
The Matching Problem in General Graphs is in Quasi-NC

Ola Svensson∗ Jakub Tarnawski∗

April 6, 2017

Abstract

We show that the perfect matching problem in general graphs is in quasi-NC. That is, we
give a deterministic parallel algorithm which runs in O(log3 n) time on nO(log2 n) processors.
The result is obtained by a derandomization of the Isolation Lemma for perfect matchings,
which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani [1987] to
obtain a Randomized NC algorithm.

Our proof extends the framework of Fenner, Gurjar and Thierauf [2016], who proved
the analogous result in the special case of bipartite graphs. Compared to that setting,
several new ingredients are needed due to the significantly more complex structure of perfect
matchings in general graphs. In particular, our proof heavily relies on the laminar structure
of the faces of the perfect matching polytope.

∗School of Computer and Communication Sciences, EPFL.
Email: {ola.svensson,jakub.tarnawski}@epfl.ch.
Supported by ERC Starting Grant 335288-OptApprox.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 59 (2017)

3

1

4

2

T (G) =

0 X12 X13 X14

−X12 0 0 X24

−X13 0 0 X34

−X14 −X24 −X34 0

Figure 1: Example of a Tutte matrix of an undirected graph.

1 Introduction

The perfect matching problem is a fundamental question in graph theory. Work on this problem
has contributed to the development of many core concepts of modern computer science, including
linear-algebraic, probabilistic and parallel algorithms. Edmonds [Edm65b] was the first to give
a polynomial-time algorithm for it. However, half a century later, we still do not have full
understanding of the deterministic parallel complexity of the perfect matching problem. In this
paper we make progress in this direction.

We consider a problem to be efficiently solvable in parallel if it has an algorithm which uses
polylogarithmic time and polynomially many processors. More formally, a problem is in the
class NC if it has uniform circuits of polynomial size and polylogarithmic depth. The class RNC
is obtained if we also allow randomization.

We study the decision version of the problem: given an undirected simple graph, determine
whether it has a perfect matching – and the search version: find and return a perfect matching
if one exists. The decision version was first shown to be in RNC by Lovász [Lov79]. The search
version has proved to be more difficult, as a graph may contain exponentially many perfect
matchings and it is necessary to coordinate the processors so that they identify and output
the same one; our vocabulary for this is that we want to isolate one matching. This version
was found to be in RNC by Karp, Upfal and Wigderson [KUW86] and Mulmuley, Vazirani and
Vazirani [MVV87]. All these algorithms are randomized, and it remains a major open problem
to determine whether randomness is required, i.e., whether either version is in NC.

A very successful approach to the perfect matching problem is the linear-algebraic one. It
involves the Tutte matrix associated with a graph G = (V,E), which is a |V | × |V | matrix
defined as follows (see Figure 1 for an example):

T (G)u,v =

X(u,v) if (u, v) ∈ E and u < v,

−X(v,u) if (u, v) ∈ E and u > v,

0 if (u, v) 6∈ E,

where X(u,v) for (u, v) ∈ E are variables. Tutte’s theorem [Tut47] says that detT (G) 6= 0 if and
only if G has a perfect matching. This is great news for parallelization, as computing determi-
nants is in NC [Csa76, Ber84]. However, the matrix is defined over a ring of indeterminates, so
randomness is normally used in order to test if the determinant is nonzero. One approach is to
replace each indeterminate by a random value from a large field; this leads, among others, to
the fastest known (single-processor) running times for dense graphs [MS04, Har09].

A second approach, adopted by Mulmuley, Vazirani and Vazirani [MVV87] for the search
version, is to replace the indeterminates by randomly chosen powers of two. Namely, for each
edge (u, v), a random weight w(u, v) ∈ {1, 2, ..., 2|E|} is selected, and we substitute X(u,v) :=

2w(u,v). Now, let us make the crucial assumption that one perfect matching M is isolated, in
the sense that it is the unique minimum-weight perfect matching (minimizing w(M)). Then
detT (G) remains nonzero after the substitution: one can show that M contributes a term
±22w(M) to detT (G), whereas all other terms are multiples of 22w(M)+1 and thus they cannot

2

cancel 22w(M) out. The determinant can still be computed in NC as all entries 2w(u,v) of the
matrix are of polynomial bit-length, and so we have a parallel algorithm for the decision version.
An algorithm for the search version also follows: for every edge in parallel, test whether removing
it causes this least-significant digit 22w(M) in the determinant to disappear; output those edges
for which it does.

The fundamental claim in [MVV87] is that assigning random weights to edges does indeed
isolate one matching with high probability. This is known as the Isolation Lemma and turns
out to be true in the much more general setting of arbitrary set families:

Lemma 1.1 (Isolation Lemma). Let M ⊆ 2E be any nonempty family of subsets of a uni-
verse E = {1, 2, ..., |E|}. Suppose we define a weight function w : E → {1, 2, ..., 2|E|} by
selecting each w(e) for e ∈ E independently and uniformly at random. Then with probability at
least 1/2, there is a unique set M ∈M which minimizes the weight w(M) =

∑
e∈M w(e).

We call such a weight function w isolating. We take M in Lemma 1.1 to be the set of all
perfect matchings.

Since Lemma 1.1 is the only randomized ingredient of the RNC algorithm, the natural
approach to showing that the perfect matching problem is in NC is the derandomization of the
Isolation Lemma. That is, we would like a set of polynomially many weight functions (with
polynomially bounded values) which would be guaranteed to contain an isolating one. To get
an NC algorithm, we should be able to generate this set efficiently in parallel; then we can try
all weight functions simultaneously.

However, derandomizing the Isolation Lemma turns out to be a challenging open question. It
has been done for certain classes of graphs: strongly chordal [DK98], planar bipartite [DKR10,
TV12], or graphs with a small number of perfect matchings [GK87, AHT07].1 The general
set-family setting of the Isolation Lemma is also related to circuit lower bounds and polynomial
identity testing [AM08].

Recently, in a major development, Fenner, Gurjar and Thierauf [FGT16] have almost de-
randomized the Isolation Lemma for bipartite graphs. Namely, they define a family of weight
functions which can be computed obliviously (only using the number of vertices n) and prove
that for any bipartite graph, one of these functions is isolating. Because their family has
quasi-polynomial size and the weights are quasi-polynomially large, this has placed the perfect
bipartite matching problem in the class quasi-NC.

Nevertheless, the general-graph setting of the derandomization question (either using the
Isolation Lemma or not) remained wide open. Even in the planar case, with NC algorithms for
bipartite planar and small-genus graphs having been known for a long time [MN89, MV00], we
knew no quasi-NC algorithm for non-bipartite graphs.2 In general, the best known upper bound
on the size of uniform circuits with polylogarithmic depth was exponential.

We are able to nearly bridge this gap in understanding. The main result of our paper is the
following:

Theorem 1.2. For any number n, we can in quasi-NC construct nO(log2 n) weight functions on
{1, 2, ...,

(
n
2

)
} with weights bounded by nO(log2 n) such that for any graph on n vertices, one of

these weight functions isolates a perfect matching (if one exists).

1 More generally, there has been much interest in obtaining NC algorithms for the perfect matching problem
on restricted graph classes (not necessarily using the Isolation Lemma), e.g.: regular bipartite [LPV81], P4-tidy
[Par98], dense [DHK93], convex bipartite [DS84], claw-free [CNN89], incomparability graphs [KVV85].

2 Curiously, an NC algorithm to count the number of perfect matchings in a planar graph is known [Kas67,
Vaz89], which implies an algorithm for the decision version; however, it is open to give an NC algorithm for the
search version.

3

The results of [MVV87] and Theorem 1.2 together imply that the perfect matching problem
(both the decision and the search variant) in general graphs is in quasi-NC; see Section 2.1 for
more details on this. The implied algorithm is very simple; the complexity lies in the analysis,
i.e., proving that one of the weight functions is isolating (Theorem 4.11).

In what follows, we first give an overview of the framework in [FGT16] for bipartite graphs.
We then explain how we extend the framework to general graphs. Due to the more complex
structure of perfect matchings in general graphs, we need several new ideas. In particular, we
exploit structural properties of the perfect matching polytope.

1.1 Isolation in bipartite graphs

In this section we shortly discuss the elegant framework introduced by Fenner, Gurjar and
Thierauf [FGT16], which we extend to obtain our result.

If a weight function w is not isolating, then there exist two minimum-weight perfect match-
ings, and their symmetric difference consists of alternating cycles. In each such cycle, the total
weight of edges from the first matching must be equal to the total weight of edges from the sec-
ond matching (as otherwise we could obtain another matching of lower weight). The difference
between these two total weights is called the circulation of the cycle. By the above, if all cycles
have nonzero circulation, then w is isolating. It is known how to obtain weight functions which
satisfy a polynomial number of such non-equalities (see Lemma 3.4); unfortunately, a graph
may have an exponential number of cycles.

The crucial idea of [FGT16] is to build the weight function in log n rounds. In the first round,
we find a weight function with the property that each cycle of length 4 has nonzero circulation;
this is possible since there are at most n4 such cycles. We apply this function and from now
on consider only those edges which belong to a minimum-weight perfect matching. Crucially, it
turns out that in the subgraph obtained this way, all cycles of length 4 have disappeared – this
follows from the simple structure of the bipartite perfect matching polytope (a face is simply the
bipartite matching polytope of a subgraph) and fails to hold for general graphs. In the second
round, we start from this subgraph and apply another weight function which ensures that all
even cycles of length up to 8 have nonzero circulation (one proves that there are again n4 many
since the graph contains no 4-cycles). Again, these cycles disappear from the next subgraph,
and so on. After log n rounds, the current subgraph has no cycles, i.e., it is a perfect matching.
The final weight function is obtained by combining the log n polynomial-sized weight functions.
To get a parallel algorithm, we need to simultaneously try each such possible combination, of
which there are quasi-polynomially many.

This result has later been generalized by Gurjar and Thierauf [GT16] to the linear matroid
intersection problem – a natural extension of bipartite matching. From the work of Narayanan,
Saran and Vazirani [NSV94], who gave an RNC algorithm for that problem (also based on
computing a determinant), it again follows that derandomizing the Isolation Lemma implies a
quasi-NC algorithm.

1.2 Challenges of non-bipartite graphs

We find it useful to look at the method explained in the previous section from a polyhedral
perspective (also used by [GT16]). We begin from the set of all perfect matchings, of which we
take the convex hull: the perfect matching polytope. After applying the first weight function,
we want to consider only those perfect matchings which minimize the weight; this is exactly the
definition of a face of the polytope. In the bipartite case, any face was characterized by just
taking a subset of edges (i.e., making certain constraints xe ≥ 0 tight), so we could simply think
about recursing on a smaller subgraph. This was used to show that any cycle whose circulation

4

Main difficulty

select w
=⇒

1

1

1

0
0

0

0
0

0

Minor difficulty

C1∆C2

=⇒

Figure 2: An illustration of the difficulties of derandomizing the Isolation Lemma for general
graphs as compared to bipartite graphs.
On the left: in trying to remove the bold cycle, we select a weight function w such
that the circulation of the cycle is 1−0+1−0 6= 0. By minimizing over w we obtain
a new, smaller subface – the convex hull of perfect matchings of weight 1 – but every
edge of the cycle is still present in one of these matchings. The cycle has only been
eliminated in the following sense: it can no longer be obtained in the symmetric
difference of two matchings in the new face (since none of them select both swirly
edges). The vertex sets drawn in gray represent the new tight odd-set constraints
that describe the new face (indeed: for a matching to have weight 1, it must take
only one edge from the boundary of a gray set). We will say that the cycle does not
respect the gray vertex sets (see Section 3).
On the right: two even cycles whose symmetric difference contains no even cycle.

has been made nonzero will not retain all of its edges in the next subgraph. The progress we
made in the bipartite case could be measured by the minimum length of a cycle in the current
subgraph, which doubled as we moved from face to subface.

Unfortunately, in the non-bipartite case, the description of the perfect matching polytope
is more involved (see Section 2.2). Namely, moving to a new subface may also cause new tight
odd-set constraints to appear; these require that, for an odd set S ⊆ V of vertices, exactly one
edge of a matching should cross S. This complicates our task; see the left part of Figure 2 for an
example (the same one as given by [FGT16] to demonstrate the difficulty of the general-graph
case). Now a face is described by not only a subset of edges, but also a family of tight odd-set
constraints. Thus we can no longer guarantee that any cycle whose circulation has been made
nonzero will disappear from the support. Our idea of what it means to remove a cycle needs
to be refined (see Section 3), as well as the measure of progress we use to prove that a single
matching is isolated after log n rounds (see Section 4).

Another difficulty, of a more technical nature, concerns the counting argument used to
prove that a graph with no cycles of length at most λ contains only polynomially many cycles
of length at most 2λ. In the bipartite case, the symmetric difference of two cycles (which are
even) contains a simple cycle (which is also even, short, and thus should not exist); this enables
a simple checkpointing argument. In the general case, we are still only interested in removing
even cycles, but the symmetric difference of two even cycles may not contain an even simple
cycle (see the right part of Figure 2). This forces us to remove not only even simple cycles,
but all even walks, which may contain repeated edges (we call these alternating circuits – see
Definition 3.1), and to rework the counting scheme, obtaining a bound of n17 rather than n4

(see Lemma 5.4). Moreover, instead of simple graphs, we work on node-weighted multigraphs,
which arise by contracting certain tight odd-sets.

5

1.3 Our approach

This section is a high-level, idealized explanation of how to deal with the main difficulty (see
the left part of Figure 2); we ignore the more technical one in this description.

Removing cycles which do not cross a tight odd-set. As discussed in Section 1.2, when
moving from face to subface we cannot guarantee that, for each even cycle whose circulation
we make nonzero, one of its edges will be absent in the new face. However, this will at least
be true for cycles that do not cross any odd-set tight for the new face.3 This implies that if we
apply log n weight functions in succession, then the resulting face will not contain in its support
any even cycle that crosses no tight odd-set (by the same argument as in Section 1.1). This is
less than we need, but it is a good first step. If, at this point, there were no tight sets, then
we would be done, as we would have removed all cycles. However, in general there will still be
cycles crossing tight sets, which make our task more difficult.

Decomposition into two subinstances. To deal with the tight odd-sets, we will make use
of two crucial properties. The first property is easy to see: once we fix the single edge e in the
matching which crosses a tight set S, the instance breaks up into two independent subinstances
– that is, every perfect matching in the graph which contains e is the union of: the edge e, a
perfect matching on the vertex set S (ignoring the S-endpoint of e), and a perfect matching on
the vertex set V \ S (ignoring the other endpoint of e).

This will allow us to employ a divide-and-conquer strategy: to isolate a matching in the entire
graph, we will take care of both subinstances and of the cut separating them. We formulate
the task of dealing with such a subinstance (a subgraph induced on an odd-cardinality vertex
set) as follows: we want that, once the (only) edge of a matching which lies on the boundary
of the tight odd-set is fixed, the entire matching inside the set is uniquely determined (we will
then call this set contractible – see Definition 4.1). This can be seen as a generalization of our
isolation objective to subgraphs with an odd number of vertices. If we can get that for the
tight set and for its complement, then each edge from the cut separating them induces a unique
perfect matching in the graph; therefore there are at most n2 perfect matchings left in the
current face. Now, in order to isolate the entire graph, we only need a weight function w which
assigns different weights to all these matchings. This can be written as n4 linear non-equalities
on w, and we can generate a weight function w satisfying all of them (see Lemma 3.4).4 While
it is not clear how to continue this scheme beyond the first level or why we could hope to have
a low depth of recursion, we will soon explain how we utilize this basic strategy in the sequel.

Laminarity. The second crucial property that we utilize is that the family of odd-set con-
straints tight for a face exhibits good structural properties; it is known that a laminar family
of odd sets is enough to describe any face (see Section 2.2). This enables a scheme where we
use this family to make progress in a bottom-up fashion. This is still challenging as the family
does not stay fixed as we move from face to face. The good news is that it can only increase:
whenever a new tight odd-set constraint appears which is not spanned by the previous ones, we
add that odd-set to our laminar family.

3 This is because if there are no tight odd-set constraints, then our faces behave as in the bipartite case. Now
intuitively, if we only consider those cycles which do not cross any tight set, then we can remove them using the
same arguments as in that case.

4 This can also be seen as assigning nonzero circulation to n4 cycles.

6

S1

U1

S2

U2

S3

U3

S4

U4

S5

U5

S6

U6

S7

U7

S8

U8

U1,2 U3,4 U5,6 U7,8

U1,4 U5,8

U1,8

Phase 1

Phase 2

Phase 3

Phase 4

e4

e6

e8

Figure 3: Example of a chain consisting of 8 tight sets, and our divide-and-conquer argument.

Chain case. To get started, let us first discuss the special case where the family of tight
constraints is a chain, i.e., an increasing sequence of odd-sets S1 (S2 (... (S`. For this
introduction, assume ` = 8; see Figure 3. (This will be an informal and simplified version
of the proof of Lemma 5.6.) Denote by U1, ..., U8 the layers of this chain, i.e., U1 = S1 and
Up = Sp \ Sp−1 for p = 2, 3, ..., 8. Suppose this chain describes the face that was obtained by
applying log n weight functions as described above; then there is no cycle that lies inside a single
layer Up.

Notice that every layer Up is of even size and it touches two boundaries of tight odd-sets:
Sp−1 and Sp (that is, δ(Up) ⊆ δ(Sp−1)∪ δ(Sp)). Any perfect matching (in the current face) will
have one edge from δ(Sp−1) and one edge from δ(Sp) (possibly the same edge), therefore Up will
have two (or zero) boundary edges in the matching. (An exception is U1, which is odd, only
touches S1 and will have one boundary edge in the matching.) This motivates us to generalize
our isolation objective to layers as follows: we say that a layer Up is contractible if choosing an
edge from δ(Sp−1) and an edge from δ(Sp) induces a unique matching inside Up. This definition
naturally extends to layers of the form Sr \ Sp−1 = Up ∪ Up+1 ∪ ... ∪ Ur, which we will denote
by Up,r.

Recall that we have ensured that there is no cycle that lies inside a single layer Up = Up,p.
It follows that these layers are contractible.5 Let us say that this was the first phase of our
approach (see Figure 3). In the second phase, we want to ensure contractibility for double
layers: U1,2, U3,4, U5,6 and U7,8. In general, we double our progress in each phase: in the third
one we deal with the quadruple layers U1,4 and U5,8, and in the fourth phase we deal with the
octuple layer U1,8.

Let us now describe a single phase. Take e.g. the layer U5,8 and two boundary edges
e4 ∈ δ(S4) and e8 ∈ δ(S8) (see Figure 3); we want to have only a unique matching in U5,8

including these edges. Now we will realize our divide-and-conquer approach. Note that the
layers U5,6 and U7,8 have already been dealt with (made contractible) in the previous phase.
Therefore, for each choice of boundary edge e6 ∈ δ(S6) for the matching, there is a unique
matching inside both of these layers. Just like previously, this implies that there are only n2

5 This is because two different matchings (but with the same boundary edges) in the current face would induce
an alternating cycle in their symmetric difference.

7

Figure 4: Example of a general laminar family.
Dark-gray sets are of size at most λ and thus contractible.
Dashed sets are of size more than λ but at most 2λ; they must form chains (due
to the cardinality constraints). We make them contractible in the first step. Then
we contract them (so now all light-gray and dark-gray sets are contracted).
Thick sets are of size more than 2λ. For the second step, we erase the edges on their
boundaries. Then we remove cycles of length up to 2λ from the resulting instance
(the contraction), which has no tight odd-sets (and no cycles of length up to λ).

matchings using e4 and e8 in the layer U5,8, and we can select a weight function that isolates
one of them.6

By generalizing this strategy in the natural way, we can deal with any chain in log ` ≤ log n
phases, even if it consists of Ω(n) tight sets.7 (By applying one more weight function, we can
isolate a unique perfect matching in the entire graph using the same arguments as above.)

General case. Of course, there is no reason to expect that the laminar family of tight cuts
we obtain after applying the initial log n weight functions will be a chain. It also does not seem
easy to directly generalize our inductive scheme from a chain to an arbitrary family. Therefore
we put forth a different progress measure, which allows us to make headway even in the absence
of such a favorable odd-set structure.

Since a laminar family can be represented as a tree, we might think about a bottom-up
strategy based on it; however, we cannot deal with its nodes level-by-level, since it may have
height Ω(n) and we can only afford poly(log n) many phases. Instead, we will first deal with
all tight odd-sets of size up to 4, then up to 8, then up to 16 and so on (by making them
contractible). At the same time, we will also remove all even cycles of length up to 4, then up
to 8 and so on.8 These two components of our progress measure, which we call λ-goodness, are
mutually beneficial, as we will see below.

6 We actually select only one function per phase, which works simultaneously for all layers Up,r in this phase
(here: U1,4 and U5,8) and all pairs of boundary edges ep−1 and er.

7 In the general proof, we do not quite have a binary tree structure like in the example. Instead, in the t-th
phase, we deal with all layers Up,r having 1 ≤ p ≤ r ≤ ` with r− p ≤ 2t−1 − 1. This makes our proof simpler if `
is not a power of two.

8 As discussed in Section 1.2 and Figure 2, the meaning of the term remove needs to be refined, as we cannot
hope to always delete an edge of the cycle from the support of the current face.

8

Making odd-sets contractible enables us not only to achieve progress, but also to simplify our
setting. A contractible tight set can be, for our purposes, thought of as a single vertex – much
like a blossom in Edmonds’ algorithm. This is because such a set has exactly one boundary
edge in a perfect matching (as does a vertex), and choosing that edge determines the matching
in the interior. We will contract such sets (hence the name).

Suppose that our current face is already λ-good. Roughly, this means that we have made
odd-sets of size up to λ (which we will call small) contractible and removed cycles of length up
to λ. Now we want to obtain a face which is 2λ-good.

The first step is to make odd-sets of size up to 2λ contractible. Let us zoom in on one such
odd-set (specifically, a maximal set of size at most 2λ – see the largest dashed set in Figure 4).
Once we have contracted all the small sets into single vertices, all interesting sets are now of size
more than λ but at most 2λ, and any laminar family consisting of such sets must be a chain,
since a set of such size cannot have two disjoint subsets of such size (see Figure 4). But this is
the chain case that we have already solved!

Having made odd-sets of size up to 2λ contractible, we can contract them. The second step
is now to remove cycles of length up to 2λ. However, here we do not need to care about those
cycles which cross an odd-set S of size larger than 2λ – the reason being, intuitively, that in
our technical arguments we define the length of a cycle based on the sizes of sets that it crosses,
and thus such a cycle actually becomes longer than 2λ. In other words, we can think about
removing cycles of length up to 2λ from a version of the input graph where all small odd-sets
have been contracted and all larger ones have had their boundaries erased (see Figure 4). We
call this version the contraction (see Definition 4.5). Our λ-goodness progress measure (see
Definition 4.7) is actually defined in terms of cycles in the contraction.

Now the second step is easy: we just need to remove all cycles of length up to 2λ from the
contraction, which has no tight odd-sets and no cycles of length up to λ – a simple scenario,
already known from the bipartite case. Applying one weight function is enough to do this.

Finally, what does it mean for us to remove a cycle? When we make a cycle’s circulation
nonzero, it is then eliminated from the new face in the following sense: either one of its edges
disappears from the support of the face (recall that this is what always happened in the bipartite
case), or a new tight odd-set appears, with the following property: the cycle crosses the set with
fewer (or more) even-indexed edges than odd-indexed edges (see the example in Figure 2). In
short, we say that the cycle does not respect the new face (see Section 3). This notion of removal
makes sense when viewed in tandem with the contraction, because once a cycle crosses a set in
the laminar family, there are two possibilities in each phase: either this set is large – then its
boundary is not present in the contraction, which cancels the cycle, or it is small – then it is
contracted and the cycle also disappears (for somewhat more technical reasons).

To reiterate, our strategy is to simultaneously remove cycles up to a given length and make
odd-sets up to a given size contractible. We can do this in log n phases. In each such phase we
need to apply a sequence of log n weight functions in order to deal with a chain of tight odd-sets
(as outlined above). In all, we are able to isolate a perfect matching in the entire graph using
a sequence O(log2 n) weight functions with polynomially bounded weights.

1.4 Future work

The most immediate open problem left by our work is to get down from quasi-NC to NC for
the perfect matching problem. Even for the bipartite case, this will require new insights or
methods, as it is not clear how we could e.g. reduce the number of weight functions from log n
to only a constant.

Proving that the search version of the perfect matching problem in planar graphs is in NC is

9

also open2. While the quasi-NC result of [FGT16] gives rise to a new NC algorithm for bipartite
planar graphs, which proceeds by verifying at each step whether the chosen weight function has
removed the wanted cycles (it computes the girth of the support of the current face in NC), our
λ-goodness progress measure seems to be difficult to verify in NC.

A related problem which has resisted derandomization so far is exact matching [PY82]. Here
we are given a graph whose some edges are colored red and an integer k; the question is to find
a perfect matching containing exactly k red edges. The problem is in RNC [MVV87], but not
known to even be in P.

Finally, our polyhedral approach motivates the question of what other zero-one polytopes
admit such a derandomization of the Isolation Lemma. One class that comes to mind are
polyhedra with totally unimodular constraint matrices.

1.5 Outline

The rest of the paper is organized as follows. In Section 2 we introduce notation and define basic
notions related to the perfect matching polytope and to the weight functions that we use. In
Section 3 we define alternating circuits (our generalization of alternating cycles), discuss what
it means for such a circuit to respect a face, and develop our tools for circuit removal. In Sec-
tion 4 we introduce our measure of progress (λ-goodness), contractible sets and the contraction
multigraph. We also state Theorem 4.11, which implies our main result. Finally, in Section 5
we prove our key technical theorem: that applying log2 n+1 weight functions allows us to make
progress from λ-good to 2λ-good.

2 Preliminaries

Throughout the paper we consider a fixed graph G = (V,E) with n vertices. (The isolating
weight functions whose existence we prove can be generated without knowledge of the graph.)
For notational convenience, we assume that log2(n) evaluates to an integer; otherwise simply
replace log2(n) by dlog2(n)e.

We use the following notation. For a subset S ⊆ V of the vertices, let δ(S) = {e ∈ E :
|e ∩ S| = 1} denote the edges crossing the cut (S, V \ S) and E(S) = {e ∈ E : |e ∩ S| = 2}
denote the edges inside S. We shorten δ({v}) to δ(v) for v ∈ V . For a vector (xe)e∈E ∈ R|E|,
we define x(δ(S)) =

∑
e∈δ(S) xe, as well as supp(x) = {e ∈ E : xe > 0}. For a subset F ⊆ E we

define 1F to be the vector with 1 on coordinates in F and 0 elsewhere. We again shorten 1{e}
to 1e for e ∈ E. Sometimes we identify matchings M with their indicator vectors 1M .

A matching is a set of edges M ⊆ E such that no two edges share an endpoint. A matching
M is perfect if |M | = n

2 .

2.1 Parallel complexity

The complexity class quasi-NC is defined as quasi-NC =
⋃
k≥0 quasi-NC

k, where quasi-NCk is the

class of problems having uniform circuits of quasi-polynomial size 2log
O(1) n and polylogarithmic

depth O(logk n) [Bar92]. Here by “uniform” we mean that the circuit can be generated in
quasi-polynomial time.

By the results of [MVV87], Theorem 1.2 implies that the perfect matching problem (both
the decision and the search variant) in general graphs is in quasi-NC. The same can be said
about maximum cardinality matching, as well as minimum-cost perfect matching for small costs
(given in unary); see Section 5 of [MVV87].

10

Some care is required to obtain our postulated running time, i.e., that the perfect matching
problem has uniform circuits of size nO(log2 n) and depth O(log3 n). We could get a quasi-NC4

algorithm by applying the results of [MV97, Section 6.1] to compute the determinant(s). To
shave off one log n factor, we use the following Chinese remaindering method, pointed out to
us by Rohit Gurjar (it will also appear in the full version of [FGT16]). We first compute

determinants modulo small primes; since the determinant has 2O(log3 n) bits, we need as many
primes (each of O(log3 n) bits). For one prime this can be done in NC2 [Ber84]. Then we
reconstruct the true value from the remainders. Doing this for an n-bits result would be in NC1

[BCH86], and thus for a result with 2O(log3 n) bits it is in quasi-NC3.

2.2 Perfect matching polytope

Edmonds [Edm65a] showed that the following set of equalities and inequalities on the variables
(xe)e∈E determines the perfect matching polytope (i.e., the convex hull of indicator vectors of
all perfect matchings):

x(δ(v)) = 1 for v ∈ V ,
x(δ(S)) ≥ 1 for S ⊆ V with |S| odd,

xe ≥ 0 for e ∈ E.

Note that the constraints imply that xe ≤ 1 for any e ∈ E. We refer to the perfect matching
polytope of the graph G = (V,E) by PM(V,E) or simply by PM. Our approach exploits the
special structure of faces of the perfect matching polytope. Recall that a face of a polytope is
obtained by setting a subset of the inequalities to equalities. We follow the definition of a face
from the book of Schrijver [Sch03] – in particular, every face is nonempty.

Throughout the paper, we will only consider the perfect matching polytope and so the term
“face”will always refer to a face of PM. When talking about faces, we use the following notation:

Definition 2.1. For a face F we define

E(F) = {e ∈ E : (∃x ∈ F) xe > 0} and S(F) = {S ⊆ V : |S| odd and (∀x ∈ F) x(δ(S)) = 1} .

In other words, E(F) contains the edges that appear in a perfect matching in F and S(F)
contains the tight cut constraints of F .

Notice that if a set is tight for a face, then it is also tight for any of its subfaces.
Standard uncrossing techniques imply that faces can be defined using laminar families of

tight constraints. This is proved using Lemma 2.2 below, which is also useful in our approach.
Two subsets S, T ⊆ V of vertices are said to be crossing if they intersect and none is

contained in the other, i.e., S ∩ T, S \ T, T \ S 6= ∅. A family L of subsets of vertices is laminar
if no two sets S, T ∈ L are crossing. Furthermore, we say that L is a maximal laminar subset
of a family S if no set in S \ L can be added to L while maintaining laminarity.

Note that any single-vertex set is tight for any face, and therefore a maximal laminar family
contains all these sets; by convention, in our arguments all laminar families will always contain
all singleton sets.

The following lemma is known; for completeness, its proof is included in Appendix A.

Lemma 2.2. Consider a face F . For any maximal laminar subset L of S(F) we have

span(L) = span(S(F)) ,

where for a subset T ⊆ S(F), span(T) denotes the linear subspace of RE spanned by the bound-
aries of sets in T , i.e., span(T) = span{1δ(S) : S ∈ T }.

11

Intuitively, Lemma 2.2 implies that a maximal laminar family L of S(F) is enough to describe
a face F (together with the edge set E(F)). Furthermore, given a subface F ′ ⊆ F , we can extend
L to a larger laminar family L′ ⊇ L which describes F ′.

It is also well-known that the perfect matching polytope PM is integral, i.e., all of its extreme
points are integral. It follows that every face of PM is also integral.

2.3 Weight functions

For our derandomization of the Isolation Lemma we will use families of weight functions which
are possible to generate obliviously (i.e., using only the number of vertices in G). We define
them below.

Definition 2.3. Given t ≥ 7, we define the family of weight functionsW(t) as follows. Number
the edge set E = {e1, ..., e|E|} arbitrarily. Let wk : E → Z be given by wk(ej) = (4n2 + 1)j mod k
for j = 1, ..., |E| and k = 2, ..., t. We define W(t) = {wk : k = 2, ..., t}.

For brevity, we write W :=W(n20).
In our argument we will obtain a decreasing sequence of faces. Each face arises from the

previous by minimizing over a linear objective (given by a weight function).

Definition 2.4. Let F be a face and w a weight function. The subface of F minimizing w will
be called F [w]:

F [w] := argmin{〈w, x〉 : x ∈ F}.

Instead of minimizing over one weight function and then over another, we can concatenate
them in such a way that minimizing over the concatenation yields the same subface. In par-
ticular, we will argue that one just needs to try all possible concatenations of O(log2 n) weight
functions from W in order to find one which isolates a unique perfect matching in G (i.e., it
produces a single extreme point as the minimizing subface).

Definition 2.5. For two weight functions w and w′, where w : E → Z and w′ ∈ W, we define
their concatenation w ◦ w′ := n21w + w′, i.e.,(

w ◦ w′
)

(e) := n21 · w(e) + w′(e).

We also define Wk to be the set of all concatenations of k weight functions from W, i.e.,9

Wk := {w1 ◦ w2 ◦ ... ◦ wk : w1, w2, ..., wk ∈ W}.

Fact 2.6. We have F [w][w′] = F [w ◦ w′].

Proof. Both faces are integral; therefore we only need to show that F [w][w′]∩ZE = F [w◦w′]∩ZE .
The first set consists of matchings in F minimizing w and, among such matchings, minimizing
w′. The second set consists of matchings in F minimizing w ◦ w′. These two sets are equal
because for any M :

• (w ◦ w′)(M) = n21 · w(M) + w′(M),

• w′ ∈ W =W(n20) implies that 0 ≤ w′(M) < n20 · n2 < n21 for any matching M ,

• w(M) ∈ Z, so that for any two matchings M1 and M2, w(M1) > w(M2) implies (w ◦
w′)(M1)− (w ◦ w′)(M2) = n21 (w(M1)− w(M2)) + (w′(M1)− w′(M2)) > 0,

so that the ordering given by w ◦w′ is the same as the lexicographic ordering given by (w,w′).
9By w1 ◦ w2 ◦ ... ◦ wk we mean ((w1 ◦ w2) ◦ ...) ◦ wk.

12

e4

e1

e3

e2
e0
e5

Figure 5: An example of an alternating circuit C of length 6 with indicator vector (±1)C =∑5
i=0(−1)i1ei = −1e1 + 1e2 − 1e3 + 1e4 (since 1e0 and 1e5 cancel each other). Also

note that
〈
(±1)C ,1δ(S)

〉
= 0 for the tight set S depicted in gray.

3 Alternating circuits and respecting a face

In this section we introduce two notions which are vital for our approach. Let us first motivate
them.

Our argument is centered around removing even cycles. As discussed in Section 1.2 and Fig-
ure 2, the meaning of this term in the non-bipartite case needs to be more subtle than just
“removing an edge of the cycle”.

In order to deal with a cycle, we find a weight function which assigns it a nonzero circulation.
Formally, given a cycle C with edges numbered in order, define a vector (±1)C ∈ {−1, 0, 1}E as
having 1 on even-numbered edges of C, −1 on odd-numbered edges of C, and 0 elsewhere; then
we get that 〈(±1)C , w〉 6= 0. Now, in the bipartite case, if such a cycle survived in the new face
F [w], that is, C ⊆ E(F [w]), then the vector (±1)C could be used to obtain a point in the face
F with lower w-weight than the points in F [w], a contradiction. This was possible because of
the simple structure of the bipartite perfect matching polytope.

In the non-bipartite case, it is not enough that C ⊆ E(F [w]) in order to obtain such a
point (and a contradiction); it is also required that, if the cycle C enters a tight odd-set S on an
even-numbered edge, it exits it on an odd-numbered edge (and vice versa). This makes intuitive
sense: if C were obtained from the symmetric difference of two perfect matchings which both
have exactly one edge crossing S, then C would have this property. Formally, we require that〈
(±1)C ,1δ(S)

〉
= 0 for each S ∈ S(F [w]). If C meets these two conditions, which are exactly

what is required to obtain a contradictory point as above (see the proof of Lemma 3.3), then
we say that C respects the face F [w].

To reiterate: if we assign a nonzero circulation to a cycle, then it will not respect the new
face, and this is what is now meant by removing a cycle.

To deal with the second, more technical difficulty discussed in Section 1.2, we need to remove
not only simple cycles of even length, but also walks with repeated edges. However, we would
run into problems if we allowed all such walks (up to a given length). Consider for example a
walk C of length 2; such a walk traverses an edge back and forth. It is impossible to assign a
nonzero circulation to C, because its vector (±1)C is zero. However, for the same reason, such a
walk C fails to induce a contradictory point, so its removal is unnecessary. Therefore we define
alternating circuits to be those even walks whose vector (±1)C is nonzero (see Figure 5 for an
example). To avoid further technical issues, we also formulate the definition of respect in terms
of the vector (±1)C .

Definition 3.1. Let C = (e0, ..., ek−1) be a nonempty cyclic walk of even length k.

• We define the alternating indicator vector (±1)C of C to be (±1)C =
∑k−1

i=0 (−1)i1ei
(where 1e ∈ RE is the indicator vector having 1 on position e and 0 elsewhere).10

10Note that (±1)C does not need to have all entries −1, 0 or 1 since edges can repeat in C.

13

• We say that C is an alternating circuit if its alternating indicator vector is nonzero. We
also refer to C as an alternating (simple) cycle if it is an alternating circuit that visits
every vertex at most once.

• When talking about a graph with node-weights, the node-weight of an alternating circuit is
the sum of all node-weights of visited vertices (with multiplicities if visited multiple times).

Definition 3.2. We say that a vector y ∈ ZE respects a face F if:

• supp(y) ⊆ E(F), and

• for each S ∈ S(F) we have
〈
y,1δ(S)

〉
= 0.

Furthermore, we say that an alternating circuit C respects a face F if its alternating indicator
vector (±1)C respects F .

Clearly, if F ′ ⊆ F are faces and a vector respects F ′, then it also respects F .
Now we argue that we can remove an alternating circuit by assigning it a nonzero circulation.

The proof of this lemma (which generalizes Lemma 3.2 of [FGT16]) motivates Definition 3.2.

Lemma 3.3. Let y ∈ ZE be a vector and F a face. If w : E → R is such that 〈y, w〉 6= 0, then
y does not respect the face F ′ = F [w].

Proof. Suppose towards a contradiction that y respects F ′. Assume that 〈w, y〉 < 0 (otherwise
use −y in place of y). We pick x ∈ F ′ to be the average of all extreme points of F ′, so
that the constraints of PM which are tight for x are exactly those which are tight for F ′.
Select ε > 0 very small. Then 〈x+ εy, w〉 < 〈x,w〉, which will contradict the definition of
F ′ = argmin{〈w, x〉 : x ∈ F} once we show that x+ εy ∈ F . We show that x+ εy ∈ F ′ ⊆ F by
verifying:

• If e ∈ E(F ′) is an edge with xe > 0, then (x + εy)e = xe + εye ≥ 0 if ε is chosen small
enough.

• If e ∈ E \E(F ′) is an edge with xe = 0, then from y respecting F ′ we get e 6∈ supp(y) and
so (x+ εy)e = 0.

• If S 6∈ S(F ′) is an odd set not tight for F ′, i.e.,
〈
x,1δ(S)

〉
> 1, then

〈
x+ εy,1δ(S)

〉
=〈

x,1δ(S)
〉

+ ε
〈
y,1δ(S)

〉
≥ 1 if ε is chosen small enough.

• If S ∈ S(F ′) is an odd set tight for F ′ (this includes all singleton sets), then from y
respecting F ′ we get

〈
y,1δ(S)

〉
= 0 and thus

〈
x+ εy,1δ(S)

〉
=
〈
x,1δ(S)

〉
= 1.

The following lemma says that we can assign nonzero circulation to many vectors at once
using an oblivious choice of weight function from W. It is a minor generalization of Lemma 2.3
of [FGT16] and the proof remains similar; we give it for completeness.

Lemma 3.4. For any number s and for any set of s vectors y1, ..., ys ∈ ZE \ {0} with the
boundedness property ‖yi‖1 ≤ 4n2, there exists w ∈ W(n3s) with 〈yi, w〉 6= 0 for each i = 1, ..., s.

We usually invoke Lemma 3.4 with vectors yi being the alternating indicator vectors of alter-
nating circuits. Then the quantities 〈yi, w〉 are the circulations of these circuits.

14

Proof. Let w′ : E → Z be given by w′(ej) = (4n2+1)j for j = 1, ..., |E|. Then we have 〈yi, w′〉 6=
0 for each i because the highest nonzero coefficient dominates the expression.11 Let t = n3s.
We want to show that there exists k = 2, ..., t such that for all i = 1, ..., s, 〈yi, wk〉 6= 0, that is,
|〈yi, w′〉| 6= 0 mod k (wk are as in Definition 2.3). This will be implied if there exists k = 2, ..., t
such that

∏
i |〈yi, w′〉| 6= 0 mod k. So there should be some k = 2, ..., t not dividing

∏
i |〈yi, w′〉|

– equivalently, lcm(2, ..., t) should not divide
∏
i |〈yi, w′〉|. Knowing that

∏
i |〈yi, w′〉| 6= 0, this

will be implied if we have
∏
i |〈yi, w′〉| < lcm(2, ..., t). This is true because

s∏
i=1

∣∣〈yi, w′〉∣∣ < ((4n2 + 1)|E|+1
)s
< (4n2 + 1)n

2s = 2n
2s log(4n2+1) < 2n

3s = 2t < lcm(2, ..., t)

where we used that lcm(2, ..., t) > 2t for t ≥ 7 [Nai82].

Lemmas 3.3 and 3.4 together imply the following:

Corollary 3.5. Let F be a face. For any finite set of vectors Y ⊆ ZE \{0} with the boundedness
property ‖y‖1 ≤ 4n2 for y ∈ Y, there exists w ∈ W(n3|Y|) such that each y ∈ Y does not respect
the face F ′ = F [w]. �

4 Contractible sets and λ-goodness

We will make progress by ensuring that larger and larger parts of the graph are “isolated” in our
current face F . By “parts of the graph” we mean sets S which are tight for F . As discussed in
Section 1.3, for such a set S, the following isolation property is desirable: once the (only) edge
of a matching which lies on the boundary of S is fixed, the entire matching inside S is uniquely
determined. This motivates the following definition:

Definition 4.1. Let F be a face and let S ∈ S(F) be a tight set for F . We say that S is
F -contractible if for every e ∈ δ(S) there are no two perfect matchings in F which both contain
e and are different inside S.

Intuitively, a contractible set can be thought of as a single vertex with respect to the structure
of the current face of the perfect matching polytope.

The notion of contractibility enjoys the following two natural monotonicity properties:

Fact 4.2. Let F ′ ⊆ F be two faces. If S is F -contractible, then it is also F ′-contractible. �

Lemma 4.3. Let F be a face and S ⊆ T two sets tight for F (i.e., S, T ∈ S(F)). If T is
F -contractible, then so is S.

Proof. Let e ∈ δ(S). Suppose that M1 and M2 are two perfect matchings in F which contain e
but are different inside S. We will argue that in that case there also exist two perfect matchings
M1 and M12 in F which contain e, are different inside S, and are equal outside of S.

Once we have that, we conclude as follows. Let f be the (only) edge in δ(T)∩M1 (perhaps
f = e); then also f ∈ M12. Then M1 and M12 are two perfect matchings in F which contain
f ∈ δ(T) but are different inside T , contradicting that T is F -contractible.

11Let j′ be maximum with yi(ej′) 6= 0; suppose yi(ej′) > 0. Then because ‖yi‖∞ ≤ ‖yi‖1 ≤ 4n2, we have

〈
yi, w

′〉 = yi(ej′)(4n
2 + 1)j

′
+
∑
j<j′

yi(ej)(4n
2 + 1)j > (4n2 + 1)j

′
+

j′−1∑
j=−∞

(−4n2)(4n2 + 1)j = 0.

15

S

e

Figure 6: Illustration of the matching M12 constructed in the proof of Lemma 4.3. Straight
and swirly edges denote M1 and M2 respectively. The thick edges denote M12, which
agrees with M1 outside S and with M2 inside S.

To get the outstanding claim, we define

M12 = (M1 \ E(S)) ∪ (M2 ∩ E(S))

to be the perfect matching that agrees with M1 on all edges not in E(S) and agrees with M2

on all edges in E(S) (see Figure 6). To see that M12 is a perfect matching, notice that both
M1 and M2 are in F and contain e. Furthermore, as e ∈ δ(S) for the tight set S ∈ S(F), we
have that M1 ∩E(S) and M2 ∩E(S) are both perfect matchings on the vertex set S where we
ignore the vertex incident to e. We can thus “replace”M1 ∩ E(S) by M2 ∩ E(S) to obtain the
perfect matching M12.

We now show that M12 is in the face F . Suppose the contrary. Since M1 and M2 are both
in F , we have M12 ⊆ E(F). Therefore, if M12 is not in F , we must have |δ(R) ∩M12| > 1 for
some tight set R ∈ S(F). Since |R| is odd, also |δ(R) ∩M | is odd for any perfect matching M .
In particular, |δ(R) ∩M12| ≥ 3, which contradicts

|δ(R) ∩M12| ≤ |δ(R) ∩M1|+ |δ(R) ∩M2| = 2 ,

where the equality holds because M1 and M2 are perfect matchings in F and R ∈ S(F) is a
tight set.

In our proof, we will be working with faces and laminar families which are compatible in
the following sense:

Definition 4.4. Let F be a face and L a laminar family. If L ⊆ S(F), i.e., all sets S ∈ L are
tight for F , then we say that (F,L) is a face-laminar pair.

Given a face-laminar pair (F,L), we will often work with a multigraph obtained from G
by contracting all small sets, i.e., those with size being at most some parameter λ (which is a
measure of our progress). This multigraph will be called the contraction (see Figure 7 for an
example).

In the contraction, we will also remove all boundaries of larger sets (i.e., those with size
larger than λ). This is done to simulate working inside each such large set independently,
because the contraction then decomposes into a collection of disconnected components, one per
each large set. Because, in the contraction, each set in L has either been contracted or has had
its boundary removed, our task is reduced to dealing with instances having no laminar sets.

Moreover, we only include those edges which are still in the support of the current face F ,
i.e., the set E(F).

Definition 4.5. Given a face-laminar pair (F,L) and a parameter λ (with 1 ≤ λ ≤ 2n), we
define the (F,L, λ)-contraction of G as a node-weighted multigraph as follows:

16

(a) A graph G and a laminar family L. We only draw the
edges in E(F). We also do not draw ellipses for the sin-
gleton sets in L. The dark-gray sets are F -contractible.

1

3

3

1

1

3

(b) The (F,L, 4)-contraction ofG. Its vertices are labeled
by their node-weight.

Figure 7: An example of the (F,L, λ)-contraction of G.

• the node set is the set of maximal sets of size (cardinality) at most λ in L,

• each node has a node-weight equal to the size of the corresponding set,

• the edge set is obtained from E(F)\
⋃
T∈L:|T |>λ δ(T) by contracting each of these maximal

sets.12

In the (F,L, λ)-contractions arising in our arguments, we will always only contract sets
S ∈ L which are F -contractible (i.e., the vertices of a contraction will always correspond to
F -contractible sets). Then, a very useful property is that alternating circuits in the contraction
can be lifted to alternating circuits in the entire graph G in a canonical way. (This is done in
the proofs of Lemmas 5.3 and 5.8.)

Finally, we need the following extension of Definition 3.2 for vectors defined on the contrac-
tion:

Definition 4.6. Denote the (F,L, λ)-contraction of G as H, and let z ∈ ZE(H) be a vector on
the edges of H. We say that z respects a subface F ′ ⊆ F if

• supp(z) ⊆ E(F ′), and

• for each S ∈ S(F ′) which is a union of sets in V (H),13 we have
〈
z,1δ(S)

〉
= 0.

As before, we say that an alternating circuit C in H respects a subface F ′ if its alternating
indicator vector (±1)C ∈ ZE(H) respects F ′.

Now we are able to define our measure of progress. On one hand, we want to make larger
and larger laminar sets contractible. On the other hand, there could very well be no laminar
sets, so we also proceed as in the bipartite case: remove longer and longer alternating circuits.

Definition 4.7. Let (F,L) be a face-laminar pair and λ a parameter (with 1 ≤ λ ≤ 2n). We
say that this pair is λ-good if:

(i) each S ∈ L with |S| ≤ λ is F -contractible,

12That is, an edge of G maps to an edge of the contraction if it is in E(F), it is not inside any of the contracted
sets and it does not cross any cut defined by a set T ∈ L : |T | > λ. Sometimes we identify edges of the contraction
with their preimages in G.

13That is, the maximal sets of size at most λ in L.

17

(ii) in the (F,L, λ)-contraction of G, there is no alternating circuit of node-weight at most λ.

We begin with λ = 1, which is trivial, and then show that by concatenating enough weight
functions we can obtain face-laminar families which are 2-good, 4-good, 8-good, and so on. We
are done once we have a λ-good family with λ ≥ n. The components of this proof strategy are
given in the following three claims. The first step is clear:

Fact 4.8. The face-laminar pair (PM, {{v} : v ∈ V }) is 1-good. �

We can then proceed iteratively in log2 n rounds using the following theorem. Its proof is
given in Section 5; it constitutes the bulk of our argument.

Theorem 4.9. Let (F,L) be a λ-good face-laminar pair. Then there exists a weight function
w ∈ W log2 n+1 and a laminar family L′ ⊇ L such that (F [w],L′) is a 2λ-good face-laminar pair.

We are done once λ exceeds n:

Lemma 4.10. Suppose (F,L) is λ-good for some λ ≥ n. Then |F | = 1.

We think that the proof of this lemma is instructive. It serves to understand and motivate
Definition 4.7, and more involved versions of this argument appear in the sequel.

Proof. Let H be the (F,L, λ)-contraction of G. Also let S1, S2, ..., Sk be all maximal sets in L.
Their disjoint union is V and we have V (H) = {S1, ..., Sk} and E(H) =

⋃k
i=1 δ(Si).

14 Since
(F,L) is λ-good, each set S ∈ L in F -contractible, and H contains no alternating circuit of
node-weight at most λ – in particular, H contains no alternating simple cycle15.

Now we show that there is only one perfect matching in F . One direction is easy: since F
is a face, it is nonempty by definition. For the other direction, let M1 and M2 be two perfect
matchings in F ; we show that M1 = M2.

Because the sets S1, ..., Sk are tight for F , any perfect matching in G induces a perfect
matching in H. If the matchings induced by M1 and M2 are different, then their symmet-
ric difference contains an alternating simple cycle in H, which is impossible. So the induced
matchings must be equal, i.e., M1 ∩

⋃
i δ(Si) = M2 ∩

⋃
i δ(Si). Moreover, the sets S1, ..., Sk are

F -contractible, which means that, given the boundary edges, there is a unique perfect matching
in F inside each Si. This yields M1 = M2.

Before we proceed to the proof of Theorem 4.9, let us see how Fact 4.8, Theorem 4.9,
and Lemma 4.10 together give our desired claim:

Theorem 4.11. There exists an isolating weight function w ∈ W(log2 n+1) log2 n, i.e., one with
|PM[w]| = 1.

Proof. We iteratively construct a sequence of face-laminar pairs (Fi,Li) for i = 0, 1, ..., log2 n
such that (Fi,Li) is 2i-good and Fi = Fi−1[wi] for some weight function wi ∈ W log2 n+1. We
begin by setting F0 = PM and L0 = {{v} : v ∈ V }; by Fact 4.8, (F0,L0) is 1-good. Then
for i = 1, ..., log2 n we use Theorem 4.9 to obtain the wanted weight function wi along with
a laminar family Li ⊇ Li−1. Finally, we have that (Flog2 n,Llog2 n) is 2log2 n-good, so that by
Lemma 4.10, |Flog2 n| = 1.

It remains to argue that Flog2 n = PM[w] for some w ∈ W(log2 n+1) log2 n. To do this, we

proceed as in Section 2.3: define the concatenation w′ • w′′ := n21(log2 n+1)w′ + w′′ for two

14Recall that L contains all singletons, so that every vertex is covered by a set in L.
15This is since an upper bound on the node-weight of any alternating simple cycle is |S1|+ ...+ |Sk| = n ≤ λ.

18

weight functions w′ and w′′, where w′′ ∈ W log2 n+1.16 Using a version of Fact 2.6 we get that
Flog2 n = PM[w1][w2]...[wlog2 n] = PM[w1 • w2 • ... • wlog2 n]. We put w = w1 • w2 • ... • wlog2 n.

Theorem 4.11 implies Theorem 1.2 because we have |W(log2 n+1) log2 n| = |W|(log2 n+1) log2 n ≤
n20(log2 n+1) log2 n, the values of any w ∈ W(log2 n+1) log2 n are bounded by n21(log2 n+1) log2 n, and
the functions w ∈ W can be generated obliviously (using only the number of vertices n).

5 Proof of the key Theorem 4.9: from λ-good to 2λ-good

In this section we show how to make progress (measured by the λ parameter of λ-goodness)
by applying a new weight function to the current face. Our objective is to make larger sets
contractible (by doubling the size threshold from λ to 2λ) and to ensure that in the new
contracted graph, alternating circuits of an increased node-weight are not present. We do
this by moving from the current face-laminar pair, which we call (Fin,Lin), to a new face-laminar
pair (Fout,Lout). Both pairs have the property that the laminar family is a maximal laminar
family of sets tight for the face. The new family extends the previous, i.e., Lout ⊇ Lin.

Our main technical tools are Theorem 5.1 and Lemma 5.6. Theorem 5.1 is used to ensure
that certain alternating circuits are not present in the new contraction. It says that, if our
current contraction has no alternating circuits of at most some node-weight, then a single
weight function w ∈ W is enough to guarantee that all alternating circuits of at most twice
that node-weight do not respect the new face obtained by applying w. We call this removing
these circuits. Lemma 5.6 is used so as to make sure that sets in our laminar family which are
of the appropriate size (regulated by λ) become contractible. Later, new sets will be added to
the laminar family (in Lemma 5.8) in such a way that these properties are maintained and that
the removed alternating circuits indeed do not survive in the new contraction.

The formal structure of the proof is as follows. We begin from a λ-good face-laminar pair
(Fin,Lin). First, in Theorem 5.5, we show the existence of a weight function wout ∈ W log2(n)+1

such that the face Fout = Fin[wout] satisfies two conditions which make progress on conditions (i)
and (ii) of λ-goodness:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fout-contractible.

(ii)’ In the (Fin,Lin, 2λ)-contraction of G, there is no Fout-respecting alternating circuit of node-
weight at most 2λ.

The proof of Theorem 5.5 involves Theorem 5.1 and Lemma 5.6. It gives us the wanted face
Fout and weight function wout. Then, in Lemma 5.8, we show that extending the laminar family
Lin to a maximal laminar family Lout (of the new tight sets) yields a 2λ-good pair (Fout,Lout).
This finishes the proof of Theorem 4.9.

5.1 Removing alternating circuits

This section is devoted to the proof of Theorem 5.1, which is a technical tool we use to remove
alternating circuits of size between λ and 2λ from the contraction.

Theorem 5.1. Consider a face-laminar pair (F,L) such that each S ∈ L with |S| ≤ β is F -
contractible (for a parameter β). Denote by H the (F,L, β)-contraction of G. If H has no
alternating circuit of node-weight at most λ, then there exists w ∈ W such that H has no
F [w]-respecting alternating circuit of node-weight at most 2λ.

16We need to use a padding term n21(log2 n+1) which is larger than the n21 of Definition 2.5 because the
right-hand weight fuctions are now from W log2 n+1 rather than from W.

19

We begin with a simple technical fact: to verify that a vector respects a face, it is enough
to check this for a maximal laminar family of tight constraints.

Lemma 5.2. Consider a face F and let L be a maximal laminar subset of S(F). Then a vector
y respects F if supp(y) ⊆ E(F) and for each S ∈ L we have

〈
y,1δ(S)

〉
= 0.

Proof. We need to prove that
〈
y,1δ(S)

〉
= 0 for all S ∈ S(F) assuming that this holds for all

S ∈ L. As L is a maximal laminar subset of S(F), Lemma 2.2 says that span(L) = span(S(F)).
In other words, for any S ∈ S(F), we can write 1δ(S) as a linear combination

∑
L∈L λL1δ(L) for

some coefficients (λL)L∈L. Hence

〈
y,1δ(S)

〉
=

〈
y,
∑
L∈L

λL1δ(L)

〉
=
∑
L∈L

λL
〈
y,1δ(L)

〉
= 0.

Now we state a lemma which reduces the task of removing an alternating circuit in H to
that of removing a vector defined on the edges of G, which we can do using Corollary 3.5.
Throughout this section, F , L and H are as in the statement of Theorem 5.1.

Lemma 5.3. Let z ∈ ZE(H) \ {0} be a vector on the edges of H satisfying
〈
z,1δ(S)

〉
= 0 for

each S ∈ V (H).17 Then there exists a vector y ∈ ZE \ {0} such that for any face F ′ ⊆ F we
have: if z respects F ′, then y respects F ′. We also have ‖y‖1 ≤ n‖z‖1.

We remark that y does not depend on F ′.

Proof. We consider z as a vector z ∈ ZE (by inserting zeroes at the coordinates in E \ E(H)).
We may assume supp(z) ⊆ E(F); otherwise z cannot respect F ′ and thus we are done by
outputting any y.

The proof idea is to extend z to a vector y ∈ ZE which resembles an alternating indicator
vector. We do this in a canonical way, so that if this extension does not respect F ′, then it must
be because z itself does not respect F ′.

To this end, we do the following for each S ∈ V (H): pair up the boundary edges e ∈ δ(S)
which have ze > 0 with boundary edges e which have ze < 0, respecting their multiplicities as
given by z.18 This is possible because

〈
z,1δ(S)

〉
= 0. Let

{
(e+i , e

−
i)
}
i

be the set of pairs of
edges obtained in this way across all S ∈ V (H), and let Si ∈ V (H) be the set for which the
pair (e+i , e

−
i) has been introduced. Also denote by v+i , v

−
i the Si-endpoints of edges e+i , e

−
i .

Now, for each i we have e+i , e
−
i ∈ supp(z) ⊆ E(F), and S is F -contractible, so there is a

unique perfect matching M+
i on the vertex-induced subgraph (Si \ {v+i }, E(Si \ {v+i })) in F , as

well as a unique perfect matching M−i on (Si \ {v−i }, E(Si \ {v−i })) in F . We let

y := z +
∑
i

(
1M+

i
− 1M−i

)
.

Claim 1. Let F ′ ⊆ F be such that z respects F ′. Then y respects F ′.

Proof. Since z respects F ′, we have supp(z) ⊆ E(F ′). This implies that for each i, M+
i ⊆ E(F ′).

Indeed, since e+i ∈ supp(z) ⊆ E(F ′), there is a perfect matching on (Si \ {v+i }, E(Si \ {v+i }))
in F ′. However, Si is F -contractible and thus M+

i is the only such matching in F (thus also in
F ′). Therefore M+

i ⊆ E(F ′) and analogously M−i ⊆ E(F ′).
Now we check the conditions for y to respect F ′:

17Recall that vertices of H are elements of L, i.e., sets of vertices.
18For example, if we had δ(S) = {e1, e2, e3} with z(e1) = 3, z(e2) = −2 and z(e3) = −1, we would get pairs

(e1, e2), (e1, e2), (e1, e3).

20

• We have supp(y) = supp(z) ∪
⋃
i

(
M+
i ∪M

−
i

)
⊆ E(F ′).

• Let T ∈ S(F ′). We need to verify that
〈
y,1δ(T)

〉
= 0. Let L′ be a maximal laminar

subfamily of S(F ′) extending L, i.e., L ⊆ L′ ⊆ S(F ′). By Lemma 5.2, it is enough to
verify that

〈
y,1δ(T)

〉
= 0 for T ∈ L′. For a set T belonging to a laminar family which

extends L, it is not hard to see that there are two possibilities: either T (S for some
S ∈ V (H), or T is a union of sets in V (H). In the latter case,

〈
y,1δ(T)

〉
=
〈
z,1δ(T)

〉
= 0

because y equals z on edges crossing sets in V (H) and because z respects F ′. In the
former case, we have

〈
y,1δ(T)

〉
=

〈 ∑
i:Si=S

1e+i
− 1e−i + 1M+

i
− 1M−i ,1δ(T)

〉
=
∑
i:Si=S

〈
1e+i
− 1e−i + 1M+

i
− 1M−i ,1δ(T)

〉
(because these are the only edges of y which can possibly cross T). Now it is enough to
show that each summand is 0.

For this, we know that M+
i ∪{e

+
i } and M−i ∪{e

−
i } are (partial) matchings in F ′ and that

T is tight for F ′. Therefore we have |δ(T) ∩
(
M+
i ∪ {e

+
i }
)
| = 1,19 and the same holds for

M−i ∪ {e
−
i }. Therefore

〈
1M+

i ∪{e
+
i }
,1δ(T)

〉
=
〈
1M−i ∪{e

−
i }
,1δ(T)

〉
.

Regarding the norm, every edge (with multiplicity) in z causes at most n/2 new edges to appear
in y. Therefore ‖y‖1 ≤ (n/2 + 1)‖z‖1 ≤ n‖z‖1.

Our second lemma gives a bound on the number of alternating circuits we need to remove.
Its proof resembles that of Lemma 3.4 in [FGT16], but it is slightly more complex, as we are
dealing with a node-weighted multigraph, as well as with alternating circuits instead of simple
cycles (see Section 3). (We have made no attempt to minimize the exponent 17.)

Lemma 5.4. There are polynomially many alternating circuits of node-weight at most 2λ in H,
up to identifying circuits with equal alternating indicator vectors. More precisely, the cardinality
of the set

{(±1)C : C is an alternating circuit in H of node-weight at most 2λ}

is at most n17.

Proof. We will associate a small signature with each alternating circuit in H of node-weight at
most 2λ, with the property that alternating circuits with different alternating indicator vectors
are assigned different signatures. This will prove that the considered cardinality is at most the
number of possible signatures, which will be polynomially bounded.

Let C = (e0, e1, ..., ek−1) be an alternating circuit in H of node-weight at most 2λ; we want
to define its signature σ(C). To streamline notation, we let vi be the tail of ei for i = 0, . . . , k−1
(where we direct ei according to the walk C). Thus C is of the form

v0
e0−→ v1

e1−→ . . .
ek−2−−−→ vk−1

ek−1−−−→ v0 .

19Formally, consider a perfect matching M+ (on G) in F ′ which is a superset of M+
i ∪ {e

+
i }. Then we have

|δ(T) ∩M+| = 1. But δ(T) ∩
(
M+
i ∪ {e

+
i }
)

= δ(T) ∩M+ because T ⊆ S.

21

1

9

11

1

4

5

3 1

4

e2

e1
e0

e9

e8

e7

e6
e5

e4

e3

i0

i1

i2

i3 1

9

11

1

4

5

3 1

4

1
1

g4

g3

g2

g1

f2

f1

i0

i1, a

b

ci2, d

i3

Figure 8: Intuition of the signature vector definition and the proof of Lemma 5.4.
On the left, each vertex is labeled by its node-weight, and the corresponding selection
of i0, i1, i2, i3 is shown for λ = 16. Notice that the selected vertices partition the
alternating circuit into paths; the total node-weight of internal vertices on each path
is at most λ/2.
On the right we see two different alternating circuits with the same signature: they
differ in that one uses f2 and the other uses g3, g2, g1. The thick edges illustrate the
alternating circuit B = (f1, f2, g1, g2, g3, g4) of node-weight at most λ which leads to
the contradiction. We walk the dashed path (PD) in reverse.

(See also Figure 8 for an example.) We also let NW(vi) denote the node-weight of vertex vi,
and in(vi) = e(i−1)mod k and out(vi) = ei be the incoming and outgoing edges of vi in C.20 We
now define the signature σ(C) as the output of the following procedure:

• Let i0 = 0 be the index of the first vertex in C.

• For j = 1, 2, 3, select ij ≤ k to be the largest index satisfying
∑ij−1

i=ij−1+1 NW(vi) ≤ λ/2.

• Let t = max{j : ij < k} and output the signature σ(C) = ((−1)ij , in(vij), out(vij))j=0,1,...,t.

The intuition of the signature is as follows (see also the left part of Figure 8). The procedure
starts at the first vertex vi0 = v0. It then selects the farthest (according to C) vertex vi1 while
guaranteeing that the total node-weight of the vertices visited in-between vi0 and vi1 is at most
λ/2. Similarly, vi2 is selected to be the farthest vertex such that the total node-weight of the
vertices vi1+1, . . . , vi2−1 is at most λ/2, and i3 is selected in the same fashion. The indices
i0, i1, . . . , it thus partition C into edge-disjoint paths

C0 = vi0
ei0−−→ vi0+1

ei0+1−−−→ . . .
ei1−2−−−→ vi1−1

ei1−1−−−→ vi1

C1 = vi1
ei1−−→ vi1+1

ei1+1−−−→ . . .
ei2−2−−−→ vi2−1

ei2−1−−−→ vi2
...

Ct = vit
eit−−→ vit+1

eit+1−−−→ . . .
ei0−2−−−→ vi0−1

ei0−1−−−→ vi0

so that the total node-weight of the internal vertices on each path is at most λ/2. Indeed, for
Cj with j < 3 this follows from the selection of ij . For C3 (in the case t = 3), by maximality of

20 The functions in(v) and out(v) are not formally well-defined since they depend on the considered alternating
circuit and on which occurrence of v in the circuit we are considering, but their values will be clear from the
context.

22

i1, i2 and i3 we have

i1∑
i=i0+1

NW(vi)︸ ︷︷ ︸
≥λ/2

+

i2∑
i=i1+1

NW(vi)︸ ︷︷ ︸
≥λ/2

+

i3∑
i=i2+1

NW(vi)︸ ︷︷ ︸
≥λ/2

≥ 3

2
λ

and so the internal vertices of C3, which are disjoint from the vertices in the above sums, can
have node-weight at most λ/2 (the total node-weight of C being at most 2λ).

We now count the number of possible signature vectors. As for each j there are at most
n2 ways of choosing the incoming edge, at most n2 ways of choosing the outgoing edge, and ij
can have two different parities, the number of possible signatures is at most (summing over the

choices of t = 0, 1, 2, 3)
(
2n2 · n2

)
+
(
2n2 · n2

)2
+
(
2n2 · n2

)3
+
(
2n2 · n2

)4
< n17.

It remains to be shown that any two alternating circuits C and D in H of node-weight
at most 2λ have different signatures if (±1)C 6= (±1)D. Suppose that (±1)C 6= (±1)D but
σ(C) = σ(D). We would like to derive a contradiction with the assumption (in Theorem 5.1)
that H contains no alternating circuit of node-weight at most λ. This will finish the proof.

As described above, C can be partitioned into disjoint paths C0, . . . , Ct using its indices
i0, . . . , it. Similarly we partition D into D0, . . . , Dt. Since these are disjoint unions, (±1)C 6=
(±1)D implies that at least one of the four subpaths must be different between C and D, in
the sense that the part of the alternating indicator vector arising from that subpath is different.
More formally, there is j ∈ {0, . . . , t} such that (±1)Cj 6= (±1)Dj . We will “glue” together the
paths Cj and Dj to obtain another alternating circuit B. First notice that both Cj and Dj

are paths of the form vij = a → b → · · · → c → d = vij+1 mod t
, where the segment from b to c

differs between them.21 This follows from the assumption that σ(C) = σ(D). Let PC denote
the path from b to c in Cj and let PD denote the path from b to c in Dj . As the parity fields
of the signatures agree, we have that |PC |+ |PD| is even. Now let B be the cyclic walk of even
length obtained by walking from b to c along path PC and back from c to b along the path PD
(in reverse). That is, B is of the form (see also the right part of Figure 8)

b
f1−→ . . .

f|PC |−−−→ c
g1−→ . . .

g|PD |−−−→ b ,

where we let f1, . . . , f|PC | denote the edges of PC and g1, . . . , g|PD| denote the edges of the
reversed path PD. To verify that B is an alternating circuit we need to show that its alternating
indicator vector is nonzero:

−(±1)B =

|PC |∑
i=1

(−1)i1fi +

|PD|∑
i=1

(−1)|PC |+i1gi

=

(−1)01out(a) +

|PC |∑
i=1

(−1)i1fi + (−1)|PC |+1
1in(d)

︸ ︷︷ ︸

=(±1)Cj

+

(−1)|PC |+2
1in(d) +

|PD|∑
i=1

(−1)|PC |+2+i
1gi + (−1)|PC |+|PD|+3

1out(a)

︸ ︷︷ ︸

=−(±1)Dj

.

21 Here again we slightly abuse notation since ij might differ between C and D; however, the vertex vij does
not, because it is the tail of eij , which is part of the signature σ(C) = σ(D). The same applies to vij+1mod t .

23

The second equality is easiest to see by mentally extending B from a circuit b→ ...→ c→ ...→ b
to a → b → ... → c → d → c → ... → b → a; also recall that |PC | + |PD| is even. Thus we get
(±1)B = −(±1)Cj + (±1)Dj , which is nonzero by the choice of j. Finally, the node-weight of B
is at most the node-weight of the internal nodes of path Cj plus the node-weight of the internal
nodes of path Dj and thus at most λ/2 + λ/2 = λ.

We have thus shown that B is a nonempty cyclic walk of even length whose alternating
indicator vector is nonzero (thus an alternating circuit) and whose node-weight is at most λ.
This contradicts our assumption on H.

Now we have all the tools needed to prove the main result of this section.

Proof of Theorem 5.1. Let us fix some w ∈ W. We want to articulate conditions on w which
will make sure that the statement is satisfied. Then we show that some w ∈ W satisfies these
conditions.

Let C be any alternating circuit in H of node-weight at most 2λ. Our condition on w will
be that all such circuits C should not respect F [w], i.e., that all vectors from the set

Z := {(±1)C : C is an alternating circuit in H of node-weight at most 2λ}

should not respect F [w]. We use Lemma 5.3 to transform each z ∈ Z (z ∈ ZE(H)) to a vector
y = y(z) ∈ ZE such that if y(z) does not respect F [w], then z does not respect F [w]. Let
Y = {y(z) : z ∈ Z}. Clearly |Y| ≤ |Z|,22 and |Z| ≤ n17 by Lemma 5.4. Moreover, since the
alternating circuits C were of node-weight at most 2λ ≤ 4n, we have ‖z‖1 ≤ 4n for z ∈ Z and
‖y‖1 ≤ 4n2 for y ∈ Y. Now it is enough to apply Corollary 3.5 to obtain that there exists
w ∈ W(n3 · n17) =W such that each y ∈ Y does not respect the face F [w].

5.2 The existence of a good weight function

In this section, we use Theorem 5.1 to prove the existence of a weight function defining a face
Fout with the desired properties (so as to be the face in our 2λ-good face-laminar pair).

Theorem 5.5. Let (Fin,Lin) be a λ-good face-laminar pair. There exists a weight function
wout ∈ W log2(n)+1 such that the face Fout = Fin[wout] satisfies:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fout-contractible.

(ii)’ In the (Fin,Lin, 2λ)-contraction of G, there is no Fout-respecting alternating circuit of node-
weight at most 2λ.

Throughout this section, Fin and Lin are as in the statement of Theorem 5.5. The proof
of Theorem 5.5 is based on the following technical lemma.

Lemma 5.6. There exists a weight function wmid ∈ W log2 n such that the face Fmid = Fin[wmid]
satisfies:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fmid-contractible.

Before giving the proof of Lemma 5.6, let us see how it together with Theorem 5.1 rather easily
implies Theorem 5.5.

22Actually |Y| = |Z| since the mapping z 7→ y(z) is one-to-one.

24

S
(1)
1

S
(3)
2

S
(3)
1

S
(2)
3

S
(2)
2

S
(2)
1

e1

e3

Figure 9: An example of the laminar family L, which consists of disjoint chains. The different

shades of gray depict the sets U
(i)
p .

Proof of Theorem 5.5. Lemma 5.6 says that there is a weight function wmid ∈ W log2(n) such that
the face Fmid = Fin[wmid] satisfies that every S ∈ Lin with |S| ≤ 2λ is Fmid-contractible. We have
thus proved point (i)′ of Theorem 5.5, as any set that is Fmid-contractible remains contractible
in any subface of Fmid (Fact 4.2).

By the above, we have that every vertex in the (Fin,Lin, 2λ)-contraction of G corresponds
to an Fmid-contractible set. Moreover, by the assumption that the face-laminar pair (Fin,Lin) is
λ-good, the (Fin,Lin, λ)-contraction of G does not have any alternating circuits of node-weight
at most λ. This implies that the (Fin,Lin, 2λ)-contraction of G does not have any alternating
circuits of node-weight at most λ. For suppose C were such an alterating circuit. Let S1, ..., Sk
be maximal sets of size at most 2λ in Lin, i.e., the vertices of the (Fin,Lin, 2λ)-contraction of
G. Note that C cannot cross a set Si with |Si| > λ, because then its node-weight would be
larger than λ. Therefore C only crosses sets Si with |Si| ≤ λ. Thus C also appears in the
(Fin,Lin, λ)-contraction of G, with the same node-weight. This is a contradiction.

We can thus apply Theorem 5.1 (with β = 2λ) to get a weight function w ∈ W such that
the face Fout = Fmid[w] satisfies (ii)′. Selecting wout = wmid ◦ w ∈ W log2(n)+1 completes the proof
(Fact 2.6). �

The rest of this section is devoted to the proof of Lemma 5.6. Recall that we need to prove
the existence of a weight function wmid ∈ W log2(n) satisfying (i)′, i.e., that

for each S ∈ Lin with |S| ≤ 2λ, S is Fmid-contractible,

where Fmid = Fin[wmid]. First note that the statement will be true for every S ∈ Lin with |S| ≤ λ
regardless of the choice of the weight function wmid. Indeed, by assumption, (Fin,Lin) is λ-good
and so S is Fin-contractible. Thus, by Fact 4.2, S remains Fmid-contractible for any subface
Fmid ⊆ Fin.

It remains to deal with the sets S ∈ Lin with λ < |S| ≤ 2λ. Let L = {S ∈ Lin : λ < |S| ≤ 2λ}
be the laminar family Lin restricted to these sets. Notice that any set in L can have at most
one child in the laminar family L due to the cardinality constraints. In other words, L consists
of disjoint chains, as depicted in Figure 9.

Notation. We refer to the sets in the i-th chain of L by Li. Let `i = |Li| and index the sets

of the chain Li = {S(i)
1 , S

(i)
2 , . . . , S

(i)
`i
} so that S

(i)
1 ⊆ S

(i)
2 ⊆ · · · ⊆ S

(i)
`i

. Let U
(i)
1 = S

(i)
1 and

U
(i)
p = S

(i)
p \ S(i)

p−1 for p = 2, 3, . . . , `i. Also define U
(i)
p,r = U

(i)
p ∪ U (i)

p+1 ∪ · · · ∪ U
(i)
r .

Recall that U
(i)
1,r = S

(i)
r is defined to be F -contractible if for every er ∈ δ(U (i)

1,r) there are no

two perfect matchings in F which both contain er and are different inside U
(i)
1,r (Definition 4.1).

25

For the proof of Lemma 5.6, we generalize this definition to also include sets U
(i)
p,r with p ≥ 2.

Definition 5.7. Consider a face F . We say that a set U
(i)
p,r with 2 ≤ p ≤ r ≤ `i is F -contractible

if for every ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) there are no two perfect matchings in F which both

contain ep−1 and er and are different inside U
(i)
p,r.23

The intuition of this definition is similar to that of Definition 4.1. Consider the second chain
of Figure 9. If we, for example, restrict our attention to perfect matchings that must contain

edges e1 ∈ δ(S(2)
1) and e3 ∈ δ(S(2)

3), then, as S
(2)
1 are S

(2)
3 are tight sets, the task of selecting

such a matching decomposes into two independent problems: the problem of selecting a perfect

matching in U
(2)
2,3 (ignoring the vertices incident to e1 and e3) and the problem of selecting a

perfect matching in V \ U (2)
2,3 (again ignoring the vertices incident to e1 and e3).

The proof now proceeds iteratively as follows.

• First we select w1 ∈ W such that F1 = Fin[w1] satisfies:

U
(i)
p is F1-contractible for all chains i and 1 ≤ p ≤ `i. (1)

• For t = 2, 3, . . . , log2(n) we select wt ∈ W such that Ft = Ft−1[wt] satisfies:

U
(i)
p,r is Ft-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with r − p ≤ 2t−1 − 1. (2)

We remark that, having selected w1, w2, . . . , wlog2(n)
as above, if we let wmid = w1 ◦ w2 ◦ . . . ◦

wlog2(n)
, then the face Fmid = Fin[wmid] equals Flog2(n)

(Fact 2.6). To see that this completes the

proof of Lemma 5.6, note that `i < n/2 for any chain i since |S(i)
1 | > |S

(i)
`i
|/2 and |S(i)

`i
| ≤ n.

We have thus that any set Sir ∈ L has r ≤ n/2 and so, by (2), Sir = U i1,r is Fmid-contractible.
In what follows, we complete the proof of Lemma 5.6 with a description of how to select w1,
followed by the selection of wt in the iterative case.

5.2.1 The selection of w1

The following claim allows us to use Theorem 5.1 to show the existence of a weight function w1

satisfying (1).

Claim 2. If the (Fin,Lin, λ)-contraction of G has no F1-respecting alternating circuit of node-

weight at most 2λ, then every U
(i)
p is F1-contractible.

Proof. This proof resembles that of Lemma 4.10. Fix U
(i)
p , and let ep−1 ∈ δ(S

(i)
p−1) and ep ∈

δ(S
(i)
p); suppose that M1 and M2 are two perfect matchings in F1 which both contain ep−1 and

ep.
24 We want to show that M1 and M2 are equal inside U

(i)
p .

Let S1, ..., Sk be all maximal sets S ∈ Lin with S ⊆ U
(i)
p . (They are those vertices of the

(Fin,Lin, λ)-contraction which lie in U
(i)
p , and we have S1 ∪ ... ∪ Sk = U

(i)
p .) Because these sets

(as well as S
(i)
p−1 and S

(i)
p) are tight for F1, any perfect matching (on G) in F1 containing ep−1

and ep induces an almost-perfect matching on S1, ..., Sk, that is, one where only the (up to two)

23It is possible that ep−1 = er, in which case neither endpoint of this edge lies in U
(i)
p,r.

24Here and in Section 5.2.2, we abuse notation and assume p ≥ 2; the only difference is that, given a set
U

(i)
p,r with p = 1 (in this section p = r), we consider matchings containing one edge er (er ∈ δ(S(i)

r)) instead of

matchings containing two edges ep−1 and er (ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r)) (since if p = 1, the set S
(i)
p−1 is not

defined).

26

S
(i)
p−1 S

(i)
p

ep−1

ep

Claim 2

S
(i)
p−1 S

(i)
r

ep−1

er

Claim 3

S
(i)
p−1 S

(i)
q S

(i)
r

ep−1

er

eq

Claim 4

Figure 10: An illustration of the different claims used in the proof of Lemma 5.6.
Claim 2: Straight and swirly edges denote M1 and M2 respectively. The thick
edges denote the alternating cycle. The dark-gray sets are S1, ..., Sk.
Claim 3: Straight and swirly edges denote M1 and M2 respectively. The thick

edges denote M12, which agrees with M1 outside U
(i)
p,r and with M2 inside U

(i)
p,r.

Claim 4: The divide-and-conquer argument is illustrated (only edges ep−1, eq, er
are depicted). After fixing ep−1 and eq, the matching in the light-gray area is
unique in the face Ft−1. Similarly, after fixing eq and er, the matching in the
dark-gray area is unique in the face Ft−1. Therefore, for each choice of ep−1 and

er, there can be at most one matching inside U
(i)
p,r for each possible way of fixing

eq.

sets Si containing endpoints of ep−1 and ep are unmatched (see the left part of Figure 10). If
the matchings induced by M1 and M2 were different, then their symmetric difference would
contain an alternating simple cycle in the (Fin,Lin, λ)-contraction. Since this cycle arises from

two matchings in F1, it respects F1.
25 Moreover, since it is a simple cycle inside U

(i)
p , its

node-weight is at most |U (i)
p | ≤ 2λ. This would contradict our assumption.

Therefore, the induced matchings must be equal. Moreover, the sets S1, ..., Sk are F1-
contractible (since they are vertices of the (Fin,Lin, λ)-contraction and F1 ⊆ Fin), which means
that, given the boundary edges (i.e., the induced matching plus ep−1 and ep), there is a unique

perfect matching in F1 inside each Si. It follows that M1 and M2 are equal inside U
(i)
p .

The claim together with Theorem 5.1 completes the selection of w1 as follows. Since (Fin,Lin)
is λ-good, we can apply Theorem 5.1 (with β = λ) to obtain the existence of a weight function
w1 ∈ W such that, in the (Fin,L, λ)-contraction of G, there is no F1-respecting alternating

circuit of node-weight at most 2λ, where F1 = Fin[w1]. Hence, by the above claim, every U
(i)
p is

F1-contractible as required.

25 This is in similar vein as the proof of Claim 1. Call the cycle C. Clearly, supp(C) ⊆ M1 ∪M2 ⊆ E(F1).
Let T ∈ S(F1) be a set tight for F1 which is a union of the vertices of the contraction; we want to show that〈
(±1)C ,1δ(T)

〉
= 0. Because C is a cycle in the contraction and |M1 ∩ δ(T)| = |M2 ∩ δ(T)| = 1, either C has no

edge in δ(T) or it has two, one from M1 and one from M2 (and they cancel out).

27

5.2.2 The selection of wt for t = 2, 3, . . . , log2(n)

In this section, we show the existence of a weight function wt ∈ W satisfying (2), i.e.,

U
(i)
p,r is Ft-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with r − p ≤ 2t−1 − 1,

where Ft = Ft−1[wt].

The proof outline is as follows. First, in Claim 3, we give sufficient conditions on wt for U
(i)
p,r

being Ft-contractible. They are given as a system of linear non-equalities with coefficients in
{−1, 0, 1}. Then, in Claim 4, we upper-bound the number of these non-equalities by n11. This
allows us to deduce the existence of wt ∈ W by applying Lemma 3.4.

The following claim gives sufficient linear non-equalities on wt for every U
(i)
p,r to be Ft-

contractible (one non-equality for each choice of U
(i)
p,r, ep−1, er, M1 and M2).

Claim 3. Consider U = U
(i)
p,r for some chain i and 1 ≤ p ≤ r ≤ `i. Suppose that for every two

edges ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer = 1}, we
have:

wt(M1 ∩ E(U)) 6= wt(M2 ∩ E(U)) for any two matchings M1,M2 in F that differ inside U .

Then U is Ft-contractible.

Proof. We prove the contrapositive. Suppose that U is not Ft-contractible. Then, by definition,

there must be ep−1 ∈ δ(S
(i)
p−1) and er ∈ δ(S

(i)
r) that define a face F ′ = {x ∈ Ft : xep−1 =

1, xer = 1} such that there are two matchings M1 and M2 in F ′ that differ inside U . Notice
that F ′ ⊆ F = {x ∈ Ft−1 : xep−1 = 1, xer = 1}; therefore M1 and M2 are also two matchings in
F that differ inside U .

We complete the proof of the claim by showing that

wt(M1 ∩ E(U)) = wt(M2 ∩ E(U)) . (3)

Define

M12 = (M1 \ E(U)) ∪ (M2 ∩ E(U))

to be the perfect matching that agrees with M1 on all edges not in E(U) and agrees with M2

on all edges in E(U) (see the central part of Figure 10 for an example). By the same argument
as in the proof of Lemma 4.3, M12 is a perfect matching in F ′. It differs from M1 inside U and
agrees with M1 outside U .

We now use that M1 and M12 are perfect matchings in F ′ to prove (3). As Ft is the convex-
hull of matchings in Ft−1 that minimize the objective function wt, all matchings M in Ft and
in its subface F ′ have the same weight wt(M). In particular,

wt(M1) = wt(M1 \ E(U)) + wt(M1 ∩ E(U)) = wt(M1 \ E(U)) + wt(M2 ∩ E(U)) = wt(M12) ,

and thus wt(M1 ∩ E(U)) = wt(M2 ∩ E(U)) as required.

The above claim says that it is sufficient to write down a non-equality for each choice of

U
(i)
p,r, ep−1, er,M1 and M2. It is easy to upper-bound the number of ways of choosing i, p, r, ep−1

and er. The following claim bounds the number of ways of choosing M1 and M2. The proof
is based on a divide-and-conquer strategy (see the right part of Figure 10) and it uses the

inductive assumption that U
(i)
p,r is Ft−1-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with

r − p ≤ 2t−2 − 1.

28

Claim 4. Consider U = U
(i)
p,r with r − p ≤ 2t−1 − 1 and define q = b(p + r)/2c. For any two

edges ep ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer = 1}, we
have

|{M ∩ E(U) : M is a matching in F}| ≤ |δ(S(i)
q) ∩ E(F)| ≤ n2 .

We remark that the first inequality holds with equality, but we only need the inequality.

Proof. The second inequality in the statement is trivial. We prove the first.

As Ft−1 and thus F is a subface of Fin, any matching M in F must satisfy M ∩δ(S(i)
q) = {eq}

for some edge eq ∈ δ(S(i)
q) ∩ E(F), where we use that S

(i)
q ∈ Lin ⊆ S(Fin) is a tight set in these

faces.
We prove the statement by showing that for every choice of eq, any matching M in the face

Feq = {x ∈ F : xeq = 1} matches the nodes in U
(i)
p,r in a unique way. In other words, we show

that |{M ∩ E(U) : M is a matching in Feq}| ≤ 1 for every eq ∈ δ(S(i)
q) ∩ E(F), which implies

|{M ∩ E(U) : M is a matching in F}| ≤
∑

eq∈δ(S(i)
q)∩E(F)

|{M ∩ E(U) : M is a matching in Feq}|

≤ |δ(S(i)
q) ∩ E(F)| .

To prove that |{M ∩ E(U) : M is a matching in Feq}| ≤ 1, suppose the contrary, i.e., that
|{M ∩ E(U) : M is a matching in Feq}| ≥ 2. Take two such matchings M1 and M2 that differ

inside U . By the definition of Feq , M1 ∩ δ(S(i)
q) = M2 ∩ δ(S(i)

q) = {eq} and so M1 and M2

must differ inside U
(i)
p,q or inside U

(i)
q+1,r; assume the former (the argument for the other case

is the same). Notice that M1 and M2 are two matchings in Feq ⊆ Ft−1 which both contain

ep−1 and eq but differ inside U
(i)
p,q, which contradicts that U

(i)
p,q is Ft−1-contractible. (Note that

q − p ≤ (r − p)/2 ≤ 2t−2 − 1/2, which implies that q − p ≤ 2t−2 − 1.)

We now have all the needed tools to show the existence of a weight function wt ∈ W such
that the face Ft = Ft−1[wt] satisfies (2): for all chains i and 1 ≤ p ≤ r ≤ `i with r−p ≤ 2t−1−1,

U
(i)
p,r is Ft-contractible. By Claim 3, this holds if for any U = U

(i)
p,r with r − p ≤ 2t−1 − 1 and

for any ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer = 1} we
have the following:

wt(M1 ∩ E(U))− wt(M2 ∩ E(U)) 6= 0 for any two matchings M1,M2 in F that differ inside U .

There are at most n ways of choosing i, n ways of choosing p, n ways of choosing r, n2

ways of choosing ep−1, n
2 ways of choosing er, and by Claim 4 there are at most n4 ways of

choosing M1 and M2. In total, we can write the sufficient conditions on the weight function
wt as a system of at most n11 linear non-equalities with coefficients in {−1, 0, 1}. It follows
by Lemma 3.4 that there is a weight function wt ∈ W(n14) ⊆ W(n20) = W satisfying these
conditions. This completes the selection of wt and the proof of Lemma 5.6.

5.3 A maximal laminar family completes the proof

Theorem 5.5 demonstrates the existence of a weight function wout that defines a face Fout with
properties (i)′ and (ii)′. We now show that extending Lin to a maximal laminar family Lout of
S(Fout) yields a 2λ-good face-laminar pair.26 As explained at the beginning of Section 5, this
will complete the proof of Theorem 4.9.

26Such an extension is possible because Lin consists of sets which are tight for Fin, therefore also for Fout.

29

Why a maximal laminar family? Part of our argument so far was about removing certain
alternating circuits C; in other words, we have made C not respect the new face Fout. This
means either not having some edge from supp(C) in the support E(Fout) of Fout, or introducing
a new odd-set S which is tight for Fout and such that

〈
(±1)C ,1δ(S)

〉
6= 0. In the latter case, we

want C to have an odd-set with this property also in the new laminar family Lout, so that the
removal of C is reflected in the new contraction (which is based on Lout). Lemma 5.2 guarantees
that this will happen if we choose Lout to be a maximal laminar subset of S(Fout).

Lemma 5.8. Let (Fin,Lin) be a λ-good face-laminar pair, and Fout ⊆ Fin be the face guaranteed
by Theorem 5.5. Then (Fout,Lout) is a 2λ-good face-laminar pair, where Lout is any maximal
laminar family with Lin ⊆ Lout ⊆ S(Fout).

Proof of Lemma 5.8. Recall that Theorem 5.5 guarantees that:

(i)’ each S ∈ Lin with |S| ≤ 2λ is Fout-contractible,

(ii)’ in the (Fout,Lin, 2λ)-contraction of G, there is no alternating circuit of node-weight at most
2λ which respects Fout.

(The statement of Theorem 5.5 refers to the (Fin,Lin, 2λ)-contraction of G, but since we are
considering Fout-respecting alternating circuits, this is equivalent.)

We want to show that the pair (Fout,Lout) satisfies Definition 4.7, that is,

(i) each S ∈ Lout with |S| ≤ 2λ is Fout-contractible,

(ii) in the (Fout,Lout, 2λ)-contraction of G, there is no alternating circuit of node-weight at
most 2λ.

Property (i). Fix a set S ∈ Lout with |S| ≤ 2λ. Let S1, ..., Sk be all maximal subsets of S in
Lin (we have S = S1 ∪ ... ∪ Sk). If S is contained in a set from Lin of size at most 2λ, then that
set is Fout-contractible by (i)′, and thus S is Fout-contractible by Lemma 4.3. So assume that is
not the case; therefore each Si is a maximal set of size at most 2λ in Lin, that is, a vertex of the
(Fout,Lin, 2λ)-contraction of G. By (i)′, each Si is Fout-contractible.

Now the proof proceeds as in Claim 2; we present it for completeness. Let M1 and M2 be
two perfect matchings in Fout which both contain an edge e ∈ δ(S). We want to show that M1

and M2 are equal inside S. Because S and S1, ..., Sk are tight for Fout, any perfect matching
(on G) in Fout containing e induces an almost-perfect matching on S1, ..., Sk, that is, one where
only the set Si containing the endpoint of e is unmatched. If the matchings induced by M1 and
M2 were different, then their symmetric difference would contain an alternating simple cycle in
the (Fout,Lin, 2λ)-contraction. Since this cycle arises from two matchings in Fout, it respects Fout.
Moreover, since it is a simple cycle inside S, its node-weight is at most |S| ≤ 2λ. This would
contradict our assumption (ii)’.

Therefore, the induced matchings must be equal. Moreover, the sets S1, ..., Sk are Fout-
contractible, which means that, given the boundary edges (i.e., the induced matching plus e),
there is a unique perfect matching in Fout inside each Si. It follows that M1 and M2 are equal
inside S.

Property (ii). Let Hout be the (Fout,Lout, 2λ)-contraction of G and let Hin be the (Fout,Lin, 2λ)-
contraction of G. Thus Hout can also be obtained by further contracting Hin (and this will be
our perspective)27. Suppose towards a contradiction that there is an alternating circuit Cout in
Hout of node-weight at most 2λ.

27We also need to remove further edges – those from the boundaries of sets S ∈ Lout \ Lin with |S| > 2λ.

30

S ∈ V (Hout)

T

e1 e2

S1 = Se1 S2 S3 S4 S5 = Se2

S6 S7

Figure 11: A depiction of the construction of paths Pe1e2 in the proof of Property (ii). The
straight and swirly edges depict matchings M1 and M2, respectively. The path
Pe1e2 is depicted by fat edges.

To obtain a contradiction, we are going to lift Cout back to an Fout-respecting alternating
circuit Cin in Hin, which should not exist by (ii)′.28 Namely, whenever Cout visits a vertex
S ∈ V (Hout), we connect up the dangling endpoints of this visit inside S to obtain a walk in
Hin. More precisely, let e1 and e2 be two consecutive edges of Cout, whose common endpoint in
Hout is S; between them, we insert a simple path Pe1e2 inside the image of S in Hin, which is
constructed as follows.

Since e1, e2 ∈ supp(Cout) ⊆ E(Fout), there exist matchings M1 and M2 (on G) in Fout contain-
ing e1 and e2, respectively. Let S1, ..., Sk be all maximal subsets of S in Lin (Si are vertices of Hin

and we have S = S1 ∪ ...∪Sk). Denote by Se1 and Se2 the sets Si which contain the S-endpoint
of e1 and e2, respectively. The sets S and S1, ..., Sk are tight for Fout, so M1 induces a perfect
matching on {S1, ..., Sk} \ {Se1} (and similarly for M2 and e2). The symmetric difference of
these two induced matchings contains a simple path Pe1e2 from Se1 to Se2 in Hin which has even
length (possibly 0). For an example, see Figure 11. We obtain Cin by inserting such a path Pe1e2
between each two consecutive edges e1, e2 in Cout.

To obtain a contradiction, we need to prove that Cin is an alternating circuit of node-weight
at most 2λ which respects Fout.

• That Cin is an alternating circuit follows by construction since each path Pe1e2 is of even
length.

• For the node-weight, note that in Cout, the visit to S (on the edge e1) incurs an increase
of |S|, whereas in Cin, the visit to a certain subset of {S1, ..., Sk} (on e1 and Pe1e2) incurs
an increase of at most |S1|+ ...+ |Sk| ≤ |S| because Pe1e2 is a simple path. Therefore the
node-weight of Cin is at most that of Cout, thus at most 2λ.

• To see that Cin respects Fout, we use the assumption that Lout is a maximal laminar subset of
S(Fout) together with Lemma 5.229. First, note that supp(Cin) ⊆ E(Fout) by construction.
Second, let T ∈ Lout be a union of vertices of Hin; we need to show that

〈
(±1)Cin

,1δ(T)
〉

= 0.

– If |T | > 2λ, then all boundary edges of T are absent from Hout (see Definition 4.5),
so supp(Cout) ∩ δ(T) = ∅; in this case T is a union of vertices of Hout and so no path
Pe1e2 contains any edges from δ(T) either, so that supp(Cin) ∩ δ(T) = ∅.

28This is in the same spirit as the proof of Lemma 5.3.
29Formally, note that Lout naturally maps to a laminar family L′out of subsets of V (Hin), and that L′out is also

maximal; for if it were possible to add any set to L′out while maintaining laminarity, then that set could also be
used to enlarge Lout. Therefore we can apply Lemma 5.2 to Hin and L′out.

31

– If |T | ≤ 2λ, then T must be contained in a single set S ∈ V (Hout) (as depicted
in Figure 11).30 For every path Pe1e2 inside S, the path e1, Pe1e2 , e2 is a path from
outside of S to outside of S which is part of the symmetric difference of two matchings
in Fout. If this path enters T , it must also leave T . Suppose it entered T on an edge
of the first matching; then it must exit T on an edge of the second matching (since
T ∈ Lout ⊆ S(Fout) is tight for Fout and the matchings are in Fout) and the corresponding
±1 terms cancel out. Abusing notation, we have

〈
(±1)e1,Pe1e2 ,e2 ,1δ(T)

〉
= 0. Since

this holds for every path Pe1e2 inside S, we get
〈
(±1)Cin

,1δ(T)
〉

= 0 as required.

The existence of Cin contradicts (ii)′ and concludes the proof.

A Proof of Lemma 2.2

The proof proceeds via the primal uncrossing technique; it is adapted from [LRS11]. Assume
without loss of generality that E = E(F).31 We begin with an uncrossing lemma.

Lemma A.1 (uncrossing). Let S, T ∈ S(F) be two sets which are crossing (i.e., S ∩ T, S \
T, T \ S 6= ∅). Then:

• if |S ∩ T | is odd: then S ∩ T, S ∪ T ∈ S(F) and 1δ(S) + 1δ(T) = 1δ(S∩T) + 1δ(S∪T),

• otherwise: S \ T, T \ S ∈ S(F) and 1δ(S) + 1δ(T) = 1δ(S\T) + 1δ(T\S).

Proof. Case |S ∩ T | odd. Note that we have

1δ(S) + 1δ(T) = 1δ(S∩T) + 1δ(S∪T) + 2 · 1δ(S\T,T\S).

For any x ∈ F ′, since S, T ∈ S(F) and because S ∩ T, S ∪ T are nonempty odd sets, we have

1 + 1 = x(δ(S)) + x(δ(T)) = x(δ(S ∩ T)) + x(δ(S ∪ T)) + 2 · x(δ(S \ T, T \ S)) ≥ 1 + 1 + 2 · 0

where the inequality must be an equality, and thus x(δ(S ∩ T)) = 1, x(δ(S ∪ T)) = 1 (implying
S ∩ T, S ∪ T ∈ S(F)) and x(δ(S \ T, T \ S)) = 0 for all x ∈ F ′ (which, given that E = E(F),
implies that δ(S \ T, T \ S) = ∅ and thus 1δ(S\T,T\S) = 0).

Case |S ∩ T | even. Now we have

1δ(S) + 1δ(T) = 1δ(S\T) + 1δ(T\S) + 2 · 1δ(S∩T,V \(S∪T)).

The sets S \ T and T \ S are odd and nonempty, and we proceed as above.

Define cross(S,L) to be the number of sets in L that cross S.

Proposition A.2. If S 6∈ L and T ∈ L are crossing, then all four numbers cross(S ∩ T,L),
cross(S ∪ T,L), cross(S \ T,L) and cross(T \ S,L) are smaller than cross(S,L).

Proof. See Claim 9.1.6 in [LRS11].

Now we can prove Lemma 2.2. Towards a contradiction suppose that span(L) (span(S(F)).
Then there exists S ∈ S(F) with 1δ(S) 6∈ span(L). Pick such a set with minimum cross(S,L).
Clearly cross(S,L) ≥ 1 (otherwise L ∪ {S} would be laminar, contradicting maximality of L);
let T ∈ L be a set crossing S. Assume that |S ∩ T | is odd; the other case is analogous. Then
by Lemma A.1, S ∩ T, S ∪ T ∈ S(F) and

1δ(S) + 1δ(T) = 1δ(S∩T) + 1δ(S∪T). (4)

By Proposition A.2 and our choice of S we have 1δ(S∩T),1δ(S∪T) ∈ span(L), and of course also
1δ(T) ∈ span(L). This and (4) implies that 1δ(S) ∈ span(L), a contradiction. �

30This is because the sets S ∈ V (Hout) are maximal sets S ∈ Lout with |S| ≤ 2λ.
31We can do this since including the constraint xe = 0 yields the same face as removing the edge e from G.

32

References

[AHT07] Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially

bounded perfect matching problem is in NC2. In STACS 2007, 24th Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 489–499, 2007.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma
and lower bounds for circuit size. In APPROX and RANDOM, pages 276–289, 2008.

[Bar92] D. A. M. Barrington. Quasipolynomial size circuit classes. In Proceedings of the
Seventh Annual Structure in Complexity Theory Conference, pages 86–93, Jun 1992.

[BCH86] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, November 1986.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Information Processing Letters, 18(3):147–150, 1984.

[CNN89] Marek Chrobak, Joseph Naor, and Mark B. Novick. Using bounded degree spanning
trees in the design of efficient algorithms on claw-free graphs, pages 147–162. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1989.

[Csa76] L. Csanky. Fast parallel inversion algorithm. SIAM Journal of Computing, 5:618–623,
1976.

[DHK93] E. Dahlhaus, P. Hajnal, and M. Karpinski. On the parallel complexity of Hamiltonian
cycle and matching problem on dense graphs. Journal of Algorithms, 15(3):367 – 384,
1993.

[DK98] Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching in
chordal and strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):79–91,
1998.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a
perfect matching in bipartite planar graphs. Theory Comput. Syst., 47(3):737–757,
2010.

[DS84] Eliezer Dekel and Sartaj Sahni. A parallel matching algorithm for convex bipartite
graphs and applications to scheduling. Journal of Parallel and Distributed Comput-
ing, 1(2):185 – 205, 1984.

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of
Research of the National Bureau of Standards, 69:125–130, 1965.

[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching
is in Quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
754–763, 2016.

[GK87] Dima Grigoriev and Marek Karpinski. The matching problem for bipartite graphs
with polynomially bounded permanents is in NC. In 28th Annual Symposium on
Foundations of Computer Science (FOCS), pages 166–172, 1987.

33

[GT16] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-NC. Elec-
tronic Colloquium on Computational Complexity (ECCC), 23:182, 2016. To appear
in STOC 2017.

[Har09] Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems.
SIAM J. Comput., 39(2):679–702, 2009.

[Kas67] P. W. Kasteleyn. Graph theory and crystal physics. In F. Harary, editor, Graph
Theory and Theoretical Physics, pages 43–110. Academic Press, 1967.

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is
in random NC. Combinatorica, 6(1):35–48, 1986.

[KVV85] Dexter Kozen, Umesh V. Vazirani, and Vijay V. Vazirani. NC algorithms for compa-
rability graphs, interval gaphs, and testing for unique perfect matching. In Proceed-
ings of the Fifth Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 496–503, London, UK, UK, 1985. Springer-Verlag.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574, 1979.

[LPV81] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for routing in
permutation networks. IEEE Transactions on Computers, C-30(2):93–100, Feb 1981.

[LRS11] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combina-
torial optimization, volume 46. Cambridge University Press, 2011.

[MN89] G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. In
30th Annual Symposium on Foundations of Computer Science, pages 112–117, Oct
1989.

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination.
In 45th Symposium on Foundations of Computer Science (FOCS), pages 248–255,
2004.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and com-
plexity. Technical report, 1997.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new nc-algorithm for finding a
perfect matching in bipartite planar and small genus graphs. In Proceedings of the
Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages
351–357, New York, NY, USA, 2000. ACM.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987.

[Nai82] M. Nair. On Chebyshev-type inequalities for primes. The American Mathematical
Monthly, 89(2):126–129, 1982.

[NSV94] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized parallel algo-
rithms for matroid union and intersection, with applications to arboresences and
edge-disjoint spanning trees. SIAM J. Comput., 23(2):387–397, 1994.

[Par98] I. Parfenoff. An efficient parallel algorithm for maximum matching for some classes
of graphs. Journal of Parallel and Distributed Computing, 52(1):96 – 108, 1998.

34

[PY82] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted
spanning tree problems. J. ACM, 29(2):285–309, April 1982.

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer-Verlag, Berlin, 2003.

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 22:107–111, 1947.

[TV12] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar
graphs. Inf. Comput., 215:1–7, 2012.

[Vaz89] Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in
K3,3-free graphs and related problems. Information and Computation, 80(2):152 –
164, 1989.

35

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

