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Abstract

Consider an interactive proof system for some set S that has randomness complexity

r(n) for instances of length n, and arbitrary round complexity. We show a public-coin

interactive proof system for S of round complexity O(r(n)/ log n). Furthermore, the

randomness complexity is preserved up to a constant factor, and the resulting interactive

proof system has perfect completeness.
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1 Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Racko� [8],
and the demonstration of their power by Lund, Fortnow, Karlo�, Nisan [11] and Shamir [13]
are among the most celebrated achievements of complexity theory.

Loosely speaking, interactive proof systems capture the most general way in which one
party can e�ciently verify claims made by another, more powerful, party. The de�nition
of interactive proof systems generalizes the traditional notion of a proof system (indeed, an
NP-proof system), by allowing both interaction and randomness.

It is well known that both interaction and randomness are inherent to the power of interac-
tive proof systems, where here we mean the extra power above that of NP-proof systems. Inter-
active proofs with no randomness can be easily transformed into NP-proof systems, whereas
randomized non-interactive proofs, captured by the class MA (de�ned by Babai [1]), are
merely the randomized version of NP (e.g., loosely speaking, if BPP = P, thenMA = NP).

Both interaction and randomness are quantitative notions; that is, one talks of the
�amount of interaction�, which is commonly associated with the (total) number of messages
exchanged (a.k.a number of rounds), and of the amount of randomness (a.k.a randomness

complexity). While the previous paragraph refers to the qualitative question and asserts that
both interaction and randomness are essential, a �ner study of the quantitative question is
called for; that is, it is natural to ask about the necessary amount of interaction and random-
ness in various interactive proof systems.

The study of the round-complexity aspect of interactive proof systems is well known: Babai
and Moran showed that the round complexity of any public-coin interactive proof system (a.k.a
Arthur-Merlin proofs) can be reduced by a constant factor [2], whereas the transformation
of Goldwasser and Sipser [9] (which essentially preserves the number of rounds) extends this
result to general interactive proof systems. It is also known that a stronger round reduction
is quite unlikely, since it would place SAT in co-AM-time(2o(n)), whereas AM-time(T ) may
equal Ntime(poly(T )). (This is the case due to a combination of results reviewed below (in
the paragraph titled �conditional tightness�).)

In contrast, we are only aware of one study that focuses on the randomness complexity of
interactive proof systems 1. Speci�cally, Bellare et al. [3] studied the randomness complexity of
error reduction in the context of interactive proof systems. (We mention that the randomness
complexity is also of interest in [5], which provides an alternative transformation of general
interactive proof systems to public-coin ones.)

1.1 Round complexity versus randomness complexity

A natural question, which to the best of our knowledge was not considered before, is what
is the relation between the two foregoing complexity measures. We do suspect that the
randomness complexity of interactive proof systems may be much higher than the number
of rounds, since constant-round interactive proof systems seem more powerful than NP-proof
systems (see, e.g., the Graph Non-Isomorphism proof of [6]), whereas a logarithmic amount of
randomness is clearly useless. But can the randomness complexity be smaller than the round

complexity?

The answer is de�nitely negative if we consider public-coin interactive proof systems.
Recall that in these proof systems, in each round, the veri�er sends the outcome of fresh coins

1We refer to unconditional results and not to the long line of research of randomness versus hardness
trade-o� that rely on uniform or non-uniform assumptions, see, e.g. [10],[12].
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that it has tossed at the beginning of the current round, and so by de�nition the number of coin
tosses is at least as large as the number of rounds.2 However, it is not clear what happens
in case of general interactive proofs. (In particular, the transformation of [9] signi�cantly
increases the randomness complexity by a factor depending on the number of rounds.)

Recall that in a general interactive proof system, the veri�er may toss all coins at the very
beginning, but its message in each round may be a complex function of the outcome of these
coins (and the messages it has received from the prover). In particular, the veri�er message
may have very little information contents (from the prover's point of view), and so we may
have many more rounds than the number of coins tossed. Furthermore, it is not clear how
to collapse rounds that yield veri�er messages of low information contents. These are the
issues we deal with when showing that also in general interactive proof systems, randomness
complexity r(n) yields round complexity O(r(n)/ log n).

Theorem 1 (Main Theorem). Suppose that S has an interactive proof system of randomness

complexity r(n) for instances of length n. Then, S has a public-coin interactive proof system

of round complexity O(r(n)/ log n) and randomness complexity O(r(n)). Furthermore, the

resulting interactive proof system has perfect completeness.

Note that, in addition to obtaining the public-coin feature, we obtain perfect completeness
for free. That is, even if the original system does not have perfect completeness, the new one
has this feature.

We note that it is easier to prove a weaker version of the main theorem, which does not
obtain the public-coin and perfect completeness features. The proof of this weaker result,
outlined in Section 1.2, and given in detail in Appendix C, illustrates one of the ideas that
underlies the proof of Theorem 1.

Conditional tightness: The round-complexity obtained by Theorem 1 is the best one may
hope for at this time, since a result asserting round complexity o(r(n)/ log n) for any set that
has an interactive proof system of randomness complexity r(n) would yield an unexpected
result that con�icts with common beliefs and seems currently out of reach. Speci�cally,
it would place SAT in co-AM-time(2o(n)), which does contradict common beliefs. The full
reasoning is as follows:

1. A variant of the celebrated interactive proof system for SAT yields an interactive proof
system of randomness complexity O(n) for unsatis�able CNFs with n variables. (This
interactive proof consists of n/ log n rounds such that in each round we strip a single
variable in the sum-check that sums over n/ log n variables with values in [n], while
using a �nite �eld of size poly(n).)3

2This presumes that the de�nition requires the veri�er to send a non-empty message in each round. But
otherwise (i.e., if the de�nition allows empty messages), rounds in which the veri�er sends nothing can be
collapsed.

3This is done by packing a sequence of logn bits of the boolean variables into a symbol of H = [n] ⊆ F
where F is some �eld. For i ∈ `, where ` = logn, denote by fi(x) : F → F the polynomial of degree n − 1
that maps each element in H to the value of its ith boolean variable. Now, take the standard arithmetization
of the CNF and replace each occurrence of the variable indexed j · `+ i by the polynomial fi(xj), where xj is
the F variable that represents the jth block of boolean variables. The resulting polynomial is a n/` variable
polynomial of total degree O(m · n), where m is the number of clauses. Finally, the number of satisfying
assignments is given by the sum over all (y1, ...., yn/`) ∈ Hn/` of the polynomial derived above. Furthermore,
we do not execute the sum-check protocol over an exponentially large �nite �eld but rather over a �nite �eld
of prime cardinality p = poly(n), where p is selected by the veri�er at random among such primes.
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2. On the other hand, any set having an m-round interactive proof system is in AM-
time(nO(m)), see [7, Apdx B]. Hence, if unsatis�able CNFs have an interactive proof
of round complexity o(n/ log n), then such instances can be refuted in AM-time(2o(n)),
whereas AM-time(T ) may equal Ntime(poly(T )).

A di�erent perspective: Theorem 1 may be viewed as an alternative transformation of
general interactive proof systems into public-coin ones. Recall that the transformation of
Goldwasser and Sipser [9] preserves the round-complexity of the original system (up to an
additive constant), but increases the randomness complexity (i.e., raising it to a constant
power). The same holds in the variant of that transformation presented in [5]. In contrast,
Theorem 1 preserves the randomness complexity of the original system (up to a constant
factor), but does not preserve the round-complexity. Taking this perspective, the fact that
the round-complexity is bounded in terms of the randomness complexity is a consequence of
the fact that the resulting scheme is of the public-coin type.

1.2 On the proof of Theorem 1

We start by giving an overview of a proof of a weaker result, in which we show how to transform
any interactive proof, of randomness complexity r(n), to a private-coin interactive proof for
the same set that uses O(r(n)/ log n) rounds, while maintaining the randomness complexity
of r(n). This proof gives a �avor of the proof of the main theorem, but is signi�cantly simpler.

1.2.1 Private-coin Emulation Protocol

The idea of the emulation protocol is that, in every iteration, we would like the prover to send
possible continuations of the current transcript (describing execution segments of possibly
di�erent number of rounds) that reveal much information about the veri�er's random coins.
Hence, the prover sends partial transcripts ofmaximal length such that each account for a large
fraction of the residual probability mass4. The veri�er then checks if one of these transcripts
is consistent with the strategy determined by the values of its random coins, which were
tossed upfront. If so, the veri�er picks the maximal transcript consistent with its strategy
and the veri�er and prover proceed their interaction from that point. Otherwise, the veri�er
sends its next message (based on the aforementioned coins) without using the continuations
suggested by the prover. We stress that the only source of the veri�er's randomness is its
private coins tossed upfront, which are used to determine the continuation of the transcript
in each subsequent iteration.

We wish to elaborate on how the prover determines the continuations of the transcripts.
Fixing an iteration, we denote the current transcript by γ and its residual probability mass
by p(γ). Each transcript the prover sends on this iteration is a possible continuation of γ of
maximal length that is a �heavy continuation�. By a heavy continuation γ′, we mean that γ′

has probability mass greater than p(γ)/n, when subtracting from it the probability mass of
the continuations of γ that were either sent by the prover in previous iterations, or determined
in this one.

This conditioning allows the prover to send several continuations of the transcript that
are also continuations of each other. Consider for example the case that the prover sends

4Note that in the eyes of an observer, a veri�er that samples its random coins at the beginning of the
interaction and proceeds accordingly, is equivalent to a veri�er that on each round samples a message with
probability proportional to its residual probability mass.
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γα1β1α2β2 and γα1β1. In this case if the veri�er chooses γα1β1 it means that in the next
iteration the continuation of this transcript cannot begin with α2β2.

The bene�t of this method of determining transcript-continuations is that we guarantee
that in the next iteration the probability mass of the new transcript is lower than p(γ)/n.
The reasoning is as follows. If the veri�er chooses one of the transcripts suggested by the
prover, then on the next iteration the residual probability mass of each of its continuations
is lower than p(γ)/n, otherwise this continuation should have suggested by the prover on the
previous iteration. If the veri�er did not choose any of the transcripts, and instead continued
the transcript with its own message α̃1, then it follows that the residual probability mass
of the transcript γα̃1 (under the conditioning of the appropriate events) is also lower than
p(γ)/n, otherwise the continuation γα̃1 should have been suggested by the prover.

It follows that after O(r(n)/ log n) rounds of interaction the probability of the transcript

generated is at most (1/n)r(n)/ logn = 1/2r(n), which means that there is a unique value of
the coin tosses consistent with the transcript. Hence, a complete transcript is generated and
the veri�er can reject or accept at this point. It is easy to show that if the prover follows the
prescribed emulation, then the veri�er accepts with the same probability as in the original
interactive proof system, and hence completeness is maintained.

Note that the above emulation per se does not su�ce. It is essential to include validation
checks that guarantee that the transcripts provided by the prover are consistent with some
prover strategy for the original protocol. This means that if the prover provides two transcripts
that share a pre�x, this common pre�x must end with a prover's message. This implies that the
prover answers in the same way to the same veri�er messages, which means that the prover's
strategy is consistent with some prover of the original emulation, and so the soundness of the
original proof system is maintained.

1.2.2 Public-coin Emulation Protocol

The simpli�ed private-coin emulation protocol captures one of the key ideas of our public-coin
emulation protocol. The di�culty that we face when seeking a public-coin emulation is that
we cannot rely on hidden coins tossed upfront by the veri�er. Thus, when presented with a
list of heavy continuations, it is unclear how the veri�er should select one at random, since
the selection probability should be determined by the residual probability masses that are
unknown to it. Our solution is to have the prover provide these probabilities, but this raises
the need to verify these claimed values. (Needless to say, the veri�er rejects upfront if the sum
of these probabilities does not match the claimed probability of the transcript as determined
before the current round.) In the last iteration, a complete transcript is sampled, containing
the veri�er's private coins, hence the validity of the transcript and the claim can be checked.

The foregoing description raises a few issues. Firstly, the prover should �nd a way to
communicate all the transcripts to the veri�er, and not only the ones with high residual
probability mass as before. Second, it is not clear what happens when the prover provides
wrong values for the residual probabilities. As for the second issue, note that maliciously
raising the probability of a transcript does contribute towards having the sum of probabilities
meet the prior claim, but it makes the probability that this transcript is selected higher, and
so puts the prover in greater problem in the next round. Indeed, a careful analysis shows that
actually the prover gains nothing by such behavior, since when the transcript is complete,
false claims about its residual probability are easily detected.

Turning back to the �rst issue, we note that the issue is that there may be too many
short transcripts that each account for a small fraction of the residual probability mass. To
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deal with this case, we pack many transcripts into a single auxiliary message, which means
that we use a succinct representation of a sequence that contains many of the transcripts but
not all of them (since otherwise we would have made no progress at the current round). The
succinct representation should support the veri�cation that the corresponding sequences are
disjoint. Now, each such �pack� of transcripts will be assigned the corresponding probability
mass, and be treated as if it were an actual transcript.

Needless to say, the foregoing is but a very rough sketch of the structure of the derived
proof system. The actual proof system uses a carefully designed veri�cation procedure that
ensures that its executions can be mapped to executions in the original proof system.

We note that while the above description of the public-coin emulation refers to the prob-
ability that various transcripts appear in the original proof system (when the prover uses an
optimal strategy), our actual construction refers only to accepting transcripts (i.e., transcripts
that lead the original veri�er to accept). Consequently, we obtain a proof system of perfect
completeness, even if the original proof system had two-sided error probability.

1.3 Organization

Towards proving the main theorem we shall show how to emulate an existing interactive proof
system with a public coin emulation protocol that has O(r(n)/ log n) rounds. We begin by
introducing the notion of �protocol trees� in Section 3, which we use to describe the interaction
of the veri�er and prover of the original interactive proof system. In Section 4, we shall show
how to transform the protocol tree into an �emulation tree�, that contains the continuations
of the transcripts that the prover sends on each iteration along with their probability masses.
Using this emulation tree, we then turn to describing the public-coin emulation protocol for
the new prover and veri�er, in Section 5. The analysis of the emulation, which is given in
Section 6, is partitioned into completeness (Subsection 6.1) and soundness (Subsection 6.2).

In Appendix C, we shall show how to emulate the existing interactive proof system with
a private-coin emulation protocol that has O(r(n)/log n) rounds. The organization of this
section is similar to the organization of the main part of the paper, although most sections of
it are less involved. Appendix C is written so it can be read independently of the rest of the
paper, and the decision if to read it before or after the other parts of the paper is left to the
reader.

We provide notes that point out the main di�erences and similarities between
the private and public-coin emulation protocols. These notes are typeset as this
one.

2 Preliminaries

Let us start by formally de�ning interactive proof systems, where the completeness and sound-
ness bounds are parameters.

De�nition 2 [Interactive Proof Systems] Let c, s : N→ [0, 1] such that c(|x|) ≥ s(|x|) +
1

poly(|x|) . An interactive proof system for a set S is a two party game, between a veri�er

executing a probabilistic polynomial time strategy, denoted V , and a prover executing a (com-
putationally unbounded) strategy satisfying the following two conditions:

• Completeness with bound c: For every x ∈ S, the veri�er V accepts after interacting

with the prover P on common input x with probability at least c(|x|).
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• Soundness with bound s: For every x /∈ S and every prover strategy P̃ , the veri�er V
accepts after interacting with P̃ on common input x with probability at most s(|x|).

When c and s are not speci�ed, we mean c ≡ 2/3 and s ≡ 1/3. We denote by IP the class

of sets having interactive proof systems. When c ≡ 1, we say that the system has perfect

completeness.

3 The protocol tree of the original proof system

Note that the protocol tree for the private-coin emulation described in Section
C.1 is similar to the one described here, except for the de�nition of weights.

Fixing an interactive proof and an instance x of length n, we describe the possible prover-
veri�er interactions of the system on common input x using a tree whose height corresponds to
the number of rounds of interaction. For some ` = `(n), we assume without loss of generality
that in each round the veri�er sends a message α ∈ {0, 1}`, and the prover's responds with
a message β ∈ {0, 1}`. We can also assume, without loss of generality, that the prover's
strategy is deterministic and �xed. Each node v in level j represents a possible prover-veri�er
transcript for the �rst j rounds of the interaction. The branching of the tree represents the
possible ways to extend the transcript to the next round. The number of ways to extend the
transcript depends only on the veri�er's message, since we �xed the prover's strategy. Hence,
each node has at most d := 2` children, corresponding to the 2` possible veri�er messages for
the next round. The prover's response to each such message is included in the description
of the corresponding node.

The description of a node u on level j contains the partial transcript γ(u) = α1β1, . . . , αjβj
of the interaction up to the j'th round. The root (at level zero) has an empty transcript,
whereas a leaf of the tree represents a complete prover-veri�er interaction. We can assume,
without loss of generality, that the veri�er sends its private coins on the last round, and hence
every leaf is associated with a sequence of coin tosses which either leads the veri�er to accept
or to reject. Hence, we can represent the possible interactions generated by the interactive
proof system using a tree of height m which has 2r(n) leaves, where m is the number of rounds
and r(n) is the number of coin tosses. Using a constant number of parallel repetitions, we
can assume that the interactive proof system has completeness parameter 9

10 and soundness
parameter 1

10 . Note that this blows up the randomness complexity only by a constant factor
(as compared to our interactive proof for the standard 1

3 ,
2
3 parameters). Therefore, if x

is a yes-instance then at least 9
10 · 2

r(n) of its leaves represent accepting runs, and if x is a

no-instance then at most 1
10 · 2

r(n) of its leaves represent accepting runs.
The description of a node also contains its weight, denoted w(u). The weight of the node

is the number of coin sequences that are consistent with the node and lead the veri�er to
accept at the end of the interaction. That is,

De�nition 3 (Weight of a leaf) Let u be a leaf with transcript γ(u) which corresponds to

the full transcript of the interaction of P and V on input x, when V uses coins ρ; that is,

γ(u) = (α1, β1, . . . , αm, βm, (ρ, σ)) (1)

where σ = V (x, ρ, β1, . . . , βm) ∈ {0, 1} is V 's �nal verdict and for every i = 1, . . . ,m it holds

that αi = V (x, ρ, β1, . . . , βi−1) and βi = P (x, α1, . . . , αi). We de�ne the weight w(u) of u to

be V 's �nal verdict σ.
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De�nition 4 (Weight of a node) The weight of a node u in the protocol tree is the sum of

the weights of the leaves that are descendants of u.

Note that w(u) is proportional the probability that γ(u) is generated and the veri�er
accepts at the end of the interaction.

In the private-coin emulation the weight of all the leaves is de�ned as 1. Hence, in
the private-coin emulation the weight of a node is the number of coin sequences
that are consistent with the corresponding transcript.

4 The emulation tree

4.1 Overview

So far we explained how to represent the possible executions of a m-round interactive proof
system on some instance x, where the protocol utilizes r(n) coins. This resulted in a pro-
tocol tree of height m with 2r(n) leaves. Our goal is to transform this protocol tree to an
emulation tree that de�nes a prover strategy for a O(r(n)/log n)-round public-coin emulation
protocol. This transformation is done using the Build_Tree procedure. First we describe a
very restricted case where the protocol tree is already suitable for our proposed public-coin
emulation and the Build_Tree procedure is not required. Next, we explain how the transfor-
mation works in a restricted case when the degree of the protocol tree is bounded by poly(n),
and �nally in the case of a general protocol tree.

The procedure for constructing the private-coin emulation tree described in Sec-
tion C.2 is similar to the one described here for the restricted case that the degree
of the protocol tree is bounded by poly(n). Those familiar with the construction
of the emulation tree for the private-coin protocol can skip to the �general case�
paragraph.

The protocol tree is of height O(r(n)/log n) and degree poly(n). In order to convince
the veri�er that x is a yes-instance the prover makes an initial claim that the weight of the
root of the protocol tree is at least c · 2r(n). The emulation is initiated at the root of the
protocol tree and on each round of the emulation the prover assists the veri�er at progressing
one step down the protocol tree. (This assistance is required because the veri�er does not have
access to the protocol tree.) Each round consists of the prover providing the veri�er with the
descriptions of the current node (i.e., the node u sampled on the previous round), where these
descriptions contain the weights of the various children. The veri�er performs validations to
check that according to the descriptions these are legal children of u, and that their weights
sum up to w(u). Then, the veri�er samples a child with probability that is approximately
proportional to its weight, up to a multiplicative factor of 1 + 1

n , using O(log n) public coins.
On the last round, a leaf is sampled, whose description contains the complete prover-veri�er
interaction along with the coins tossed by the veri�er. The new veri�er accepts if and only if
the transcript sampled is consistent with the original veri�er's strategy and leads the original
veri�er to accept.

To see why this is indeed an interactive proof system for the original language, note that
an honest prover can always convince the veri�er of the correctness of a true claim using this
emulation. Hence the interactive proof system we described has perfect completeness. On
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the other hand, for no-instances, a prover that wants to make the veri�er accept must make
an initial claim that the weight of the empty transcript is much larger than its real weight.
Namely, the real weight of the empty transcript is at most s · 2r(n), whereas the prover claims
that the weight is at least c·2r(n), where c > s are the completeness and soundness parameters
of the original interactive proof system. Thus, there is a multiplicative gap of s

c between the
real weight and the one claimed. We can show that, in expectation, this gap is maintained
throughout the emulation, up to a factor of (1 + 1

n)
n that comes from the approximation

factor. Therefore, the probability that a leaf that corresponds to an accepting run is sampled
on the last round (and hence the veri�er accepts) is at most s

c (1+
1
n)

n, which is smaller than
1
3 for a suitable choice of s and c.

The degree of the protocol tree is bounded by poly(n). In this case the height of

the protocol tree may be asymptotically larger than r(n)
logn . We create a new tree of height

O(r(n)/log n) to guide the prover's strategy, which we use in a way similar to how we used
the protocol tree in the previous paragraph. We call this tree the emulation tree. The
nodes in the emulation tree are nodes from the protocol tree, however the children of a node
u in the emulation tree may be non-immediate descendants of u in the protocol tree.

We start with a protocol tree T rooted at r whose weight is w(r), and on each step we
modify this tree towards creating an emulation tree. We de�ne a heavy descendant of r to
be a node in T whose weight is at least w(r)

n , and the weight of each of its children is smaller

than w(r)
n . Note that there are at most n such nodes.

We modify T so that the children of r in the emulation tree are its original children as
well as the heavy descendants that we lift upwards to make them new children of r. This
modi�cation is performed using the Build_Tree(r) procedure, which when invoked on a node
r identi�es the nodes that will be children of r in the new tree, sets them as children of r,
and then initiates recursive invocations on the (original and new) children of r, creating the
new emulation tree rooted at r. Details follow.

Let Tr denote the temporary tree after the stage that we identify and set the children of
r. We start by identifying the heavy descendants of r (they can also be children of r in T ),
which will become heavy children of r in Tr. We then proceed to the non-heavy children of
r in T , which will also be children of r in Tr. After we identi�ed the children of r in the new
emulation tree, we call the Build_Tree procedure on each child of r in Tr, which creates an
emulation tree rooted at that node.

Observe that in the �nal emulation tree, for each node u, the weight of each grandchild of
u is at most w(u)

n . This is because if v is an heavy child of u in the emulation tree, then the

weight of the descendants of v in Tu is at most w(u)
n . Since the children of v in the emulation

tree are descendants of v in Tu the claim holds. Otherwise, v is non-heavy child of u, so its
weight is smaller than w(u)

n and hence the weight of the children of v is also smaller than w(u)
n .

It follows that the height of the �nal emulation tree is O(r(n)/log n). The number of
children of each node is at most poly(n), because we add at most n heavy children to the
original children of each node. Hence the emulation tree has properties similar to the protocol
tree in the previous paragraph, so it is suitable for our public-coin emulation.

The general case. In general, the degree of the protocol tree is unbounded, and hence it
may be exponential in n. Lifting the heavy children as we did in the case of unbounded height
guarantees that the height of the new emulation tree is O(r(n)/log n), but its degree may be
super-polynomial in n (due to the original children). Hence, in the case that |x| = poly(n)
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we will not be able to perform the emulation, since the veri�er must run in time poly(|x|).
Thus, we also need to make sure the degree of the new tree is poly(n).

In order to reduce the degree when it is too large, we group the non-heavy children of r
under new children, which we call interval children. This is done in addition to handling
the heavy children of r as before. In general, children of r in T may become non-immediate
descendants in Tr, and non-immediate descendants of r may become immediate children of r
in Tr (due to lifting).

Determining the children of r in Tr is done in two steps, as part of the Build_Tree(r)
procedure. The �rst step is identifying the heavy descendants of r and lifting them to be
children of r, creating heavy children in Tr. Next, we unite the non-heavy children of r into
groups. We unite the children by lexicographic order of their transcript �eld, such that the
weight of each group is larger than w(r)

n and at most 2w(r)
n (except for, possibly, the last group

which is only required to have weight smaller than 2w(r)
n ). We create a new interval child v

for each such group, where the children of v are the nodes in the group.
After this step, the children of r in the �nal emulation tree are exactly the children of r in

Tr. The number of children r has is at most n, since the weight of the heavy children and the
interval children (except for possibly the last interval child) is at most n. Next, the procedure
is called recursively on the children of r in Tr in order to create the �nal emulation tree.

The description of a node u in the emulation tree is composed of the transcript �eld
γ(u) = α1β1 . . . αiβi and a weight �eld w(u) as in the original protocol tree, with an addi-
tional range �eld R(u). The range of a node represents the possible range of its children's
transcripts. After determining the heavy children of u, and before grouping the non-heavy
children under interval children, the non-heavy children of u are all children of u in the original
tree. Hence, the transcripts of the children of each interval child are the same up to the last
veri�er's message on which they di�er, which corresponds to the branching of the protocol
tree for the next round. Thus, we can label the range R(u) = [s, e] where s < e ∈ {0, 1}`
according to the range of the last veri�er message in the transcript �eld of the children of u.
Heavy children have full range

[
0`, 1`

]
, whereas the range of interval children is a subinter-

val of
[
0`, 1`

]
such that this subinterval corresponds to the transcripts of the nodes that are

grouped under this node.
We show in the analysis that the height of the �nal emulation tree is O(r(n)/log n).

Recall that the degree of nodes in the �nal emulation tree is at most n, hence it is suitable
for public-coin emulation like in the previous paragraph.

(The running time of this algorithm is at least the size of the protocol tree, which is
exponential in r(n), and thus it may be exponential in |x|. However, the prover is the one
that runs this algorithm and the the prover is computationally unbounded. Therefore the
running time is not an issue.)

4.2 The Build Tree Procedure

Denote the designated prover and veri�er of the original interactive proof system by P0 and
V0 respectively, and the protocol tree of P0 and V0 for a yes-instance x by TP0,V0 . The
Build_Tree procedure is a recursive procedure that reads and updates a global tree T , which
is initially set to equal the protocol tree TP0,V0until obtaining the �nal emulation tree, denoted
by EP0,V0 . When invoked on a node u in T , the procedure determines the children of u, updates
the global tree and invokes the procedure recursively on the children of u.
We denote by T (u) the subtree of T rooted at u.
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Initialization. The tree T is initialized to be the original protocol tree, where each node
has a description that contains the weight and transcript like in the original tree, and an
additional range �eld which is initially left empty. We set the range of the root, denoted r, to
be full range R(r) = [0`, 1`]. If the weight of r is zero we terminate the process. Otherwise,
we invoke the Build_Tree procedure on r.

The main procedure: Build_Tree. If u is a leaf, the procedure returns without up-
dating the global tree T . Otherwise, the Build_Tree procedure invokes two sub-procedures,
Build_Heavy(u) and Build_Interval(u), in order to identify and update the children of u in
T . Finally, the Build_Tree procedure is invoked recursively on all the children of u in T .

Build_Heavy. The Build_Heavy procedure identi�es the heavy descendants of u in
T (u), which are descendants of large weight that have no children of large weight, and modi�es
the tree by lifting them to become heavy children of u.

De�nition 5 (Heavy descendants) We call v a heavy descendant of u if v is a descendant

of u in T and the following conditions hold:

1. w(v) ≥ w(u)
n

2. Either v is a leaf, or for each child z of v it holds that w(z) < w(u)
n .

For each heavy descendant, v, of u we perform the following process:

1. Update v's description: Set the range �eld of v to be full range R(v) = [0`, 1`].

2. Modify the protocol tree if v is not already a child of u:

(a) Subtract w(v) from the weight of the ancestors of v in T (u), except for u whose
weight stays the same.

(b) Move v (along with the subtree rooted at v) to be directly under u.

See Figure 1.

Figure 1: Build_Heavy: In the �rst step, v is identi�ed as a heavy descendant of u and moved
to be a heavy child of u. In the second step, z is identi�ed and moved to be a heavy child of
u. The triangles represent subtrees of the original tree.

After we �nish identifying and moving the heavy children of u we perform a clean up stage
where we erase all the nodes in T with weight zero.
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Build_Interval(u). This procedure groups the non-heavy children of u under interval
children. Denote the range �eld of u by R(u) = [s(u), e(u)]. (Note that s(u) = 0` and
e(u) = 1` unless u is an interval node, in which case its range is partial.) We partition the
range of u into a sequence of consecutive intervals, each one representing the range of a new
child of u. As long as we have not partitioned all of the range [s(u), e(u)] we perform the
following procedure.

1. Determine s′, the starting point of the interval child's range: Initially, for the �rst
interval child of u we set s′ = s(u). For the next interval children, if the end of the
range of the previously created interval child is ẽ, then we set s′ = ẽ+ 1.

2. Determine e′, the ending point of the interval child's range: For each e ∈ {0, 1}`, denote
by non_heavy(s′, e) the set of children of u in T (u) whose weights are smaller than
w(u)
n and their last veri�er message α (in the transcript �eld) is in the range [s′, e]. Note

that when [s′, e] 6= [s(u), e(u)] the set non_heavy(s′, e) can be a proper subset of set of
non-heavy children of u. We de�ne the weight of the set non_heavy(s′, e), which we
denote by W (s′, e), as the sum of the weights of nodes in non_heavy(s′, e).

We set e′, to be the minimal e ∈ {0, 1}` that satis�esW (s′, e) ≥ w(u)
n . If no such e exists

and W (s′, e(u)) > 0, we set e′ = e(u). If W (s′, e(u)) = 0 there is no need to create
another interval child so we return to the Build_Tree procedure. (This guarantees that
the weight of an interval child is at least 1).

3. Create a new node v: We set the transcript of v to be like the transcript of u, γ(v) =
γ(u), its range to be R(v) = [s′, e′] and its weight to be w(v) =W (s′, e′).

4. Place v in the tree: disconnect u from the nodes in non_heavy(s′, e′). Set u as a parent
of v and let v be the parent of all nodes that are in non_heavy(s′, e′).

See Figure 2. Note that the weight of an interval child of u is at most 2w(u)
n and at least w(u)

n ,
except possibly for the last interval child, whose weight is at least 1.

Figure 2: Build_Interval: The left diagram represents the tree before the Build_Interval
procedure. The nodes to the left of the dashed line are heavy children of u. The group of
nodes inside each dashed circle are united under an interval node. The tree on the right is
the result of applying the Build_Interval procedure.

4.3 Properties of the emulation tree

Recall that in the original protocol tree, v was a child of u if and only if γ(v) = γ(u)αβ where
α, β ∈ {0, 1}` denote the next veri�er message and the prover's response to it. However, in
the new emulation tree, EP0,V0 , this is not the case. Namely, if v is a child of u in EP0,V0 ,
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then it could be that v is an heavy child of u and hence γ(v) = γ(u)α1β1, . . . , αkβk for some
α1, β1, . . . , αk, βk ∈ {0, 1}`, or v is an interval child hence γ(v) = γ(u) and R(v) ⊆ R(u).
Nevertheless, the following properties of the �nal emulation tree EP0,V0 are readily veri�ed.

Claim 6 (Node degree) Each node u in the �nal emulation tree EP0,V0 has at most n
children.

Proof. Note that we call Build_Tree on every node in EP0,V0 . By de�nition, the weight of the

heavy children of u is at least w(u)
n . The weight of the interval children is also at least w(u)

n
except for possibly the last interval child whose weight is non zero. Therefore, the number of
children is at most n. (If there were n + 1 children or more, then the n �rst children would

have weight of at least w(u)
n , and the last child has positive weight, which means that in total

the sum of the weights of the children is greater than w(u), in contradiction.)

Claim 7 (Weight reduction) For every node u in the �nal emulation tree EP0,V0 the weight

of each grandchild of u in EP0,V0 is at most 2w(u)
n .

Proof. Let v be a child of u in the emulation tree. First consider the case that v is a heavy
child of u. Denote by Tu the temporary tree in the process of construction, after we determine
the new children of u and before the recursive invocations of the procedure on the children of
u. By the de�nition of heavy children, the weight of the children of v in Tu is at most w(u)

n .

Thus, the weights of the ancestors of v in Tu is also at most w(u)
n , because the weight of a

node is at most the weight of its ancestors. Now, if z is a heavy child of v (i.e. heavy with
respect to w(v)) in the �nal emulation tree EP0,V0 , then it is a descendant of v in Tu, so its

weight is at most w(u)
n . Otherwise, z is an interval child of v so its weight is at most 2w(v)

n ,

which is at most 2w(u)
n .

In case v is an interval child of u, its weight is at most 2w(u)
n . Hence the weight of the

grandchildren of u, which are children of v, is also at most 2w(u)
n .

Corollary 8 (Corollary to Claim 7) The height of the �nal emulation tree EP0,V0 is

O(r(n)/log n).

Proof. The weight of the root of the protocol tree is at most the number of leaves in the tree,
which is 2r(n). When we start constructing the emulation tree, the weight of the root is the
same as in the protocol tree. Moreover, the weight of a node does not change from the point
that we call Build_Tree on it. Hence the weight of the root in EP0,V0 is also at most 2r(n).

By Claim 7, the weight of a node in level 2i of the emulation tree is at most 2r(n)
(n
2
)i
. Taking

i = d r(n)
log(n

2
)e we get that the weight of a node in level 2i of the emulation tree is at most 1.

Lastly note that a node with weight 1 cannot have grandchildren, else by Claim 7 their weight
is smaller than 1. This cannot happen since the weights of nodes in the emulation tree are
positive integers. We conclude that the height of the emulation tree is at most 2·d r(n)

log(n)−2e+1.

Claim 9 (Leaves) The leaves of EP0,V0 are exactly the leaves of protocol tree TP0,V0 whose

weights are 1.
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Proof. The construction does not create nodes whose weights are zero. Hence all the leaves
in EP0,V0 have positive weight. Following the construction of the emulation tree we can see
that, during each step, the weight of a leaf from the original protocol tree stays the same,
whereas the weight of a non-leaf is the sum of the weights of the leaves that are descendants
of it. Hence a leaf in EP0,V0 must be a leaf in TP0,V0whose is 1.

On the other hand, if v is a leaf whose weight is 1 in TP0,V0 , then v appears in the emulation
tree. This is because the only way nodes from the protocol tree are erased throughout the
construction is if their weight is 0 (possibly after truncations in the middle of the construction).
A leaf from TP0,V0 that appears in EP0,V0 must appear as a leaf. This is because the only
way we add descendants to a node is when we add interval children, but we do not invoke
Build_Interval on a leaf.

5 Public-coin emulation

Next, we describe the strategy of the designated prover P and veri�er V in the new ("em-
ulation") protocol. The strategy of the designated prover P for a yes-instance x uses the
emulation tree EP0,V0 of x constructed in the previous section. The prover assists the veri�er
V in progressing down the emulation tree. On each iteration, the prover provides the de-
scriptions of the children v1, . . . , vd of the current node u, which was sampled in the previous
iteration. The veri�er preforms validations on the list supplied by the prover (to be detailed
below), and then samples one of the children for the next iteration according to its weight.
The veri�er does not have access to the emulation tree, and its validations consist of struc-
tural requirements on the emulation tree. On the last round the veri�er checks that the full
transcript, along with the sequence of coin tosses, leads the original veri�er V0 to accept.

The main di�erence between the public-coin emulation and the private-coin one
is in the way a child of a node is chosen in each iteration. In the private-coin
emulation the values of the veri�er's private coin tosses determine which child is
chosen. In contrast, in the public coin emulation V does not have private coins,
hence it must choose a continuation based on the transcripts and the probability
distributions suggested by P .

One of the structural validations that the veri�er makes is that the nodes provided by the
prover may be children of u in the emulation tree. For nodes in the original protocol tree,
v is a child of u if and only if the transcript of v extends the transcript of u by one pair of
messages, and thus v is a descendant of u if and only if the transcript of u is a proper pre�x
of the transcript of v. For nodes in the emulation tree the situation is more complex. If v is
an interval child of u, then the transcript of v equals the transcript of u, and the range of v
is a partial range of the range of u. If v is a heavy child of u, then the transcript of u is a
proper pre�x of the transcript of v. Furthermore, if γ(u) = αu

1β
u
1 , . . . , α

u
i β

u
i , then α

v
i+1 (the

i+ 1 veri�er's message in the transcript of v) should be in the range of u.
With these two cases in mind, we de�ne the conditions required of the descriptions of two

nodes u and v in order for v to be a descendant (not necessarily a child) of u in the emulation
tree. We say that v is a transcript descendant of u if these required conditions hold.

De�nition 10 (Transcript Descendant) Denote by u and v nodes in the emulation tree

with transcripts γ(u) = αu
1β

u
1 , . . . , α

u
i β

u
i and γ(v) = αv

1β
v
1 . . . α

v
jβ

v
j and with range �eld R(u)
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and R(v), respectively. We say that v is a transcript descendant of u if one of the following

conditions hold:

i γ(v) = γ(u) and R(v) ⊆ R(u)

ii γ(u) is a proper pre�x of γ(v) and αv
i+1 ∈ R(u)

Figure 3: Truncation during Build_Tree. The node v is identi�ed as a heavy descendant of
z, so it is moved (along with the subtree that is rooted at it) to be a heavy child of z.

Note that it is possible that v is a descendant of u in the emulation tree and the description
of u is equal to the description of v. For example, this can happen when v is the only interval
child of u.

It is easy to show that for every node u in EP0,V0 , every descendant u is a transcript
descendant of u. The proof is similar to the proof of (c) in the Completeness part of the
analysis.
We state the following claim regarding the transitivity property of transcript descendancy,
which we use in the analysis of the emulation.

Claim 11 (Transitivity) For nodes u, v and z in the emulation tree such that z is a tran-

script descendant of v and v is a transcript descendant of u, then z is a transcript descendant

of u.

The proof of the claim is given in Appendix A. It follows by case analysis of the di�erent
transcript descendancy types between u, v and z.

The condition of v being a transcript descendant of u is not su�cient to guarantee that v
is a descendant of u in the emulation tree EP0,V0 . For example, suppose that v was a child of
u in TP0,V0 , and is a heavy descendant of a node z that is an ancestor of u in EP0,V0 . Then, v
becomes a heavy child of z in EP0,V0 , which means that the subtree rooted at v was truncated
and moved up to be a direct descendant of z. Therefore, in order to check if v may be a legal
descendant of u in the emulation tree, the veri�er needs to check that v does not belong to a
part of the tree that was truncated and moved to a di�erent part of the emulation tree (such
as nodes v and w in Figure 3). For this reason the veri�er keeps a list S of nodes that were
seen during the emulation, and updates the list at every iteration with the new nodes seen.
Note that the nodes in S, which the veri�er sees up to some iteration, are a subtree of the
emulation tree that is composed of a path from the root of the tree to the current input node,
augmented with the children of the nodes in the path. See Figure 4.

Another structural validation requires the transcripts that the veri�er sees to be consistent
with a deterministic prover strategy.
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Figure 4: The nodes in the list of seen nodes, S, in the iteration that the input node is u.

De�nition 12 (Prover consistent) We say that two transcripts γ(u) and γ(v) are prover
consistent if the maximal pre�x they agree on is either empty or ends with a prover's message.

That is, the prover should respond in the same way on the same pre�x of the transcripts (i.e.,

for every j smaller than the length of the shorter transcript, if αu
1β

u
1 , . . . , α

u
j = αv

1β
v
1 , . . . , α

v
j

then βuj = βvj ).

This condition will allow for extracting a prover's strategy for the original protocol from
the transcripts in EP0,V0 , and then to claim that since the original prover cannot fool the
veri�er with high probability, the new prover cannot either.

Initially, for the �rst iteration, the transcript of the root r is the empty transcript and
the range is full range, [0`, 1`]. The prover provides the weight of the root r and the veri�er
checks that the claimed weight is at least 9

10 · 2
r(n). The veri�er adds the description of r

to the list of seen nodes S. The rest of the �rst iteration, as well as subsequent iterations,
proceed as follows.

Construction 13 (the ith iteration) On input a non-leaf node u and list S. 5

1. The prover provides the descriptions of the children v1, . . . , vd of u:(
γ(v1), R(v1), w

′(v1)
)
, . . . ,

(
γ(vd), R(vd), w

′(vd)
)

2. The veri�er preforms the following validations and rejects if any of them fails:

(a) The veri�er checks that all nodes are di�erent (according to their descriptions)
that is, for each distinct i, j ∈ [d], if γ(vi) = γ(vj), then R(vi) 6= R(vj).

(b) The veri�er checks that the weights of the children of u sum up to w′(u); that is,

w′(u) =

d∑
j=1

w′(vj) (2)

(c) For each j ∈ [d], the veri�er checks that vj is a transcript descendant of u.

(d) For each interval child vj , the veri�er checks that γ(vj) = γ(u); that is, if R(vj) 6=
[0`, 1`], then γ(vj) = γ(u) must hold.

(e) For each j ∈ [d] the veri�er checks that vj is not in a part of the emulation tree that
was truncated. (See discussion following De�nition 10.) Speci�cally, let v ∈ S(u)
such that v is not an ancestor of u. If v is a transcript descendant of u, then vj

5 Because of Step 4, the input node u will always be a non-leaf node.
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should not be a transcript descendant of v.
For illustration consider Figure 3, where u, t, z, v ∈ S. In that case, the veri�er
checks that vj is not a transcript descendant of v (where v is a transcript descendant
of u since it was a descendant of u in the original protocol tree).
(Note that it can be that vj is a transcript descendant of some node in S that is not
a transcript descendant of u, and this is not considered a violation. For example,
all the nodes are transcript descendants of the root r, which is in S.)

(f) The veri�er checks that the ranges of all the interval children are disjoint; that is,
for every two interval children vj and vk, the veri�er checks that R(vj)∩R(vk) = ∅.

(g) For each j ∈ [d] the veri�er checks that γ(vj) is prover consistent (see De�nition
12) with respect to the other transcripts of nodes in S and with regarding to the
transcripts of the other children γ(vk), where k 6= j.

3. The veri�er chooses a child according to the probability distribution J that assigns each
j ∈ [d] probability approximately proportional to w′(vj) using O(log n) coin tosses.
That is,

Pr[J = j] ≤ w′(vj)∑d
i=1w

′(vi)
·
(
1 +

1

n

)
(5.1)

We can only a�ord to use O(log n) public-coins per round, and hence we compromise
on sampling each child with probability proportional to w′(vj), and instead sample with
approximate probability. See explanation for approximate sampling in Appendix B .

4. The veri�er adds all the children of u to the list S; that is S ← S ∪{v1, . . . , vd}. Unless
γ(vj) is the complete transcript (which contains the last message), the next iteration
will start with node vj and the set S. Otherwise, we proceed to the �nal checks.

By our conventions, the last message the veri�er sends, denoted αm, contains the outcomes
ρ ∈ {0, 1}r(n) of the r(n) coins tossed. Thus, if the last node chosen is v, then ρ can be easily
extracted from γ(v) = α1β1, . . . , αmβm. After the last iteration the veri�er performs �nal
checks and accepts if all of them hold:

(i) Check that ρ is accepting for γ(v) and consistent with it: It checks that
V0(x, ρ, β1, . . . , βm) = 1, and that for every i = 1, . . . ,m it holds that
αi = V0(x, ρ, β1, . . . , βi−1). Note that the veri�er needs ρ in order to verify these con-
ditions, so this check can only be done after the last iteration. Also note that if these
checks pass then w(v) = 1 (rather than w(v) = 0).

(ii) Check that w′(v) = 1; in other words the prover's last claim should be that the weight
of the last node chosen is 1 (and not more than 1).

Clearly, the number of rounds of the emulation is O(r(n)/log n) because the height of the
emulation tree is O(r(n)/log n), and the prover and veri�er proceed one step down the tree
on each round. Since the veri�er uses O(log n) public coins on each round, the randomness
complexity of the emulation is O(r(n)).
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6 Analysis of the emulation

We show that the interactive proof system is transformed by the emulation protocol of Con-
struction 13, which uses the emulation tree EP0,V0 constructed in Section 4.2, into a public-
coin interactive proof system with perfect completeness and soundness 1

3 .

6.1 Completeness

We claim that the emulation protocol of Construction 13 has perfect completeness. That is,
if x is a yes-instance, then V will accept at the end of the interaction with P .

Recall that P builds an emulation tree EP0,V0 from the protocol tree TP0,V0 . Since x is
a yes-instance at least 9

10 · 2
r(n) of the coin tosses lead the veri�er to accept and hence the

weight of the root of TP0,V0 is at least 9
10 · 2

r(n). The weight of the root does not change
during the construction of the emulation tree. Thus, the weight of the root of EP0,V0 is at
least 9

10 · 2
r(n) as well. Hence, P can make a valid initial claim of weight at least 9

10 · 2
r(n)

Next, we wish to show that the validations on Step 2 are satis�ed for every iteration. This
is equivalent to showing that validations are satis�ed for every node in the �nal emulation
tree EP0,V0 .

The general framework of the proof consists of going over every validation performed and
showing that the property being checked holds for every node in the original protocol tree
TP0,V0 , and continues to hold with every modi�cation of the global tree T as part of the Build
Tree procedure. Thus, the property also holds for every node in the �nal emulation tree
EP0,V0 , and hence the validations are satis�ed.

When we say that a validation passes relative to a (possibly intermediate) tree T and node
u in T , we mean that if the tree T had been used as an emulation tree then, in the iteration
on which u is the input node, the validation would have passed. Recall that the nodes in T on
which we did not invoke the Build_Tree procedure yet do not have a range �eld. We regard
the nodes that do not have a range �eld as having a full range [0`, 1`]. The children of u that
are considered in the validation are the children of u in T , and the list of the seen nodes S
consists of the ancestors of u and their children in T .

Let T be the global tree at some point in the construction, and let z be a node that
the Build_Tree procedure is currently invoked on. We assume that the validation we are
currently checking holds for every node in T , and show that it also holds in the next step
of the construction. Recall that the next step can either be identifying a heavy child for
z as part of the Build_Heavy procedure, or creating an interval child for z as part of the
Build_Interval procedure. Denote the child being created or identi�ed by v, and the global
tree after this modi�cation by Tv.

Note that it is not su�cient to show that after the creation or identi�cation of v the
property being checked is maintained for v. This is because the procedure might a�ect the
descendants and ancestors of v in Tv, as well as nodes whose list of seen nodes changes.
Exactly which nodes are e�ected depends on the validation.

Remark 14 Let v be a node in T that the Build_Tree procedure has not been invoked on

yet. Recall that the children of v in T are children of the node v′ in TP0,V0 that satis�es

γ(v′) = γ(v). Hence, like in the tree TP0,V0, the transcripts of the children of v in T extend

the transcript of v by one pair of messages. Furthermore, if we did not invoke Build_Tree

on v yet, then we also did not invoke it on the descendants of v in T . Thus the subtree of T
rooted at v, denoted by T (v), is a subtree of TP0,V0.
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Now, we go over the validations in Step 2, which are stated for a node u and its children
v1, . . . , vd provided by the prover as part of the emulation. The validations are numbered as
in Construction 13. We shall prove that these validations hold for every node in EP0,V0 .

Showing that the validations in Step 2 of the public-coin emulation are satis�ed
is similar in spirit to the proof that the validations in Step 2 of the private-coin
emulation are satis�ed, which is given in C.4.1.

(a) In this validation, the veri�er checks that the descriptions of all the children of u are
distinct, i.e. if vi and vj are two children of u provided by the prover and γ(vi) = γ(vj)
then R(vi) 6= R(vj).
First note that in TP0,V0 all the nodes have distinct transcripts. Denote by T the global
tree before we invoke Build_Tree on a node z. By Remark 14, the subtree rooted at
z, denoted by T (z), is a subtree of TP0,V0 . Hence, each node in T (z) has a di�erent
description. When we determine a heavy child of z we are lifting descendants of z in
T (z) to be children of z. Hence, before invoking Build_Interval(z) all the children of z
are di�erent. When we determine interval children for z the transcripts of the interval
children are equal to the transcript of z and their range �elds are disjoint, so in particular
the descriptions of the interval children of z are all distinct.

(b) In this validation the veri�er checks that the weights of the children v1, . . . , vd of u sum
up to w′(u); that is,

w′(u) =

d∑
j=1

w′(vj) (6.1)

We shall show that this property holds in every step of the construction of the emulation
tree EP0,V0 , for every node in the tree. Starting from the protocol tree TP0,V0 , we know
that by de�nition it satis�es the property that the weight of each node is the sum of the
weights of its children. (Recall that z is a node that we are invoking the Build_Tree
procedure on, and v a node that we determine as a child for z.) Denote the tree before
creation of v by T , and after by Tv. Assuming that Eq. (6.1) holds for every node in
T , we shall show that it holds for every node in Tv as well. We consider to two cases,
according to if v is a heavy child or interval of z. (Recall that these are the only cases
since after invoking Build_Tree(z) every child of z is either a heavy or interval child.)

• If v is a new heavy child determined for z, denote by z, z1, . . . , zk = v the path
from z to v in T before v is moved to be a child of z. In this case, after moving
v we subtract w(v) o� the weight of z1, . . . , zk−1. Hence, Eq. (6.1) holds for these
nodes (we subtract w(v) both from their weight and from the weight of one of their
children). Eq. (6.1) also holds for z, since its weight stays the same, whereas we
subtract w(v) o� the weight of z1, but we add an additional child v with weight
w(v). For the other nodes in Tv we neither change their weight nor the weights of
their children.

• If v is a new interval child of z, then the weight of v is the sum of the weights of
its children. Eq. (6.1) also holds for z since its weight stays the same and the sum
of the weights of its children also stays the same.
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Lastly, we note that the clean-up stage, in which we remove nodes whose weights are 0,
does not a�ect this validation.

(c) In this validation, for each j ∈ [d], the veri�er checks that the child vj provided by the
prover is a transcript descendant of u.
Recall that we consider nodes in the protocol tree that do not have a range �eld (yet)
as having a full range. In the protocol tree TP0,V0 the transcript of each node is a
proper pre�x of the transcript of its children. Hence every node in the protocol tree is
a transcript descendant of type (ii) (see De�nition 10) of its parent. As before, we shall
assume that every node in T maintains the property that it is a transcript descendant
of its parent, and show that this property is maintained in the tree Tv, after the creation
of v. We consider two cases:

• If v is a heavy child of z, then v was a descendant of z in T that we move to be a
child of z (along with its descendants) and set its range to be full range. By our
hypothesis, each node in the path from z to v in T is a transcript descendant of
its parent, so by transitivity (see Claim 11), v is a transcript descendant of z.

• If v is an interval child of z then after the creation of v the transcript of v is equal
to the transcript of z, and by the construction we know that R(u) ⊆ R(z). Thus,
v is a transcript descendant of z of type (i).
In addition, the children of v are transcript descendants of v. This is because the
children of v are all children of z in T , such that their next veri�er message is in
the range of v. Hence the children of v are transcript descendants of of type (ii)
of v . The rest of the nodes in Tv are nodes in T with the same children as in Tv.
Hence from our hypothesis on T the property holds for these nodes in Tv.

(d) In this validation the veri�er checks, for each interval child vj of u, that the transcript
of vj is equal to the transcript of u; that is, if R(vj) 6= [0`, 1`] then γ(vj) = γ(u) must
hold.
This holds because the only case where R(vj) 6= [0`, 1`] is if vj is an interval child of u,
and in this case γ(vj) = γ(u).

(e) In this validation the veri�er checks, for each child vj of u, that vj is not in a part of
the emulation tree that was truncated. Recall that S(u) is the set of nodes the prover
provided up to the iteration that is executed on input node u. Let y ∈ S(u) such that
y is not an ancestor of u. Then the veri�er checks that y is a transcript descendant of
u, then vj should not be a transcript descendant of y.
In order to show that the validation is satis�ed, we shall prove that the following claim
holds for every node in the emulation tree EP0,V0 .

Claim. Let u ∈EP0,V0 and y ∈ S(u) that is not an ancestor of u in EP0,V0. If y is a

transcript descendant of u, then each descendant vj of u in EP0,V0 is not a transcript

descendant of y.

Note this is a stronger claim then what we need to show because we only need to show
it for the children of u in EP0,V0 and not for each descendant of u.

Recall that when consider a tree T that is not the �nal emulation tree, and some node
v ∈ T , then we regard the set S(v) as the set containing the nodes that are ancestors
of v, augmented with their children.
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First, we shall show that the claim holds in the initial protocol tree TP0,V0 . Each node
is TP0,V0 only a transcript descendant of its ancestors in the tree. However, each node
u is not an ancestor of any node in S(u), so the nodes in S(u) cannot be transcript
descendants of u. Next, we shall assume that the claim holds for the tree T before
creating a child v of z, and we show that it holds in the tree Tv after the identi�cation
v as a heavy child of u, or creation of v as an interval child.

• If v is identi�ed as a heavy descendant of z, then v is moved to be a child of z
along with the subtree under it. In order to show that the claim holds in Tv, it is
enough to consider the nodes c ∈ Tv who have new descendants or new nodes in
S(c) relative to the ones they had in T . The descendants of the nodes in Tv are
descendants of it in T .

The only nodes in Tv that have new nodes in their seen list are the descendants
of z, since now v is in their seen list, whereas v may not have been in their seen
list before the move. Since determining the heavy descendants of z is done bottom
up, v is only a transcript descendant of its ancestors in T . Thus, if c is a node in
Tv such that v ∈ S(c) and v is a transcript descendant of c, then c is an ancestor
of v in T . It is left to check that the descendants of c in Tv are not transcript
descendants of v. From Note 14, it follows that the subtree of Tv rooted at c,
denoted bt Tv(c), is a subtree of TP0,V0 . Thus, because v /∈ Tv(c) (recall that v
was lifted to be a heavy child of z, and c is a descendant of z) it follows that the
descendants of c are not transcript descendants of v. (See Figure 5).

Figure 5: v is identi�ed as a heavy child of z, and c is a descendant of z.

• Let v be an interval child created for z. We shall assume that the claim holds in
the tree T before the creation of v, and show that it holds in Tv. It is enough show
that the claim holds when the node u from the claim is one of the following: the
new interval child v, a node in Tv that has new descendants or has new nodes in
their seen list (relative to the ones in T ). (For the other nodes in Tv the claim
follows from our hypothesis regarding T .)
The only nodes in Tv that have new descendants that they did not have in T are the
ancestors of v in Tv, which now have v as their descendant. Let d be some ancestor
of v in Tv, c ∈ S(d) a transcript descendant of d. We need to show that v is not
a transcript descendant of c. Let t be a child of v in Tv (See Figure 6). Assume
in contradiction that v is a transcript descendant of c. Hence, by transitivity, t is
also transcript descendants of c. In addition, t is a descendant of d in T . This is
in contradiction to our hypothesis that the claim holds in T .
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Figure 6: v is an interval child created by uniting 3 children of z.

The nodes whose list of seen nodes S increases in Tv relative to T are the descen-
dants of z, because v is added to their list. However, v cannot be a transcript
descendant of any descendant of z. This is because the heavy children of z have
longer transcripts than v, so v cannot be a transcript descendant of them, or of
their descendants. The other interval children of z have a range that is disjoint
from the range of v. Thus, they and their descendants cannot be transcript de-
scendants of v.
Lastly, we show that the claim holds for v as well. Let there be a some node
b ∈ S(v) which is a transcript descendant of v. We need to show that the de-
scendants of v in Tv are not transcript descendants of b. There are two di�erent
options.

� Either b ∈ S(z) in T , like node c in Figure 6. The node b is a transcript
descendant of v which is a transcript descendant of z, so by transitivity b is a
transcript descendant of z. Every descendant of v in Tv is a descendant of z
in T . Hence from the fact that the claim is true for z in T we know that the
descendants of v in Tv are not transcript descendants of b.

� If b ∈ S(v) but b /∈ S(z) then b must be a child of z, like node y in Figure 6.
Since b is a transcript descendant of v then b must be a heavy child of z. (If b
is an interval child of z, like v is, then b cannot be a transcript descendant of
v since their ranges are disjoint.) We did not invoke Build_Tree on v yet, so
by Note 14, it follows that Tv(v) is a subtree of TP0,V0 . Hence, from the fact
that b is not in Tv(v) it follows that the transcript descendants of b are not
in Tv(v) either. In other words, the descendants of v in Tv are not transcript
descendants of b.

(f) In this validation, the veri�er checks that the ranges of all the interval children of u are
disjoint; that is, for every two interval children vj and vk of u, the veri�er checks that
R(vj) ∩R(vk) = ∅.
By the way we create the interval children it holds that the start of the range of each
interval child is after the end of the range of the previous child created.

(g) In this validation, the veri�er checks, for each child vj of u, that γ(vj) is prover consistent
(see De�nition 12) with respect to the other transcripts of nodes in S(u) and with
regarding to the transcripts of the other children of u.
In the original protocol tree, TP0,V0 , every two nodes are prover consistent since P0 is
deterministic. (If there were two partial transcripts in TP0,V0 whose maximal common
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pre�x ends with a veri�er message its would mean that the prover can responds in
di�erent ways to the same partial transcripts). The transcripts of the nodes in EP0,V0 all
appear in TP0,V0 , so every two transcripts in EP0,V0 are prover consistent as well.

The �nal checks are satis�ed because according to Claim 9 the leaves of the emulation tree
EP0,V0 are the leaves of the protocol tree whose weights are 1. Hence,
V0(x, ρ, α1, . . . , αm) = 1, and for every i = 1, . . . ,m it holds that αi = V0(x, ρ, β1, . . . , βi−1).
In addition w′(v) = w(v) = 1.

6.2 Soundness

We show that if x is a no-instance, then when interacting with any prover P̃ for the public-
coin emulation protocol, the new public-coin veri�er V accepts with probability at most
1
3 . We do so by showing that on each iteration there is a gap (in expectation) between the
weight of the node claimed by the prover, and the actual weight of the node. Starting from
the root, if x is a no-instance, then the initial prover's claim is that the weight of the node
sampled should be at least 9

10 · 2
r(n) (or else the veri�er rejects upfront), but the number of

coin sequences that lead the veri�er to accept at the end of the interaction, and hence the
real weight of the node, is at most 1

10 · 2
r(n). We want to show that this gap is maintained

with high probability until the last iteration, and hence the veri�er rejects.
In order to proceed with this analysis we need to de�ne the notion of �real weight of a

node� in the emulation tree. We do this by considering the weight relative to the protocol tree
of the original interactive proof system. The veri�er of the original protocol system, which we
refer to, is of course V0, the veri�er of the original interactive proof system being emulated.
However, choosing the prover of the original system is less straight forward. We shall show
that a prover's strategy for the emulation protocol yields a prover strategy for the original
protocol.

Subsection 6.2.1 is a more involved version of the private-coin proof of soundness
in Section C.4.2. The other two components of the soundness analysis of the
public-coin system (which are de�ning the notion of real weight of a node, and
the actual proof of soundness) are not required for the private-coin soundness
analysis.

6.2.1 Deriving a prover strategy for the original proof system

We can assume without loss of generality that P̃ is deterministic since for every probabilistic
prover there is a deterministic prover for which the veri�er's rejection probability is at least
as high (recall that we want to show that the veri�er rejects with high probability). We show

that we can extract a deterministic strategy P̃0 for the original prover using the strategy of
P̃ . Denote by E

P̃
the emulation tree of the prover P̃ . We de�ne a strategy for P̃0 by using

the transcripts in E
P̃
. That is, for each u ∈E

P̃
with transcript γ(u) = α1β1 . . . , αjβj we

de�ne P̃0(x, α1, . . . , αi) := βi for all i ≤ j. We extend P̃0's strategy to transcripts that do not
appear in E

P̃
in an arbitrary way.

In order to show that the strategy of P̃0 is well de�ned we need to show that no two nodes
u, v ∈E

P̃
share the pre�x of prover-veri�er interaction but di�er on the prover's response.

That is, we show that every two nodes u, v ∈E
P̃

are prover consistent (see De�nition 12).
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For a node u ∈E
P̃

provided during the emulation, denote by S(u) the list of seen nodes
from E

P̃
at the beginning of the iteration in which u was the input node (i.e. was the node

handled on that iteration). That is, the nodes in S(u) are the ancestors of u in E
P̃

and their
children. We denote by S′(u) the list of seen nodes of the parent of u. That is, if v is the
parent of u in E

P̃
then S′(u) = S(v).

We can assume, without loss of generality, that the strategy of P̃ is such that the veri�er
does not abort until the �nal checks. This is because every prover strategy in which the
veri�er aborts in one of the intermediate checks can be modi�ed to a prover strategy such
that the veri�er does not abort until the �nal checks and the veri�er's acceptance probability
is at least as large.

To show that every two nodes u, v ∈E
P̃

are prover consistent, as well as for other parts
of the soundness proof, we rely on the following claim.

Claim 15 (Transcript descendancy forms a tree) Let w ∈E
P̃

and u, z ∈ S(w). Assume

that the strategy of P̃ is such that veri�er does not abort until the �nal checks. Let ` be a

node that is a transcript descendant of both z and u. Then either u is a transcript descendant

of z or z is a transcript descendant of u.

Proof. First note that this claim is not true if the prover's strategy is not one in which the
veri�er does not abort until the �nal checks. For example, if ` is a transcript descendant of
type (i) of both u and z, then γ(u) = γ(z) = γ(`), and R(`) is contained in both R(u) and in
R(z). However, R(u) and R(z) may not be contained one in the other, and hence u is not a
transcript descendant of z and z is not a transcript descendant of u.

Since ` is a transcript descendant of u and of z, then both γ(u) and γ(z) are pre�xes of
γ(`). Assume, without loss of generality, that |γ(z)| ≥ |γ(u)|. It follows that γ(u) is a pre�x
of γ(z). (See Figure 7).

Figure 7: The transcripts of u,z and ` when |γ(z)| ≥ |γ(u)|

The �rst case is that γ(u) is a strict pre�x of γ(z). In this case γ(u) is also a strict pre�x
of γ(`) and hence ` is a transcript descendant of type (ii) of u . Denote the transcripts of u
and z by γ(u) = α1β1 . . . αiβi and γ(z) = α1β1 . . . αjβj , for j > i. Because γ(z) is a pre�x of
γ(`) it follows that αz

i+1 = α`
i+1. From the fact that ` is a transcript descendant of type (ii)

of u we know that α`
i+1 ∈ R(u). Thus, αz

i+1 ∈ R(u) and γ(u) is a strict pre�x of γ(z), so z is
a transcript descendant of u (of type (ii)).
The second case is that the transcripts of u and z are equal; that is, γ(u) = γ(z) =
α1β1 . . . αiβi. In this case we need to show that R(u) ⊆ R(z) or R(z) ⊆ R(u). If R(u) =[
0`, 1`

]
then R(z) ⊆ R(u), so z is a transcript descendant of u of type (i). Similarly, if

R(z) =
[
0`, 1`

]
then u is a transcript descendant of z of type (i).

We are left with the case that γ(u) = γ(z) and both u and z do not have a full range. In
this part we consider the relation between u and z in E

P̃
. Recall that S(w) contains the nodes
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in the path from the root to w, augmented with their children. Denote the least common
ancestor of u and z in E

P̃
by v. If v = u then there is a path from v to z. Since the validations

pass, each node in the path is a transcript descendant of its predecessor, so from transitivity
z is a transcript descendant of v. Similarly, if v = z then u is a transcript descendant of z.

Figure 8: z and u are two nodes in S(w) whose least common ancestor is v.

Otherwise, v is neither equal to u nor to z. However, at least one of the nodes u or z is
a child of v in E

P̃
(because of the structure of S(w), see Figure 8 for illustration). Assume,

without loss of generality, that z is a child of v. The range of z is not full so z must be an
interval child of v and γ(v) = γ(z). It follows that γ(u) = γ(v) so u is either another interval
child of v or a descendant of an interval child of v. Thus, the ranges of u and z are disjoint
because they belong to di�erent branches of interval children of v, and the ranges of the
interval children are disjoint from validation 2f. This is in contradiction to the assumption in
the claim that γ(`) is a transcript descendant of both γ(u) and γ(z). (If γ(`) = γ(u) = γ(z)
then ` is a transcript descendant of type (i) of both u and z and hence R(`) ⊆ R(u) and
R(`) ⊆ R(z), and so R(u) and R(z) cannot be disjoint. If γ(u) = γ(z) are strict pre�xes
of γ(`) then ` is a transcript descendant of u and z of type (ii). Hence α`

i+1 ∈ R(u) and
α`
i+1 ∈ R(z), so also in this case R(u) and R(z) cannot be disjoint.)

We are ready to prove the prover consistency property of the emulation tree.

Note that the following proof is a more involved version of the proof of Lemma
30 in Section C.4.

Lemma 16 (Prover consistency of the emulation tree). If P̃ is a prover strategy for the

new emulation such that the veri�er V does not abort until the �nal checks then every two

transcripts of nodes in the emulation tree E
P̃

are prover consistent.

Proof. Let u and v two nodes in the emulation tree E
P̃
, we wish to show that their transcripts

γ(u) and γ(v) are prover-consistent. If one of the nodes is a descendant of the other node
in the emulation tree, with out loss of generality, we assume that v is a descendant of u.
In this case u ∈ S′(v) and validation 2g is satis�ed so γ(u) and γ(v) are prover-consistent.
Otherwise, denote by z the least common ancestor of u and v, and a and b the children of z
that are ancestors of u and v respectively. (It is possible that a = u or b = v.) See Figure 9
for illustration.

Consider the case that at least one of the transcripts of u and v equals the transcript of a
or b, respectively (this also covers the case that u or v are children of z). Assume, without loss
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Figure 9: The subtree of EP0,V0 that contains u and v

of generality, that γ(a) = γ(u). We know that γ(v) and γ(a) are prover consistent, because
a ∈ S′(v) and validation 2g is satis�ed. Hence, γ(v) and γ(u) are also prover consistent.

Otherwise, γ(a) is a proper pre�x of γ(u), and γ(b) is a proper pre�x of γ(v). We consider
three cases according to the relation between γ(a) and γ(b).

First, consider the case that γ(a) is not a pre�x of γ(b) and γ(b) is not a pre�x of γ(a).
The fact that γ(a) is a proper pre�x of γ(u) implies that u is a descendant of a in E

P̃
. By

validation 2c we know that each node in this path from u to a is a transcript descendant of its
parent. Thus, by transitivity (Claim 11), u is a transcript descendant of a, so γ(a) is a pre�x
of γ(u). Similarly, γ(b) is a pre�x of γ(v). Recall that we are in the case that γ(a) is not a
pre�x of γ(b) and γ(b) is not a pre�x of γ(a), and so the maximal pre�x on which γ(a) and
γ(b) agree upon is a proper pre�x of both. This common pre�x equals the maximal pre�x on
which γ(u) and γ(v) agree. We know that γ(a) and γ(b) are prover-consistent because the
prover provides a along with b as children of z and we assume that validation 2g is satis�ed.
Since the maximal pre�x that γ(u) and γ(v) agree on is equal to the maximal pre�x that γ(a)
and γ(b) agree on, it follows that γ(v) and γ(u) are also prover-consistent. See Figure 10 for
illustration.

Figure 10: γ(a) and γ(b) agree on the pre�x in white, while γ(a) is a pre�x of γ(u) and γ(b)
is a pre�x of γ(v).

Next, consider the case when γ(a) = γ(b), and assume that the transcript of a and b
contain messages from i rounds. It this case both a and b are interval children of z and from
validation 2f it follows that R(a) ∩ R(b) = ∅. Recall that u is a transcript descendant of a,
and v is a transcript descendant of b, and hence αv

i+1 ∈ R(b) and αu
i+1 ∈ R(a). It follows that

αv
i+1 6= αu

i+1, which means that the maximal pre�x that γ(u) and γ(v) agree on is equal to
γ(a) = γ(b). Hence, the maximal pre�x ends with a prover message and so γ(u) and γ(v) are
prover consistent.

We are left with the case that one of the transcripts γ(a) and γ(b) is a proper pre�x of
the other, and assume, without loss of generality, that γ(a) is a proper pre�x of γ(b). Denote
the transcript of b by γ(b) = α1β1, . . . , αkβk. Since γ(a) is a proper pre�x of γ(b), and γ(z)
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is a pre�x of both γ(b) and γ(a) (since they are transcript descendants of z) it follows that
γ(b) 6= γ(z) and so b is not an interval child of z and hence R(b) = [0`, 1`].

We claim that u is not a transcript descendant of b. Assume, in contradiction, that u is a
transcript descendant of b. Note that a is not a transcript descendant of b, since we assumed
that γ(a) is a proper pre�x of γ(b). Denote the nodes in the path from a to u in E

P̃
by

a = a0, a1, . . . , ak = u and by aj the �rst node in the path such that aj is not a transcript
descendant of b and aj+1 is a transcript descendant of b. Since aj+1 is a transcript descendant
of both aj and b, which are in S(aj+1), and since aj is not a transcript descendant of b, it
follows by Claim 15 that b is a transcript descendant of aj (see Figure 11). Hence, in the
iteration where the prover provides node aj+1 as a child of aj there is a violation to validation
2e, because aj+1 is a transcript descendant of b ∈ S(aj) and b is a transcript descendant of
aj . Put di�erently, aj+1 is part of a truncation from aj . Hence, we reached a contradiction
to the hypothesis that V does not abort in the intermediate validations, and so u cannot be
a transcript descendant of b.

Figure 11: The dashed arrow pointing from b to aj+1 represent the fact that aj+1 is a transcript
descendant of b, and similarly that b is a transcript descendant of aj .

We showed that u is not a transcript descendant of b and R(b) = [0`, 1`], so γ(b) is not a
pre�x of γ(u). (If γ(b) is a proper pre�x of γ(u) then u is a transcript descendant of b of type
(ii) since R(b) = [0`, 1`], whereas if γ(b) = γ(u) then R(u) ⊆ [0`, 1`] = R(b), which means that
u is a transcript descendant of type (i) of b.) Let u′ be the parent of u in EP0,V0 . We know
that b ∈ S(u′) because b is a child of z, which is an ancestor of u′. Hence by validation 2g the
transcript of u, which is a child of u′ and the transcript of b ∈ S(u′) are prover consistent. It
follows that the maximal common pre�x of γ(u) and γ(b) is a proper pre�x of γ(b) that ends
with a prover message.

Lastly, note that from validation 2c each node in the path from b to v is a transcript
descendant of its parent, so from transitivity v is a transcript descendant of b. Thus, γ(b) is
a pre�x of γ(v). It follows that the maximal common pre�x of γ(v) and γ(u) is contained in
the maximal common pre�x of γ(u) and γ(b), so it ends with a prover message (See Figure
12).

Figure 12: The maximal common pre�x between γ(u) and γ(b) appears in white. Since γ(b)
is a pre�x of γ(v) the maximal common pre�x of γ(u) and γ(v) is the same as the former.
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6.2.2 Real weight of a node in E
P̃

We want to introduce the notion of the �real weight� of a node in E
P̃
. This �real weight'

should capture the probability that the node represents a partial interaction of the veri�er
V0 with the prover P̃0, which was extracted in the previous subsection, that leads V0 to
accept. Hence, it is natural to use the weights in T

P̃0,V0
for this value. However, the weights

in T
P̃0,V0

do not re�ect the truncations the prover P̃ makes. Thus, we also need to use the
tree E

P̃
, which contains the information about the truncations. Another di�culty that arises

is that the nodes in T
P̃0,V0

are only interval nodes. Hence, instead of using the weight of a
node in T

P̃0,V0
we consider the leaves whose weights are 1 and are transcript descendants of

it.

De�nition 17 (Real weight of u ∈E
P̃

relative to protocol tree T
P̃0,V0

) For a node

u ∈E
P̃

denote by L1(u) the set of leaves in T
P̃0,V0

that are transcript descendants of u

and whose weight is 1. (The de�nition of transcript descendants relates to nodes that have

a transcript and range �eld, so we consider the nodes in T
P̃0,V0

as if they have full range

[0`, 1`].)
Denote by Trunc(u) the non-ancestors of u in S(u) (relative to the emulation tree EP0,V0)

that are transcript descendants of u.

We de�ne LP̃ (u) as

LP̃ (u) =

L1(u)

∖ ⋃
z∈Tranc(u)

L1(z)


We de�ne the real weight of u, denoted by W P̃ (u), to be the size of the set LP̃ (u). That is,

W P̃ (u) =
∣∣∣LP̃ (u)

∣∣∣
For the soundness proof we use the following claim regarding the real weight of a node in

the emulation tree E
P̃

which asserts that the real weight of a node is at least as large as the
sum of the weights of its children.

Claim 18 Assume that the strategy of the prover P̃ is such that the veri�er does not abort

until the �nal checks. Let u ∈E
P̃

and v1, . . . , vd children of u in E
P̃
. Then

d∑
i=1

W P̃ (vi) ≤W P̃ (u) .

Proof. The proof follows from the following two facts:

Fact 19 For each distinct i, j ∈ [d], it holds that LP̃ (vj) ∩ LP̃ (vi) = ∅.

Fact 20 For each j ∈ [d], it holds that LP̃ (vj) ⊆ LP̃ (u).

We start with the proof of Fact 19. Consider two di�erent cases. The �rst case is if vi and
vj are not transcript descendants of each other (vi is not a transcript descendant of vj and

vice versa). If ` ∈ LP̃ (vj), then ` is a transcript descendant of vj . Assume in contradiction

that ` ∈ LP̃ (vi). Hence, ` is also a transcript descendant of vi, and vi and vj are in S(vj).
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From Claim 15 one of vi and vj is a transcript descendant of the other, in contradiction to
the our assumption for this case.

The second case is that vj (respectively vi) is a transcript descendant of vi (respectively
vj). Without loss of generality, assume that vj is a transcript descendant of vi. In this case

vj ∈ Tranc(vi) since vj ∈ S(vi) and vj is not an ancestor of vi. From the fact that ` ∈ LP̃ (vj)

it follows that ` ∈ L1(vj). By the de�nition of LP̃ the leaves in L1(vj) are removed from the

set LP̃ (vi), and hence ` /∈ LP̃ (vi). This completes the proof of Fact 19.

Turning to the proof of Fact 20, let ` ∈ LP̃ (vj). Therefore, the leaf ` is a transcript descen-
dant of vj . From validation 2c it follows that vj is a transcript descendant of u. Therefore, by
transitivity, ` is a transcript descendant of u so ` ∈ L1(u). Assume in contradiction that there

exists z ∈ Tranc(u) such that ` ∈ L1(z) and hence ` /∈ LP̃ (u). Recall that z ∈ Tranc(u)
means that z is a transcript descendant of u and z ∈ S(u) (See Figure 13). This also means
that z ∈ S(vj) since S(u) ⊆ S(vj). It follows that ` is a transcript descendant of both z and
vj which are in S(vj). Hence, from Claim 15 there are two options:

• The �rst option is that vj is a transcript descendant of z. However, this cannot happen
since in the iteration where u is the input node, by validation 2e it cannot be that vj is
a transcript descendant of z ∈ S(u) and z is a transcript descendant of u.

• The second option is that z is a transcript descendant of vj . This cannot be the case
because z ∈ S(u) implies that z ∈ S(vj) and so z ∈ Tranc(vj). But because ` ∈ L1(z)

we get that ` /∈ LP̃ (vj), in contradiction to our hypothesis.

Figure 13: The transcripts of u,z and ` when |γ(z)| ≥ |γ(u)|

Thus we reach a contradiction in both options, so in particular there does not exist z ∈
Tranc(u) such that ` ∈ L1(z). Hence, ` ∈ LP̃ (u).

6.2.3 The actual proof of soundness

Next, we de�ne the gap between the real weight and the claimed weight, which we use for the
analysis.

De�nition 21 (Gaps) The gap for vertex u ∈ S denoted by g(u), is the ratio between

W P̃ (u), the real weight of node u according to the strategy of P̃ , and the claimed weight w′(u).

g(u) =
W P̃ (u)

w′(u)

Note that we can assume without loss of generality that w′(u) > 0 since the prover can

omit the nodes with claimed weight equal to 0.
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If u is the note chosen on the ith iteration we denote the gap on the ith iteration by
gi = g(u), and by g0 the gap of the root r.

We consider am′ round emulation protocol de�ned in Construction 13, and �x an iteration
i ∈ [m′] as well as the values of the coin tosses, denoted by r1, . . . , ri−1, obtained during the
emulation of the �rst i − 1 iterations. Denote by u the node sampled on iteration i − 1. If
i = 1 then u is the root of the emulation tree. The description of the node u and gi−1 = g(u)
are �xed. Denote by Gi the random variable that represents gi at the end of the ith iteration,
which depends on the child of u chosen on the ith iteration. Towards proving the claim, we
analyze the change in the gap on the ith iteration, and show that it does not increase too
much in expectation.

Claim 22 Consider a prover strategy for the proposed public-coin emulation in which the

veri�er does not abort until the �nal checks. For any sequence of values of the coin tosses

r1, . . . , ri−1, it holds that

Eri [Gi| r1, . . . , ri−1] ≤ gi−1 ·
(
1 +

1

n

)
Proof. Let v1, . . . , vd be the children of u, that were provided by the prover in the emulation.
Since Gi is the gap after the ith iteration, its value dependents on the child of u that was
chosen

E[Gi| r1, . . . , ri−1] =
d∑

j=1

Pr[vj chosen] · g(vj) . (6.2)

By the de�nition of the gap for node vj ,

g(vj) =
W P̃ (vj)

w′(vj)
. (6.3)

According to step 3 of the emulation protocol,

Pr[vj chosen] ≤
w′(vj)∑d
i=1w

′(vi)
·
(
1 +

1

n

)
. (6.4)

Plugging in Eq. (6.3) and Eq. (6.4) in Eq. (6.2) we have

E[Gi| r1, . . . , ri−1] ≤
d∑

j=1

w′(vj)∑d
i=1w

′(vi)
·
(
1 +

1

n

)
· W

P̃ (vj)

w′(vj)

=

d∑
j=1

W P̃ (vj)∑d
i=1w

′(vi)
·
(
1 +

1

n

)
. (6.5)

From validation 2b it holds that

w′(u) =
d∑

i=1

w′(vi) . (6.6)
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Hence, combining Eq. (6.6) and Claim 18 in Eq. (6.5) we get

E[Gi| r1, . . . , ri−1] ≤
W P̃ (u)

w′(u)
·
(
1 +

1

n

)
= g(u) ·

(
1 +

1

n

)
= gi−1 ·

(
1 +

1

n

)
.

The claim follows.

Completing the proof. Denote by r the root of the protocol tree. Recall that W P̃ (u)

is de�ned based on the protocol tree T
P̃0,V0

of a prover P̃0 and veri�er V0 for the original

interactive proof of x. Hence for the root of the protocol tree r we know thatW P̃ (r) is bounded
above by the number of leaves with weight 1 in T

P̃0,V0
, which is the number of sequences of coin

tosses that lead the veri�er to accept x. Thus if x is a no-instance, then W P̃ (r) ≤ 1
10 · 2

r(n).
Hence if the prover claims that some no-instance is a yes-instance, then at the beginning of

the emulation w′(r) ≥ 9
10 · 2

r(n) whereas W P̃ (r) ≤ 1
10 · 2

r(n), thus g0 ≤ 1
9 . Denote by v the

leaf sampled at the end of the emulation. If the veri�er accepts the complete emulation, then

(in particular) the �nal checks pass and W P̃ (v) = w′(v) = 1 and so gm′ = g(v) = W P̃ (v)
w′(v) = 1.

Therefore, in order to upper bound the probability the veri�er accepts, it su�ces to upper
bound the probability that the gap after the last round, Gm′ , is greater than or equal to 1.
Clearly,

Pr[Gm′ ≥ 1] ≤ E[Gm′ ] .

From Claim 22 we know that for every sequence of coin tosses r1, . . . , ri−1 that determine
gi−1

Eri [Gi| r1, . . . , ri−1] ≤ gi−1 ·
(
1 +

1

n

)
.

Hence,

Er1,...,ri [Gi] ≤
(
1 +

1

n

)
· Er1,...,ri−1 [Gi−1] . (6.7)

Applying the bound from Eq. (6.7) iteratively it follows that

Er1,...,rm′ [Gm′ ] ≤
(
1 +

1

n

)m′

· g0 .

From property 8, the height of the emulation tree and hence the number of iterations of the
new emulation is at most m′ = d2r(n)logn e+ 1. For n ≥ 8 the value of m′ is at most n and thus,

Er1,...,rm′ [Gm′ ] ≤
(
1 +

1

n

)n

· g0

≤ e · g0 <
1

3
.

where the last equality follows from the fact that g0 ≤ 1
9 . Hence the veri�er accepts with

probability of at most 1
3 .
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Appendix A Proof of transitivity - Claim 11

Denote the length of γ(u) by i. Recall that if v is a transcript descendant of u then one of
the following conditions hold:

1. γ(v) = γ(u) and R(v) ⊆ R(u), in this case we say that v is a transcript descendant of
u of type (i).

2. γ(u) is a proper pre�x of γ(v) and αv
i+1 ∈ R(u), in this case we say that v is a transcript

descendant of u of type (ii).

We proceed by case analysis according to the descendancy types between u, v and z and show
that in each case z is a transcript descendant of u.

• If z is a transcript descendant of v of type (i) and v is a transcript descendant of u
of type (i) then γ(u) = γ(v) = γ(z), and R(z) ⊆ R(v) ⊆ R(u), so z is a transcript
descendant of u of type (i).

• If z is a transcript descendant of v of type (i) and v is a transcript descendant of u of
type (ii) then γ(u) is a proper pre�x of γ(v) = γ(z). Since the transcripts of v and z
are equal it follows that αz

i+1 = αv
i+1. Because αv

i+1 ∈ R(u) we get that αz
i+1 ∈ R(u),

so z is a transcript descendant of u of type (ii).

• If z is a transcript descendant of v of type (ii) and v is a transcript descendant of u of
type (i) then γ(v) is a proper pre�x of γ(z) and γ(u) = γ(v), so γ(u) is a proper pre�x
of γ(z). Furthermore, αz

i+1 ∈ R(v) ⊆ R(u) so z is a transcript descendant of u of type
(ii).

• If z is a transcript descendant of v of type (ii) and v is a transcript descendant of u of
type (ii) then γ(u) is a proper pre�x of γ(z). Furthermore, because the transcript of v
is a pre�x of the transcript of z then αz

i+1 = αv
i+1. Since v is a transcript descendant of

u of type (ii), we know that αv
i+1 ∈ R(u) and so αz

i+1 ∈ R(u). Hence, z is a transcript
descendant of u of type (ii).

Appendix B Approximate Sampling

Let D = (p1, . . . , pd) be the probability distribution that assigns each j ∈ [d] probability

proportional to w′(vj); that is, pj =
w′(vj)∑d
i=1 w

′(vi)
. Our goal is to approximate the probability

distribution D with a probability distribution J = (p′1, . . . , p
′
d) in the sense that for each

j ∈ [d] it holds that p′j ≤ pj · (1 + 1
n). Moreover, the probability distribution J should be one

that the veri�er can sample from using k = O(log n) coin tosses. Note that our method of
approximation also satis�es p′j > pj − 1/n3 for every j ∈ [d], although the lower bound is not
used in our work.

Let k ∈ N such that 2k−1 < n3 ≤ 2k. Assume, without loss of generality, that pd is the
largest probability and thus pd ≥ 1

d ≥
1
n . For j < d de�ne p′j by rounding down pj to the

closest fraction of 2k, whereas we add the residual probability mass to p′d. That is,

p′j =

{
bpj ·2kc

2k
for j < d

1−
∑d−1

i=1
bpi·2kc

2k
for j = d
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Clearly for j < d it holds that p′j ≤ pj . For j = d,

p′d = 1−
d−1∑
i=1

bpi · 2kc
2k

≤ 1−
d−1∑
i=1

pi · 2k − 1

2k

= 1−
d−1∑
i=1

pi + (d− 1) · 2−k . (B.1)

Recall that the number of children the prover supplies, d, is upper bounded by n, and
that 2−k ≤ n−3. Thus,

(d− 1) · 2−k ≤ n · n−3 = n−2 . (B.2)

Because D is a probability distribution we get that pd = 1−
∑d−1

i=1 pi and so plugging Eq.
(B.2) in Eq. (B.1) we get that p′d ≤ pd +

1
n2 .

Using the fact that pd ≥ 1
n it follows that 1

n2 ≤ pd
n and hence p′d ≤ pd · (1+

1
n) as required.

Appendix C Private-coin emulation

In the following appendix we prove a weaker version of the main theorem, which gives an
upper-bound on the round complexity in terms of the randomness complexity, for private-

coin interactive proof systems. The point in doing so is that the proof is signi�cantly simpler

Theorem 23 Suppose that S has an interactive proof system of randomness complexity r(n)
for instances of length n. Then, S has a private-coin interactive proof system of round com-

plexity O(r(n)/ log n) and randomness complexity r(n). Furthermore, the soundness and

completeness of the original interactive proof system are preserved.

This appendix can also be read independently from the proof of the main theorem. The
general structure of the proof is similar to the one of the main theorem. In Section C.1 we
describe the protocol tree of the original proof system. The protocol tree is used to construct
an emulation tree in Section C.2. In Section C.3 we describe the private-coin emulation, which
uses the emulation tree constructed in the previous section. The analysis of the private-coin
emulation is performed in Section C.4.

We provide notes that point out the main di�erences and similarities between
the private and public-coin emulation protocols. These notes are typeset as this
one.

C.1 The protocol tree of the original proof system

Note that the protocol tree for the public-coin emulation described in Section 3
is similar to the one described here, except for the de�nition of weights.

Fixing an interactive proof and an instance x of length n, we describe the possible prover-
veri�er interactions of the system on common input x using a tree whose height corresponds to
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the number of rounds of interaction. For some ` = `(n), we assume without loss of generality
that in each round the veri�er sends a message α ∈ {0, 1}`, and the prover's responds with
a message β ∈ {0, 1}`. We can also assume, without loss of generality, that the prover's
strategy is deterministic and �xed. Each node v in level j represents a possible prover-veri�er
transcript for the �rst j rounds of the interaction. The branching of the tree represents the
possible ways to extend the transcript to the next round. The number of ways to extend the
transcript depends only on the veri�er's message, since we �xed the prover's strategy. Hence,
each node has at most d := 2` children, corresponding to the 2` possible veri�er messages for
the next round. The prover's response to each such message is included in the description
of the corresponding node.

The description of a node u on level j contains the partial transcript γ(u) = α1β1, . . . , αjβj
of the interaction up to the j'th round. The root (at level zero) has an empty transcript,
whereas a leaf of the tree represents a complete prover-veri�er interaction. We can assume,
without loss of generality, that the veri�er sends its private coins on the last round, and hence
every leaf is associated with a sequence of coin tosses which either leads the veri�er to accept
or to reject. Hence, we can represent the possible interactions generated by the interactive
proof system using a tree of height m that has 2r(n) leaves, where m is the number of rounds
and r(n) is the number of coin tosses.

The description of a node also contains its weight, denoted w(u). The weight of the node
is the number of coin sequences that are consistent with the node and lead the veri�er to
accept at the end of the interaction. That is,

De�nition 24 (Weight of a leaf) The weight of a leaf is de�ned to be 1. Recall that a leaf

u corresponds to a full transcript of the interaction of P and V on input x, when V uses a

sequence of coin tosses ρ.

De�nition 25 (Weight of a node) The weight of a node u in the protocol tree is the sum

of the weights of the leaves that are descendants of u.

Note that the weight of node in the protocol tree, which corresponds to a possibly partial
transcript, is proportional to the probability that a sequence of coin tosses is consistent with
that transcript.

In the public-coin emulation, the weight of a leaf is de�ned as 1 if the veri�er
accepts at the end of the interaction, otherwise the weight is 0. Hence, in the
public-coin emulation the weight of the node is the number of coin sequences that
are consistent with the corresponding transcript and lead the veri�er to accept
at the end of the interaction.

C.2 The emulation tree

Using the protocol tree, we create a new tree of height O(r(n)/log n) to guide the prover's
strategy. We call this tree the emulation tree. The nodes in the emulation tree are nodes
from the protocol tree, however the children of a node u in the emulation tree may be non-
immediate descendants of u in the protocol tree.
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The procedure for constructing the private-coin emulation tree is similar to the
one described for the the main public-coin emulation, provided that the degree of
the protocol tree is poly(n). In the foregoing private-coin emulation we only care
about the height of the emulation tree, and we do not mind if the degree of the
tree is not polynomially bounded. Hence, unlike in the public-coin emulation, we
do not group the nodes under interval children in order to reduce the degree.

We start with a protocol tree T rooted at u whose weight is w(u) = 2r(n), and on each step
we modify this tree towards creating an emulation tree. We de�ne a heavy descendant of
u to be a node in T whose weight is at least w(u)

n , such that this descendant is either a leaf,

or the weight of each of its children is smaller than w(u)
n . Note that there are at most n such

nodes.
We modify T so that the children of u in the emulation tree are its original children as

well as the heavy descendants that we lift upwards to make them new children of u. This
modi�cation is performed using the Build_Tree(u) procedure, which when invoked on a node
u identi�es the nodes that will be children of u in the new tree, sets them as children of u,
and then initiates recursive invocations on the (original and new) children of u, creating the
new emulation tree rooted at u. Details follow.

Let Tu denote the temporary tree after the stage that we identify the heavy descendants
of u and raise them to be children of u. We start by identifying a heavy descendant v of u
(v can also be a child of u in T ), which will become a heavy child of u in Tu. We move v
to be a direct child of u, along with the subtree rooted at v (see Figure 14). We update the
weights of the ancestors of v that are descendants of u by subtracting w(v) o� their weight.
We then proceed to the next heavy descendant of u. When we �nish identifying all the heavy
children, the children of u in Tu consist of the heavy children of u along with the original
children of u in T . Next, we erase any nodes whose weights are 0 from the tree. The weight
of a descendant of u may become zero, for example, if all its children were identi�ed as heavy
descendants of u.

Figure 14: In the �rst step, v is identi�ed as a heavy descendant of u and moved to be a
heavy child of u. In the second step, z is identi�ed and moved to be a heavy child of u. The
triangles represent subtrees of the original tree.

Lastly, we invoke the Build_Tree procedure on each child of u in Tu, which creates an
emulation tree rooted at that node.

Observe that in the �nal emulation tree, for each node u, the weight of each grandchild
of u is at most w(u)

n . If v is a heavy child of u in the emulation tree, then the weight of

the descendants of v in Tu is at most w(u)
n . Since the children of v in the emulation tree are

descendants of v in Tu the claim holds. Otherwise, v is non-heavy child of u, so its weight is
smaller than w(u)

n and hence the weight of the children of v is also smaller than w(u)
n .
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It follows that the weight of a node in level 2r(n)/ log n is at most 2r(n)

nr(n)/ logn = 1. Recall
that we perform a clean up stage to delete nodes with weight equal to zero, and hence we
guarantee that the weights of all the nodes in the emulation tree are positive integers. It
follows that the height of the �nal emulation tree is O(r(n)/log n). We note that the number
of heavy children of each node is at most n, whereas the number of non-heavy children is
unbounded.

C.3 Emulation protocol

Next, we describe the strategy of the designated prover P and veri�er V in the new ("em-
ulation") protocol. Denote the designated prover and veri�er of the original proof system
by P0 and V0 respectively, and by EP0,V0 the emulation tree constructed in the previous
subsection. The veri�er V does not have access to the emulation tree, but it has access to the
original veri�er's strategy V0. The emulation starts with the veri�er sampling private coins
ρ ∈ {0, 1}r(n). Starting from the root of the emulation tree, in each iteration, the prover and
the veri�er progress one step down the emulation tree, until reaching a leaf that represents
the complete transcript of the original interaction.

The main di�erence between the public-coin emulation and the private-coin one
is in the way a child of a node is chosen in each iteration. In the public coin
emulation V does not have private coins, hence it must choose a continuation
based on the transcripts and the probability distributions suggested by P . In
contrast, in the foregoing emulation the values of the veri�er's private coin tosses
determine which child is chosen.

In each iteration, the prover provides the transcripts of the heavy children v1, . . . , vd of the
current node u, which was reached in the previous iteration. The veri�er preforms validations
on the list supplied by the prover (to be detailed below), and aborts if any of these validations
fail. If one of the transcripts provided by the prover is consistent with the veri�er's private
coins, then the veri�er chooses this transcript and the next iteration proceeds from this heavy
child. Otherwise, the veri�er sends its next message, according to the strategy of V0 and to
the values of its private coins ρ. The prover then answers with its response to the veri�er's
message. In this case, the continuation of the transcript corresponds to one of the non-heavy
children of u in the emulation tree. Towards the next iteration, the prover and veri�er proceed
from the new node. On the last iteration the veri�er checks that the full transcript, along
with the sequence of coin tosses, leads the original veri�er V0 to accept.

The validations that the veri�er performs are meant to ensure that the transcripts that
the prover provides for the new emulation are consistent with a deterministic prover strategy
for the original interactive proof system. In such a case, we can claim that, since the original
prover cannot fool the veri�er with high probability, the new prover cannot do so either.

De�nition 26 (Prover consistent) We say that two transcripts γ(u) and γ(v) are prover
consistent if the maximal pre�x they agree on is either empty or ends with a prover's message.

That is, the prover should respond in the same way on the same pre�x of the transcripts.

The veri�er is able to check prover consistency only between previous transcripts seen so
far in the emulation. For this reason the veri�er keeps a list S of the nodes that were seen
during the emulation, and at each iteration, it checks prover consistency between the new
transcripts and the transcripts of the nodes in S.
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Note that the nodes in S, which the veri�er has seen up to some iteration, are a subtree
of the emulation tree that consists of a path from the root of the tree to the current input
node, augmented with the children of the nodes on the path. See Figure 15.

Figure 15: The nodes in the list of seen nodes, S, in the iteration that the input node is u.

Recall that we want to claim that all the transcripts in the emulation tree E
P̃

of some
untrusted prover are prover consistent, whereas the veri�er can only check the prover consis-
tency between the transcripts of the seen nodes, which consist of a very partial portion of the
emulation tree. In order to guarantee that consistency between the nodes in S is enough to
ensure that all the transcripts in the emulation tree are prover consistent, we add additional
validations that check the structure of the emulation tree. The goal of these checks is to make
sure that the emulation tree was constructed using a protocol tree where the only changes
done to the protocol tree are "raising" parts of the tree (has done with the heavy children in
the designated construction) 6.

Initially, for the �rst iteration, the veri�er samples its private coins ρ ∈ {0, 1}r(n). The
input node is the root. The veri�er sets the set S of seen nodes to contain the transcript
of the root, which is the empty string. The rest of the �rst iteration, as well as subsequent
iterations, proceed as follows.

Construction 27 (the ith iteration) On input a node u and list of seen nodes S.

1. The prover provides the transcripts of the heavy children v1, . . . , vd of u: γ(v1), . . . , γ(vd).

2. The veri�er preforms the following validations and rejects if any of them fails:

(a) For each j ∈ [d] the veri�er checks that γ(u) is a proper pre�x of γ(vj).

(b) For each j ∈ [d] the veri�er checks that the transcript γ(vj) is prover consistent
with the other transcripts in S and with the other transcripts γ(vk).

(c) For each j ∈ [d] the veri�er checks that γ(vj) is not part of the emulation tree that
was truncated from γ(u); that is, if γ(u) is a proper pre�x of a transcript γ̃ ∈ S,
then γ̃ should not be a pre�x of γ(vj). (Note that this also implies that γ(vj) is
di�erent from the other transcripts in S.)

(d) The veri�er checks that all the nodes are di�erent (according to their transcripts),
that is, for each distinct i, j ∈ [d] the veri�er checks that γ(vi) 6= γ(vj).

6We note that these validations (i.e. the validations other than the prover consistency check) are performed
in order to aid the analysis. An alternative way to perform the analysis is to claim that all the transcripts that
are feasible, in the sense that the veri�er might choose them in some invocation of the emulation, are consistent
with some deterministic prover strategy. (This means that the transcripts that fail the structural validations
are ones that the veri�er never chooses anyways, so we can ignore them when de�ning a deterministic strategy
for the original prover.)
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3. The veri�er checks if any of the transcripts the prover provided are consistent with the
values of its private coins ρ, where a transcript γj = α1β1, . . . , αkβk is consistent with a
sequence of private coins ρ, if for every i ∈ [k] it holds that V0(x, ρ, β1, . . . , βi−1) = αi.
There are two options according to whether or not there exists a suggested transcript
that is consistent with ρ.

(a) If there exists a transcript that is consistent with ρ, the veri�er sends the prover
the maximal transcript γ(vj) that is consistent with its coins. The prover and
the veri�er update the input node u for the next iteration to be vj . The veri�er
updates the set S of seen transcripts S ← S ∪ {γ(v1), . . . , γ(vd)}.

(b) Otherwise, the veri�er sends its next message α according to the value of its private
coins ρ. That is, if the current transcript is γ(u) = α1β1, . . . , αkβk, then the
veri�er sends α such that V0(x, ρ, β1, . . . , βk) = α. The prover answers with a
message β such that γ(u)αβ is a transcript of a child of u in the emulation tree.
(The assumption that there exists such a child in the emulation tree is justi�ed
in the completeness part of the analysis.) The veri�er updates the set S of seen
transcripts; that is, S ← S∪{γ(v1), . . . , γ(vd), γ(u)αβ}. Towards the next iteration
the prover and the veri�er update the input node for the next iteration to be the
node in the emulation tree whose transcript is γ(u)αβ.

Unless γ(u) is the complete transcript (which contains the last message), the next iteration
will start with transcript γ(u) and the set S. Otherwise, we proceed to the �nal checks.

Final check. After the complete transcript γ = α1β1, . . . , αmβm has been determined, the
veri�er V accepts if and only if ρ is accepting for γ; that is, if V0(x, ρ, β1, . . . , βm) = 1.

Number of rounds. In the proposed emulation each iteration consists of a prover message
in Step 1, followed by a veri�er message in Step 3, and then possibly another prover message in
Step 3b. Hence each iteration takes two rounds of communication. However, we can augment
the last prover message in Step 3b with the prover message in Step 1 of the next iteration.
Thus, the number of rounds of communication is the number of iterations of the emulation
protocol plus one.

C.4 Proof of correctness

C.4.1 Completeness

We claim that if x is a yes-instance, then the new veri�er V accepts with probability greater
than c(n), the completeness parameter of the original interactive proof system. The proof of
completeness is partitioned into three parts. First, we shall show that the prover's strategy
P , as speci�ed in subsection C.3, is indeed well de�ned; speci�cally, we shall show that if the
veri�er does not choose one of the continuations suggested by the prover, but rather sends
its next message according to the value of its coin tosses, then there is an unique node in the
emulation tree that corresponds to the new transcript. Next, we show that the strategy of
P is such that V does not abort until the �nal check. Finally, we show that this implies
that the probability that V accepts at the end of the interaction with P is equal to the
probability that V0 accepts at the end of the interaction with P0, which is at least c(n).
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The prover's strategy is well de�ned. We begin by showing that the the strategy of
P in Step 3b is well de�ned. That is, we have to show that if the veri�er does not choose one
of the suggested continuations of u provided by the veri�er, but rather sends its next message
α in Step 3b according to the value of its coin tosses ρ, then u has an unique child in the
emulation tree EP0,V0 whose transcript is γ(u)αβ for some β ∈ {0, 1}`.

Let β be the message P0 sends in response to the transcript γ(u)α. All the nodes in
EP0,V0 appear in TP0,V0 , and thus all the transcripts must be consistent with the strategy of
P0. Thus, every transcript in EP0,V0 whose pre�x is γ(u)α must proceed with β. Note that u
cannot have two children whose transcripts are γ(u)αβ since all the transcripts in TP0,V0 are
distinct, and the same must hold in EP0,V0 . The reason that u has a child whose transcript is
γ(u)αβ is as follows. If continuations of γ(u) that are consistent with the values of V 's private
coin tosses were not suggested by the prover P in this iteration or a previous one, then this
implies that γ(u)αβ was not raised to be a heavy child of an ancestor of u, and hence it is
a child of u in EP0,V0 . Similarly, the leaf whose transcript is the complete interaction with
private coins ρ was not not raised to be a heavy child of u or of its ancestors, and hence it is
a descendant of γ(u)αβ in EP0,V0 . Thus, the weight of the node whose transcript is γ(u)αβ
is non-zero, so it was not erased from the tree, and it is a child of u.

The validations in Step 2 are satis�ed. We shall show that the validations in Step 2
are satis�ed in every iteration. This is equivalent to showing that validations are satis�ed for
every non-leaf node u in the �nal emulation tree EP0,V0 , in the iteration that u was the input
node (i.e. the node handled on that iteration).

Showing that the validations in Step 2 are satis�ed is a simpli�ed version of the
completeness proof of the public-coin protocol, which is given in Subsection 6.1.

The general outline of the proof consists of going over every validation performed and showing
that the property being checked holds for every node in the original protocol tree TP0,V0 ,
and continues to hold with every modi�cation of the global tree as part of the Build_Tree
procedure. Thus, the property also holds for every node in the �nal emulation tree EP0,V0 ,
and hence the validations are satis�ed.

When we say that a validation passes relative to a (possibly intermediate) tree T and
node u in T , we mean that if the tree T had been used as an emulation tree, then in the
iteration on which u is the input node, the validation would have passed. The children of u
that are considered in the validation are the children of u in T , and the list of the seen nodes
S consists of the ancestors of u and their children in T .

Let T be the global tree at some point in the construction, and let z be a node in T that the
Build_Tree procedure is currently invoked on. We assume that the validation we are currently
checking holds for every node in T , and show that it also holds after the next modi�cation of
the tree, which is identifying a heavy descendant for z as part of the Build_Heavy procedure
and moving it to be a child of z. Denote the child identi�ed by v, and the global tree after
this modi�cation by Tv.

Note that it is not su�cient to show that the property being checked holds for v in Tv.
This is because the procedure might a�ect the descendants and ancestors of v in Tv, as well
as nodes whose list of seen nodes changes. Exactly which nodes are e�ected depends on the
validation.

Remark 28 Let v be a node in T that the Build_Tree procedure has not been invoked on

yet. Recall that the children of v in T are children of the node v in TP0,V0. Hence, like in
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the tree TP0,V0, the transcripts of the children of v in T extend the transcript of v by one pair

of messages. Furthermore, if we did not invoke Build_Tree on v yet, then we also did not

invoke it on the descendants of v in T . Thus, the subtree of T rooted at v, denoted by T (v),
is a subtree of TP0,V0.

Now, we go over the validations in Step 2, which are stated for a node u and its children
v1, . . . , vd provided by the prover as part of the emulation. The validations are numbered as
in Construction 27. We shall prove that these validations pass for every node in EP0,V0 .

(a) In this validation, for each j ∈ [d] the veri�er checks that γ(u) is a proper pre�x of γ(vj).
In the original protocol tree TP0,V0 the transcript of each node extends the transcript
of its parent by a pair of messages and thus the property holds. Assume that every
node in some temporary tree T maintains the property that its parent's transcript is a
proper pre�x of its transcript. Let v be a heavy descendant identi�ed for z and moved
to be a child of z along with the subtree under it. The only node in Tv that has a child
it did not have in T is z, which now has v as a child. Since v is a descendant of z in T ,
and the transcript of every node in T is a proper pre�x of the transcripts of its children,
then the transcript of z is a proper pre�x of the transcript of v. Hence, in the new tree
Tv, the transcript of each node is a proper pre�x of the transcript of its children as well.

(b) In this validation, the veri�er checks, for each child vj of u, that γ(vj) is prover consistent
with respect to the other transcripts of nodes in S and with respect to the transcripts
of the other children of u.
In the original protocol tree, TP0,V0 , every two nodes are prover consistent since P0 is
deterministic. (If there were two partial transcript in TP0,V0 whose maximal common
pre�x ends with a veri�er message it would mean that that the prover can respond in
di�erent ways to the same partial transcript). The transcripts of the nodes in EP0,V0 all
appear in TP0,V0 , so every two transcripts in EP0,V0 are prover consistent as well.

(c) In this validation the veri�er checks, for each child vj of u, that vj is not part of the
emulation tree that was truncated from γ(u); that is, if γ(u) is a pre�x of a transcript
γ̃ ∈ S, then γ̃ should not be a pre�x of γ(vj). (Note that this also implies that for each
transcript γ̃ ∈ S that γ̃ 6= γ(vj).)

The main idea is that the changes we make to the emulation tree in every step of the
construction are identifying a heavy descendant and moving it to be a direct child along
with the subtree under it. Hence, if some node v whose transcript is γ̃ = γ(v) and is a
descendant of u, is identi�ed as a heavy child of an ancestor of u, denoted by z, then v
is moved, along with the subtree rooted at v, to be a descendant of z. Hence, all the
nodes that γ(v) is a pre�x of and are descendants of v cannot be descendants of u, and
in particular they cannot be children of u after the move. However, it is not clear that
after moving v to be a heavy child of z the only potential nodes that we need to check
that the claim holds for are the ancestors of v (note that above we assumed that u is
an ancestor of v). Moreover, it is not true that all the nodes that γ(v) is a pre�x of are
descendants of v in the emulation tree, since some of these nodes might have been lifted
to be heavy children of ancestors of v in a previous iteration. Hence, a detailed proof
follows.

When we consider a temporary tree T , which may not be the �nal emulation tree, and
some node v ∈ T , then we denote by S(v) the set of seen nodes S in the beginning of
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the iteration where v is the input node handled. That is, S(v) is the set containing the
nodes that are ancestors of v in T , augmented with their children.

Let u ∈EP0,V0 and γ̃ ∈ S(u) such that γ(u) is a pre�x of γ̃ we prove that for each
descendant b of u in EP0,V0 the transcript γ̃ is not a pre�x of γ(b).

Note this is a stronger claim than what we need to show, because we only need to show
it for the children of u in EP0,V0 and not for each descendant of u.

First, we shall show that the claim holds in the initial protocol tree TP0,V0 . The transcript
of each node is TP0,V0 is a pre�x only of its descendants in the tree. However, u is not
an ancestor of any node in S(u), so γ(u) cannot be a pre�x of any γ̃ ∈ S(u). Next, we
shall assume that the claim holds in the global tree T before creating a child v of z, and
we show that it holds in the tree Tv after the identi�cation v as a heavy child of u.

When v is identi�ed as a heavy descendant of z, node v is moved to be a child of z along
with the subtree under it. In order to show that the claim holds in Tv, it is enough to
consider the nodes u ∈ Tv that have new descendants or new nodes in S(u) relative to
the ones they had in T . The descendants of every node in Tv are all descendants of it
in T .

The only nodes in Tv that have new nodes in their seen list are the descendants of z,
since now γ(v) is in their seen list, whereas γ(v) may not have been in their seen list
before the move. By Remark 28, before the invocation of Build_Tree(z) the subtree
rooted at z is a subtree of TP0,V0 . Let u be a descendant of z in Tv. Since determining
the heavy descendants of z is done bottom up, if γ(u) is a pre�x of γ(v) then u is an
ancestor of v in T . It is left to check that γ(v) is not a pre�x of the transcripts of the
descendants of u in Tv. By Remark 28, it follows that the subtree of Tv rooted at u,
denoted by Tv(u), is a subtree of TP0,V0 . Thus, because v /∈ Tv(u) (recall that v was
lifted to be a heavy child of z, and u is a descendant of z) it follows that γ(v) is not
a pre�x of the transcripts of the nodes in Tv(u), which are the descendants of u in Tv.
(See Figure 16.)

Figure 16: v is identi�ed as a heavy child of z, and u is a descendant of z, which was an
ancestor of v in T .

(d) In this check the veri�er checks that all the children of u have di�erent transcripts; that
is, for every two distinct children vi and vj of u, the veri�er checks that γ(vi) 6= γ(vj).
In the original protocol tree TP0,V0every two nodes have di�erent transcripts. The nodes
in EP0,V0 all appear in TP0,V0 , so every two nodes in EP0,V0 also have di�erent tran-
scripts, and in particular every two children of u have di�erent transcripts.
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Concluding the proof of completeness. In order to conclude the proof of completeness
we use the following claim, which shows that the probability that V accepts at the end of the
interaction with P is equal to the probability that V0 accepts at the end of the interaction
with P0. The claim is stated in a more general way than needed for the proof of completeness,
so that we shall also be able to use it in the soundness part of the analysis.

Claim 29 (Relating leaves in the two trees) Let P̃ be a prover strategy for the emulation

of input x, with emulation tree E
P̃

such that the veri�er V does not abort until the �nal

checks. Let P̃0 be a prover strategy for the original interactive proof system that is consistent

with all the transcripts in E
P̃
; that is, for every u ∈E

P̃
with transcript γ(u) = α1β1, . . . , αjβj,

the strategy of P̃0 satis�es P̃0(x, α1, . . . , αi) = βi for every i ≤ j. Then, the transcript γ
created by the end of the emulation of P̃ and V when using coins ρ is equal to the transcript

interacted between P̃0 and V0 when using coins ρ. Thus, the probability that V accepts at

the end of the interaction with P̃ is equal to the probability that V0 accepts at the end of the

interaction with P̃0.

The proof of completeness follows by using in Claim 29, P as P̃ and P0 as P̃0 .
Indeed, we can do so because as showed previously it holds that V does not abort until the
�nal checks when interacting with P . In addition, since the emulation tree was constructed
using the protocol tree TP0,V0 , for every node u in the emulation tree with transcript γ(u) =
α1β1, . . . , αjβj it holds that P0(x, α1, . . . , αi) = βi for every i ≤ j. Applying Claim 29, the
probability that V accepts at the end of the interaction with P is equal to the probability
that V0 accepts at the end of the interaction with P0. Thus, the completeness of the original
interactive proof system is maintained.

Proof. Let ρ be the value of the coins of V . By the assumption, all the transcripts in the
emulation tree E

P̃
are consistent with the strategy of P̃0. Recall that, in each iteration of the

emulation of V and P̃ , a new node in E
P̃

is chosen, and the continuation of the transcript
is according to the transcript of the new node. Hence, in each iteration the continuation of
the transcript must be consistent with the transcript of P̃0. The proof follows by noting that
the continuations of the transcript are also consistent with the strategy of V0 with coins ρ.
That is, if the veri�er V chooses a continuation of the transcript suggested by P , then this
transcript must be consistent with the strategy of V0 with coins ρ. Otherwise, the veri�er
sends its next message based on the strategy of V0 with coin tosses ρ. It follows that in every
iteration the current transcript is consistent with the strategy of P̃0 and V0 with coins ρ.

From the assumption that V does not abort until the �nal checks, we know that after the
last iteration the complete transcript had been interacted. Hence, this complete transcript is
equal to the transcript of the interaction between P̃0 and V0 with coins ρ.

The �nal check of the emulation of P̃ and V with random coin ρ pass if and only
if V0 with coins ρ accepts the complete transcript that has been interacted. Recall that
the private coins in the original and new emulation are sampled using the same probability
distribution. Thus, the probability that V accepts at the end of the interaction with P̃ is
equal to the probability that V0 accepts at the end of the interaction with P̃0.

C.4.2 Soundness

Let x be a no-instance. We shall show that V rejects x with probability at least s(n), the
original soundness parameter.
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The main part of the soundness proof here is Lemma 30, which is a slightly
simpli�ed version of Lemma 16 in Section 6.2.1. The other two components of
the soundness analysis of the public-coin system (which are de�ning the notion
of real weight of a node, and the actual proof of soundness) are not required for
the private-coin soundness analysis.

The crux of the proof is extracting a deterministic strategy P̃0 for the original prover using
the strategy of P̃ . We can assume, without loss of generality, that P̃ is deterministic since
for every probabilistic prover there is a deterministic prover for which the veri�er's rejection
probability is at least as high. Because the prover is deterministic we know that there is an
emulation tree underlying the prover's strategy P̃ (this emulation tree is simply the protocol
tree of the new interactive proof system). We denote this emulation tree by E

P̃
. We de�ne

a strategy for P̃0 by using the transcripts in E
P̃
. That is, for each u ∈E

P̃
with transcript

γ(u) = α1β1 . . . , αjβj , we de�ne P̃0(x, α1, . . . , αi) := βi for all i ≤ j. We extend P̃0's strategy
to transcripts that do not appear in E

P̃
in an arbitrary way. The main part of the analysis

consists of showing that the transcripts of every two nodes in E
P̃

are prover consistent, i.e.

that their maximal common pre�x ends with a prover message, and thus the strategy of P̃0 is
well de�ned.

We can assume, without loss of generality, that the strategy of P̃ is such that the veri�er
does not abort until the �nal checks. This is because every prover strategy in which the
veri�er aborts in one of the intermediate checks can be modi�ed to a prover strategy in which
the veri�er does not abort until the �nal check and the veri�er's acceptance probability is at
least as large. In Lemma 30 we show that this implies that all the transcripts in E

P̃
are

prover consistent, and thus the strategy of P̃0 is well de�ned. The proof of soundness then
follows by applying Claim 29 (provided in subsection C.4.1), that implies that the probability
that V accepts when interacting with P̃ is equal to the probability that V0 accepts when
interacting with P̃0, which is at most the soundness parameter s(n).

It is left to show that the strategy of P̃0 is well de�ned, i.e. that no two nodes u, v ∈E
P̃

share
the pre�x of prover-veri�er interaction but di�er on the prover's response. That is, we show
that every two nodes u, v ∈E

P̃
are prover consistent (see De�nition 26).

For a node u ∈E
P̃

provided during the emulation, denote by S(u) the list of seen nodes
from E

P̃
at the beginning of the iteration in which u was the input node (i.e. was the node

handled on that iteration). That is, the nodes in S(u) are the ancestors of u in E
P̃

and their
children. Validation 2b implies that each node u in the emulation tree is prover consistent
with the transcripts of the nodes in S(u). We show that using validations 2a,2c and 2d it
follows that every two transcripts in the emulation tree are prover consistent.

Lemma 30 (Prover consistency of the emulation tree). If P̃ is a prover strategy for the

new emulation such that the veri�er V does not abort until the �nal checks, then every two

transcripts of nodes in the emulation tree E
P̃

are prover consistent.

Note that the following proof is a slightly simpli�ed version of the proof of Lemma
16 in Section 6.

Proof. Let u and v two nodes in the emulation tree E
P̃
, we wish to show that their transcripts

γ(u) and γ(v) are prover-consistent. If one of the nodes is in the seen node list S of the other
node (that is if u ∈ S(v) or v ∈ S(u)) then the transcripts of u and v must be prover consistent
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by validation 2b. Otherwise, the intersection between the list of seen nodes of u and v is non-
empty, and particular it contains the least common ancestor of u and v, denoted by z, as well
as the children of z that are ancestors of u and v, denoted by a and b respectively, see Figure
17 for illustration. (Note that z is not equal to u or to v, otherwise u ∈ S(v) or v ∈ S(u).
Similarly a 6= u and b 6= v.) Hence, by using the prover consistency between the transcripts of
a, b, z and the transcript of u, as well as between the transcript of v, and by using structural
validations between the nodes in the emulation tree (validations 2a, 2c and 2d) we are able
to show that the transcripts of u and v are also prover consistent. Details follow.

Figure 17: The subtree of EP0,V0 that contains u and v

Since a is an ancestor of u and b is an ancestor of v, then γ(a) is a proper pre�x of γ(u),
and γ(b) is a proper pre�x of γ(v). We consider two cases according to the relation between
γ(a) and γ(b).

First, consider the case that γ(a) is not a pre�x of γ(b) and γ(b) is not a pre�x of γ(a).
By validation 2a we know that each node in this path from u to a is a pre�x of its parent.
Thus, γ(a) is a pre�x of γ(u). Similarly, γ(b) is a pre�x of γ(v). Recall that we are in the
case that γ(a) is not a pre�x of γ(b) and γ(b) is not a pre�x of γ(a), and so the maximal
pre�x on which γ(a) and γ(b) agree upon is a proper pre�x of both. This common pre�x
equals the maximal pre�x on which γ(u) and γ(v) agree. We know that γ(a) and γ(b) are
prover-consistent because the prover provides a along with b as children of z and we assume
that validation 2b is satis�ed. Since the maximal pre�x that γ(u) and γ(v) agree on is equal
to the maximal pre�x that γ(a) and γ(b) agree on, it follows that γ(v) and γ(u) are also
prover-consistent. See Figure 18 for illustration.

Figure 18: γ(a) and γ(b) agree on the pre�x in white, while γ(a) is a pre�x of γ(u) and γ(b)
is a pre�x of γ(v).

Note that γ(a) cannot be equal to γ(b) since that would be a violation of validation 2d.
We are left with the case that one of the transcripts γ(a) and γ(b) is a proper pre�x of the
other, and assume, without loss of generality, that γ(a) is a proper pre�x of γ(b). Denote the
transcript of b by γ(b) = α1β1, . . . , αkβk.
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We claim that γ(b) is not a pre�x of γ(u). Assume in contradiction that γ(b) is a pre�x
of γ(u). Note that b ∈ S(u), so by validation 2c, γ(b) 6= γ(u), so γ(b) must be a proper pre�x
of γ(u). Denote the nodes in the path from a to u in E

P̃
by a = a0, a1, . . . , ak = u and by aj

the �rst node in the path such that γ(aj) is a pre�x of γ(b) and γ(aj+1) is not a pre�x of γ(b).
There must exist such node aj since γ(a) is a pre�x of γ(b), and γ(u) is not a pre�x of γ(b).
Note that since aj+1 is an ancestor of u in E

P̃
, then by validation 2a it follows that γ(aj+1) is

a pre�x of γ(u). Hence, γ(b) and γ(aj+1) are both pre�xes of γ(u). Thus, one of them must
be a pre�x of the other, and so in this case γ(b) is a pre�x of γ(aj+1). It follows that we have
a violation to validation 2c, since b ∈ S(aj) where γ(aj) is a pre�x of γ(b) and γ(b) is a pre�x
of γ(aj+1) (see Figure 19). Hence, we reached a contradiction to the hypothesis that V does
not abort in the intermediate validations, and so γ(b) cannot be a pre�x of γ(u).

Because γ(b) is not a pre�x of γ(u), the maximal common pre�x of γ(u) and γ(b) is a
proper pre�x of γ(b). We know that b ∈ S(u) because b is a child of z, which is an ancestor
of u. Hence, by validation 2b, the transcript of u and the transcript of b ∈ S(u) are prover
consistent. It follows that the maximal common pre�x of γ(u) and γ(b), which is a proper
pre�x of γ(b), ends with a prover message.

Figure 19: The dashed arrow pointing from b to aj+1 represent the fact that γ(b) is a pre�x
of γ(aj+1), and similarly that γ(aj) is a pre�x of γ(b).

Lastly, note that from validation 2a the transcript of each node in the path from b to v
is a pre�x of the transcript of its parent. Thus, γ(b) is a pre�x of γ(v). It follows that the
maximal common pre�x of γ(v) and γ(u) is contained in the maximal common pre�x of γ(u)
and γ(b), so it ends with a prover message (See Figure 20).

Figure 20: The maximal common pre�x between γ(u) and γ(b) appears in white. Since γ(b)
is a pre�x of γ(v) the maximal common pre�x of γ(u) and γ(v) is the same as the former.
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