. Let Indexm : [m] × Balm → {0, 1} be defined as
Indexm(x, y) = yx (the xth bit of y). Consider the following lifted distribution for the composed
function f ◦ Indexnm: µ(x, y) = λ(G(x, y))/|G−1(G(x, y))|, where G := Indexnm. We observe for
this distribution that µ(x) and µ(y) are uniform in their support.

Let Alice and Bob’s inputs for the composed function be respectively x = (x1, . . . , xn) ∈ [m]n

and y = (y1, . . . , yn) ∈ Balnm.
We use the following notation, some of which is adapted from notation used in [GPW15].

• For a node v in a communication protocol tree, let Rv = Xv × Y v denote its associated
rectangle. If Alice or Bob send the bit b at v, let vb be the corresponding child of v and
Xv,b ⊆ Xv and Y v,b ⊆ Y v be the set of inputs of Alice and Bob respectively on which
they do this.

• For a string x ∈ [m]n and an interval I ⊂ [n], let xI be the restriction of x to the interval
I. We use shorthand xi for x{i}. We use similar notation for string y ∈ Balnm.

• For a set A ⊂ [m]n, let AI := {xI : x ∈ A} be the restriction of A to the interval I and
AxI = {x′ ∈ A : x′I = xI}. Our convention is for an xI 6∈ AI , AxI is just the null set. We
use similar notation for B.

• We say B ⊆ Balnm is large with respect to I ⊆ [n] if B is fixed outside of the interval I (ie,

|BI | = |B|) and |BI |
|Balm||I|

≥ 2−n
2(2n−|I|).

• For A ⊆ [m]n, an interval J , we define a uniform probability distribution on strings x in

A and restriction of x to J in A as, pA(xJ) :=
|AxJ |
|A| . We use similar notation for B.

• For J ⊆ [n] and i 6∈ J , we define the conditional probability of xi given xJ in A such that

pA(xJ) > 0, as pA(xi|xJ) := pA(xi◦xJ )
pA(xJ )

.

• For A ⊆ [m]n, an index i ∈ I and xI\{i} ∈ [m]|I|−1, let

pmax(A, xI\{i}) := max
xi

pA(xi|xI\{i}).

We say a pmax bound of α holds for A with respect to I, if pmax(A, xI\{i}) ≤ α for all i ∈ I
and all such xI\{i}.

• For A ⊆ [m]n, I ⊆ [n] and i ∈ I, let

High(A,α, i) := {x ∈ A : pA(xi|xI\{i}) > α}.

Moreover, we use High(A,α, I) to denote ∪i∈IHigh(A,α, i).

• For yi ∈ Balm and zi ∈ {0, 1}, let U(yi, zi) := {xi ∈ [m] : Indexm(xi, yi) = zi}. We use
A|U(yi,zi) to denote ∪xi∈U(yi,zi)Axi .

Fact 3 (Chernoff bound). Let X1, X2 . . . Xt be independent random variables such that 0 <
Xi < c. Let X =

∑
iXi and µ = E(X). Then for δ > 0, it holds that

Pr[|X − µ| ≥ µδ] ≤ 2e−
δ2µ2

tc2 .

We shall use the sets Small(A,A′, I),Bad(A,B, i) and UnBal(A,B, I) defined in the next
Lemmas 4, 5 and 7 respectively in our algorithm and analysis.

Lemma 4. For A ⊆ [m]n, I ⊆ [n] and A′ ⊆ A, there exists A′′ ⊆ A′ such that for all i ∈ I and
xI\{i} ∈ A′′I\{i}, |A

′′
xI\{i}

| ≥ 1
n3 |AxI\{i} |. Further, if we denote A′ \A′′ by Small(A,A′, I), then

∑
x∈Small(A,A′,I)

pA(x) <
1

n2
.
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Algorithm 1: Decomposing A′ = A′′ ∪ Small(A,A′, I)

1 Initialize A0 = A′, j = 0

2 while |Aj
xI\{i} | <

1
n3 |AxI\{i} | for some i ∈ I and xI\{i} ∈ A

j
I\{i} do

3 Pick such an i ∈ I and xI\{i}
4 Set Aj+1 = Aj \ {x′ ∈ Aj : x′I\{i} = xI\{i}}
5 end
6 Output A′′ = Aj

Proof. The set A′′ is obtained by running the following algorithm on A′. It is easy to see that
the A′′ obtained satisfies the property required.
To bound the size of Small(A,A′, I), let (ij , x

j
I\{ij}) be the pair picked by the algorithm in the

j-th iteration. Then we have, |AjxI\{ij} | <
1
n3 |AxI\{ij} |. Note that a particular xjI\{ij} can only

be removed once in the algorithm, so at most all xI\{i} for all i ∈ I can be removed. So the
total strings removed is at most∑

(ij ,x
j
I\{ij}

)

|Aj
xj
I\{ij}

| < 1

n3

∑
(ij ,x

j
I\{ij}

)

|Axj
I\{ij}

| ≤ 1

n3

∑
i∈I

∑
xI\{i}

|AxI\{i} | =
|I|
n3
|A| ≤ 1

n2
|A|.

This proves the lemma.

Lemma 5 (Partition Lemma). For A ⊆ [m]n suppose a pmax bound of m−8/10 holds with respect
to I ⊆ [n]. For a B ⊆ Balnm that is large with respect to I, we say a yi ∈ B{i} is in Bad(A,B, i)
if it does not satisfy the property∑

xi∈U(yi,zi)

pA(xi|xI\{i}) ∈
[

1

2
− n−5, 1

2
+ n−5

]
∀xI\{i} ∈ AI\{i} ∀zi ∈ {0, 1}

or Byi is not large with respect to I \ {i}. Then,∑
yi∈Bad(A,B,i)

pB(yi) ≤ 2−n
2+1.

Proof. For a fixed index i ∈ I and fixed zi ∈ {0, 1} we say yi ∈ Balm satisfy the property
P (xI\{i}, zi) for set A if it holds that

1

2
+ δ ≥

∑
xi∈U(yi,zi)

pA(xi|xI\{i}) ≥
1

2
− δ ∀xI\{i} ∈ [m]|I|−1.

Consider an indicator 1g(xi,yi)=zi for the event g(xi, yi) = zi (say the function (1− (yi)xi ⊕ zi)).
We can rewrite ∑

xi∈U(yi,zi)

pA(xi|xI\{i}) =
∑
xi

1g(xi,yi)=zi · pA(xi|xI\{i}).

Note that B{i} ⊆ Balm and when yi is drawn uniformly from any subset of Balm, expectation

value of the above quantity is 1
2 , as the expectation value of 1g(xi,yi)=zi is 1

2 . Thus, using
Chernoff bound (Fact 3) and the fact that for any xI\{i}, 0 ≤ 1g(xi,yi)=zi · pA(xi|xI\{i}) ≤
pA(xi|xI\{i}) ≤ pmax(A, xI\{i}) ≤ m−8/10, we have

Pr
yi∼ 1

|B{i}|

[∣∣∣∣∣∑
xi

1g(xi,yi)=zi · pA(xi|xI\{i})−
1

2

∣∣∣∣∣ > δ

]
≤ 2e

− δ2

4m·m−16/10 = 2e−
m3/5·δ2

4 .

5



That is, the probability that yi does not satisfy P (xI\{i}, zi) for any fixed xI\{i} and zi is at

most 2e−
m3/5·δ2

4 . Thus the probability that yi does not satisfy property P (xI\{i}, zi) for at least

one xI\{i} or one zi is at most 4m|I|−1 · e−m
3/5·δ2

4 ≤ mn · e−m
3/5·δ2

4 = 2n logm · e−m
3/5·δ2

4 . We
say yi ∈ Bad1(A,B, i) if it does not satisfy P (xI\{i}, zi) for at least one xI\{i} or zi. Taking

δ = m−1/20, we get the number of yi ∈ Bad1(A,B, i) to be at most |B{i}| · 2n logme−
m1/2

4 ≤
|Balm| · 2−n

50

. Since for any yi, |Byi | ≤ |Balm||I|−1, we get,

∑
yi∈Bad1(A,B,i)

pB(yi) ≤
|Balm| · 2−n

50 · |Balm||I|−1

|Balm||I| · 2−n2(2n−|I|) ≤ 2−n
45

.

Now we say yi ∈ Bad2(A,B, i) if
|(Byi )I |
|Balm||I|−1 < 2−n

2(2n−|I|+1). Then,

∑
yi∈Bad2(A,B,i)

pB(yi) ≤
|Balm| · |Balm||I|−12−n

2(2n−|I|+1)

|Balm||I| · 2−n2(2n−|I|) ≤ 2−n
2

.

Note that Bad(A,B, i) = Bad1(A,B, i)∪Bad2(A,B, i), which gives us the required bound on∑
yi∈Bad(A,B,i) pB(yi).

The following lemma follows from a result in [GPW17], which we state below. Here, χ(z) =
(−1)⊕zi .

Lemma 6 ([GPW17], Equation 4). For an interval I ⊆ [n], suppose pA(xI) ≤ m−0.7|I| for all
xI (min entropy is at least 0.7|I| logm) and B is large. Then it holds that

|
∑
xI ,yI

pA(xI)pB(yI)χ(gI(xI , yI))| ≤ 2−5|I| logn.

Lemma 7. For A ⊆ [m]n suppose a pmax bound of m−8/10 holds with respect to I ⊆ [n] and
B ⊆ Balnm is large with respect to I. We say an x ∈ UnBal(A,B, I) if it does not satisfy the
property

Pr
yI∼

|ByI |
|B|

[gI(xI , yI) = zI ] ∈
1

2|I|
[
1− n−3, 1 + n−3

]
∀z ∈ {0, 1}|I|.

Then,

pA(UnBal(A,B, I)) ≤ 1

n8
.

Proof. Fix an interval J ⊆ I. Since a pmax bound of m−8/10 holds for the given A, we have that
for all xJ , pA(xJ) ≤ m−0.8|J|. For any subset A′J ⊆ AJ such that pA(A′J) ≥ m−0.1|J|, we have
that pA′J (xJ) ≤ m0.1|J|m−0.8|J| ≤ m−0.7|J|. Thus, invoking Lemma 6, we obtain that

|
∑
xJ ,yJ

pA′J (xJ)pB(yJ)χ(gJ(xJ , yJ))| ≤ 2−5|J| logn. (1)

Let Bad
(1)
J be the set of all xJ ∈ AJ for which

∑
yJ
pB(yJ)χ(gJ(xJ , yJ)) ≥ 2−5|J| logn and

Bad
(0)
J be the set of all xJ ∈ AJ for which

∑
yJ
pB(yJ)χ(gJ(xJ , yJ)) ≤ −2−5|J| logn. Let

BadJ := Bad
(1)
J ∪Bad

(0)
J .We conclude that

Pr
A

(BadJ) ≤ Pr
A

(Bad
(1)
J ) + Pr

A
(Bad

(0)
J ) ≤ 2 ·m−0.1|J|,

where the last inequality follows from Equation 1.
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Now, we put an x in UnBal(A,B, I) if it holds that for all J ⊆ I, xJ ∈ BadJ . The overall
probability of x ∈ UnBal(A,B, I) can be upper bounded as

pA(UnBal(A,B, I)) ≤
∑
J⊆I

Pr
A

(BadJ) ≤ 2

|I|∑
r=1

(
|I|
r

)
m−0.1r ≤ 2

n∑
r=1

2r logn−0.1r logm ≤ 3·2−9 logn.

Fix an x /∈ UnBal(A,B, I). We have that xJ ∈ ¬BadJ for all J , which implies that

|
∑
yJ

pB(yJ)χ(gJ(xJ , yJ))| ≤ 2−5|J| logn for all J.

Using Lemma 9 from [GPW17] (which appeared earlier in [GLM+15]), we conclude that

Pr
yI∼

|ByI |
|B|

[gI(xI , yI) = zI ] ∈
1

2|I|
[
1− n−3, 1 + n−3

]
∀z ∈ {0, 1}|I|.

This establishes the desired property of UnBal(A,B, I) as given in the statement of the
lemma. This completes the proof.

3 Proof of main result

We restate Theorem 1 and provide its proof below.

Theorem 8. For all (partial) functions f , it holds that

Rµ
1/4(f ◦ Indexnm) = Ω(R1/3(f) · log n),

where m = poly(n).

Proof. For a given function f , recall the definition of λ (hard distribution for f) and µ (lifted
distribution for f ◦ Indexnm) from Section 2. Let T be a deterministic communication tree for f
achieving Dµ

1/4(f ◦Indexnm). Let c := Dµ
1/4(f ◦Indexnm) be the depth of T . Using our algorithm Π

given in Algorithm 2 and described in the form of a flowchart in Figure 1, we get a randomized
query protocol for f which makes an error of at most 1.1

4 under λ (as implied by Lemma 9)
and makes at most O(c/ log n) expected number of queries (as implied by Lemma 15). This
can be converted into an algorithm with O(c/ log n) number of queries (in the worst case) and
distributional error 1

3 , using standard application of Markov’s inequality. This shows that

R 1
3
(f) = Dλ

1
3
(f) ≤ O

(
c

log n

)
.

For an input z, we construct a tree T which represents the evolution of the algorithm Π,
depending on the random choices made by it in steps 4, 9, 16, 19 and the Filter steps. All the
nodes of the tree are labelled by unique triplets (A×B, I, v) where I ⊆ [n] is the current interval,
A ⊆ [m]n, B ⊆ Balnm are the current parts of the rectangle held by Alice and Bob respectively,
and v is the current node of T . The root node is ([m]n × Balnm, [n], r) where r is the root of T ,
and the children of any node are all the nodes that can be reached from it depending on random
choices made. Each edge is labelled by the conditional probability of the algorithm reaching the
child node, conditioned on it reaching the parent node for that z. The overall probability of the
algorithm reaching a node (A×B, I, v) on input z, denoted by PrT ,z[(A×B, I, v)] is obtained
by multiplying all the conditional probabilities along the path from the root to (A×B, I, v).

Note that there are at most O(n log n) communication steps in T and additionally at most
n query steps in Π, and constant number of operations for each of these steps in the algorithm.
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Algorithm 2: Randomized query algorithm Π for f

Input: z ∈ {0, 1}n
1 Initialize v as root of the protocol tree T , I = [n], A = [m]n and B = Balnm
2 while v is not a leaf do
3 if Bob sends a bit at v then
4 Pick b ∈ {0, 1} with probability |B ∩ Y v,b|/|B|
5 if |B ∩ Y v,b| < 2−n

2(2n−|I|) · |Balm||I| for the picked b then Abort

6 Set v ← vb and B ← B ∩ Y v,b

7 end
8 else if Alice sends a bit at v then
9 For b ∈ {0, 1} pick A′ = A ∩Xv,b with probability |A ∩Xv,b|/|A|

10 if |A′| < 1
n2 |A| for the picked b then Abort

11 Filter(A′,Small(A,A′, I))
12 Set v ← vb and A← A′

13 if there is an i such that |High(A,m−93/100, i)| > 1
n3 |A| then

14 Filter (A,UnBal(A,B, I) ∪ Small(A,A \UnBal(A,B, I), I))

15 while |High(A,m−93/100, i)| > 1
n3 |A| for some i ∈ I do

16 Pick A′ = High(A,m−93/100, i) or A \High(A,m−93/100, i) with probability

|High(A,m−93/100, i)|/|A| or 1− |High(A,m−93/100, i)|/|A| respectively

17 if A′ = High(A,m−93/100, i) is picked then
18 Query zi
19 Pick yi ∈ {0, 1}m with probability |Byi |/|B|
20 if |A′|U(yi,zi)| <

1
n3 |A′| or |Byi | < 2−n

2(2n−|I|+1) · |Balm||I|−1 for the picked

yi then Abort
21 Set A← A′|U(yi,zi), B ← Byi and I ← I \ {i}
22 end
23 Set A← A′

24 end

25 end

26 Filter
(
A,High(A,m−93/100, I) ∪ Small(A,A \High(A,m−93/100, I), I)

)
27 end

28 end
29 Output as T does on the leaf v.

Procedure 3: Filter(A,S)

Input: A ⊆ [m]n and S ⊆ A
1 Pick A′ = S or A \ S with probability |S|/|A| or 1− |S|/|A| respectively
2 if A′ = S is picked then Abort
3 Set A← A′

Error analysis of algorithm Π

In this section we shall prove the following main lemma.
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(A×B, I, v)
(pmax ≤ m−9/10,

B large)

Alice sends bit

Pick b

A← A ∩Xv,b

v ← vb

rel. size

< 1
n2

Abort

Filter
Small(A,A ∩Xv,b, I)

(pmax ≤ m−87/100)

∃i ∈ I s.t.
|High(A,m−93/100, i)|

> 1
n3 |A|?

Yes

Filter UnBal

(pmax ≤ m−84/100)

Fix such an i

A \High(A,m−93/100, i) High(A,m−93/100, i)

Query zi

Pick yi
A×B ←

A|U(yi,zi) ×Byi ,
I ← I \ {i}

bad

yi
Abort

∃i ∈ I s.t.

|High(A,m−93/100, i)|
> 1

n3 |A|?
No Yes

No

Filter

High(A,m−93/100, I)

(pmax ≤ m−9/10)

Bob sends bit

Pick b

B ← B ∩ Y v,b

v ← vb

not large

Figure 1: A flowchart description of the algorithm
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Lemma 9. The algorithm Π makes an error of at most 1/4+O(log n/n) when input z is drawn
from λ.

The proof of this lemma has the following components. First we prove an Invariance Lemma
which will show that the conditions required for the the Partition Lemma 5 hold. Second, using
the Partition Lemma, we show a claim related to the size of |(A×B)∩G(z)| relative to |A×B| at
any node for any input z to Π. This lets us do two things: first we can show that the transition
probabilities of Π are almost the same for any z, and second, we can show that the probability
of the algorithm going to an aborted node is small. Finally, due to the transition probabilities
being independent of z, the probability of Π reaching a leaf is close to the probability of the
original protocol T reaching that leaf. This lets us show that the expected value of the error of
Π over the leaves is close to the expected value of the error of T over the leaves, which is small.

Lemma 10 (Invariance Lemma). Throughout the execution of Π, we show the following invari-
ants:

1. pmax bounds of m−87/100, m−84/100 and m−9/10 for the current A with respect to the
current interval I hold after steps 12, 14 and 26 respectively;

2. B is large with respect to the current interval I.

Proof. 1. After step 12: If Abort does not happen here, A is set toA′ = Ab\Ab|Small(A,Ab,I)
(where we use Ab to denote A ∩ Xv,b). A′ only contains xI\{i} 6∈ Small(A,Ab, I). For

these prefixes, |A′xI\{i} | ≥
1
n3 · |AxI\{i} | and obviously |A′xI\{i}◦xi | ≤ |AxI\{i}◦xi | for every

xi. Since a pmax bound of m−9/10 holds for A, we have,

max
xi

|A′xI\{i}◦xi |
|A′xI\{i} |

= max
xi

n3 · |AxI\{i}◦xi |
|AxI\{i} |

≤ m−87/100.

Hence, the pmax bound of m−87/100 holds for A′.

After step 14: Here an A for which a pmax bound of m−87/100 holds is set to A′. We
have for every remaining prefix xI\{i}, |A′xI\{i} | ≥

1
n3 |AxI\{i} |. |A′xI\{i}◦xi | can only be at

most |AxI\{i}◦xi |. So for any xI\{i},

max
xi

|A′xI\{i}◦xi |
|A′xI\{i} |

≤ max
xi

n3 · |AxI\{i}◦xi |
|AxI\{i} |

≤ m−84/100

due to the pmax bound on A.

After step 26: A similar argument holds here. Since the strings in both High(A,m−93/100, I)
and Small(A,A\High(A,m−93/100, I), I) are removed, we have for the remaining strings
in the set A′,

max
xi

|A′xI\{i}◦xi |
|A′xI\{i} |

≤ max
xi

n3 · |(A \High(A,m−93/100, I))xI\{i}◦xi |
|AxI\{i} |

≤ m−90/100

by the definition of High(A,m−93/100, I).

2. B is changed in steps 6 and 21. In step 21, I is changed to to I\{i} and B is correspondingly
changed to Byi , so B always has a single string outside of the current interval I. The choice
of how to update B is made in steps 4 and 19 and a choice that would lead to B not satifying
the condition is aborted in steps 5 and 20.

10



Lemma 11. Let (A × B, I, v) be a node of T at which a pmax bound of m−8/10 holds for
A with respect to I, and B is large with respect to I. Then for any z ∈ {0, 1}n on which
Π reaches (A × B, I, v), the number of inputs (x, y) in A × B consistent with z, denoted by
ρ(A×B,I)(z) = |(A×B) ∩G−1(z)|, satisfies

ρ(A×B,I)(z) ∈
1

2|I|
[
1− 4n−4, 1 + 4n−4

]
· |A| · |B|.

Proof. Without loss of generality, we assume I = {1, . . . , l}, which means that the bits of z that
have been queried till now are l+ 1, . . . n. Since Π reaches (A×B, I, v) on z, we must have that
gn−l(x[n]\[l], y[n]\[l]) = z[n]\[l]. Hence,

ρ(A×B,I)(z) =
∑

(x,y)∈A×B

1g(x1,y1)=z1 · . . . · 1g(xl,yl)=zl

=
∑
y∈B

∑
x1∈U(y1,z1)

. . .
∑

xl∈U(yl,zl)

|Ax1...xl |.

Now note that B contains only a single string outside of the interval I, so |B| = |BI | and BI
satisfies the condition required in the Partition Lemma 5. Additionally, since the pmax bound
of m−8/10 holds for A with respect to I, we can apply the Partition Lemma, to A × B on this
interval. By the Lemma, we have that for at most 2 · 2−n2

fraction of y1 ∈ Bad(A,B, 1), and
for all y1 6∈ Bad(A,B, 1),∑

x1∈U(y1,z1)

|Ax1...xl | ∈
[

1

2
− n−5, 1

2
+ n−5

]
|Ax2...xl |

=

[
1

2
− n−5, 1

2
+ n−5

]∑
x1

|Ax1x2...xl | ∀x2 . . . xl (2)

and moreover By1 is large for [l] \ {1}. Moreover note that, for a fixed x1, the pmax bound
also holds for Ax1

with respect to [l] \ {1}, since it holds for A with respect to [l]. So taking
B′ =

⋃
y1 6∈Bad(A,B,1)By1 we can apply the Partition Lemma again on Ax1 × B′ for an index in

{2, . . . , l}. By the Partition Lemma, at most 2 · 2−n2

fraction of y2 ∈ Bad(A,B′, 2), and for all
y2 6∈ Bad(A,B′, 2),∑

x2∈U(y2,z2)

|(Ax1)x2...xl | ∈
[

1

2
− n−5, 1

2
+ n−5

]
|Ax1x3...xl |

=

[
1

2
− n−5, 1

2
+ n−5

]∑
x2

|Ax1x2...xl | ∀x1 ∀x3 . . . xl (3)

and B′y2 is large for [l] \ {1, 2}. For y2 6∈ Bad(A,B′, 2), both conditions (2) and (3) hold, and
for y2 ∈ Bad(A,B′, 2), ∑

x1∈U(y1,z1)

∑
x2∈U(y2,z2)

|Ax1...xl | ≤
∑
x1

∑
x2

|Ax1...xl |.

So similarly defining B′′ =
⋃
y2 6∈Bad(A,B′,2)B

′
y2 and combining conditions (2) and (3) we get, for

11



all x3 . . . xl,∑
y∈B

∑
x1∈U(y1,z1)

∑
x2∈U(y2,z2)

|Ax1x2...xl | ≥
∑
y∈B′′

∑
x1∈U(y1,z1)

∑
x2∈U(y2,z2)

|Ax1x2...xl |

≥ (1− 2 · 2−n
2

)|B′|
∑

x1∈U(y1,z1)

(
1

2
− n−5

)∑
x2

|Ax1...xl |

= (1− 2 · 2−n
2

)

(
1

2
− n−5

)
|B′|

∑
x2

∑
x1∈U(y1,z1)

|Ax1...xl |

≥ (1− 2 · 2−n
2

)2
(

1

2
− n−5

)2

|B|
∑
x1

∑
x2

|Ax1...xl |

where in the last inequality we have used the fact that condition (2) holds for all x2 . . . xl and
hence all x2. Similarly, for all x3 . . . xl,∑

y∈B

∑
x1∈U(y1,z1)

∑
x2∈U(y2,z2)

|Ax1x2...xl | ≤(1− 2 · 2−n
2

)2
(

1

2
+ n−5

)2

|B|
∑
x1

∑
x2

|Ax1...xl |

+ 4 · 2−n
2

|B|
∑
x1

∑
x2

|Ax1...xl |

Proceeding in this manner by successively applying the Partition Lemma on indices through to
l and going to subsets which are not bad for these indices, we get the lower bound

ρ(A×B,I)(z) ≥
(

1− 2−n
2
)l(1

2
− n−5

)l
|B|
∑
x1

. . .
∑
xl

|Ax1...xl |

≥ 1

2l

(
1− 2−n

2
)l

(1− l · n−5)|A| · |B| ≥ 1

2l
(1− 3n−4)|A| · |B|

and the upper bound

ρ(A×B,I)(z) ≤
1

2l
(1 + 3n−4)|A| · |B|+ 2l · 2−n

2

|A| · |B| ≤ 1

2l
(1 + 4n−4)|A| · |B|.

The lemma has the following immediate corollary.

Corollary 12. For any node (A1×B1, I1, v1) and its successor node (A2×B2, I2, v2) such that
a pmax bound of m−8/10 holds at both these nodes and B1 and B2 are both large with respect to
their respective intervals I1 and I2, the probability that the algorithm Π reaches (A2×B2, I2, v2),
conditioned on it reaching (A1 ×B1, I1, v1) on any input z, lies in the range

[1− 8n−4, 1 + 8n−4] · 2−|I1\I2| · |A2| · |B2|
|A1| · |B1|

.

Proof. Note that the transitions in T from (A1 × B1, I1, v1) to (A′1 × B1, I
′
1, v
′
1) and so on

until to (A2 × B2, I2, v2) happen according to the relative sizes of the rectangles. Hence the
probability of these transitions on z are given by ρ(A′1×B′1,I1)(z)/ρ(A1×B1,I1) and so on until some
ρ(A2×B2,I2)(z)/ρ(A′2×B′2,I′2)(z). So,

Pr
T ,z

[(A2 ×B2, I2, v2)|(A1 ×B1, I1, v1)] =
ρ(A′1×B′1,I′1)(z)

ρ(A1×B1,I1)(z)
· . . . ·

ρ(A2×B2,I2)(z)

ρ(A′2×B′2,I′2)(z)
=
ρ(A2×B2,I2)(z)

ρ(A1×B1,I1)(z)

12



Since the pmax bound of m−8/10 holds at both these nodes and B1 and B2 are large, we can
apply Lemma 11 on them to obtain that for every z,

ρ(A1×B1,I1)(z) ∈
1

2|I1|
[1− 4n−4, 1 + 4n−4] · |A1| · |B1|

and a similar result holds for (A2×B2, I2, v2). Plugging in the upper and lower bounds for both
these quantities, we get the required result.

For bounding the probability of the algorithm aborting, we need the following claim.

Claim 13. Consider a tree τ representing a random process with directed edges weighed by the
conditional probability of going to a child node conditioned on being in a parent node. Some of
the nodes are marked as aborted nodes, and we have that for any node, the sum of weights of the
edges going to aborted children be at most δ. If the depth of τ is d, then the overall probability
of the random process reaching an aborted node is at most δ · d.

Proof. We construct a new tree τ ′ in which nodes which are not aborted at a particular level are
coarse-grained into a single node and the aborted nodes are coarse grained into another node
(which we again call abort node). For τ ′, the probability of a node having an aborted child is
still at most δ and the overall probability of reaching an aborted node is at least as large as in
τ . The probability of reaching an aborted node in τ ′ is given by

δ + (1− δ) · δ + (1− δ)2 · δ . . .+ (1− δ)d−1δ ≤ dδ

which gives us the required bound for the probability of reaching an aborted node in τ .

Lemma 14. The overall probability of the algorithm Π aborting on any input z ∈ {0, 1}n is
O(log n/n).

Proof. The algorithm aborts on steps 5, 10, 20 and the Filter steps. We shall consider each
of these separately.

On steps 10 and 11: We first consider the conditional abort probability on a communi-
cation sub-routine of Alice starting from step 8 and ending at step 11, conditioned on being at
a node (A × B, I) at the beginning of this subroutine at step 8. This gives us the conditional
probability of not aborting at either step 10 or in the Filter procedure in step 11. Note that
a pmax bound of m−9/10 holds at A and a pmax bound of m−87/100 holds for all possible non-
aborting Aj obtained from it at step 11. B is large at the beginning and does not change in
these steps. Hence by Corollary 12,∑

non-aborting j

ρ(Aj×B,I)(z)

ρ(A×B,I)(z)
≥ (1− 8n−4)

∑
non-aborting j

|Aj |
|A|

.

Note that at first A is partitioned into two subsets A0 and A1 according to the picked b in step
9. At most one of A0 and A1 could have lead to an abort and because of our aborting condition
we have ∑

non-aborting b∈{0,1}

|Ab|
|A|
≥ 1− 1

n2
.

Moreover, from Lemma 4,

∑
x∈Small(A,Ab,I)

pA(x) =
∑

x∈Small(A,Ab,I)

|Abx|
|A|
≤ 1

n2
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which gives us ∑
non-aborting j

|Aj |
|A|

=
∑

non-aborting b∈{0,1}

|Ab \ Small(A,Ab, I)|
|A|

≥
∑

non-aborting b∈{0,1}

1

|A|

|Ab| − ∑
x∈Small(A,Ab,I)

|Abx|


≥
(

1− 1

n2

)
− 2

n2
≥ 1− 3

n2
.

So finally we get, ∑
non-aborting j

ρ(Aj×B,I)(z)

ρ(A×B,I)(z)
≥ (1− 8n−4)(1− 3n−2) ≥ 1− 4n−2.

Hence, the probability of abort conditioned on reaching this node is at most 4n−2.
On steps 14 and 26 (no queries): We can do very similar calculations for the probability

of abort on steps 14, conditioned on the A after step 11. Note that a pmax bound better than
m−8/10 holds for both the parent node A in step 11 and the non-aborting child node A′ in

step 14. Hence ρ(A′×B,I)(z)/ρ(A×B,I)(z) ≥ (1 − 8n−4) · |A
′|
|A| as before. Now in A′ the strings

UnBal(A,B, I) and the strings Small(A,A \ UnBal(A,B, I), I) are removed. By Lemma
7, the total probability loss due to removal of the strings in UnBal(A,B, I) is n−50 and the
total probability loss due to removal of the strings in Small(A,A \UnBal(A,B, I), I) is n−2

by Lemma 4. Hence the total conditional probability of aborting is again upper bounded by
O(n−2). A similar argument holds for the abort probability in step 26 if there are no queries
carried out (we deal with the case where this abort happens after some queries are carried out
in the next part).

Note that each of the aborts whose conditional probabilities we have calculated so far happen
once after Alice communicates a bit. Since there are at most O(n log n) bits communicated, by
Claim 13, the overall probability of abort in these steps is at most O(log n/n).

On steps 20 and 26 (at least one query): Now assuming at least one query happens, we
calculate the probability of abort on steps 20 and 26, conditioned on being at a node (A×B, I, v)
before the while loop began. A pmax bound of m−84/100 holds for A and B is large with respect
to I, which suppose is {1, . . . , l}, by the Invariance Lemma. By Lemma 11 we can say,

ρ(A×B,[l])(z) ≤
1 + 4n−4

2l
|A| · |B|

Consider the simplest case where the while loop has only one iteration, querying say z1. In the
while loop, first A is split into A′(= High(A,m−93/100, 1)) and A \ A′. A \ A′ exits the while
loop without any queries being done, and then a Filter step is carried out on it, after which
a pmax bound of m−9/10 holds by the Invariance Lemma. Suppose the part that is not aborted
in the Filter step is A \ A′′, then |A \ A′′| ≥ (1− 2n−2)|A \ A′|, since at most n−2 fraction is
removed in High and Small parts each. So again by Lemma 11 we have,

ρ((A\A′′)×B,[l])(z) ≥
1− 4n−4

2l
|A \A′′| · |B| ≥ (1− 4n−4)(1− 2n−2)

2l
|A \A′| · |B|.

On A′, z1 is queried and A′ is set to A′|U(y1,z1) depending on the choice of y1 in step 19. Some
of these y1 lead to abort in step 20, let us denote this set by Ab. Note that Ab = Ab1 ∪ Ab2,
where Ab1 is the set of y1 for which By1 is not large with respect to [l] \ {1}, and Ab2 is the set
of y1 for which |A′|U(y1,z1)| ≤ 1

n3 |A′|. The non-aborting part then goes through another Filter
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step, after which at most 2n−2 fraction of A′|U(y1,z1) is removed, and it has a pmax bound with
respect to [l] \ {1}. So if we let Aj × Bj denote the rectangles on which a query happens and
which are not aborted on steps 20 or 26, then by Lemma 11,∑

j

ρ(Aj×Bj ,[l]\{1})(z)

≥ (1− 4n−4)(1− 2n−2)

2l−1

∑
y1 6∈Ab

|A′|U(y1,z1)| · |By1 |

=
(1− 4n−4)(1− 2n−2)

2l−1

∑
y1

|A′|U(y1,z1)| · |By1 | −
∑

y1∈Ab1

|A′|U(y1,z1)| · |By1 |

−
∑

y1∈Ab2\Ab1

|A′|U(y1,z1)| · |By1 |


We bound each of the summations in the above expression separately. For the first term, note
that ∑

y1

|A′|U(y1,z1)| · |By1 | = |B|
∑
x∈A′

∑
y1

pB(y1)1g(x1,y1)=z1

= |B|
∑
x∈A′

Pr
y1∼

|By1 |
|B|

[g(x1, y1) = z1]

≥ |B|
∑
x∈A′

1

2
(1− 3n−4) =

1

2
(1− 3n−4)|A′| · |B| (4)

where the inequality holds due to Lemma 7, because A′ does not contain any unbalanced strings.
For the second and third terms we have,∑

y1∈Ab1

|A′|U(y1,z1)| · |By1 |+
∑

y1∈Ab2\Ab1

|A′|U(y1,z1)| · |By1 |

≤ |A′| · |B|
∑

y1∈Ab1

pB(y1) +
1

n3
|A′| · |B|

∑
y1∈Ab2\Ab1

pB(y1)

≤ |A′| · |B| · 2−n
2

+ |A′| · |B| · n−3 ≤ |A′| · |B| · 2n−3. (5)

This gives us ∑
q

ρ(Aj×Bj ,[l]\{1})(z) ≥
(1− 4n−4)(1− 2n−2)

2l
(1− 5n−3)|A′| · |B|.

So the total probability of not aborting is at least∑
j ρ(Aj×Bj ,[l]\{1})(z) + ρ((A\A′′)×B,[l])(z)

ρ(A×B,[l])(z)

≥ (1− 2n−2) · 1− 4n−4

1 + 4n−4

(
|A′|+ |A \A′|

|A|
− 5n−3 · |A

′|
|A|

)
≥ (1− 2n−2)(1− 6n−3) ≥ 1− 4n−2.

So the conditional probability of aborting in this step is at most 4n−2.
For a larger number of queries, there are more possible divisions of A, but the calculations are

similar, applying different cases of Lemma 7. There are different sequences of queries different
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partitions of the rectangle A×B at the beginning of the while loop. Let Asi ×Bsi denote all the
sub-rectangles that were queried in sequence s and were not aborted in step 20 in any iteration.
Let the unqueried set left after the query sequence s be Js. Step 26 takes Asi to A′si , removing
at most 2n−2 fraction of the strings for each subrectangle, so we have for all non-aborting
subrectangles after step 26,∑

s

∑
A′si ×B′si

ρ(A′si ×B′si ,Js)(z) ≥ (1− 4n−4)(1− 2n−2)
∑
s

∑
Asi×Bsi

1

2|Js|
|Asi | · |Bsi |. (6)

Now each Asi × Bsi is formed successively projecting onto the High or A \High part for each
index that is queried and then projecting Alice’s part to U(yi, zi) and Bob’s part to the yi
picked in step 19. However, note that all subrectangles that are queried in a particular sequence
have the same sequence of falling into the High or A \ High parts. Once we know what the
High and A \High choices are for each sequence s, we may rearrange the branching process so
that the projections to High or A \ High are done first and then the projections to U(yi, zi)
and yi are done. Suppose for the query sequence s, A∗s is the subset of A (Alice’s part of
the rectangle before the query sequence began) obtained by doing the projections to High or
A \High corresponding to s first. Now fix an s = (i1, . . . , ik). Similar to the calculation in (4),
by applying Lemma 7 with J = I \ Js we can say that

∑
yI\Js

|A∗s|U(yi1 ,zi1 )
. . . |U(yik ,zik )

| · |ByI\Js | ≥
1− 3n−4

2|I\Js|
|A∗s| · |B|.

And similar to the calculation in (5), we can say that the choices of of yi that lead to abort
somewhere in the sequence satisfy∑

yI\Js∈Ab

|A∗s|U(yi1 ,zi1 )
. . . |U(yik ,zik )

| · |ByI\Js | ≤
|I|(1 + 3n−4)

2|I\Js|−2 · n3
|A∗s| · |B|.

This gives us∑
Asi×Bsi

|Asi | · |Bsi | ≥
1− 3n−4

2|I\Js|

(
1− 4(1 + 3n−4)

n2(1− 3n−4)

)
|A∗s| · |B| ≥ 1− 6n−2

2|I\Js|
|A∗s| · |B|.

Plugging this into (6) we get,

∑
s

∑
A′si ×B′si

ρ(A′si ×B′si ,Js)(z) ≥
(1− 4n−4)(1− 2n−2)(1− 6n−2)

2|I|

∑
s

|A∗s| · |B| ≥ 1− 20n−2

2|I|
|A| · |B|.

Now using upper bound ρ(A×B,I)(z), we get the abort probability to be O(n−2) for the case of
multiple iterations of the while loop as well. Since there can be at most n queries, the total
probability of aborting is at most O(n−1).

On step 5: Since the abort condition here is with respect to the whole of Bal|I|m rather than
the parent, we calculate the abort probability conditioned on the root. Conditioned on the root,
by a similar argument as above, the probability of one such abort happening on (A×B, I) is at

most O(n−4) |B|
|Balm|n . Now note that everytime we change I, B is restricted to having only one

string outside of I. So for the aborting sets,

|B|
|Balm|n

=
|BI |
|Balm|n

≤ |BI |
|Balm||I|

≤ 2−n
2

.
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Now the depth of T is at most O(n log n), resulting in at most 2O(n logn) subsets of Balnm which

can abort. Thus the overall probability of abort of this form is at most O(n−4)·2O(n logn) ·2−n2

=
O(2−n).

This gives the total probability of the algorithm aborting at any step to be at mostO(log n/n).

Now we are in a position to do error analysis for the algorithm.

Proof of Lemma 9. The probability that Π makes an error is at most the sum of the probability
that Π aborts, given by Lemma 14, and the probability that it makes an error on a leaf. We
know by Lemma 14 that the overall probability of abort on any z is at most O(log n/n), hence
the overall probability of abort when z is drawn from λ to also be at most O(log n/n).

To bound the error at a leaf, let us denote the ouput of a leaf L of T by bL and probability
that T on input (x, y) drawn uniformly from G−1(z) for a fixed z, reaches leaf L by qLz . By
correctness of T on the distribution µ we have,

Pr
(x,y)∼µ

[T (x, y) = f ◦ gn(x, y)] = Ez∼λ

 ∑
L:f(z)=bL

qLz

 ≥ 3

4
. (7)

Let us further denote the probability of Π reaching a leaf on a fixed input z by q′Lz . We will
lower bound

Pr
z∼λ

[Π(z) = f(z)] = Ez∼λ

 ∑
L:f(z)=bL

q′Lz

 .
Due to (7), it is enough to show that qLz and q′Lz are close. Let the rectangle associated with
the leaf L of T be denoted as AL × BL. Since T has no internal randomness, the probability
when an input drawn uniformly from G−1(z) reaches L is given only by the relative number of
(x, y) ∈ AL ×BL that are consistent with G−1(z). That is,

qLz =
|(AL ×BL) ∩G−1(z)|

|G−1(z)|
.

Now there are many nodes (Ai ×Bi, Ii, L) in T corresponding to the node L and we have that
AL = (∪iAi) ∪ ALAbort, BL = (∪iBi) ∪ BLAbort. Moreover, we know from Corollary 12 that the
probability of Π going to node (Ai ×Bi, Ii, L) is proportional to |(Ai ×Bi) ∩G−1(z)|, which is
independent of z (the non-aborting leaf nodes all have a pmax bound and large B). So,

q′Lz =

∑
(Ai×Bi,Ii,L)∈T |(Ai ×Bi) ∩G

−1(z)|
|G−1(z)|

=
|(AL ×BL) ∩G−1(z)| − |(ALAbort ×BLAbort) ∩G−1(z)|

|G−1(z)|

≥ qLz −O
(

log n

n

)
where we have used the abort probability calculation to upper bound |(ALAbort × BLAbort) ∩
G−1(z)|/|G−1(z)|. This gives us the probability of the algorithm making an error on a leaf to
be

1− Ez∼λ

 ∑
L:f(z)=bL

q′Lz

 ≤ 1− Ez∼λ

 ∑
L:f(z)=bL

qLz

+O

(
log n

n

)
≤ 1

4
+O

(
log n

n

)
.
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Expected number of queries of Π

Lemma 15. The algorithm Π makes at most 2c
logn expected number of queries, where c is the

number of bits communicated in T in the worst case.

Proof. Consider a leaf node L of T , whose corresponding rectangle in T is AL ×BL. As noted
before, AL = (∪iAi)∪ALAbort, where (Ai×Bi, Ii, L) are different nodes corresponding to leaf L
in T . Note that at either a communication or query step of Π, at most O

(
1
n2

)
fraction of |A| is

aborted, and since there are O(n log n) communication steps and O(n) query steps, we can at

most have |ALAbort| ≤ O
(

logn
n

)
|AL|. The different Ai correspond to different choices made by

the algorithm in steps 16 and 19. For each query performed, step 16 reduces the size of Alice’s
half of the rectangle by at most n3 (by the condition on which queries are carried out) and step
19 reduces the size by at most n3 (otherwise we abort on step 20). Since (n− |Ii|) queries are
performed on (Ai ×Bi, Ii, L), we must have,

|Ai| ≥ n6(|Ii|−n)|AL \ALAbort| ≥ n6(|Ii|−n)
(

1−O
(

log n

n

))
|AL| ≥ 1

2
· n6(|Ii|−n) · |AL|. (8)

Now consider a string x ∈ Ai and suppose for convenience Ii = {1, . . . , l} without loss of
generality. We have that,

1

|Ai|
= pAi(x) = pAi(x[l]) · pAi(xl+1|x[l]) · . . . · pAi(xn|x[l] ◦ xl+1 ◦ . . . ◦ xn−1).

Note that there is at least one x[l] in Ai such that pAi(x[l]) ≥ m−l. Without loss of generality,
let us assume the queries happened in the order zn, zn−1, . . . , zl+1. Suppose the query zl+1

happened on an ancestor A′i of Ai. In order for the query to have happened, for any xl+1 that
is retained in Ai we must have had pA′i(xl+1|x[l]) > m−93/100. Now Ai is obtained by projecting

High(A′i,m
−93/100, l + 1) to U(yl+1, zl+1) for some yl+1 and then filtering out some x[l]. This

means that for all x[l] ◦ xl+1 present in Ai, we must have |(Ai)x[l]◦xl+1
| = |(A′i)x[l]◦xl+1

| and
obviously |(Ai)x[l]

| ≤ |(A′i)x[l]
| for all x[l]. So we have,

pAi(xl+1|x[l]) =
|(Ai)x[l]◦xl+1

|
|(Ai)x[l]

|
≥
|(A′i)x[l]◦xl+1

|
|(A′i)xI |

≥ m−93/100.

Similarly we get pAi(xl+2|x[l] ◦ xl+1) ≥ m−93/100 and so on. This gives us, for at least one x[l],

1

|Ai|
≥ m−|Ii| ·

(
m93/100

)|Ii|−n
= n−7|Ii| ·m−93n/100 ≥ m−n · n7(n−|Ii|). (9)

So from equations (8) and (9) we get for any (Ai ×Bi, Ii, L),

mn · n7(|Ii|−n) ≥ 1

2
· n6(|Ii|−n)|AL|.

Rearranging and taking logarithm on both sides we get,

log

(
mn

|AL|

)
≥ (n− |Ii|) log n− 1 ⇒ n− |Ii| ≤

2

log n
· log

(
mn

|AL|

)
Now (n− |Ii|) is the number of queries done on this branch of T and log

(
mn

|AL|

)
is the number

of bits communicated by Alice on this branch of T , which is at least the total number of bits
communicated at leaf L of the communication protocol. Hence the expected number of queries
made is at most 2/ log n times the expected number of bits communicated, which is at most the
number of bits communicated in the worst case.
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