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Abstract

The complexity class TFNP is the set of total function problems that belong to NP:
every input has at least one output and outputs are easy to check for validity, but it
may be hard to find an output. TFNP is not believed to have complete problems, but
it encompasses several subclasses (PPAD, PPADS, PPA, PLS, PPP) that do, plus sev-
eral other problems, such as Factoring, which appear harder to classify. In this paper
we introduce a new class, which we call PTFNP (for “provable” TFNP) which contains
the five subclasses, has complete problems, and generally feels like a well-behaved close
approximation of TFNP. PTFNP is based on a kind of consistency search problem that
we call Wrong Proof: Suppose that we have a consistent deductive system, and a
concisely-represented proof having exponentially many steps, that leads to a contradic-
tion. There must be an error somewhere in the proof, and the challenge is to find it.
We show that this problem generalises various well-known TFNP problems, including the
five classes mentioned above, making it a candidate for an overarching complexity char-
acterisation of NP total functions. Finally, we note that all five complexity subclasses of
TFNP mentioned above capture existence theorems (such as “every dag has a sink”) that
are true for finite structures but false for infinite ones. We point out that an application
of Jacques Herbrand’s 1930 theorem shows that this is no coincidence.

1 Introduction

The complexity class TFNP is the set of total function problems that belong to NP; that is,
every input to such a nondeterministic function has at least one output, and outputs are easy
to check for validity — but it may be hard to find an output. It is known from Megiddo [17]
that problems in TFNP cannot be NP-complete unless NP is equal to co-NP. On the other
hand, various TFNP problems, such as Factoring and Nash are believed to be genuinely
hard [20, 11, 9].

Presently, our understanding of the complexity of TFNP problems is a bit fragmented.
Our only means for deriving any evidence of hardness for TFNP problems is by showing
completeness in one of the five known subclasses of TFNP, corresponding to well-known
elementary non-constructive existence proofs:
• PPP (embodying the pigeonhole principle);
• PPAD (embodying the principle “every directed graph with an unbalanced node must

have another”);
• PPADS (same as PPAD, except we are looking for an oppositely unbalanced node);
• PPA (“every graph with an odd-degree node must have another”), and
• PLS (“every dag has a sink”).
Much is known about these classes. PPP is known to contain PPAD and PPADS, while

essentially all other possible inclusions are known to be falsifiable by oracles, see for exam-
ple [2]. They all have complete problems (actually, the most commonly used definition of,
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for example, PPAD is “all NP search problems reducible to End of the Line”), and most
(PLS, PPAD, PPA) have many other natural complete problems besides the basic one.

Even the union of these classes does not provide a home for all natural TFNP problems.
For example, Factoring is only known to be reducible to PPP and PPA through randomized
reductions [14]. The problem Ramsey (e.g., “Given a Boolean circuit encoding the edges of
a graph with 4n nodes, find n nodes that are either a clique or an independent set”) is not
known to be in any one of the five classes, and the same obtains for a problem that could be
called Bertrand-Chebyshev (“Given n, produce a prime between n and 2n”).

The status quo in TFNP, as described above, is a bit unsatisfactory. Many natural
questions arise: Are there other important complexity subclasses of TFNP, corresponding to
novel nonconstructive arguments? Can the three rogue problems above (along with a few
others) be classified in a more satisfactory way?

More importantly, is there a more holistic, unified approach to the complexity of TFNP
problems? For example, are there TFNP-complete problems? The answer here is strongly
believed to be “no”, as TFNP (the set of all polynomial-depth nondeterministic computations
that have a witness, for every input) is very similar in spirit and detail to the classes UP
(computations with at most one witness, for every input) and BPP (computations whose
fraction of witnesses is bounded away from half, for every input), both known to have no
complete problems under oracles [21, 12]. Indeed, Pudlák ([19], Section 6) presents a similar
result specifically for TFNP. Hence, this route for a unified complexity view of total functions
is not available.

In this paper we make a first step towards the development of a more unified complexity
theory of TFNP problems. We define a new subclass of TFNP that includes all five known
classes. This new class, which we call PTFNP (for “provable TFNP”), does have complete
problems, and these problems are therefore natural generalisations of all known completeness
results in TFNP.

In particular, we define a kind of consistency search problem, a notion that has recently
been studied in the literature on Bounded Arithmetic [4]. Fix a consistent deductive system
— in this paper we use a propositional proof system (the domain is the values true/false), in
contrast with Bounded Arithmetic, in which variables range over the integers. Now consider
a Boolean circuit which, when input an integer j, produces the jth line of an exponentially
long purported proof in this system (the line itself is of polynomial length). Suppose further
that this proof arrives at a contradiction (one of the lines is “false”). There surely must be a
mistaken line in this proof; the challenge is to find it! We call this problem Wrong Proof,
and we define PTFNP as the set of all search problems reducible to it; it is obviously a subset
of TFNP. We establish that PTFNP contains PPP (and by extension, PPAD and PPADS),
and also PPA and PLS. The study of exponentially-long proofs that are presented concisely
via a circuit was introduced by Kraj́ıček [16].

Of course, any finite collection of problems — or classes with complete problems — can
be generalised in a rather trivial way, by proposing a new problem or class that artificially
incorporates the key features of the old ones. However, Wrong Proof makes no explicit
reference to the problems that are complete for the above complexity classes. Furthermore,
it doesn’t use very “powerful” logic; essentially we just use quantified boolean formulae with
polynomially-many propositional variables, an exponential sequence of n-ary function sym-
bols, and no predicates. The novel features that we exploit are the ability to use exponentially
many steps, together with the exponential sequence of function symbols.

Does PTFNP contain Factoring, Ramsey, and Bertrand-Chebyshev? In the final
section we discuss the question. Finally, notice that the heretofore “five subclasses” of TFNP
correspond to five elementary non-constructive existence arguments in combinatorics, and
all these five elementary arguments share one intriguing property: They only hold for finite
structures, and are false in infinite ones. We show in Section 7 that this is no coincidence:
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Herbrand’s Theorem from 1930 [13, 5] tells us that any existential sentence in predicate
calculus that is true for all models (finite and infinite) is equivalent to the disjunction of a
finite number of quantifier-free formulas; it follows that the corresponding TFNP problem is
necessarily in P.

Related Recent Work

Various connections have been made between the complexity of TFNP problems and formal
proofs, a research direction that seems timely and productive. In a recent paper [3], Arnold
Beckmann and Sam Buss, working within the tradition of bounded arithmetic [4], prove
certain results that appear to be closely related to the present ones. They define a problem
closely related to our Wrong Proof, and in fact in two versions, one corresponding to Frege
systems, and another to extended Frege. Then they show these to be complete for the classes
of total function problems in NP whose totality is provable within the bounded arithmetic
systems U1

2 and V 1
2 , respectively. The present paper differs from this (and other work in

Bounded Arithmetic in general) in that we reduce TFNP problems to a propositional proof
system. Also, our focus is on TFNP problem-instances represented using circuits, rather than
via oracles.

There are some well-known reducibilities amongst PPAD-like complexity classes, for ex-
ample that PPAD reduces to PPADS, which reduces to PPP. Buss and Johnson [8] connect
these results with derivability relationships (in a proof system) amongst the combinatorial
principles that guarantee that they represent total search problems; so for example, the prin-
ciple underlying PPAD can be derived from the one underlying PPADS, and generally, any
such derivability result would tell us that the deriving corresponding complexity classes gen-
eralises the other. Our focus here, in contrast, is on formal proofs that correspond with
individual instances of TFNP problems (finding an error in the proof allows us to find a
solution for the corresponding problem-instance).

Pudlák [19] shows how every TFNP problem reduces to a Herbrand consistency search
problem: any TFNP problem X is characterised by an associated formula Φ whose Herbrand
extension is guaranteed to be satisfiable, but the challenge of finding a satisfying assignment
is equivalent to X. This correspondence is somewhat reminiscent of Fagin’s theorem. The
focus of [19] is not on syntactic guarantees that we have a total search problem: it would
be hard to check whether a given Φ corresponds to a TFNP problem. By contrast, our
definition of Wrong Proof is intended as a highly-general TFNP problem for which there
is a syntactic guarantee that any instance has a solution.

In contrast with most TFNP-related work within bounded arithmetic, we focus on the
“white box” concise circuit model of the functions that define the problems characterising
the complexity classes of interest. In some respects this makes a significant difference: for
example, a recent paper of Komargodski et al. [15] shows that any such TFNP problem has
a query complexity proportional to the description-size of a problem instance.

Background on propositional proofs and the pigeonhole principle

In 1979, Cook and Reckhow [10] initiated the study of the proofs of propositional tautologies,
with regard to the question of how long do such proofs need to be. Abstractly, a proof system
for a language (here, the set of tautologies) is a scheme for producing efficiently-checkable
certificates for words in that language. As noted in [10], a polynomially bounded proof system
for tautologies is only possible if NP is equal to co-NP. They obtain results that various proof
systems can efficiently simulate each other; these results allow us to conclude that one such
system is polynomially bounded if and only if another such system is.

[10] introduce Frege and extended Frege systems: roughly, in a Frege system a proof
consists of a sequence of lines containing propositional formulae that are either generated
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by some axiom scheme (and are known to hold for that reason) or are derivable by modus
ponens from two formulae in previous lines of the proof. In an extended Frege system, we
also allow lines that introduce a new propositional variable and set it to equal a propositional
formula φ over pre-existing variables. The new variable can then be plugged in to a larger
formula as a shorthand for φ, and if this process is iterated, it may result in an exponential
saving in space. It remains a central open problem in proof complexity whether extended
Frege proofs can in general be simulated by Frege proofs, with only a polynomial blowup in
size of the proof.

In studying this question, various candidate classes of formulae have been considered, the
most widely-studied being ones that express the pigeonhole principle, as introduced in [10].
The “n + 1 into n” version of this, denoted PHPn+1

n , states that a function from n + 1
input values to n output values must map two different inputs to the same output. That
is, f : [n + 1] → [n] must have a collision: two inputs that f maps to the same output1. f
can be described by a propositional formula ψ (whose variables indicate which numbers map
to which according to f , specifically, variable Pij is true if and only if i is mapped to j)
stating “each number in the domain maps to some number in the codomain, and any pair
map to different values.” By the pigeonhole principle, ψ is unsatisfiable, so its negation φ
is a tautology (and φ has size polynomial in n). [10] gave polynomially-bounded extended
Frege proofs of these expressions. Buss [6] subsequently gave polynomially-bounded Frege
proofs of these, and in [7] quasi-polynomial size Frege proofs that are a reformulation of the
extended Frege proofs of [10]. See [7] for a discussion of other candidate classes of formulae
and progress that has been made on them.

Papadimitriou [18] introduced the Pigeonhole circuit problem, in which a pigeonhole
function on an exponential-sized domain is concisely presented via a boolean circuit C. ψ
as constructed above would be exponentially large in C, but a “dual” statement that two
inputs to C map to the same output can still be expressed as a concise propositional formula
φ. By construction, φ is satisfiable, and a short proof of this fact consists of a satisfying
assignment, but in general such a satisfying assignment appears to be hard to find, and this
search characterises the complexity class PPP. In seeking to better understand the challenge,
we find a new point of contact between the pigeonhole principle and proof complexity. The
difference here is we have a propositional formula that is known to be satisfiable; we want to
exhibit a proof of this; but the naive approach of just exhibiting a satisfying assignment is
believed to be hard, so instead we fall back on a long and “opaque” proof of satisfiability.

A general question we have only partly answered is, what sort of logic is needed to express
such a proof? We have managed to keep it first-order, but we require (exponentially many)
lines that define the behaviour of function symbols; thus we have something that corresponds
with extended Frege, rather than just Frege proofs, and moreover, these extension rules
introduce new functions rather than just new propositional variables. As we discuss in the
penultimate section, it would be of interest to see if these proofs could be done just defining
exponentially many additional propositional variables.

Organisation of this paper

Section 2 gives details of our deductive system and the problem Wrong Proof. Section 3
shows how to prove unsatisfiability of certain existential expressions, in such a way that any
error in the proof allows a satisfying assignment to be readily reconstructed. Sections 4,5,6
reduce PPP, PPA, and PLS problem-instances to proofs that corresponding existential ex-
pressions are satisfiable. (The expressions are the ones we can also “prove” unsatisfiable.)
In Section 7 we apply Herbrand’s theorem to show that only “finitely valid” combinatorial
principles may give rise to hard total search problems. We conclude in Section 8.

1We use the standard notation that for a positive integer x, [x] denotes the set {1, 2, . . . , x}.

4



2 Deductive systems and the Wrong Proof problem

A deductive system (or proof system) is a mechanism for generating expressions in some well-
defined (formal) language. The expressions should come with a semantics, defining which ones
are true and which false. A basic property of a system is consistency, that it should not be
able to generate two expressions that contradict each other. Consistency is ensured if the rules
of the system are valid, in the sense that we cannot deduce any false expressions from true
ones. For the deductive system in this paper, the language (and corresponding semantics)
of interest is simple and straightforward, and it’s not hard to check that it’s consistent. The
Wrong Proof problem of Definition 2 formalises the computational challenge of receiving
a proof of two expressions that contradict each other, and searching for an erroneous step in
the proof (guaranteed to exist by the contradiction that we are shown).

The set of expressions that can be produced by a deductive system are called the theorems
of the system. The system is usually given in terms of a set of axioms and inference rules
that allow theorems to be derived from other theorems. A proof consists of a sequence of
numbered lines. A line contains a well-formed formula that either holds due to some axiom,
or is inferable from the contents of previous lines. A typical line contains one of the following
kinds of expression:

`, `′ ` A, or ` ` A, or ` A,

where A is a well-formed formula inferred at the current line, and `, `′ are the numbers of
earlier lines (`, `′ are thus strictly smaller than the current line number). The expression
“`, `′ ` A” means that the current line claims that A is inferable from the formulae located
at lines ` and `′ (using one of the given inference rules). “` ` A” means that A is inferable
from the formula located at line `. “` A” means that A holds ipso facto (due to an axiom,
e.g. rule (1) lets us write ` (A ∨ ¬A), for any well-formed formula A).

Our system makes use of a kind of extension axiom line, written as f(x)↔ φ(x), where f
is a new function symbol whose value on input x is defined by φ. f should not occur within
φ, or in any previous line. So, these lines allow us to define new boolean functions that may
appear in later lines.2

Definition 1 With respect to some given consistent deductive system, a circuit-generated
proof consists of a directed boolean circuit C having n input nodes. C has a corresponding
formal proof having 2n lines. The output of C on input ` ∈ [2n] contains the theorem that
has been deduced at line `, together with the numbers of any earlier line(s) from which `’s
theorem has been deduced.

In constructing circuit-generated proofs, it’s often convenient to identify various exponentially-
long sequences of line numbers without assigning numerical values to those line numbers. We
can accommodate a collection of such sequences in a circuit-generated proof of size O(n),
possibly padded out with unused lines whose theorems consist of the constant true.

Definition 2 Let S be a consistent deductive system having the property that any line ` of
a proof that uses S can be checked for correctness in time polynomial in the length of `. An
instance of Wrong Proof consists of a circuit-generated proof ΠC represented by boolean
circuit C.

2This facility to define the behaviour of new functions is a rather novel feature of our system, and gives rise
to the question of whether we should be able to make do with standard extended Frege axioms. An extended
Frege system is a propositional proof system that allows us to use extension axiom lines of the form x(new) ↔ φ,
where x(new) is a variable symbol that has not occurred previously in the proof, and φ is a formula that gives
the value of x(new) in terms of pre-existing variables. So, we are allowing ourselves to define new functions on
vectors of boolean variables, as opposed to just individual variables. In Section 3.1 we explain why it’s useful
to have these extension-axiom lines that define new functions. In Section A.8 we discuss obstacles to limiting
ourselves to standard extended Frege proofs.
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ΠC contains two given lines (say, lines 2n and 2n − 1) that contradict each other: One
of them contains as its theorem some expression A and other contains expression ¬A. The
challenge is to identify some line number ` whose corresponding theorem is not derivable in
the way stated by C(`). Since S is consistent and we have observed a contradiction, such a
line must exist.

Wrong Proof is in TFNP: any incorrect line of an instance of Wrong Proof can
readily be verified to be incorrect. We have so far defined Wrong Proof rather abstractly,
with respect to an unspecified deductive system. In this paper we focus on a specific —and
conceptually simple— deductive system that we describe in detail in the rest of this section.

2.1 The formulae and theorems of a proof system; some notation

We work with expressions of quantified propositional logic (variables take values true/false),
augmented with a sequence of n-ary function symbols. We also use, for convenience, symbols
such as x and y to denote vectors of n propositional variables, and expressions like x < y to
denote relationships between x and y, regarding these vectors as representing numbers in [2n].
x(0), x(1), x(2) denote respectively the n-vectors (false, . . . , false), (false, . . . , false,true),
(false, . . . , false,true, false), or the numbers 2n, 1, 2. Since the all-zeroes vector x(0) cor-
responds to 2n, this means that x(0) ≥ x for any other vector x (this convention tends to
reduce clutter in our expressions).

In this paper, the two contradictory statements in an instance of Wrong Proof take
the form ∃x, x′(φ(x, x′)) and ¬∃x, x′(φ(x, x′)), asserting that some 2n-variable formula φ is
(respectively, isn’t) satisfiable. We continue with more detail the expressions used in our
proofs.

For complexity parameter n, the vocabulary we use contains a polynomial-size collection
of variable symbols, together with an exponential-size collection of n-ary function symbols;
these are denoted by fi where i ∈ [2n]. In our proofs, f2n is defined in terms of an instance of
some TFNP problem, and (for each i ∈ [2n]) fi−1 is defined in terms of fi via an extension-
axiom line. There are no predicates. The expressions we use are first-order, in that they may
have quantification over the variable symbols, but not the functions.

While we work with expressions whose variables represent vectors of propositional vari-
ables, note that such expressions represent polynomially-larger expressions whose variables
are simple propositional variables. Variable x represents (x1, . . . , xn) where the xi are proposi-
tional variables, and expressions involving x can be converted to basic propositional formulae
in the individual xi without an excessive blowup in the size of the formula. This extra syntax
makes our expressions more concise and readable. For example, given non-zero vectors x, x′,
the expression x < x′ represents the following propositional formula involving the variables
xi and x′i (treating x1 and x′1 as the most significant bits):

¬x1 ∧ x′1 ∨ (x1 = x′1 ∧ (¬x2 ∧ x′2 ∨ (x2 = x′2 ∧ (¬x3 ∧ x′3 ∨ · · · (¬xn ∧ x′n))) · · · ))

Another notational convenience that we use is expressions such as ∀x < y(φ(x, y)), mean-
ing ∀x, y(x < y → φ(x, y)), or if y is a vector of propositional constants, it would mean
∀x(x < y → φ(x, y)). Similarly, ∃x 6= yφ(x, x′) means ∃x, x′(x 6= x′ ∧ φ(x, x′)).

2.2 Axioms and inference rules

We use the following kinds of rules:

• Axioms (written as ` A) let us write down certain expressions that can be seen to
evaluate to true based on some easily-checkable property, for example A is of the form
B ∨ ¬B.
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• Inference rules, written as A,B ` C for example, say that given expressions A and B,
we can write the expression C.

• Equivalences, written as A ≡ B, say that two expressions are logically equivalent. An
equivalence represents a rule of replacement in that it may be applied to sub-expressions
of any expression that appears in a line of a proof. For example, using the equivalence
A ∧ B ≡ B ∧ A we could take a line ` containing the expression true ∨ (xi ∧ yi) and
write a new line containing ` ` true ∨ (yi ∧ xi).

• “Extension axiom” lines define new n-ary functions, and are written as f(x) ↔ φ(x),
where f is a new symbol that has not appeared previously in the proof, and φ specifies
how f behaves on input (n-vector) x. So, this kind of line can be taken to mean
∀x(f(x) , φ(x)).

Some of the rules we list below are redundant in the sense that they could be simulated
using the others. We have generally have tried to limit ourselves to rules that are not too
novel and ad-hoc, that are clearly consistent, and which, crucially, allow that any individual
line of a proof can be checked for correctness in time polynomial in n. Section 2.3 contains
rules that we prove can be simulated by the ones in Section 2.2; usage of these additional
rules allows some of the formal proofs to be presented more cleanly. We have not however
tried to minimise the collection of rules in Section 2.2; some of the rules in the section can
be simulated using the others.

Our extension axiom lines are somewhat novel. In a standard extended Frege system, a
line of the proof may consist of an extension axiom, introducing a new propositional variable
and setting its value to equal some expression in terms of pre-existing values. Here we use
extended Frege-style lines that define new functions —see rule (13)— via expressions that
define their behaviour in terms of pre-existing functions.

In the following, A,B,C represent arbitrary well-formed formulae and x, y are length-
n vectors of propositional variables, where x (say) may also be thought of as ranging over
integers in the range [2n], as noted in Section 2.1. The equivalences we allow ourselves to use
include standard rules of replacement, such as commutativity, associativity, and distributivity
of propositional connectives, removal of double negation, and de Morgan’s rules. We also use
A ≡ A ∨ A ≡ A ∧ A ≡ A ∧ true ≡ A ∨ false, also A → B ≡ ¬B ∨ A, and the identity
A→ (B → C) ≡ (A ∧ B)→ C. We also allow a step of a proof to rename a bound variable
throughout the subexpression where it occurs. These equivalences may be applied to any
expression arising in a derivation, also they may be applied (in a simple step) to any well-
formed subexpression of a larger expression arising in a derivation. So, a line of a proof of
the form ` ` A can be used to state that A is derived from the expression A′ at line ` via
applying one of these basic manipulations to A′, or some subexpression of A′. It is easy to
see that any such step may be checked for correctness in polynomial time, and there is no
need for a line to specify which rule is being used.

For any well-formed expression A, and any vector x of propositional variables, we may
use any of the following lines in our proofs:

` (A→ A), ` (A ∨ ¬A), ` true (1)

Modus ponens (rule (2)) states that if lines ` and `′ contain theorems A and A → B
respectively, a subsequent line containing the expression “`, `′ ` B” is a valid line.

A, A→ B ` B (2)

“Conjunction introduction” (rule (3)) states that if lines ` and `′ contain theorems A and
B respectively, a subsequent line containing the expression “`, `′ ` A ∧B” is valid.

A, B ` A ∧B (3)
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A “case analysis” rule (4) (a form of disjunction elimination) means that if lines ` and `′

contain theorems B → A and ¬B → A, then a subsequent line containing “`, `′ ` A” is valid.

B → A, ¬B → A ` A (4)

The disjunction introduction rule (5) means that if line ` contains theorem A, then a
subsequent line containing ` ` A ∨B is valid.

A ` (A ∨B) (5)

Antecedent strengthening:

(A→ C) ` (A ∧B → C) (6)

Basic equivalences for quantified variables: let xi be an individual propositional vari-
able; let A(true) and A(false) be obtained by plugging in the constants true and false
respectively in place of xi, in A(xi). Then we have:

∃xi(A(xi)) ≡ A(true) ∨A(false)
∀xi(A(xi)) ≡ A(true) ∧A(false)

(7)

Distributive rules for quantifiers (recall x is a vector of variables):

∃x(A(x)) ∨ ∃x(B(x)) ≡ ∃x(A(x) ∨B(x))
∀x(A(x)) ∧ ∀x(B(x)) ≡ ∀x(A(x) ∧B(x))

(8)

(In the context of circuit-generated proofs, the distributive rules (8) can be derived from
the previous rules. Recall that x denotes the n-vector (x1, . . . , xn). Starting from the expres-
sion ∀x(A(x) ∧B(x)), we go via intermediate expressions of the form
∀(x1, . . . , xj)(∀(xj+1, . . . , xn)A(x)∧∀(xj+1, . . . , n)B(x)) to end up with ∀x(A(x))∧∀x(B(x)),
while keeping all intermediate expressions to be of polynomial length.)

Bringing quantifier to front: suppose A contains no variables in x, then if ◦ is any boolean
connective, we have

A ◦ ∃x(B) ≡ ∃x(A ◦B)
A ◦ ∀x(B) ≡ ∀x(A ◦B)

(9)

Universal instantiation: let A(t) be the expression obtained by plugging in term t in place
of variable symbol x (t is any term, i.e. a propositional variable or constant, or a function
symbol applied to other terms.)

∀x(A(x)) ` A(t) (10)

Universal generalization: if x and y are n-vectors of propositional variables, and x is a
vector of free variables, we have

A(x) ` ∀yA(y) (11)

Existential generalization: if A(x) is obtained by plugging in variable(s) x in place of
term(s) t, we have

A(t) ` ∃x(A(x)) (12)

Extended Frege-style definitions of functions:
We use extension axioms written as:

f(x)↔ φ(x) (13)

where φ is an expression that defines the value of f(x). φ may include functions defined
earlier, but not f . f is a new function symbol, x is a vector of variable symbols, and φ(x) is
a formula that specifies the value taken by f on any input x. This rule can be understood as
saying ∀x(f(x) , φ(x)).
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2.3 Further rules derivable from the ones of Section 2.2

It’s useful to note the following further rules for writing down lines of a proof, which can be
simulated by the ones of Section 2.2. We can assume we have the “hypothetical syllogism”
rule, A → B, B → C ` A → C (we can simulate this using the rules of Section 2.2: a
combination of modus ponens and case analysis). We can also assume we have an “axiom”
saying that expressions of the following form can be written down for free: ∀x(A(x))→ A(t),
where t is a n-vector of terms that is plugged in for (n-vector) x in A. (We can write down
∀x(A(x)) → ∀x(A(x)), equivalently ∀x(A(x)) → ∀y(A(y)), where y is another n-vector of
propositional variables, equivalently ∀x, y(A(x) → A(y)), then by universal instantiation,
∀x(A(x) → A(t)), which is equivalent to ∀x(A(x)) → A(t).) In a similar way, we can write
down expressions of the form A(t)→ ∃x(A(x)).

We also use the equivalences (derivable from (7) and de Morgan’s rules):

¬∃x(A) ≡ ∀x(¬A)
¬∀x(A) ≡ ∃x(¬A)

(14)

In constructing circuit-generated proofs, it’s convenient to allow the following kind of line.
Suppose φ is a propositional formula over a vector x of n terms, consisting of variables, or
functions applied to variables. Let i ∈ [2n] be a satisfying assignment of φ, so i is a vector of
n constants true/false. We may use the rule

` x = i→ φ(x) (15)

Rule (15) can be simulated using previous rules, as follows. Using the axiom A → A,
we can write a line containing ` (x = i → φ(x)) → (x = i → φ(x)). We then apply a
sequence of basic manipulations to the first occurrence of (x = i → φ(x)), simplifying it
to the constant true: provided that i really satisfies φ, this should be achievable. (These
manipulations just do the job of plugging into φ the n propositional constants in vector i,
and simplifying. We can ensure that intermediate expressions are of polynomial size, by
pushing any occurrences of ¬ to the bottom of the parse tree of φ; write the expression as
(x1 = i1 → (x2 = i2 → . . . xn = in → φ(x)) . . .), and repeatedly use equivalences A →
B ◦ C ≡ (A → B) ◦ (A → C), for ◦ ∈ {∧,∨}.) This leaves us with true → (x = i → φ(x)),
which is equivalent to x = i→ φ(x).

We also make use of equivalence (16), which can be simulated in a straightforward way
using the previous rules. Letting x be an n-vector of propositional variables and i an n-vector
of propositional constants, and φ a quantifier-free boolean formula, we have

x = i→ φ(x) ≡ φ(i) (16)

3 Preliminaries to the reductions to Wrong Proof

In this section we establish results that are useful subsequently, and we discuss certain features
that our reductions all have in common with each other.

An instance of Wrong Proof is supposed to consist of proofs of two contradictory state-
ments, and in our reductions, these statements take the form ∃(x, x′)φ(x, x′) and ¬∃(x, x′)φ(x, x′),
for n-vectors x, x′ of propositional variables. φ depends on the specific instance of a TFNP
problem that we reduce from.

Any problem in TFNP is reducible to the search for a satisfying assignment to a propo-
sitional formula φ, where φ obeys some syntactic constraint that guarantees that it does, in
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fact, have a satisfying assignment.3 In reducing to Wrong Proof, we “prove” the contradic-
tory statements ∃(x, x′)φ(x, x′) and ¬∃(x, x′)φ(x, x′) where x, x′ are vectors of n propositional
variables. In fact, the φ that we use is not purely propositional; it includes a function symbol
that’s constructed (using our extension-axiom rule) to encode a TFNP problem-instance, in
a way described in Section 3.2.

The proofs of these contradictory statements consist of sequences of applications of the
rules of Sections 2.2, 2.3, and they are instances of Wrong Proof, i.e. long proofs presented
via a circuit. The error occurs in the “proof” of ¬∃(x, x′)φ(x, x′). Of course, it’s trivial to
exhibit a faulty proof of the unsatisfiability of φ, but we require something more, namely
that any error should let us efficiently reconstruct a satisfying assignment of φ. Lemma 1
shows how to construct such a proof. The three expressions in the statement of Lemma 1
correspond to the existence principles underlying PPP, PPA, and PLS (recall that PPAD
and PPADS are special cases of PPP).

The proofs of ∃(x, x′)φ(x, x′) are done separately for each TFNP problem of interest, in
Sections 4, 5, 6. Section 3.1 introduces the general approach taken in Sections 4, 5, 6 to
construct those proofs. Section 3.2 presents Lemma 1 that shows how to make a suitable
proof of ¬∃(x, x′)φ(x, x′). Section 3.3 proves some technical results that show how circuit-
generated proofs of certain expressions can be constructed.

3.1 Overview of the reductions presented in Sections 4, 5, 6

In Sections 4, 5, 6, we consider computational problems Pigeonhole Circuit, Lonely,
and Iter, which are complete for PPAD, PPA, and PLS respectively. We reduce each of
these problems to Wrong Proof.

Any instance of the problems Pigeonhole Circuit, Lonely, and Iter is defined in
terms of a boolean circuit C. Section 3.2 begins with a general method to define a function f
using the rules of our deductive system, so that f is the function computed by C. We derive
from C an existential formula Φ = ∃(x, x′)φ(x, x′) in terms of f stating (correctly) that there
is a solution associated with the instance of the problem. We have noted that Section 3.2
shows how to “prove” ¬Φ. Sections 4, 5, 6 show how to construct contrasting (and correct!)
circuit-generated proofs of Φ. The approach to proving that Φ is satisfiable, is based on a
syntactic feature that assures us that it is, indeed, satisfiable. These syntactic features are
different for the three problems under consideration (which is why we have three different
complexity classes), so we need three distinct reductions.

At this point we are ready to explain our usage of extension axioms (rules of type (13))
to define long sequences of new n-ary boolean functions. In the context of Pigeonhole
circuit, any instance I has an associated function fI : [2n]→ [2n − 1], and the search is for
two inputs to fI that map to the same output. Call such a pair of inputs a “collision” for
fI . We reduce the search for a collision for fI to the search for a collision for a new function
f ′I : [2n− 1]→ [2n− 2]. f ′I is defined in terms of fI using an extension-axiom line. We reduce
this in turn to the search for a collision for a new function f ′′I : [2n − 2] → [2n − 3], and so
on. With an exponential sequence of similar reductions (that can all be efficiently generated
via a circuit), we eventually reduce to the search for a collision of a function from {1, 2} to
{1}, whose existence has a simple (formal) proof. Lonely and Iter have similar sequences
of functions.

Functions defined using rules of type (13) have the codomain {true, false}. fI can of
course be defined in terms of n n-ary functions that map to individual bits of the output of

3To see this, note that for any problem X ∈ TFNP, any instance I of size n has a solution SI of size poly(n);
solutions are checkable with a poly-time algorithm A that takes candidate solutions as input and outputs “yes”
iff A received a valid solution. A can be converted to a circuit and thence to a propositional formula that is
satisfied by inputs representing any valid solution SI of instance I along with extra propositional variables for
gates of the circuit.
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fI , as can each of the exponential sequence of functions that is derived from it.
We have aimed to make the presentation as consistent as possible for the three reductions

to Wrong Proof. The following presentational aspects are shared by the reductions. We
let C denote a typical instance of a TFNP problem, since the problem-instances we consider
are represented as (boolean) circuits. ΠC denotes the corresponding instance of Wrong
Proof. We describe ΠC in terms of the lines of ΠC , as opposed to the circuit that generates
it: for the exponential sequences of lines that we define, we assume it’s easy to check that
they can be compactly represented using a circuit. f denotes the function computed by C;
f is constructed using extension-axioms as described at the start of the next subsection. We
set a new function f2n equal to f . The reductions use sequences of well-formed expressions
that appear in the instances of Wrong Proof, that we denote Ai, Ci and Fi, for i ∈ [2n]. Fi

is an extension-axiom line that defines new function fi−1 in terms of fi. Ai asserts implicitly
(or non-constructively) that an instance of a problem corresponding to function fi has a
guaranteed solution (due to a syntactic property of fi). Ci is an existential expression that
asserts that same thing explicitly. We end up proving C2n that states the existence of a
solution, and C2n is equivalent to Φ. This contradicts the expression ¬Φ that is “proved”
using Lemma 1.

We work through the formal steps for the first reduction (from Pigeonhole Circuit)
in some detail (mainly in the appendices), and do rather less detail on the formal steps for
the reductions from Lonely and Iter.

3.2 Construction of functions from circuits, and a method for locating the
errors in instances of Wrong Proof

Given a boolean circuit C with n input nodes, our deductive system can define a function f
that computes C as follows. Each gate g of C has an associated n-ary function fg mapping
the inputs to C to the value taken at g. We can construct f using a sequence of extension-
axiom rules (of type (13)), in which if, say, gate g is the AND of gates g′ and g′′, then we add
the rule fg(x)↔ fg′(x)∧ fg′′(x). If g is the j-th input gate, then fg is defined by fg(x)↔ xj ,
where xj is the j-th component of n-vector x.

Lemma 1 Suppose f is defined according to the above construction. Consider the expres-
sions4

• ∃(x, x′)((x 6= x′ ∧ f(x) = f(x′)) ∨ f(x) = x(0)),
• ∃(x, x′)(f(x(1)) 6= x(1) ∨ (x 6= x(1) ∧ f(x) = x) ∨ (x′ = f(x) ∧ x 6= f(x′)),
• ∃(x, x′)(f(x(1)) = x(1) ∨ f(x) < x ∨ (x′ = f(x) ∧ f(x′) = f(x)).

We can efficiently construct circuit-generated proofs of the negations of these expressions in
such a way that any error in the proof allows us to efficiently construct (x, x′) satisfying the
expression.

The expressions in the statement of Lemma 1 are the principles underlying PPP, PPA,
and PLS, used in Theorems 1, 2, 3. They are all satisfiable, so their negations are all false.

Proof. The negation of any of the above expressions takes the form ∀(x, x′)(φ(x, x′)), where
φ performs some test on values of x, x′, f(x), and f(x′). For example, the negation of the
first of these expressions is

∀(x, x′)¬
(

(x 6= x′ ∧ f(x) = f(x′)) ∨ f(x) = x(0)
)
. (17)

We show how to construct a circuit-generated proof of (17) such that any error will iden-
tify a pair of n-vectors x, x′ whose existence is claimed by the first of the three existential

4Recall that x(0) and x(1) denote the all-zeroes bit-vector, and the bit vector corresponding to number 1.
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statements. The following approach applies also to the negations of the other two existential
expressions in the statement of this lemma.

Let M be the matrix of (17), i.e. the subexpression ¬((x 6= x′ ∧ f(x) = f(x′)) ∨ f(x) =
x(0)). We continue by giving a method for proving the following stronger expression, from
which (17) is derivable:

∀(x, x′)(C1 ∧ . . . ∧ Cm ∧M) (18)

where Ci are clauses that construct the values of f(x), f(x′) by working through the values
taken at the gates of the circuit; the Ci are of the form fg(x) = fg′(x)◦fg′′(x) (for ◦ ∈ {∧,∨}),
or fg(x) = ¬fg′(x), or fg(x) = xj (in the case that g is the j-th input gate). M is a boolean
combination of expressions of the form fg(x) = fg′(x

′) or fg(x) 6= fg′(x
′), for output gates

g, g′, or of the form fg(x) = true/false.
Let φ′(x, x′) = C1∧. . .∧Cm∧M , and for i ∈ [22n] let Φ′i be the formula ∀(xx′ ≤ i)φ′(x, x′),

where xx′ represents the 2n-digit number 2n(x−1)+x′. It can be formally proved that (18) is
equivalent to Φ′22n ; we omit the details. For each i ∈ [22n], some line `i of the proof contains Φ′i.
We show below how to prove expressions of the form (xx′ = i)→ φ′(x, x′), which we then use
to derive Φ′i from Φ′i−1 in conjunction with (xx′ = i)→ φ′(x, x′). In particular we can derive
Φ′i−1∧((xx′ = i)→ φ′(x, x′)), equivalently ∀xx′((xx′ < i→ φ′(x, x′))∧(xx′ = i→ φ′(x, x′))),
equivalently ∀xx′((xx′ < i ∨ xx′ = i) → φ′(x, x′)), equivalently (details in Section A.7),
∀xx′(xx′ ≤ i→ φ′(x, x′)), which is the same as Φ′i.

How to formally prove (xx′ = i)→ φ′(x, x′):
For each gate g of C, in the order in which the functions fg are defined, we can prove a

line saying
(xx′ = i)→ fg(x) = jg(x)

where jg(x) ∈ {true, false} is the appropriate propositional constant. This is done by
using the extension-axiom line that defines fg, with gate g’s inputs. (If say g takes inputs
from g′ and g′′, we use previous lines containing expressions (xx′ = i) → fg′(x) = jg′(x),
(xx′ = i)→ fg′′(x) = jg′′(x).)

Letting g(1), . . . , g(m) be the sequence of gates, listed in the order in which their functions
fg(1), . . . , fg(m) are defined, we have

(xx′ = i)→
∧

r∈[m]

(fg(r)(x) = jg(r)(x), fg(r)(x
′) = jg(r)(x

′))

It then suffices to prove(
(xx′ = i) ∧

∧
r∈[m]

(fg(r)(x) = jg(r)(x), fg(r)(x
′) = jg(r)(x

′))
)
→M

which is a line of type (15), and can be proved by the procedure of plugging in the constants
i, jg(r)(x), jg(r)(x

′) in place of the terms x, x′, fg(r)(x), fg(r)(x
′) in the way described below

Equation (15). An error in the proof will correspond to this expression evaluating to false,
and getting treated as true.

To conclude, note that we can construct a small circuit that on input i ∈ [22n], outputs
the above proof of (xx′ = i) → φ′(x, x′). The circuit can be extended to a concise proof of
(17).

3.3 Technical lemmas

The following results are useful for showing how to construct certain aspects of circuit-
generated proofs, but can be skipped at a first reading. Lemma 2 and Corollary 1 are
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conceptually similar to Lemma 1: Corollary 1 applies to arbitrary formulae Φ = ∃xφ(x)
where φ is entirely propositional, having no function symbols (by contrast, Lemma 1 applies
to a special class of φ’s that contain function symbols). Lemma 3 is a more sophisticated
version of Lemma 2; it is used in the proofs in the appendix, along with Lemma 4.

Lemma 2 Let φ(x) be a propositional formula over n-vector x. We can construct in time
polynomial in the size of φ, a circuit C that generates a proof Π of ∀xφ(x) such that

• if φ is a tautology, then Π is a valid proof, using the rules of Section 2.2,

• if φ is not a tautology, any error in Π allows us to construct some x̂ for which ¬φ(x̂)
holds.

Proof. Let Φi be the formula ∀x ≤ i(φ(x)). It can be proved formally that Φ2n is equivalent
to ∀xφ(x); we omit the details.

For each i ∈ [2n], Π contains a line `i containing Φi, which may be formally derived from
Φi−1 (itself located at a known line `i−1 < `i) together with a line stating that i satisfies φ,
which we give more detail on as follows.

Using rule (15) we can write a line containing the expression

(x = i)→ φ(x).

(If i does not satisfy φ, this line is incorrect, and the error allows us to recover the value i
that does not satisfy φ.)

By universal generalisation (rule (11)) we can deduce ∀x(x = i→ φ(x)).
Applying conjunction introduction (rule (3)), we can deduce from this and Φi−1 (recall

that Φi−1 = ∀x(x ≤ i− 1→ φ(x))):

∀x(x ≤ i− 1→ φ(x)) ∧ ∀x(x = i→ φ(x)).

Using rule (8) we get ∀x((x ≤ i − 1 → φ(x)) ∧ ((x = i) → φ(x))); using the equivalence
A→ B ≡ ¬A∨B, and distribution of disjunction over conjunction we get ∀x((x ≤ i−1∨x =
i)→ φ(x)). Finally x ≤ i−1∨x = i can be manipulated further to get x ≤ i (see Section A.7),
from which we get Φi.

Corollary 1 Let Φ be a formula of the form ∃xφ(x), where x is a vector of propositional
variables that constitute the free variables of propositional formula φ. We can efficiently
construct a circuit-generated proof Π of ¬Φ, such that if φ is unsatisfiable (and thus ¬Φ
holds), then Π has no errors, and if φ is satisfiable then Π has at least one error, and given
any error in Π we can efficiently recover a satisfying assignment of φ.

Corollary 1 follows by noting that ¬Φ is equivalent (by (14)) to ∀x(¬φ(x)). We then
apply Lemma 2 to ¬φ(x). Corollary 1 is a general construction of a circuit-generated proof
that a propositional formula φ is unsatisfiable: the proof is correct if indeed φ is unsatisfiable,
and from any error we can easily recover a satisfying assignment. The reader might briefly
wonder whether a similarly general circuit-generated proof should be constructible that φ is
satisfiable. The answer is no (unless NP=co-NP): such a result would provide unsatisfiable
formulae with concise certificates (of unsatisfiability). In Sections 4, 5, 6 we give separate
proofs of satisfiability that exploit structural properties of formulae corresponding to the
syntactic TFNP complexity classes of interest there.

Lemma 3 Suppose we have a circuit that takes as input i ∈ [2n], and outputs a proof of
x = i → (φ(x) → ψ(x)), where x is a vector of n propositional variables. Then we can
efficiently construct a circuit-generated proof of ∀xφ(x)→ ∀xψ(x).
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Proof. Let Πi be the proof of x = i→ (φ(x)→ ψ(x)), constructed by the circuit. We show
how to construct a proof Π of ∀xφ(x)→ ∀xψ(x). Π contains, for each i ∈ [2n], a copy of Πi,
containing at some line `i the expression x = i→ (φ(x)→ ψ(x)).

Via a sequence of elementary manipulations we can derive from `i the following line `′i
(`i, `

′
i are easily computable from i; `′i > `i > `′i−1) containing the expression:

(x = i→ φ(x))→ (x = i→ ψ(x)).

Let Φ = ∀xφ(x) and Ψ = ∀xψ(x), thus Π should end with a line containing Φ→ Ψ.
Let Φi = ∀x ≤ i(φ(x)) and Ψi = ∀x ≤ i(ψ(x)).
Π contains a straightforward proof of Φ1 → Ψ1 (at a line with number `′′1) and for each

i > 1, i ∈ [2n], a line with number `′′i > `′′i−1 containing Φi → Ψi, whose proof uses `′′i−1 and
`′i.

We derive Φi → Ψi, starting from `′′i−1 containing Φi−1 → Ψi−1 and `′i, for all i ∈ [2n],
i ≥ 2. These derivations can then be chained together to obtain a circuit-generated proof of
Φ2n → Ψ2n , which will be seen to be equivalent to ∀xφ(x)→ ∀xψ(x).

Using conjunction introduction on lines `′′i−1 and `′i, we have

(Φi−1 → Ψi−1) ∧
(

(x = i→ φ(x))→ (x = i→ ψ(x))
)
.

From this we can derive

(Φi−1 ∧ (x = i→ φ(x)))→ (Ψi−1 ∧ (x = i→ ψ(x))).

Writing Φi−1 and Ψi−1 in full, we have(
∀x(x < i→ φ(x)) ∧ (x = i→ φ(x))

)
→
(
∀x(x < i→ ψ(x)) ∧ (x = i→ ψ(x))

)
.

Next, we want to replace the subexpression (x = i → φ(x)) with ∀x(x = i → φ(x)), and
similarly the expression (x = i→ ψ(x)) with ∀x(x = i→ ψ(x)). To do this, we show a chain
of logical equivalences, applied to the first of these subexpressions. (It is tempting to apply
universal generalisation (rule 11) to these subexpressions, but (11) can only be applied to an
entire expression, not a subexpression.) The expression ∀x(x = i → φ(x)), written out in
full, is

∀(x1, . . . , xn)
(

(x1 = i1 ∧ . . . ∧ xn = in)→ φ(x)
)
.

Applying the basic equivalence of quantified variable xn, rule (7), we have

∀(x1, . . . , xn−1)((x1 = i1 ∧ . . . ∧ xn−1 = in−1 ∧ true = in)→ φ(x;xn = true))∧

(x1 = i1 ∧ . . . ∧ xn−1 = in−1 ∧ false = in)→ φ(x;xn = false))

If, say, in = false, then the subexpression (x1 = i1 ∧ . . . ∧ xn−1 = in−1 ∧ true = in) →
φ(x;xn = true)) evaluates to true, and so can be eliminated, leaving just the other subex-
pression. This step uses a sequence of equivaences, so can be applied to the subexpressions.
Continuing in this way, we get a suitable sequence of equivalences. We have(

∀x(x < i→ φ(x)) ∧ ∀x(x = i→ φ(x))
)
→
(
∀x(x < i→ ψ(x)) ∧ ∀x(x = i→ ψ(x))

)
.

Applying the distributive rule for the universal quantifier (8), we have

∀x
(

(x < i→ φ(x)) ∧ (x = i→ φ(x))
)
→ ∀x

(
(x < i→ ψ(x)) ∧ (x = i→ ψ(x))

)
.

which can be converted using elementary manipulations (see Section A.7), to

∀x(x ≤ i→ φ(x))→ ∀x(x ≤ i→ ψ(x))
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as required for Φi → Ψi.
We end with Φ2n → Ψ2n , i.e. ∀x(x ≤ 2n → φ(x))→ ∀x(x ≤ 2n → ψ(x)). The tautologous

subexpression x ≤ 2n can be replaced by true via further basic manipulations, then after
using the equivalence (true→ A) ≡ A, we end up with ∀xφ(x)→ ∀xψ(x).

We also use the following extension of Lemma 3.

Lemma 4 Suppose we have a circuit that takes as input i ∈ [2n] and proves φ(i)∧ψ(i)→ ξ(i).
Then we can use it to make a circuit-generated proof of a statement of the form ∀xφ(x) ∧
∃yψ(y)→ ∃zξ(z).

Proof. We want to prove ∀xφ(x) ∧ ∃yψ(y) → ∃zξ(z), equivalently ∀x(∃y(φ(x) ∧ ψ(y))) →
∃zξ(z). At the beginning of Section 2.3, we noted that it’s possible to prove theorems of the
form ∀x(A(x)) → A(t) where t is a vector of terms that is plugged in for x in A, so we can
prove the theorem

∀x(∃y(φ(x) ∧ ψ(y)))→ ∃y(ψ(y) ∧ φ(y)).

Then it’s sufficient to prove
∃y(ψ(y) ∧ φ(y))→ ∃zξ(z).

Equivalently,
∀z(¬ξ(z))→ ∀z(¬(ψ(z) ∧ φ(z))).

which can be done with a concise circuit-generated proof, using Lemma 3 and our assumption
that we have a circuit that can prove, for any z, ψ(z) ∧ φ(z) → ξ(z), which is equivalent to
¬ξ(z)→ ¬(ψ(z) ∧ φ(z)).

4 Reduction from PPP to Wrong Proof

In this section we establish the following result:

Theorem 1 Any problem that belongs to the complexity class PPP (which includes PPAD
and PPADS) is reducible to Wrong Proof (with respect to the deductive system of Sections
2.1, 2.2).

The complexity class PPP is defined as the set of all problems reducible to the problem
Pigeonhole Circuit, which is informally described as follows: suppose we are given a
boolean circuit having n bits of input and output. Suppose that no input maps to the all-
ones output. By the pigeonhole principle, there must be a collision, a pair of input vectors
that map to the same output. The problem is to find a collision. Notice that this problem
is in NP, since a collision is easy to verify, but finding one seems hard. We use the following
definition of Pigeonhole Circuit.

Definition 3 An instance of Pigeonhole Circuit consists of a circuit C having n input
bits and n output bits. A solution consists of either a n-bit string that C maps to the all-zeroes
string, or two n-bit strings that C maps to the same output string.

Proof. (of Theorem 1) We reduce from Pigeonhole Circuit to Wrong Proof. Given
an instance C of Pigeonhole Circuit we need to construct (in time polynomial in the size
of C) a circuit-generated proof ΠC (an exponentially-long, concisely-represented formal proof
containing a known contradiction) whose error(s) allow us to find solution(s) to C.

Recall that n-bit strings correspond with numbers in [2n] (2n being the all-zeroes string).
We include in ΠC a function f : [2n]→ [2n], which we construct using our deductive system
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according to the first paragraph of Section 3.2. The (2n into 2n − 1) pigeonhole principle
assures us that

∃(x, x′)
(

(x 6= x′ ∧ f(x) = f(x′)) ∨ f(x) = 2n
)

(19)

Lemma 1 of Section 3.2 tells us how to generate a purported proof that (19) does not
hold; the proof will be incorrect, but from error(s) in that proof we can efficiently recover
satisfying assignments of (x 6= x′∧f(x) = f(x′))∨f(x) = 2n, which in turn identify solutions
to the original Pigeonhole Circuit problem C.

So the challenge is to write down a (correct) circuit-generated proof of (19). Let TC
denote the formula of (19) (the “target” formula to be proved, for given C). The proof of
(19) has a known line containing TC , whose formal proof begins as follows.

Let SC = ∃x(f(x) = 2n). Then using the case analysis rule (4), TC is inferable from
SC → TC and ¬SC → TC . SC → TC is straightforward; note that it is of the form:

∃xA(x)→ ∃x, y(A(x) ∨B(x, y))

In Section A.1 we show how to prove this using the system of Section 2.2.
So, the main challenge that remains is to generate a proof of

¬SC → TC . (20)

We give the constructions of the formulae Ai, Ci, and Fi discussed in Section 3. Thus,
Ai asserts a property of some instance i that implies, non-constructively, the existence of a
solution. Ci is the explicit existential statement of a solution’s existence. Fi is an extension
axiom of the form (13), defining the construction of function fi−1 in terms of fi.

For i ∈ [2n], i ≥ 2, let Ai be the sentence

∀x
(
x ≤ i → fi(x) ≤ i− 1

)
. (21)

Ai states that fi([i]) ⊆ [i−1] (which implies, non-constructively, that fi has a collision in the
range [i− 1]).

For i ∈ [2n], i ≥ 2, let Ci be the sentence

∃x 6= x′
(
x ≤ i ∧ x′ ≤ i ∧ fi(x) = fi(x

′) ∧ fi(x) ≤ i− 1
)
. (22)

Ci states explicitly that fi has a collision in the range [i − 1], with the two colliding inputs
in the range [i]. The pigeonhole principle tells us that Ci should follow from Ai, and we
will achieve this (i.e derive Ci from Ai) using exponentially many steps of a circuit-generated
proof.

We include a sequence of extension-axiom lines —of type (13)— as follows. For i ∈ [2n],
i ≥ 2, line `(Fi) contains expression Fi defining function fi−1 in terms of fi (see Figure 1).
We also use a special line `F —also an extension-axiom line of type (13)— that sets f2n equal
to f : formally, `F contains the expression F := f2n(x) ↔ f(x). Section A.2 shows how to
prove A2n based on F together with ¬SC . For i ∈ [2n], i ≥ 2, Fi defines fi−1 as follows.

fi−1(x)↔


i− 2 if x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1
fi(i) if x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1
fi(x) otherwise. (i.e. x ≥ i ∨ fi(x) < i− 1)

(23)

Fi states that fi−1 is derived from fi as follows. fi−1 and fi are intended to satisfy Ai−1

and Ai respectively, and suppose we know that fi satisfies Ai and want to construct fi−1 from
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fi in such a way that fi−1 satisfies Ai−1. (23) ensures that for x ∈ [i− 1], fi−1(x) ∈ [i− 2]. If
x ∈ [i− 1] is mapped by fi to i− 1, it is redirected to i− 2 if fi(i) = i− 1, and if fi(i) is less
than i − 1, it is redirected to fi(i). The construction is designed to allow us to reconstruct
a collision for fi based on an explicit statement of a collision for fi−1. For that, it does not
work to just take inputs that fi maps to i − 1, and let fi−1 send them to i − 2; the more
complicated rule of (23) seems necessary. The construction is related to the one of [10], that
also sets fi−1(x) to fi(i) whenever fi(x) = i − 1, but we have a different treatment of the
case that fi(i) = i− 1, which allows us to recurse all the way down to i = 2.

We define a sequence of lines of ΠC as follows. For all i ∈ [2n], i ≥ 3, we include lines
`(Ai) (each line number `(Ai) and its contents are efficiently computable from i), such that
`(Ai) contains the expression:

`′(Ai), `
′′(Ai) ` (Fi ∧Ai)→ Ai−1; (24)

`(Ai) states that if function fi−1 is constructed from fi according to formula Fi, and fi
satisfies Ai, then fi−1 satisfies Ai−1. `′(Ai) and `′′(Ai) contribute to a formal proof of the
expression of `(Ai); all these lines are distinct. In Section A.3 we show how to do this, hence
proving fi([i]) ⊆ [i − 1] for all i ≥ 2, by backwards induction starting at f = f2n . Given all
these lines of type (24), together with a line containing ¬SC → A2n (proved in Section A.2),
and the lines containing Fi, we can infer a sequence of lines containing ¬SC → Ai, for all
i ≥ 2.

ΠC contains a special line `(C2), saying that if we have A2, then C2 can be proved. C2 is
the “obvious” statement that f2, which maps both x(1) and x(2) to x(1), has a collision. Line
`(C2) is of the form

`′(C2) ` A2 → C2; (25)

for some other special line `′(C2) used in a single self-contained proof of (25). `(C2) states
that C2 can be deduced without any further assumptions about f2. By construction, f2 maps
both x(1) and x(2) to x(1), so we know where to look for a collision! In Section A.5 we show
how to formally prove that f2 has this “obvious” collision.

For i ∈ [2n], i ≥ 3, we include lines `(Ci), (again, these line numbers and the lines
themselves are efficiently computable from i), where `(Ci) contains the expression

`′(Ci), `
′′(Ci) ` (Ai ∧ Fi ∧ Ci−1)→ Ci; (26)

`(Ci) states that if Ci−1 can be established, then given Fi and Ai we can deduce Ci (a collision
for function fi) where `′(Ci) and `′′(Ci) are some further lines used in the proof of (26). In
Section A.4 we give some more detail on how to construct a formal proof of (26) using our
deductive system.

Putting it all together, we noted earlier that we have a sequence of lines containing
¬SC → Ai, for i ∈ [2n], i ≥ 2. We also know that C2 follows from A2 (25). We may use these,
along with the lines `(Fi) that give us Fi, and the lines `(Ci) (i.e. of the form (26)) to deduce
(by repeated applications of modus ponens and conjunction introduction) ¬SC → C2n ; using
`F we get (20) as desired. This completes the construction of a formal proof according to the
strategy outlined at the end of Section 3.
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[i]

fi([i]) = [i− 1]

[i− 1]

fi−1([i− 1]) = [i− 2]

“naive” choice of fi−1(x) for x such that fi(x) = i − 1, is to set fi−1(x) to be some fixed value
in [i− 2] (here, i− 2). We construct fi−1 as shown in examples below.

fi fi−1

1 i

1 i− 1

1 i− 1

1 i− 2

1 i

1 i− 1

1 i− 1

1 i− 2

1 i

1 i− 1

1 i− 1

1 i− 2

1 i

1 i− 1

1 i− 1

1 i− 2

x x

Figure 1: Construction of fi−1 from fi (re proof of Theorem 1), such that from fi(x) < i for
all x ≤ i, we have fi−1(x) < i− 1 for all x ≤ i− 1. Dotted lines represent evaluations of fi−1

on i, and we are just interested in fi−1 on the domain [i−1]. Dashed lines are ones that have
been “redirected” in construction of fi−1.
The naive approach of setting fi to some value less than i, may create collisions for fi−1 for
which we can’t reconstruct a collision for fi based on a collision we found for fi−1.
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5 Reduction from PPA to Wrong Proof

In this section we establish the following theorem:

Theorem 2 Any problem that belongs to the complexity class PPA is reducible to Wrong
Proof.

To prove Theorem 2, we make use of the following PPA-complete problem, due to Buss
and Johnson [8]. Suppose we represent an undirected graph on the set [2n] via a function
f : [2n] → [2n] such that an edge {x, x′} is present iff f(x) = x′ and f(x′) = x. Suppose
that some given x̄ ∈ [2n] satisfies f(x̄) = x̄ (so, x̄ is a “lonely” vertex that is unattached to
any other). Since [2n] has an even number of elements, there must exist another unattached
vertex. The following formula captures this parity principle that if we have a finite set with
an even number of elements, some of which are paired off with each other, and we are shown
an element that is not paired off, then there should exist another element that is not paired
off.

f(x̄) = x̄→ ∃x
(
x 6= f(f(x)) ∨ (x 6= x̄ ∧ x = f(x)

)
(27)

In the following definition, we let the bit string corresponding to the number 1, which we
denote x(1), be the special element of [2n] —having the role of x̄— that is mapped to itself.

Definition 4 The problem Lonely is defined as follows. Given a function f : [2n] → [2n]
presented as a boolean circuit C having n inputs and n outputs, find x 6= x(1) such that either
(a) f(x(1)) 6= x(1), or (b) f(x) = x, or (c) x 6= f(f(x)).

It can be shown that this problem is PPA-complete by reduction from Leaf (the original
PPA-complete problem of [18]); using Lonely simplifies the reduction to Wrong Proof.

Proof. (of Theorem 2) We reduce from Lonely to Wrong Proof. Let C be the circuit in
an instance of Lonely. We may assume C is syntactically constrained so that its function
f satisfies f(x(1)) = x(1) and for all x, f(f(x)) = x: the problem of finding x 6= x(1) with
f(x) = x remains PPA-complete.5

Given C, the circuit representing an instance of Lonely, we construct a Wrong Proof
instance ΠC as follows. We start by including in ΠC a construction of the function f computed
by C as described at the start of Section 3.2.

Equation (28) is analogous to equation (19) in Theorem 1: it’s a formula involving a
function f that’s derived easily from C, being plugged in to a combinatorial principle (here,
the PPA principle) stating that some solution exists. Recall that Lemma 1 explained how to
construct a “proof” of the negation of (28), in such a way that any error in the proof lets us
reconstruct (x, x′) that satisfy it. ΠC contains that proof.

∃(x, x′)(f(x(1)) 6= x(1) ∨ (x 6= x(1) ∧ f(x) = x) ∨ (x′ = f(x) ∧ x 6= f(x′)). (28)

Using our assumption that C has been syntactically constrained as described above, ΠC also
proves (29), from which (28) (unnegated) is derivable:6

∃(x, x′)(x 6= x(1) ∧ f(x) = x) (29)

We introduce a sequence of functions fi, for even numbers i in the range 2 ≤ i ≤ 2n,
where f2n = f , constructed as follows. fi represents an instance of Lonely on the domain
[i]. fi−2 is derived from fi as follows (see Figure 2 for an illustration):

5We can take an unrestricted circuit C and modify it (without excessive increase in size) such that these
conditions are met, and a solution for the modified circuit (call it C′) yields a solution to C. C′ should map
x(1) to itself, and for any x 6= x(1), it should check whether f(f(x)) 6= x, if so, map x to itself, rather than to
f(x).

6An alternative approach would be to note that the technique of Lemma 1 applies directly to (29).
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1. If fi maps i and i− 1 to i and i− 1, then set fi−2(x) = fi(x) for all x.
2. If fi(i) = i and fi(i−1) = y < i−1 then set fi−2(y) = y; for other elements x of [i−2],
fi−2(x) = fi(x).

3. If fi(i − 1) = i − 1 and fi(i) = y < i − 1 then set fi−2(y) = y; for other elements x of
[i− 2], fi−2(x) = fi(x).

4. If fi(i) = y < i − 1 and fi(i − 1) = y′ < i − 1, y′ 6= y, then set fi−2(y) = y′ and
fi−2(y′) = y and for x 6= y, y′, set fi−2(x) = fi(x).

We do not have to consider a case where fi(i) = fi(i − 1): it does not arise due to our
assumption that f(f(x)) = x for all x.

For even numbers i ∈ [2n], let Ai be the sentence

(fi(x
(1)) = x(1)) ∧ ∀x, x′ ≤ i

(
fi(x) ≤ i ∧ (fi(x) = x′ → fi(x

′) = x)
)

(30)

Ai states that fi is a valid instance of Lonely on domain [i]. Analogously with (21), this is
an implicit, or non-constructive statement that fi has a fixpoint in {2, . . . , i}.

Similar to (23), for even numbers i < 2n we include an extension-axiom line (of type (13))
with line number `(Fi) containing Fi given as in (31). Fi defines fi−2 in terms of fi. As in
Theorem 1 we also use a special line `F —also an extension-axiom line of type (13)— that
sets f2n equal to f : formally, `F contains the expression F := f2n(x)↔ f(x).

fi−2(x)↔


fi(i) if fi(i− 1) = i− 1 ∧ fi(i) < i− 1 ∧ x = fi(i)

fi(i− 1) if fi(i) = i ∧ fi(i− 1) < i− 1 ∧ x = fi(i− 1)
fi(i) if fi(i) < i− 1 ∧ fi(i− 1) < i− 1 ∧ x = fi(i− 1)

fi(i− 1) if fi(i) < i− 1 ∧ fi(i− 1) < i− 1 ∧ x = fi(i)
fi(x) otherwise. (i.e. x 6= fi(i), fi(i− 1).)

(31)

Similar to (22), for even numbers i ∈ [2n], let Ci be the sentence

∃x ≤ i
(
x 6= x(1) ∧ fi(x) = x

)
(32)

Ci states that the Lonely instance associated with fi restricted to domain [i] has a solution.
It remains for us to construct a circuit-generated formal proof of C2n .

We proceed in a similar way as previously, omitting details of the application of the
inference rules. f is constructed so as to satisfy A2n , and using our proof system, it can be
shown that

1. A2n holds. A2n is a universally quantified sentence that has a circuit-generated proof
using the technique of Lemma 1, that checks all possible values of the quantified vari-
ables in A2n . By our assumption that C has been modified so that f(x(1)) = x(1) and
f(f(x)) = x for all x, this proof will be correct.

2. for 4 ≤ i ≤ 2n, Ai−2 is derivable from Ai and Fi, i.e. Ai ∧ Fi → Ai−2.
3. C2 follows from A2, i.e. A2 → C2,
4. for 4 ≤ i ≤ 2n, Ci is derivable from Fi and Ci−2, i.e. Fi ∧ Ci−2 → Ci. (We don’t seem

to need Ai here, in contrast with Theorem 1, where we proved Ai ∧ Fi ∧ Ci−1 → Ci.)
Finally, (29) is the same as C2n .

We omit the details of item (2).

To prove item (3), note that A2 is the expression

(f2(x(1)) = x(1)) ∧ ∀x, x′ ≤ x(2)(f2(x) ≤ x(2) ∧ (f2(x) = x′ → f2(x′) = x))
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C2 is the expression
∃x ≤ x(2)(x 6= x(1) ∧ f2(x) = x)

A2 is equivalent to a version where the quantifier appears at the front; then as noted in
Section 2.3, we can prove the following theorem, saying that A2 implies a version where x(2)

and x(1) have been plugged in for x and x′:

A2 → (f2(x(1)) = x(1)) ∧ f2(x(2)) ≤ x(2) ∧ (f2(x(2)) = x(1) → f2(x(1)) = x(2))

Letting R denote the right-hand side of this, we can separately prove R → x(2) 6= x(1) ∧
f2(x(2)) = x(2). Using the rules in Section 2.3, we can write x(2) 6= x(1)∧f2(x(2)) = x(2) → C2.
Finally, we can deduce A2 → C2 by a sequence of applications of the hypothetical syllogism
rule.

The proof of item (4) above proceeds by case analysis (4) on values of fi(i) and fi(i− 1).
We give some details on two of the cases. The expression Fi ∧ Ci−2 → Ci that we aim to
prove, can be written as (renaming bound variables):

Fi ∧ ∃y ≤ i− 2(y 6= x(1) ∧ fi−2(y) = y)→ ∃z ≤ i(z 6= x(1) ∧ fi(z) = z)

In the case that fi(i− 1) = i and fi(i) = i− 1, or indeed where fi(i− 1) = i− 1 and fi(i) = i,
Fi simplifies to ∀x(fi−2(x) = fi(x)), and so it suffices to prove

∀x(fi−2(x) = fi(x)) ∧ ∃y ≤ i− 2(y 6= x(1) ∧ fi−2(y) = y)→ ∃z ≤ i(z 6= x(1) ∧ fi(z) = z),

which can be proved using Lemma 4.

Consider the case that fi(i) = i and fi(i − 1) = y < i − 1. From this and Fi it follows
that

∀x ≤ i


fi(x) 6= fi(i− 1)→ fi−2(x) = fi(x)
fi−2(i) = fi(i)
fi(x) = fi(i− 1)→ fi−2(x) = fi(x)

(33)

We want to prove

(33) ∧ ∃y ≤ i− 2(y 6= x(1) ∧ fi−2(y) = y)→ ∃z ≤ i(z 6= x(1) ∧ fi(z) = z)

and the right-hand side follows by putting z = i.
In the case that fi(i) = y < i − 1, fi(y) = i, fi(i − 1) = y′ < i − 1, fi(y

′) = i − 1, the
element of [i− 2] that is said to exist by Ci−2 is the one that we use to satisfy the matrix of
Ci.

6 Reduction from PLS to Wrong Proof

In this section we establish the following theorem:

Theorem 3 Any problem that belongs to the complexity class PLS is reducible to Wrong
Proof.

To prove this, we make use of the following PLS-complete problem, due to Buss and John-
son [8]. Equation (34) captures the iteration principle, that if f : {0, . . . , N} → {0, . . . , N}
maps 0 to a positive number, and any number i to a number at least as large as i, then there
exists x such that f(x) > x and f(f(x)) = f(x). Notice that such an x can be found by
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Figure 2: Construction of fi−2 from fi (re proof of Theorem 2).
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following the sequence 0, f(0), f(f(0)), . . . and taking the number that occurs just before the
fixpoint of f .

0 < f(0) ∧ ∀x(x ≤ f(x))→ ∃x(x < f(x) ∧ f(f(x)) = f(x)) (34)

In our context we apply the principle to the numbers in [2n] as before, so our definition
uses 1 as the smallest number rather than 0, and recall x(1) is the bit-string representing 1.

Definition 5 The problem Iter is defined as follows. Given a function f : [2n] → [2n]
presented as a boolean circuit having n inputs and n outputs, find x such that either (a)
f(x(1)) = x(1), or (b) f(x) < x, or (c) x < f(x) and f(f(x)) = f(x).

Proof. (of Theorem 3) Given the circuit C that defines an instance of Iter, we construct an
instance ΠC of Wrong Proof as follows. As before, ΠC constructs the function f computed
by C as described at the start of Section 3.2. ((35) corresponds to (19) in Theorem 1). C
has corresponding formula (35) that’s satisfiable by some pair (x, x′) due to the iteration
principle.

∃(x, x′)
(
f(x(1)) = x(1) ∨ f(x) < x ∨ (x′ = f(x) ∧ f(x′) = f(x)

)
(35)

As in the two previous theorems, ΠC contains a proof of the negation of (35) constructed
according to Lemma 1 of Section 3.2. It remains to devise a correct (circuit-generated) proof
that (35) holds, which can be incorporated into ΠC .

We introduce functions fi : [i] → [i] for i ∈ [2n], i ≥ 2, and set f2n = f . fi−1 is derived
from fi according to (36); it can be seen that fi is like f but with a ceiling of i imposed on
the value it can take, i.e. fi(x) = min{i, f(x)}. Let Fi be the extension-axiom expression
that defines fi−1 in terms of fi, thus taking any number that maps to i, and mapping it to
i− 1 instead:

fi−1(x)↔
{
i− 1 if fi(x) = i
fi(x) otherwise. (i.e. x > i ∨ fi(x) < i)

(36)

For i ∈ [2n], i ≥ 2, let Ai be the sentence

(fi(x
(1)) > x(1)) ∧ ∀x ≤ i(fi(x) ≥ x ∧ fi(x) ≤ i)

Ai states that fi obeys the iteration principle for the domain and codomain [i] (hence some
number x ≤ i should be a fixpoint of fi). As before, this statement of existence of such a
fixpoint in implicit, not explicit.

For i ∈ [2n], i ≥ 2, let Ci be the sentence

∃x, x′ ≤ i
(
fi(x) > x ∧ x′ = fi(x) ∧ fi(x′) = fi(x)

)
Ci states explicitly that fi has a fixpoint in [i].

We proceed in a similar way to Theorems 1, 2, omitting details of the sequence of steps
of the formal proof. Using our deductive system, it can be shown that

1. for i ∈ [2n], i ≥ 2, (Ai ∧ Fi)→ Ai−1,
2. A2 → C2,
3. for i ∈ [2n], i ≥ 2, (Ai ∧ Fi ∧ Ci−1)→ Ci.
To prove item (1), we use Lemma 3. (Ai ∧Fi) is equivalent to (using the distributive rule

for the universal quantifier (8)):

∀x ≤ i (fi(x
(1)) = x(1) ∧ fi(x) ≥ x ∧ fi(x) ≤ i ∧

(fi(x) < i→ fi−1(x) = fi(x)) ∧ (fi(x) = i→ fi−1(x) = i− 1))
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Ai−1 is equivalent to ∀x(fi−1(x(1)) > x(1) ∧ x ≤ i− 1→ (fi−1(x) ≥ x ∧ fi−1(x) ≤ i− 1)).
For any value of x, the matrix of this is efficiently derivable from the matrix of the expression
for (Ai ∧ Fi), so Lemma 3 can be applied.

To prove item (2), the expression A2 → C2, we have

C2 = ∃x < x(2), x′ ≤ x(2)
(
f1(x) > x ∧ x′ = f1(x) ∧ f1(x′) = f1(x)

)
A2 = f2(x(1)) > x(1) ∧ ∀x ≤ x(2)(f2(x) ≥ x ∧ f2(x) ≤ x(2))

The proof of A2 → C2 is similar to the one for the corresponding expression in Theorem 2,
and we omit the details.

For item (3) above, Ci−1 identifies x < i − 1 that fi−1 maps to a fixpoint x′ of fi−1. To
identify a solution for fi we proceed by case analysis, rule (4). If x′ < i − 1 then (based on
the way Fi constructs fi−1 from fi) we can deduce that x must be a solution of fi (in that
fi(x) = x′ and fi(x

′) = x′). If x′ = i − 1 then we proceed by case analysis according to
whether fi(x) = i− 1 (in which case x is a solution of fi), and the alternative is fi(x) = i, in
which case, since we know from Ai that fi(i) = i, x continues to be a solution for fi.

7 Finitary Existential Sentences and TFNP

To end on a different note, let us look back at the five classes: All five correspond to elementary
combinatorial existence arguments (such as “every dag has a sink”, recall the five bullets in the
Introduction). Importantly, all five combinatorial existence arguments yielding complexity
classes are finitary: They are true of finite structures and not true of all infinite structures.
Is this a coincidence? Can there be an interesting complexity subclass of TFNP defined in
terms of an existence argument that is not finitary, but is true of all structures, finite and
infinite?

Seen as sentences in logic, these combinatorial arguments are statements of the form
“for all finite structures (such as topologically sorted dags) there exists an element (a node)
that satisfies a property (has no outgoing edges).” The corresponding logical expression is a
sentence ∃x̄Φ(x̄) in predicate logic, involving a set of existentially quantified variables x̄ and
an expression Φ with any number of other variables, as well as function symbols capturing
structures such as undirected and directed graphs, pigeonhole functions, or total orders and
potential functions. The “for all finite structures” quantification is implicit in the requirement
that the sentence ∃x̄Φ(x̄) be valid on finite structures.

And conversely, it is easy to see any such sentence yields a problem Find WitnessΦ in
TFNP (and consequently a complexity class, through reductions). Find WitnessΦ is defined
as follows: “Given a finite structure for Φ, where the finite universe can be assumed to be
an initial segment of the nonnegative integers and the structures are presented implicitly
through circuits computing the functions of Φ on elements of the universe encoded in binary,
find a tuple x̂ of integers that satisfy Φ.”

We can now formulate the question in the section’s opening paragraph in logic terms:
All five sentences Φ corresponding to the five known complexity subclasses of TFNP are of
course true in any finite model, but all of them happen to be false for some infinite models
(for example, “every dag has a sink” fails for the totally ordered integers). Is this necessary?
Can there be an interesting subclass of TFNP based on a valid sentence ∃x̄Φ(x̄), that is, one
that is true of all models, finite or infinite?

Employing an ancient theorem in Logic due to Jacques Herbrand [13] (1930) one can show
that the answer is negative:
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Theorem 4 For any valid sentence in predicate logic of the form ∃x̄Φ(x̄), the corresponding
problem Find WitnessΦ can be solved in polynomial time.

Sketch: Herbrand’s theorem [13] states that any valid sentence

∃x1 · · · ∃xkΦ(x1, . . . , xk)

is equivalent to a finite disjunction of the form

K∨
i=1

Φ(ti1, . . . , tik),

where the tij ’s are terms involving the function symbols and constants of Φ, for some fixed K
depending on Φ. Solving Find WitnessΦ entails evaluating each of these K logical formulae
of fixed size to identify the combination of terms, and thus ultimately elements of the universe
computed in linear time (with respect to the length of the input) through the circuits of the
input, that indeed satisfy Φ.

8 Discussion

We have defined PTFNP, a subclass of the total function problems with NP verification of
witnesses, which we see as a “syntactic” (in the sense of having complete problems) approxi-
mation of TFNP. We showed that PTFNP contains the five known classes PPP, PPA, PPAD,
PPADS, and PLS.

The question remains, is Factoring in PTFNP? It would seem that, in order to prove
that it is, one needs a propositional proof of the correctness of [1], which seems very tricky.
But there is an easier alternative: A propositional proof of any sort of concise primality
certificates would suffice. Still, at present we see concrete obstacles to proceeding in this
direction. Alternatively, what other more powerful class would include Factoring and the
other “rogue problems”? How should the deductive system be strengthened? The work
by Beckmann and Buss mentioned in the introduction may provide an answer. A related
question is whether the system can be weakened while still generalising PPP and the related
classes. In particular, whether we really need to generate a long sequence of functions via
extended Frege-style lines (13). (It is tempting to try to define a function via its bit graph:
instead of defining f , could we just introduce boolean variables f(x) for each x ∈ [2n], and
have separate (standard extended Frege) lines for each of them? But this doesn’t work on its
own; for more discussion see Section A.8.)
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A Some formal proofs and expressions

A.1 Proof of SC → TC (from proof of Theorem 1)

We noted that SC → TC is of the form:

∃xA(x)→ ∃x, y(A(x) ∨B(x, y))
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which is proved as follows. Using the distributive rule for quantifiers (8) this is equivalent to

∃xA(x)→ ∃xA(x) ∨ ∃x, yB(x, y). (37)

Rule (1) of our proof system lets us write down lines containing ` A → A for any well-
formed formula A, so we can write

¬∃xA(x)→ ¬∃xA(x)

The antecedent strengthening rule (6) lets us deduce

(¬∃xA(x) ∧ ¬∃x, yB(x, y))→ ¬∃xA(x)

Applying the rule of replacement A→ B ≡ ¬B → ¬A, we have

∃xA(x)→ ¬(¬∃xA(x) ∧ ¬∃x, yB(x, y))

which (applying ¬(A∧B) ≡ ¬A∨¬B, and removal of double negation) is equivalent to (37).

A.2 Proof of ¬SC → A2n (from proof of Theorem 1)

We want to prove ¬SC → A2n , and noting that ¬SC is equivalent to ∀x(f(x) 6= 2n), this is:

∀x(f(x) 6= 2n)→ ∀x(x ≤ 2n → f2n(x) ≤ 2n − 1).

Let F be the expression ∀x(f2n(x) = f(x)), which we have as an extension axiom. So we
would like to prove

F → (¬SC → A2n)

which using modus ponens in conjunction with F would yield the desired result ¬SC → A2n .
Equivalently, aim to prove (F ∧ ¬SC)→ A2n , i.e.

(∀x(f2n(x) = f(x)) ∧ ∀x(f(x) 6= 2n))→ A2n

i.e. by (8)
∀x(f2n(x) = f(x) ∧ f(x) 6= 2n)→ A2n

where A2n is ∀x(x ≤ 2n → f2n(x) ≤ 2n − 1).
By Lemma 3 it suffices to show that we can construct a polynomial-size circuit that takes

i ∈ [2n] as input, and outputs a proof of

(x = i)→
(

(f2n(x) = f(x) ∧ f(x) 6= 2n))→ (x ≤ 2n → f2n(x) ≤ 2n − 1)
)

The tight-hand side of this expression (i.e., omitting the initial “(x = i) →”, can be seen to
be a tautology over the 3n propositional variables x, f(x), and f2n(x), and can be proved to
be equivalent to true.

A.3 Proof of lines (24) from Theorem 1: Fi ∧ Ai → Ai−1

We show how to formally prove (Fi ∧ Ai) → Ai−1. Writing out this expression in full (we
use line breaks and indentation indicate the priority of connectives in the expression, so the
left-hand “→” symbol has lowest priority), we have (38), where Fi appears in the first three
lines of (38), and Ai and Ai−1 appear in the fourth and fifth lines respectively.

∀x((x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x((x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = fi(i))
∧ ∀x((x ≥ i ∨ fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(38)
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We show that (38) is derivable via the proof system of Section 2.2. Applying the case
analysis rule (4) with B = fi(i) = i− 1, (38) is derivable from the following two statements
(the contents of lines `′(Ai) and `′′(Ai) that are referred-to in (24) and discussed below (24)):

fi(i) = i− 1→ (38) (39)

fi(i) 6= i− 1→ (38) (40)

We omit the proof of (40), which is similar to the proof of (39); we focus on the details
of the proof of (39).

Using the identity A→ (B → C) ≡ (A ∧B)→ C, (39) is equivalent to:

fi(i) = i− 1
∧ ∀x((x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x((x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = fi(i))
∧ ∀x(x ≥ i ∨ fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(41)

Using the antecedent strengthening rule (6), (41) is inferable from the following expression,
in which the third line of (41) has been omitted:

fi(i) = i− 1
∧ ∀x((x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x(x ≥ i ∨ fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(42)

By rule (9) (bringing a quantifier to the front) and simple manipulations, this is equivalent
to the following expression in which the second line omits the subexpressions fi(i) = i− 1:

fi(i) = i− 1
∧ ∀x((x < i ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x((x ≥ i ∨ fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(43)

Equivalently (splitting the third line into two):

fi(i) = i− 1
∧ ∀x((x < i ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x(x ≥ i→ fi−1(x) = fi(x))
∧ ∀x(fi(x) < i− 1→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(44)

The above is derivable from the following (obtained by dropping the first and third lines,
i.e. strengthening the antecedent):

∀x((x < i ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x(fi(x) < i− 1→ fi−1(x) = fi(x))
∧ ∀x(x ≤ i→ fi(x) ≤ i− 1)

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(45)
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By the distributive rule for quantifiers (8) this is equivalent to:

∀x [(x < i ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ (fi(x) < i− 1→ fi−1(x) = fi(x))
∧ (x ≤ i→ fi(x) ≤ i− 1)]

→ ∀x(x ≤ i− 1→ fi−1(x) ≤ i− 2)

(46)

Lemma 3 implies that the above follows if we prove for all j (restating Lemma 3 with j
instead of i, to avoid a clash with the i being used in the current context):

(x = j)→ [(x < i ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ (fi(x) < i− 1→ fi−1(x) = fi(x))
∧ (x ≤ i→ fi(x) ≤ i− 1)]

→ (x ≤ i− 1→ fi−1(x) ≤ i− 2)

(47)

It can be checked that the right-hand side of (47), i.e. omitting the “(x = j) →”, is (for
all i) a tautology over the vectors of propositional variables x, fi(x), and fi−1(x). This can
be proved by a sequence of basic manipulations, but it’s convenient to apply Lemma 2. This
is done as follows. Suppose we take the right-hand side of (47), replace fi(x) and fi−1(x)
with vectors of new variables y and z respectively, so we get the expression

[(x < i ∧ y = i− 1)→ z = i− 2)
∧ (y < i− 1→ z = y)
∧ (x ≤ i→ y ≤ i− 1)]

→ (x ≤ i− 1→ z ≤ i− 2)

(48)

Given that this is a tautology over x, y, z, using Lemma 2 we write down a circuit-generated
proof of a version of (48) that is preceded with ∀x, y, z. Then we can apply the universal
instantiation rule (10) to replace y and z with fi(x) and fi−1(x).

A.4 Proof of lines (26) from Theorem 1: Ai ∧ Fi ∧ Ci−1 → Ci

Lines of type (26) contain formulae of the form Ai ∧ Fi ∧ Ci−1 → Ci, and (49) is such a line
when written out in full. We give an overview of how to formally prove (49) without going
into quite as much detail of individual formal steps as we did in Section A.3.

By way of some intuition, the first line of (49) contains Ai, saying that fi maps elements
of [i] to elements of [i− 1]. Implicit in that is the bottom line of (49), that states explicitly
that two elements z and z′ of [i] are mapped to the same element of [i− 1]. Fi, which defines
how fi−1 is derived from fi, appears in the second, third, and fourth lines of (49). Ci−1 is
given in the fifth line, and is an explicit statement of the collision for fi−1: y and y′ denote
the colliding elements. Since we now have, in y and y′, two identifiers or handles, for the
colliding elements for fi−1, it becomes possible to express z and z′ in terms of y and y′, in
such a way that they provably satisfy the bottom line.

∀x ≤ i(fi(x) ≤ i− 1)
∧ ∀x((x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x((x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = fi(i))
∧ ∀x((x ≥ i ∨ fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(49)

We begin with a slight simplification, motivated by the observation that the colliding
elements z and z′ that we are looking for, are supposed to occur in the range [i]. We can
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remove the subexpression “x ≥ i∨” from the fourth line to obtain the expression (50), which
is stronger than (49) in the sense that (49) can be seen to be formally derivable from (50).

∀x ≤ i(fi(x) ≤ i− 1)
∧ ∀x((x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = i− 2)
∧ ∀x((x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1)→ fi−1(x) = fi(i))
∧ ∀x((fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(50)

We proceed by case analysis (4) according to whether or not we have fi(i) = i− 1. Thus
we want to prove fi(i) = i − 1 → (50) and fi(i) < i − 1 → (50). We don’t need to consider
the case fi(i) > i− 1→ (50) since that case is ruled out by the first line of (50) that contains
Ai (i.e. ∀x ≤ i(fi(x) ≤ i− 1)).

fi(i) = i− 1→ (50) is equivalent to (after simplifying by removing the third line of (50),
that assumes fi(i) < i− 1):

∀x ≤ i(fi(x) ≤ i− 1)
∧ fi(i) = i− 1
∧ ∀x ≤ i− 1(fi(x) = i− 1→ fi−1(x) = i− 2)
∧ ∀x((fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(51)

We prove (51) using another application of case analysis, this time according to whether
or not we have ∃w < i(fi(w) = i − 1). In the case that ∃w < i(fi(w) = i − 1), the
bottom line of (51) follows from this and the rest of (51) by taking z = i and z′ = w. (See
Figure 3, first example.) In the case of ¬∃w < i(fi(w) = i− 1) —which can be rewritten as
∀x < i(fi(x) 6= i − 1)— we derive the bottom line from this and the rest of (51) by taking
z = y and z′ = y′ (the y and y′ asserted to exist in the penultimate line). (We do this case
in more detail in Section A.6.)

fi(i) < i− 1→ (50) is equivalent to

∀x ≤ i(fi(x) ≤ i− 1)
∧ fi(i) < i− 1
∧ ∀x ≤ i− 1(fi(x) = i− 1→ fi−1(x) = fi(i))
∧ ∀x((fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(52)

We prove (52) using another application of case analysis, again according to whether or
not we have ∃w < i(fi(w) = i−1). Here we have to refine the case analysis further, according
to whether w is unique: formally whether we have ∃w 6= w′(w,w′ < i∧fi(w) = i−1∧fi(w′ =
i − 1)). (See Figure 3, second and third examples.) If so, w and w′ can be used for z and
z′ in the bottom line of (52). If not, it should be inferable that the x and x′ that collide for
fi−1 also collide for fi. If we have ¬∃w < i(fi(w) = i− 1), then it should also follow that the
x and x′ that collide for fi−1 also collide for fi.

As a final note, an alternative approach to the case analysis to proving (50) in the case
where fi(i) = i − 1, would be by further case analysis on y, y′: consider a case where y and
y′ satisfy fi−1(y) = fi−1(y′) < i− 2 (in which case, choose z = y, z′ = y′). In the alternative
case of fi−1(y) = fi−1(y′) = i − 2, if fi(y) = i − 1 then fi(y) = fi(i)— choose z = y, z′ = i.
Similarly if fi(y

′) = i− 1 then fi(y
′) = fi(i)— choose z = y′, z′ = i.
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Figure 3: Illustration re proofs of (51), (52).

A.5 Proof of line (25) from Theorem 1: the formula A2 → C2

Recall that x(0) denotes the n-vector (0, . . . , 0), x(1) denotes the n-vector (0, . . . , 0, 1), and
x(2) denotes the n-vector (0, . . . , 0, 1, 0). Thus x = x(2) is an abbreviation for x1 = x2 = . . . =
xn−2 = false; xn−1 ∨ xn; ¬(xn−1 ∧ xn).

Using rule (1), which allows us to write down A → A for any well-formed expression A,
we can write

` A2 → A2

where recall A2 is the expression ∀x(x ≤ x(2) → f2(x) ≤ x(1)).
Rename x to x̄ in the right-hand occurrence of A2, and bringing the quantifier to the

front, we can deduce
∀x̄(A2 → (x̄ ≤ x(2) → f2(x̄) ≤ x(1)))

Using universal instantiation (rule (10)), plugging in x(1) for x̄ and then plugging in x(2)

for x̄ we can write down two lines containing the following expressions:

A2 → (x(1) ≤ x(2) → f2(x(1)) ≤ x(1))

A2 → (x(2) ≤ x(2) → f2(x(2)) ≤ x(1))

We can simplify these two expressions since x(1) ≤ x(2) and x(2) ≤ x(2) both evaluate to true
(using basic rules of replacement), to get

A2 → (f2(x(1)) ≤ x(1))

A2 → (f2(x(2)) ≤ x(1))

Then via conjunction introduction and A→ (B ∧ C) ≡ (A→ B) ∧ (A→ C), we have

A2 → ((f2(x(1)) ≤ x(1)) ∧ (f2(x(2)) ≤ x(1)))
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The right-hand side of the above can be shown to imply that f2(x(1)) = f2(x(2)), so we can
combine with the the above to write down

A2 → ((f2(x(1)) ≤ x(1)) ∧ (f2(x(2)) ≤ x(1)) ∧ f2(x(1)) = f2(x(2))).

Insert into the RHS the expressions x(1) ≤ x(2) and x(2) ≤ x(2).
Use existential generalisation rule (12) twice (replacing occurrences of the constants x(1)

and x(2) with existentially quantified variables x and x′). Push the existential quantifier into
the RHS of the expression (using (9)), and we end up with the desired A2 → C2.

A.6 Further details on the proof of (51)

Equation (51), in the case ∀x < i(fi(x) 6= i− 1), is equivalent to

∀x ≤ i(fi(x) ≤ i− 2)
∧ fi(i) = i− 1
∧ ∀x((fi(x) < i− 1)→ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(53)

We can see that we would like to put z, z′ equal to y, y′ respectively.
Using the antecedent strengthening rule (6), it is sufficient to prove a version of the above

where the subexpression “∧fi(i) = i − 1” is omitted, also the first and third lines imply
∀x ≤ i(fi(x) ≤ i− 2 ∧ fi−1(x) = fi(x)), so it’s sufficient to prove:

∀x ≤ i(fi(x) ≤ i− 2 ∧ fi−1(x) = fi(x))
∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)

→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z
′) ∧ fi(z) ≤ i− 1)

(54)

In order to apply Lemma 4 we need to make an extra copy of the universally-quantified
variable vector x in (54); (54) is equivalent to:

∀x, x′ ≤ i(fi(x) ≤ i− 2 ∧ fi−1(x) = fi(x) ∧ fi(x′) ≤ i− 2 ∧ fi−1(x′) = fi(x
′))

∧ ∃y 6= y′(y ≤ i− 1 ∧ y′ ≤ i− 1 ∧ fi−1(y) = fi−1(y′) ∧ fi−1(y) ≤ i− 2)
→ ∃z 6= z′(z ≤ i ∧ z′ ≤ i ∧ fi(z) = fi(z

′) ∧ fi(z) ≤ i− 1)
(55)

Lemma 4 says that it’s sufficient to be able to generate, for all i, x, x′, a proof of:

x, x′ ≤ i→ (fi(x) ≤ i− 2 ∧ fi−1(x) = fi(x) ∧ fi(x′) ≤ i− 2 ∧ fi−1(x′) = fi(x
′))

∧ (x 6= x′ ∧ x ≤ i− 1 ∧ x′ ≤ i− 1 ∧ fi−1(x) = fi−1(x′) ∧ fi−1(x) ≤ i− 2)
→ (x 6= x′ ∧ x ≤ i ∧ x′ ≤ i ∧ fi(x) = fi(x

′) ∧ fi(x) ≤ i− 1)
(56)

It can be checked that (56) is a tautology, so Lemma 2 can be used.

A.7 Proof of a technical equivalence used in Lemmas 1, 2

We show that the standard replacement rules of propositional logic allow us to prove that for
any i ∈ [2n]

x ≤ i− 1 ∨ x = i ≡ x ≤ i.

Put k = i− 1. Note that for some j ∈ [n],

i1 = k1, i2 = k2, . . . , ij = 1, kj = false, ij+1 = false, kj+1 = true . . . in = false, kn = true.
(57)
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x = i is an abbreviation for

x1 = i1 ∧
E︷ ︸︸ ︷

x2 = i2 ∧ . . . ∧ xn = in . (58)

x ≤ i− 1 is an abbreviation for

A︷ ︸︸ ︷
¬x1 ∧ k1 ∨

B︷ ︸︸ ︷
(x1 = k1 ∧

D︷ ︸︸ ︷
(¬x2 ∧ k2 ∨ x2 = k2 ∧ (. . .¬xn ∧ kn) . . .)) (59)

(for a non-strict inequality, we would insert ∨xn = kn at the end.)
Similarly, x ≤ i is an abbreviation for

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (¬x2 ∧ i2 ∨ x2 = i2 ∧ (. . .¬xn ∧ in) . . .)) (60)

So we want to prove
(59) ∨ (58) ≡ (60) (61)

(59) ∨ (58) are of the form (A ∨ B) ∨ C, i.e. A ∨ (B ∨ C) where A = ¬x1 ∧ i1 (assuming
j > 1). We have B = (x1 = i1) ∧D and C = (x1 = i1) ∧E, so B ∨ C ≡ (x1 = i1) ∧ (D ∨E).
So the LHS of (61) can be written as

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (D ∨ E)).

D and E have the same structure as (59) and (58), so continue until we reach xj :
(59) ∨ (58) is equivalent to

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (. . . (¬xj−1 ∧ ij−1 ∨ (xj−1 = ij−1 ∧ (Dj ∨ Ej) . . .)))) (62)

where Dj is ¬xj ∧ kj ∨ (xj = kj ∧ (¬xj+1 ∧ kj+1 ∨ (. . .) . . .)), and from (57) Dj is the
expression ¬xj ∧ false ∨ (xj = false ∧ (¬xj+1 ∧ true ∨ (. . .) . . .)).

Ej is xj = ij∧. . .∧xn = in. From (57) we have ij = true, and ij+1, . . . , in = false, and so
Ej is the expression xj = true∧xj+1 = false . . .∧xn = false, so Ej ≡ xj∧¬xj+1∧. . .∧¬xn.

At this point, we aim to manipulate the subexpression Dj ∨ Ej (using the rules of re-
placement) to obtain the expression (having similar structure to (60)):

¬xj ∧ ij ∨ (xj = ij ∧ (¬xj+1 ∧ ij+1 ∨ xj+1 = ij+1 ∧ (. . .¬xn ∧ in) . . .)). (63)

From (57) we have that ij = true and ij+1 = . . . = in = false, so (63) is equivalent to
¬xj ∧ true ∨ (xj = true ∧ (¬xj+1 ∧ false ∨ xj+1 = false ∧ (. . .¬xn ∧ false) . . .)). At

this stage it’s hopefully clear that a further, rather tedious, sequence of replacement rules
makes this the same as Dj ∨ Ej .

A.8 Do we need extension axiom lines for new functions?

Should we be able to define Wrong Proof with respect to a proof system that is less
feature-rich, but still allows us to reduce from Pigeonhole circuit, Lonely, and Iter?
In particular, do we need extension axioms of type (13) that define new functions, or should
we be able to make do with standard extended Frege lines that define new propositional
variables? In addition, it may be that our usage of quantifiers is a syntactic convenience, and
if we can get rid of those also, we would have purely propositional extended-Frege proofs. We
discuss these possibilities with respect to the reduction of Theorem 1 (reducing Pigeonhole
Circuit to Wrong Proof).
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Line Fi (23) in the reduction from Pigeonhole circuit is the following:

fi−1(x)↔


i− 2 if x < i ∧ fi(i) = i− 1 ∧ fi(x) = i− 1
fi(i) if x < i ∧ fi(i) < i− 1 ∧ fi(x) = i− 1
fi(x) otherwise. (i.e. x ≥ i ∨ fi(x) < i− 1)

(64)

Now, we could regard expressions like “fi(x)” and “fi−1(x)” as vectors of propositional vari-
ables, which we think of as self-contained, rather than a combination of two things, a function
and a bit vector. We can replace each line Fi with a sequence of 2n lines Fij , j ∈ [2n], that
define the bit graph of function fi, where Fij contains the expression:

fi−1(j)↔


i− 2 if j < i ∧ fi(i) = i− 1 ∧ fi(j) = i− 1
fi(i) if j < i ∧ fi(i) < i− 1 ∧ fi(j) = i− 1
fi(j) otherwise. (i.e. j ≥ i ∨ fi(j) < i− 1)

(65)

Since Fij defines a valuation for the bit-vector fi−1(j), it can be further decomposed into n
standard extended Frege lines, one for each component of fi−1(j). In general, any expression
of the form ∀x(φ(x)) (where x is an n-vector of variables) may (in the context of circuit-
generated proofs) be split into 2n expressions of the form φ(j), j ∈ [2n].

By contrast, existentially quantified expressions don’t allow this treatment. Consider an
expression like ∃x, x′(fi(x) = x(1) ∨ fi(x) = fi(x

′)). This is equivalent to the exponentially-
long expression ∨

x,x′

(fi(x) = x(1) ∨ fi(x) = fi(x
′)).

The advantage of this expression is that it treats subexpressions of the form “fi(x)” as self-
contained (vectors of) propositional variables, as opposed to functions acting on propositional
variables. Since this exponentially-long expression is highly structured (a disjunction of many
small clauses), it seems feasible to extend the definition of circuit-generated proof, so as to
allow such expressions to constitute lines of a proof, and the corresponding circuit would
take as input, a line number and a clause number, and compute the relevant clause. What’s
needed is inference rules that use these “long” lines, which are efficiently checkable for errors.
One kind of inference rule that looks sound and may do what we want, would say that if we
have two long disjunction lines

∨
i Ci and

∨
i C′i where Ci and C′i are clauses, and we want to

deduce
∨

i C′i from
∨

i Ci, using additional information F , then it suffices to say that given
any clause Ci and F , we can infer some clause C′i. A circuit-generated proof would just need
to be able to output all of these smaller results (i.e. prove that Ci, F ` C′j for some j) and
if any were erroneous, such an error could be verified, alternatively, if none were erroneous
then we have a valid proof.
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