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Abstract

We show a communication complexity lower bound for finding a correlated equilibrium

of a two-player game. More precisely, we define a two-player N × N game called the 2-

cycle game and show that the randomized communication complexity of finding a 1/poly(N)-

approximate correlated equilibrium of the 2-cycle game is Ω(N). For small approximation

values, this answers an open question of Babichenko and Rubinstein (STOC 2017). Our

lower bound is obtained via a direct reduction from the unique set disjointness problem.
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1 Introduction

If there is intelligent life on other planets, in a majority of them, they

would have discovered correlated equilibrium before Nash equilibrium.

Roger Myerson

One of the most famous solution concepts in game theory is Nash equilibrium [Nas51].

Roughly speaking, a Nash equilibrium is a set of mixed strategies, one per player, from which

no player has an incentive to deviate. A well-studied computational problem in algorithmic

game theory is that of finding a Nash equilibrium of a given (non-cooperative) game. The

complexity of finding a Nash equilibrium has been studied in several models of computation,

including computational complexity, query complexity and communication complexity. Since

finding a Nash equilibrium is considered a hard problem, researchers studied the problem of

finding an approximate Nash equilibrium, where intuitively, no player can benefit much by

deviating from his mixed strategy. For surveys on algorithmic game theory in general and

equilibria in particular see for example [NRTV07, Rou10, Gol11, Rou16b].

A natural setting in which approximate equilibria concepts are studied is the setting of un-

coupled dynamics [HMC03, HM06], where each player knows his own utilities and not those of

the other players. The rate of convergence of uncoupled dynamics to an approximate equilib-

rium is closely related to the communication complexity of finding the approximate equilibrium

[CS04].

Communication complexity is a central model in complexity theory that has been extensively

studied. In the two-player randomized model [Yao79] each player gets an input and their goal

is to solve a communication task that depends on both inputs. The players can use both

common and private random coins and are allowed to err with some small probability. The

communication complexity of a protocol is the total number of bits communicated by the two

players. The communication complexity of a communication task is the minimal number of bits

that the players need to communicate in order to solve the task with high probability, where the

minimum is taken over all protocols. For surveys on communication complexity see for example

[KN97, LS09, Rou16a].

In a recent breakthrough, Babichenko and Rubinstein [BR17] proved the first non-trivial

lower bound on the randomized communication complexity of finding an approximate Nash

equilibrium.

An important generalization of Nash equilibrium is correlated equilibrium [Aum74, Aum87].

Whereas in a Nash equilibrium the players choose their strategies independently, in a correlated

equilibrium the players can coordinate their decisions, choosing a joint strategy. Babichenko

and Rubinstein [BR17] raised the following questions:

Does a polylog(N) communication protocol for finding an approximate correlated

equilibrium of two-player N ×N games exist?

Is there a poly(N) communication complexity lower bound?

We answer these questions for small approximation values. As far as we know, prior to this work,

no non-trivial answers were known (neither positive nor negative), not even for the problem of

finding an exact correlated equilibrium of two-player games. In contrast, in the multi-party

setting, there is a protocol for finding an exact correlated equilibrium of n-player binary action

games with poly(n) bits of communication [HM10, PR08, JL15].
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There are two notions of correlated equilibrium which we call correlated and rule correlated

equilibria. In a correlated equilibrium no player can benefit from replacing one action with

another, whereas in a rule correlated equilibrium no player can benefit from simultaneously

replacing every action with another action (using a switching rule). While the above two

notions are equivalent, approximate correlated and approximate rule correlated equilibria are

not equivalent, but are closely related.

Our first communication complexity lower bound is for finding a 1/poly(N)-approximate cor-

related equilibrium of a two-player N × N game called the 2-cycle game. We note that every

two-player N × N game has a trivial 1/N-approximate correlated equilibrium (which can be

found with zero communication).

Theorem 1.1. For every ε ≤ 1
24N3 , every randomized communication protocol for finding an

ε-approximate correlated equilibrium of the 2-cycle N ×N game, with error probability at most
1
3 , has communication complexity at least Ω(N).

Since every approximate rule correlated equilibrium is an approximate correlated equilib-

rium, the following lower bound follows from Theorem 1.1. It remains an interesting open

problem to prove bounds on the communication complexity of finding a constant approximate

rule correlated equilibrium of two-player games.

Theorem 1.2. For every ε ≤ 1
24N3 , every randomized communication protocol for finding an

ε-approximate rule correlated equilibrium of the 2-cycle N ×N game, with error probability at

most 1
3 , has communication complexity at least Ω(N).

Note that Theorems 1.1 and 1.2 imply a lower bound of Ω(N) for the randomized query com-

plexity of finding a 1/poly(N)-approximate correlated, respectively rule correlated, equilibrium of

the 2-cycle game on N ×N actions.

Next, we show a communication complexity lower bound for finding a 1/poly(N)-approximate

Nash equilibrium of the 2-cycle game. As previously mentioned, Babichenko and Rubinstein

[BR17] proved the first non-trivial lower bound on the randomized communication complexity of

finding an approximate Nash equilibrium. More precisely, they proved a lower bound of Ω (N ε0)

on the randomized communication complexity of finding an ε-approximate Nash equilibrium of

a two-player N ×N game, for every ε ≤ ε0, where ε0 is some small constant. Their proof goes

through few intermediate problems and involves intricate reductions. We believe our proof is

more simple and straightforward. Moreover, for small approximation values, we get a stronger

lower bound of Ω(N), as opposed to the Ω(N ε0) lower bound of [BR17].

Theorem 1.3. For every ε ≤ 1
16N2 , every randomized communication protocol for finding an

ε-approximate Nash equilibrium of the 2-cycle N × N game, with error probability at most 1
3 ,

has communication complexity at least Ω(N).

Using similar ideas to the ones used in the proof of Theorem 1.3, we get a communication

complexity lower bound for finding an approximate well supported Nash equilibrium of the

2-cycle game.

Theorem 1.4. For every ε ≤ 1
N , every randomized communication protocol for finding an ε-

approximate well supported Nash equilibrium of the 2-cycle N ×N game, with error probability

at most 1
3 , has communication complexity at least Ω(N).

The 2-cycle game is a very simple game, in the sense that it is a win-lose, sparse game,

in which each player has a unique best response to every action. Moreover, the 2-cycle game
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has a unique pure Nash equilibrium, hence the non-deterministic communication complexity of

finding a Nash or correlated equilibrium of the 2-cycle N ×N game is O(logN).

The construction of the utility functions of the 2-cycle game was inspired by the gadget

reduction of [RW16] which translates inputs of the fixed-point problem in a compact convex

space to utility functions. However, the utility functions of the 2-cycle game are defined using

the unique out-neighbor function on a directed graph.

Our lower bounds are obtained by a direct reduction from the unique set disjointness prob-

lem. We show that the randomized communication complexity of finding the pure Nash equi-

librium of the 2-cycle N ×N game is Ω(N) and that given an approximate Nash or correlated

equilibrium of the 2-cycle game, the players can recover the pure Nash equilibrium with small

amount of communication. Note that for small approximation values, Theorems 1.1–1.4 are

tight for the class of win-lose, sparse games, up to logarithmic factors, as a player can send his

entire utility function using O(N logN) bits of communication.

Based on the 2-cycle game, we define a Bayesian game for two players called the Bayesian

2-cycle game. This is done by splitting the original game into smaller parts, where each part

corresponds to a type and is in fact a smaller 2-cycle game. The players are forced to play the

same type each time, hence the problem of finding an approximate Bayesian Nash equilibrium

of this game is essentially reduced to the problem of finding an approximate Nash equilibrium of

the 2-cycle game. For a constant N , Theorem 1.5 gives a tight lower bound of Ω(T ) for finding

a constant approximate Bayesian Nash equilibrium of the Bayesian 2-cycle game on T types.

Theorem 1.5. Let N ≥ 12 and T ≥ 2. Then, for every ε ≤ 1
16N2 , every randomized com-

munication protocol for finding an ε-approximate Bayesian Nash equilibrium of the Bayesian

2-cycle game on N actions and T types, with error probability at most 1
3 , has communication

complexity at least Ω(N · T ).

We note that our results do not hold for much larger approximation values, since there are

examples of approximate equilibria of the 2-cycle game for larger approximation values, that

can be found with small amount of communication (see Appendix A for details). We discuss

some of the remaining open problems in Section 6.

1.1 Related Works

We overview previous works related to the computation of Nash and correlated equilibria of

two-player N ×N games.

Computational complexity. The computational complexity of finding a Nash equilibrium

has been extensively studied in literature. Papadimitriou [Pap94] showed that the problem is

in PPAD, and over a decade later it was shown to be complete for that class, even for inverse

polynomial approximation values [DGP09, CDT09]. However, for constant approximation val-

ues, Lipton et al. [LMM03] gave a quasi-polynomial time algorithm for finding an approximate

Nash equilibrium, and this was shown to be optimal by Rubinstein [Rub16] under an ETH

assumption for PPAD. In stark contrast, exact correlated equilibrium can be computed for two-

player games in polynomial time by a linear program [HS89]. The decision version of finding

Nash and correlated equilibria with particular properties have also been considered in litera-

ture (for examples see [GZ89, CS08, ABC11, BL15, DFS16]). Finally, we note that Rubinstein

[Rub15] showed that finding a constant approximate Nash equilibrium of Bayesian games is

PPAD-complete.
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Query complexity. [FS16] showed a lower bound of Ω(N2) on the deterministic query com-

plexity of finding an ε-approximate Nash equilibrium, where ε < 1/2. In the other direction,

[FGGS15] showed a deterministic query algorithm that finds a 1/2-approximate Nash equilib-

rium by making O(N) queries. For randomized query complexity, [FS16] showed a lower bound

of Ω(N2) for finding an ε-approximate Nash equilibrium, where ε < 1/4N. In the other direction,

[FS16] showed a randomized query algorithm that finds a 0.382-approximate Nash equilibrium

by making O(N logN) queries. For coarse correlated equilibrium, Goldberg and Roth [GR14]

provided a randomized query algorithm that finds a constant approximate coarse correlated

equilibrium by making O(N logN) queries.

Communication complexity. The study of the communication complexity of finding a Nash

equilibrium was initiated by Conitzer and Sandholm [CS04], where they showed that the ran-

domized communication complexity of finding a pure Nash equilibrium (if it exists) is Ω(N2).

On the other hand, [GP14] showed a communication protocol that finds a 0.438-approximate

Nash equilibrium by exchanging polylog(N) bits of communication, and [CDF+16] showed a

communication protocol that finds a 0.382-approximate Nash equilibrium with similar commu-

nication. In a recent breakthrough, Babichenko and Rubinstein [BR17] proved the first lower

bound on the communication complexity of finding an approximate Nash equilibrium. They

proved that there exists a constant ε0 > 0, such that for all ε ≤ ε0, the randomized communi-

cation complexity of finding an ε-approximate Nash equilibrium is at least Ω(N ε0). Note that

before [BR17] no communication complexity lower bound was known even for finding an exact

mixed Nash equilibrium.

1.2 Proof Overview

The 2-cycle N × N game is defined on two directed graphs, one for each player, where both

graphs have a common vertex set of size N . The actions of each player are the N vertices. The

utility of a pair of vertices for a player is 1 if he plays the unique out-neighbor (according to his

graph) of the vertex played by the other player, otherwise it is 0.

Each graph is constructed from a subset of [N/4], such that the two subsets have exactly one

element in common. The union of the two graphs has a unique 2-cycle that corresponds to the

element in the intersection of the subsets. We show that the 2-cycle game has a unique pure

Nash equilibrium, that also corresponds to the 2-cycle in the union of the graphs. Since it is

hard to find the element in the intersection of the subsets, finding the pure Nash equilibrium of

the 2-cycle game is also hard.

Next, we show that each player can extract from an approximate correlated equilibrium a

partial mixed strategy on his actions, by looking at the edges of his graph. We show that the

partial strategies are either concentrated on the pure Nash equilibrium or one of these partial

strategies has an unusual probability on a vertex which is closely related to the pure Nash

equilibrium.

Assuming that the latter does not hold, we show that the partial strategies are concentrated

on the pure Nash equilibrium as follows: The union of the two graphs is a layered graph with

` = N/4 layers. In that graph there is a path of length ` − 1 that ends at the 2-cycle. Using a

delicate analysis of the structure of the graph, we prove inductively, moving forward along the

path, that the players play the vertices along the path (up to but not including the 2-cycle)

with small probability. Since the partial strategies hold a meaningful weight of the correlated

distribution, they must be concentrated on the 2-cycle, i.e. the pure Nash equilibrium.
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Given these partial strategies, the players can recover the pure Nash equilibrium with small

amount of communication. The lower bound then follows from the hardness of finding the pure

Nash equilibrium of the 2-cycle game.

The proof of the lower bound for finding an approximate Nash equilibrium is very similar,

however it does not require such a delicate analysis.

2 Preliminaries

2.1 General Notation

Strings. For two bit strings x, y ∈ {0, 1}∗, let xy be the concatenation of x and y. For a bit

string x ∈ {0, 1}n and an index i ∈ [n], xi is the ith bit in x and x̄ is the negated bit string,

that is x̄i is the negation of xi.

Probabilities of sets. For a function µ : Ω→ [0, 1], where Ω is some finite set, and a subset

S ⊆ Ω, let µ(S) =
∑

z∈S µ(z). Define µ(∅) = 0 and maxz∈∅ µ(z) = 0. For a function µ : U×V →
[0, 1], where U ,V are some finite sets, and a subset S ⊆ U ×V, let µ(S) =

∑
(u,v)∈S µ(u, v). For

a subset S ⊆ U and v ∈ V, let µ(S, v) =
∑

u∈S µ(u, v). Similarly, for a subset S ⊆ V and u ∈ U
let µ(u, S) =

∑
v∈S µ(u, v).

Conditional distributions. For a distribution µ over U ×V, where U ,V are some finite sets,

and u ∈ U let µ|u be the distribution over V defined as

µ|u(v) = Pr
(u′,v′)∼µ

[v = v′ | u = u′] ∀ v ∈ V.

Similarly, for v ∈ V let µ|v be the distribution over U defined as

µ|v(u) = Pr
(u′,v′)∼µ

[u = u′ | v = v′] ∀ u ∈ U .

2.2 Win-Lose and Bayesian Games

A win-lose, finite game for two players A and B is given by two utility functions uA : U × V →
{0, 1} and uB : U ×V → {0, 1}, where U and V are finite sets of actions. We say that the game

is an N × N game, where N = max{|U|, |V|}. A mixed strategy for player A is a distribution

over U and a mixed strategy for player B is a distribution over V. A mixed strategy is called

pure if it has only one action in its support. A correlated mixed strategy is a distribution over

U × V. A switching rule for player A is a mapping from U to U and a switching rule for player

B is a mapping from V to V.

A Bayesian, finite game for two players A and B is given by a distribution φ over ΘA ×ΘB

and two utility functions uA : ΘA×ΣA×ΣB → [0, 1] and uB : ΘB×ΣA×ΣB → [0, 1], where ΣA,

ΣB are finite sets of actions, and ΘA, ΘB are finite sets of types. We say that the game is on N

actions and T types where N = max{|ΣA|, |ΣB|} and T = max{|ΘA|, |ΘB|}. A mixed strategy

for player A is a distribution over ΣA and a mixed strategy for player B is a distribution over

ΣB. A mixed strategy is called pure if it has only one action in its support.

7



2.3 Approximate Correlated Equilibrium

Definition 2.1. Let ε ∈ [0, 1). An ε-approximate correlated equilibrium of a two-player game

is a correlated mixed strategy µ such that the following two conditions hold:

1. For every actions u, u′ ∈ U ,∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
≤ ε.

2. For every actions v, v′ ∈ V,∑
u∈U

µ(u, v) ·
(
uB(u, v′)− uB(u, v)

)
≤ ε.

Definition 2.2. Let ε ∈ [0, 1). An ε-approximate rule correlated equilibrium of a two-player

game is a correlated mixed strategy µ such that the following two conditions hold:

1. For every switching rule f for player A,

E(u,v)∼µ [uA(f(u), v)− uA(u, v)] ≤ ε.

2. For every switching rule f for player B,

E(u,v)∼µ [uB(u, f(v))− uB(u, v)] ≤ ε.

When the approximation value is zero, the two notions above coincide. The following propo-

sition states that every approximate rule correlated equilibrium is an approximate correlated

equilibrium.

Proposition 2.3. Let ε ∈ [0, 1) and let µ be an ε-approximate rule correlated equilibrium of a

two-player game. Then, µ is an ε-approximate correlated equilibrium of the game.

Proof. Assume towards a contradiction that µ is not an ε-approximate correlated equilibrium.

Then, without loss of generality, there exist actions u′, u′′ ∈ U such that∑
v∈V

µ(u′, v) ·
(
uA(u′′, v)− uA(u′, v)

)
> ε.

Define a switching rule for player A as follows:

f(u) =

{
u′′ if u = u′

u otherwise
.

Then, for every v ∈ V and u ∈ U \ {u′}, it holds that uA(f(u), v)− uA(u, v) = 0. Therefore,

E(u,v)∼µ [uA(f(u), v)− uA(u, v)] =
∑
v∈V

µ(u′, v) ·
(
uA(f(u′), v)− uA(u, v)

)
> ε,

which is a contradiction.

In the other direction, the following holds.
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Proposition 2.4. Let ε ∈ [0, 1) and let µ be an ε-approximate correlated equilibrium of an N

action two-player game. Then, µ is an (ε · N)-approximate rule correlated equilibrium of the

game.

Proof. Assume towards a contradiction that µ is not an (ε · N)-approximate rule correlated

equilibrium. Then, without loss of generality, there exists a function f : U → U such that

E(u,v)∼µ [uA(f(u), v)− uA(u, v)] > ε ·N.

From an averaging argument, there exists u′ ∈ U such that∑
v∈V

µ(u′, v) ·
(
uA(f(u′), v)− uA(u′, v)

)
> ε

which is a contradiction.

The Communication Task

The communication task of finding an ε-approximate (rule) correlated equilibrium is as follows.

Consider a win-lose, finite game for two players A and B, given by two utility functions uA :

U × V → {0, 1} and uB : U × V → {0, 1}.

The inputs: The actions sets U ,V and the approximation value ε are known to both players.

Player A gets the utility function uA and player B gets the utility function uB. The utility

functions are given as truth tables of size |U| × |V| each.

At the end of the communication: Both players know the same correlated mixed strategy

µ over U × V, such that µ is an ε-approximate (rule) correlated equilibrium.

2.4 Approximate Nash Equilibrium

Definition 2.5. Let ε ∈ [0, 1). An ε-approximate Nash equilibrium of a two-player game is

a pair of mixed strategies (a∗, b∗) for the players A,B respectively, such that the following two

conditions hold:

1. For every mixed strategy a for player A,

Eu∼a,v∼b∗ [uA(u, v)]− Eu∼a∗,v∼b∗ [uA(u, v)] ≤ ε.

2. For every mixed strategy b for player B,

Eu∼a∗,v∼b[uB(u, v)]− Eu∼a∗,v∼b∗ [uB(u, v)] ≤ ε.

An approximate Nash equilibrium with ε = 0 is called an exact Nash equilibrium. A two-

player game has a pure Nash equilibrium (u, v), where u ∈ U and v ∈ V, if there exists an exact

Nash equilibrium (a∗, b∗), where the support of a∗ is {u} and the support of b∗ is {v}.

Definition 2.6. Let ε ∈ [0, 1). An ε-approximate well supported Nash equilibrium of a two-

player game is a pair of mixed strategies (a∗, b∗) for the players A,B respectively, such that the

following two conditions hold:

9



1. For every action u ∈ Supp(a∗) and every action u′ ∈ U ,

Ev∼b∗ [uA(u′, v)− uA(u, v)] ≤ ε.

2. For every action v ∈ Supp(b∗) and every action v′ ∈ V,

Eu∼a∗ [uB(u, v′)− uB(u, v)] ≤ ε.

When the approximation value is zero, the two notions above coincide. The following propo-

sition states that every approximate well supported Nash equilibrium is an approximate Nash

equilibrium.

Proposition 2.7. Let ε ∈ [0, 1) and let (a∗, b∗) be an ε-approximate well supported Nash equi-

librium of a two-player game. Then, (a∗, b∗) is an ε-approximate Nash equilibrium of the game.

Proof. Let a be a mixed strategy for player A. For every action u ∈ Supp(a∗) and every action

u′ ∈ Supp(a),

Ev∼b∗ [uA(u′, v)− uA(u, v)] ≤ ε.

Therefore,

ε ≥ Eu′∼a,u∼a∗Ev∼b∗ [uA(u′, v)− uA(u, v)]

= Eu′∼a,v∼b∗ [uA(u′, v)]− Eu∼a∗,v∼b∗ [uA(u, v)].

Similarly, for every mixed strategy b for player B, every action v ∈ Supp(b∗) and every action

v′ ∈ Supp(b),

Eu∼a∗ [uB(u, v′)− uB(u, v)] ≤ ε.

Therefore,

ε ≥ Ev′∼b,v∼b∗Eu∼a∗ [uB(u, v′)− uB(u, v)]

= Eu∼a∗,v′∼b[uB(u, v)]− Eu∼a∗,v∼b∗ [uB(u, v)].

The Communication Task

The communication task of finding an ε-approximate (well supported) Nash equilibrium Con-

sider a win-lose, finite game for two players A and B, given by two utility functions uA : U×V →
{0, 1} and uB : U × V → {0, 1}.

The inputs: The actions sets U ,V and the approximation value ε are known to both players.

Player A gets the utility function uA and player B gets the utility function uB. The utility

functions are given as truth tables of size |U| × |V| each.

At the end of the communication: Player A knows a mixed strategy a∗ over U and player

B knows a mixed strategy b∗ over V, such that (a∗, b∗) is an ε-approximate (well supported)

Nash equilibrium.
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2.5 Approximate Bayesian Nash Equilibrium

Definition 2.8. An ε-approximate Bayesian Nash equilibrium of a two-player game is a set of

mixed strategies {a∗tA}tA∈ΘA
for player A and a set of mixed strategies {b∗tB}tB∈ΘB

for player B

such that the following two conditions hold:

1. For every type tA ∈ ΘA and every mixed strategy a for player A,

EtB∼φ|tAEu∼a,v∼b∗tB [uA(tA, u, v)]− EtB∼φ|tAEu∼a∗tA ,v∼b∗tB [uA(tA, u, v)] ≤ ε.

2. For every type tB ∈ ΘB and every mixed strategy b for player B,

EtA∼φ|tBEu∼a∗tA ,v∼b[uB(tB, u, v)]− EtA∼φ|tBEu∼a∗tA ,v∼b∗tB [uB(tB, u, v)] ≤ ε.

The Communication Task

The communication task of finding an ε-approximate Bayesian Nash equilibrium Consider a

Bayesian, finite game for two players A and B, on N actions and T types, that is given by the

distribution φ over ΘA × ΘB and the two utility functions uA : ΘA × ΣA × ΣB → [0, 1] and

uB : ΘB × ΣA × ΣB → [0, 1].

The inputs: All the sets ΘA,ΘB,ΣA,ΣB, the distribution φ and the approximation value ε

are known to both players. Player A gets the utility function uA and player B gets the utility

function uB. The utility functions are given as truth tables of size at most T ·N2 each.

At the end of the communication: Player A knows a set of mixed strategies {a∗tA}tA∈ΘA

and player B knows a set of mixed strategies {b∗tB}tB∈ΘB
, such that

(
{a∗tA}tA∈ΘA

, {b∗tB}tB∈ΘB

)
is an ε-approximate Bayesian Nash equilibrium.

3 The 2-Cycle Game

Let n ∈ N, n ≥ 3. The 2-cycle game is constructed from two n-bit strings x, y ∈ {0, 1}n for

which there exists exactly one index i ∈ [n], such that xi > yi. Throughout the paper, all

operations (adding and subtracting) are done modulo n.

The graphs. Given a string x ∈ {0, 1}n, player A computes the graph GA on the set of vertices

V = [n]× {0, 1, 01, 11} with the following set of directed edges (an edge (u, v) is directed from

u into v):

EA =

{
((i, 1), (i+ 1, z)) : i ∈ [n], z =

{
0 if xi+1 = 0

11 otherwise

}

∪
{

((i, 0), (i+ 1, z)) : i ∈ [n], xi = 0, z =

{
0 if xi+1 = 0

01 otherwise

}
∪
{

((i, 0), (i− 1, xi−1)) : xi = 1, i ∈ [n]
}

∪
{

((i, z1), (i, 1)) : z ∈ {0, 1}, i ∈ [n]
}
.
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See an example of such a graph in Figure 1.

(1,1)

(1,0)

(2,1)

(2,0)

(3,1)

(3,0)

(4,1)

(4,0)

(5,1)

(5,0)

(1,11)

(1,01)

(2,11)

(2,01)

(3,11)

(3,01)

(4,11)

(4,01)

(5,11)

(5,01)

Figure 1: The graph GA built from the 5 bit string 11001.

Given a string y ∈ {0, 1}n, player B computes the graph GB on the same set of vertices V

with the following set of directed edges:

EB =

{
((i, 1), (i+ 1, z)) : i ∈ [n], z =

{
0 if yi+1 = 0

11 otherwise

}

∪
{

((i, 0), (i+ 1, z)) : i ∈ [n], z =

{
0 if yi+1 = 0

01 otherwise

}
∪
{

((i, z1), (i, 1)) : z ∈ {0, 1}, i ∈ [n]
}
.

See an example of such a graph in Figure 2.

(1,1)

(1,0)

(2,1)

(2,0)

(3,1)

(3,0)

(4,1)

(4,0)

(5,1)

(5,0)

(1,11)

(1,01)

(2,11)

(2,01)

(3,11)

(3,01)

(4,11)

(4,01)

(5,11)

(5,01)

Figure 2: The graph GB built from the 5 bit string 10011.

The actions and utility functions. The sets of actions are U = V = V . The utility function

uA : V 2 → {0, 1} of player A is defined for every pair of actions (u, v) ∈ V 2 as

uA(u, v) =

{
1 if (v, u) ∈ EA
0 otherwise

.
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The utility function uB : V 2 → {0, 1} of player B is defined for every pair of actions (u, v) ∈ V 2

as

uB(u, v) =

{
1 if (u, v) ∈ EB
0 otherwise

.

This is a win-lose, N×N game, where N = 4n. We call it the 2-cycle game or more specifically,

the 2-cycle N ×N game.

3.1 Notations

For two vertices u, v ∈ V , (u, v) is a 2-cycle if (v, u) ∈ EA and (u, v) ∈ EB. For a vertex u ∈ V ,

define

NA(u) = {v ∈ V : (v, u) ∈ EA}
NB(u) = {v ∈ V : (v, u) ∈ EB}.

That is, NA(u) is the set of incoming neighbors to u in EA, and NB(u) is the set of incoming

neighbors to u in EB. Let dA(u) = |NA(u)| and dB(u) = |NB(u)|. For a subset S ⊆ V , define

NA(S) = ∪v∈SNA(v)

NB(S) = ∪v∈SNB(v).

For every i ∈ [n], layer i is the set of vertices defined as

Li = {(i, z) : z ∈ {0, 1}}.

Another useful set of vertices is a midway layer defined as

Lmi = {(i, z) : z ∈ {01, 11, 0}}.

Edges in EA of the form ((i, 0), (i − 1, xi−1)) for i ∈ [n] are called back-edges. For a vertex

u ∈ V , define

Nf
A(u) = {v ∈ V : (v, u) ∈ EA and (v, u) is not a back-edge }.

For a subset S ⊆ V , define

Nf
A(S) = ∪v∈SNf

A(v).

Let x, y be the strings from which the game was constructed. Note that uA determines x, and

uB determines y. For an index i ∈ [n] we say that i is disputed if xi > yi. Otherwise, we say

that i is undisputed. Define i∗ to be the unique disputed index. We denote the following key

vertices:

u∗ = (i∗ − 1, xi∗−1)

v∗0 = (i∗, 0)

v∗1 = (i∗, 1)

v∗01 = (i∗, 01)

v∗11 = (i∗, 11).
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For p ∈ [0, 1], u ∈ V and a function f : V → [0, 1], we say that f is p-concentrated on u if

f(v) ≤ p ∀ v ∈ V \ {u}.

To simplify notations, for a function f taking inputs from the set V and a vertex v = (i, z) ∈ V ,

we write f(i, z) instead of f((i, z)).

3.2 Basic Properties

The following are some useful, basic properties of the 2-cycle game.

Proposition 3.1 (Out-degree). For every v ∈ V , there exists exactly one u ∈ V such that

uA(u, v) = 1. Similarly, for every u ∈ V , there exists exactly one v ∈ V such that uB(u, v) = 1.

Proof. Follows immediately from the definitions of EA and EB.

Proposition 3.2 (Max in-degree). For every v ∈ V , it holds that dA(v) ≤ 3 and dB(v) ≤ 2.

Proof. Follows immediately from the definitions of EA and EB.

By the following claim, the 2-cycle game has exactly one 2-cycle.

Proposition 3.3 (A 2-cycle). Let (v, u) ∈ EA be a back-edge. If v 6= v∗0, then dB(v) = 0.

Otherwise, u = u∗ and (u∗, v∗0) is a 2-cycle.

Proof. Let u = (i, zA) ∈ V , for some zA ∈ {0, 1, 01, 11} and assume there exits v = (i+ 1, zB) ∈
NA(u), for some zB ∈ {0, 1, 01, 11}. By the definition of EA,

zA = xi, xi+1 = 1 and zB = 0.

If v 6= v∗0, then yi+1 = 1 and by the definition of EB, dB(v) = 0. Otherwise v = v∗0 and xi∗ > yi∗ .

Since v = v∗0 it holds that u = u∗. Since xi∗ > yi∗ it holds that yi+1 = 0 and by the definition

of EB, (u, v) ∈ EB.

3.3 Pure Nash Equilibrium

By Claim 3.4 below, the 2-cycle game has a unique pure Nash equilibrium. Together with

Proposition 3.3, the pure Nash equilibrium of the game is its 2-cycle.

Claim 3.4. The 2-cycle game has exactly one pure Nash equilibrium (u∗, v∗0).

Proof. By Proposition 3.3, (u∗, v∗0) is a 2-cycle. That is, uA(u∗, v∗0) = 1 and uB(u∗, v∗0) = 1.

Let a∗ be the mixed strategy for player A with support {u∗} and b∗ be the mixed strategy for

player B with support {v∗0}. Then,

Eu∼a∗,v∼b∗ [uA(u, v)] = Eu∼a∗,v∼b∗ [uB(u, v)] = 1.

For every mixed strategy a for player A it holds that

Eu∼a,v∼b∗ [uA(u, v)] = Eu∼a[uA(u, v∗0)] ≤ 1.

Similarly, for every mixed strategy b for player B,

Eu∼a∗,v∼b[uB(u, v)] = Ev∼b[uB(u∗, v)] ≤ 1.
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Therefore, (u∗, v∗0) is a pure Nash equilibrium.

Let u, v ∈ V such that u 6= u∗ or v 6= v∗0. Let a′ be the mixed strategy for player A with support

{u} and b′ be the mixed strategy for player B with support {v}. By Proposition 3.3, either

(v, u) /∈ EA or (u, v) /∈ EB. By proposition 3.1, there exist u′, v′ ∈ V such that (v, u′) ∈ EA and

(u, v′) ∈ EB. If (v, u) /∈ EA then let a be the mixed strategy for player A with support {u′}.
We get that

Eu′′∼a,v′′∼b′ [uA(u′′, v′′)] = uA(u′, v) = 1

and

Eu′′∼a′,v′′∼b′ [uA(u′′, v′′)] = uA(u, v) = 0.

Otherwise (u, v) /∈ EB, then let b be the mixed strategy for player B with support {v′}. We get

that

Eu′′∼a′,v′′∼b[uB(u′′, v′′)] = uB(u, v′) = 1

and

Eu′′∼a′,v′′∼b′ [uB(u′′, v′′)] = uB(u, v) = 0.

Therefore, (u, v) is not a pure Nash equilibrium.

The following theorem states that finding the pure Nash equilibrium (equivalently, the 2-

cycle) of the 2-cycle game is hard. The proof is by a reduction from the following search variant

of unique set disjointness: Player A gets a bit string x ∈ {0, 1}n and player B gets a bit

string y ∈ {0, 1}n. They are promised that there exists exactly one index i∗ ∈ [n] such that

xi∗ > yi∗ . Their goal is to find the index i∗. It is well known that the randomized communication

complexity of solving this problem with constant error probability is Ω(n) [BFS86, KS92, Raz92].

This problem is called the universal monotone relation. For more details on the universal

monotone relation and its connection to unique set disjointness see [KN97].

Theorem 3.5. Every randomized communication protocol for finding the pure Nash equilibrium

of the 2-cycle N ×N game, with error probability at most 1
3 , has communication complexity at

least Ω(N).

Proof. Let x, y ∈ {0, 1}n be the inputs to the search variant of unique set disjointness described

above. Consider the 2-cycle N ×N game which is constructed from these inputs, given by the

utility functions uA, uB. Assume towards a contradiction that there exists a communication

protocol π for finding the pure Nash equilibrium of the 2-cycle game with error probability at

most 1/3 and communication complexity o(N). The players run π on uA, uB and with probability

at least 2/3, at the end of the communication, player A knows u and player B knows v, such

that (u, v) is the pure Nash equilibrium of the game. By Claim 3.4, u = u∗ and v = v∗0.

Given u∗, v∗0 to the players A and B respectively, both players know the index i∗, which is a

contradiction.

4 Approximate Correlated Equilibrium of The 2-Cycle Game

The following theorem states that given an approximate correlated equilibrium of the 2-cycle

game, the players can recover the pure Nash equilibrium.

Theorem 4.1. Consider a 2-cycle N × N game, given by the utility functions uA, uB. Let

ε ≤ 1
24N3 and let µ be an ε-approximate correlated equilibrium of the game. Then, there exists

a deterministic communication protocol, that given uA, µ to player A, and uB, µ to player B,
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uses O(logN) bits of communication, and at the end of the communication player A outputs

an action u ∈ V and player B outputs an action v ∈ V , such that (u, v) is the pure Nash

equilibrium of the game.

Theorem 1.1 follows from Theorem 3.5 and Theorem 4.1. For the rest of this section we

prove Theorem 4.1. The proof uses the notion of slowly increasing probabilities. For more

details on slowly increasing probabilities see Section 4.1.

Definition 4.2 (Slowly increasing probabilities). Let δ ∈ [0, 1]. A pair of functions a : V →
[0, 1] and b : V → [0, 1] is δ-slowly increasing for the 2-cycle game if for every u ∈ V the

following conditions hold:

1. a(u) ≤ b(NA(u)) + δ.

2. b(u) ≤ a(NB(u)) + δ.

In particular, if dA(u) = 0 then a(u) ≤ b(∅) + δ = δ. Similarly, if dB(u) = 0 then b(u) ≤ δ.
The next lemma states that given a pair of functions which is δ-slowly increasing for the

2-cycle game, for a small enough δ, the players can recover the pure Nash equilibrium. The

proof is in Section 4.2

Lemma 4.3. Consider a 2-cycle N × N game, given by the utility functions uA, uB. Let

a : V → [0, 1] and b : V → [0, 1] be a pair of functions which is δ-slowly increasing for the game,

where δ ∈
[
0, max{b(V ),a(V )}

5N2

)
. Then, there exists a deterministic communication protocol, that

given uA, a and δ to player A, and uB, b and δ to player B, uses O(logN) bits of communication,

and at the end of the communication player A outputs an action u ∈ V and player B outputs

an action v ∈ V , such that (u, v) is the pure Nash equilibrium of the game.

We prove that an approximate correlated equilibrium for the 2-cycle game implies the ex-

istence of a slowly increasing pair of functions. Theorem 4.1 follows from Lemma 4.3 and

Claim 4.4.

Claim 4.4. Let µ be an ε-approximate correlated equilibrium of the 2-cycle N ×N game, where

ε ≤ 1
24N3 . Then, there exists a pair of functions a : V → [0, 1] and b : V → [0, 1] which

is 1
8N3 -slowly increasing for the game. Moreover, player A knows a, player B knows b and

b(V ) ≥ 3
4N .

Proof. Define a function a : V → [0, 1] as

a(v) = µ(v,NA(v)) ∀ v ∈ V

and a function b : V → [0, 1] as

b(v) = µ(NB(v), v) ∀ v ∈ V.

Let v ∈ V and assume that b(NA(v)) ≤ p for some p ∈ R. We will show that a(v) ≤ p+ 3ε. Let

u ∈ NA(v) (if there is no such vertex we are done). By Definition 2.1, for every u′ ∈ V ,

ε ≥ µ(NB(u′), u)− b(u).

By Proposition 3.1, there exists u′ ∈ V such that v ∈ NB(u′). Therefore,

ε ≥ µ(v, u)− b(u).
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Summing over every u ∈ NA(v) we get that

3ε ≥ a(v)− b(NA(v)) ≥ a(v)− p,

where we bounded the left-hand side by Proposition 3.2 and the right-hand side by the assump-

tion.

The same holds when replacing a with b, NA with NB, and µ(NB(u′), u) with µ(u,NA(u′)).

That is, for every v ∈ V , if a(NB(v)) ≤ p for some p ∈ R, then b(v) ≤ p+ 3ε.

Finally, we bound b(V ):

1− b(V ) =
∑
v∈V

∑
v′∈V :v′ 6=v

µ(NB(v′), v)

≤
∑
v∈V

∑
v′∈V :v′ 6=v

(µ(NB(v), v) + ε)

≤ (N − 1) · b(V ) +N2 · ε,

where the first step follows from the definition of b and from Proposition 3.1 and the second

step follows from Definition 2.1. Therefore, b(V ) ≥ 1
N −N · ε ≥

3
4N .

4.1 On Slowly Increasing Probabilities

In this section we describe some useful, basic properties of slowly increasing probabilities for

the 2-cycle game.

Recall that for a vertex u ∈ V , Nf
A(u) is the set of vertices v such that (v, u) ∈ EA but

(v, u) is not a back-edge. The following proposition states that a back-edge adds at most δ to

the probability of its vertices.

Proposition 4.5. Let δ ∈ [0, 1] and let a : V → [0, 1] and b : V → [0, 1] be a pair of functions

which is δ-slowly increasing for the 2-cycle game. Let u = (i, z) ∈ V , where i ∈ [n], i + 1 6=
i∗ mod n and z ∈ {0, 1}. Then a(u) ≤ b(Nf

A(u)) + 2δ.

Proof. By Proposition 3.3, for every back-edge (v, u) ∈ EA, where v 6= v∗0, it holds that dB(v) =

0. Since a(∅) = 0, by Definition 4.2, b(v) ≤ δ. Therefore,

a(u) ≤ b(NA(u)) + δ ≤ b(Nf
A(u)) + 2δ.

Recall that for i ∈ [n], Lmi = {(i, z) : z ∈ {01, 11, 0}}. The following proposition states that

bounding the probabilities of vertices in a midway layer implies a bound on the corresponding

layer.

Proposition 4.6. Let δ ∈ [0, 1] and let a : V → [0, 1] and b : V → [0, 1] be a pair of functions

which is δ-slowly increasing for the 2-cycle game. Let i ∈ [n] such that i+ 1 6= i∗ mod n. Then,

a(Li) + b(Li) ≤ a(Lmi ) + b(Lmi ) + 3δ.

Proof. By Proposition 4.5,

a(i, 1) ≤ b(i, 01) + b(i, 11) + 2δ
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and by Definition 4.2,

b(i, 1) ≤ a(i, 01) + a(i, 11) + δ.

Recall that an index i ∈ [n] is disputed if xi > yi, where x, y are the strings from which the

game was constructed, otherwise i is undisputed. The game has exactly one disputed index i∗.

Proposition 4.7. Let δ ∈ [0, 1] and let a : V → [0, 1] and b : V → [0, 1] be a pair of functions

which is δ-slowly increasing for the 2-cycle game. Let x, y be the strings from which the game

was constructed. For every i ∈ [n], if i is undisputed and yi = 0 then b(i, 1) ≤ 3δ.

Proof. Let i ∈ [n] and assume that i is undisputed and yi = 0. There are exactly two edges

in GB going into (i, 1), from the vertices (i, 01) and (i, 11). Since i is undisputed, xi = 0 and

dA(i, 01) = dA(i, 11) = 0. By Definition 4.2,

b(i, 1) ≤ a(NB(i, 1)) + δ

≤ a(i, 01) + a(i, 11) + δ ≤ 3δ.

4.2 From Slowly Increasing Probabilities to The Pure Nash Equilibrium

In this section we prove Lemma 4.3. Consider a 2-cycle N × N game, given by the utility

functions uA, uB. Let a : V → [0, 1] and b : V → [0, 1] be a pair of functions which is δ-slowly

increasing for the game, where δ ∈
[
0, max{b(V ),a(V )}

5N2

)
. By Claim 3.4, the pure Nash equilibrium

of the game is (u∗, v∗0).

The deterministic communication protocol for finding (u∗, v∗0) is described in Algorithm 1.

Player A gets uA, a and δ and player B gets uB, b and δ. The communication complexity of

this protocol is clearly at most O(logN).

Algorithm 1 Finding (u∗, v∗0) given slowly increasing probabilities (a, b)

1. Player B checks if there exists i ∈ [n] such that yi = 0 and b(i, 1) > 3δ. If there is such an
index i he sends it to player A. Then, player A outputs (i−1, xi−1) and player B outputs
(i, 0). Otherwise, player B sends a bit to indicate that there is no such index.

2. Player A checks if δ < a(V )/5N2. If it is, player A finds u = (i, z) ∈ V such that a(u) > 5Nδ,
where i ∈ [n] and z ∈ {0, 1, 01, 11}, and sends i to player B. Then, player A outputs u and
player B outputs (i+ 1, 0). Otherwise, player A sends a bit to indicate that δ ≥ a(V )/5N2.

3. Player B finds v = (i, z) ∈ V such that b(v) > 5Nδ, where i ∈ [n] and z ∈ {0, 1, 01, 11},
and sends i to player A. Then, player A outputs (i− 1, xi−1) and player B outputs v.

By Proposition 4.7, if there exists i ∈ [n] such that yi = 0 and b(i, 1) > 3δ, then i has to be

i∗. In this case the players A,B output u∗ and v∗0 respectively. Otherwise, b(v∗1) ≤ 3δ. In this

case, the correctness of the protocol follows from Lemma 4.8 below.

Lemma 4.8. Consider a 2-cycle N × N game, given by the utility functions uA, uB. Let

a : V → [0, 1] and b : V → [0, 1] be a pair of functions which is δ-slowly increasing for the
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game, where δ ∈
[
0, max{b(V ),a(V )}

5N2

)
. Let p = 5Nδ. Then, either b(v∗1) > 3δ or the following two

conditions hold:

1. a is p-concentrated on u∗.

2. b is p-concentrated on v∗0.

Note that if δ < a(V )
5N2 then p < a(V )

N and a(u∗) > a(V )
N > p. Otherwise, δ < b(V )

5N2 then

p < b(V )
N and b(v∗0) > b(V )

N > p. For the rest of this section we prove Lemma 4.8. Assume that

b(v∗1) ≤ 3δ. First, note that dA(v∗0) = dB(v∗01) = dB(v∗11) = 0 therefore

a(v∗0), b(v∗01), b(v∗11) ≤ δ.

and by Proposition 4.5,

a(v∗1) ≤ b(Nf
A(v∗1)) + 2δ

≤ b(v∗01) + b(v∗11) + 2δ ≤ 4δ.

Next, we prove that for every 1 ≤ j ≤ n− 2,

a(Lmi∗+j) + b(Lmi∗+j) ≤ 15jδ. (1)

Recall that Lmi∗+j = {(i∗ + j, z) : z ∈ {01, 11, 0}}. By Proposition 4.6, (1) implies that

a(Li) + b(Li) ≤ 15jδ + 3δ for every 1 ≤ j ≤ n − 2. Note that 15jδ + 3δ ≤ 5Nδ. We prove (1)

by induction on j, from j = 1 to j = n− 2.

Layer i∗+ 1: First we bound a(Lmi∗+1). Note that in EA there is no edge from v∗0 to (i∗+ 1, 0)

or to (i∗ + 1, 01). Moreover, by Proposition 3.1, every vertex v ∈ V has exactly one out-going

edge in each graph. That is, in EA, either there is an edge from v∗1 to (i∗ + 1, 11) or there is an

edge from v∗1 to (i∗ + 1, 0), but not both. Therefore,

a(Lmi∗+1) ≤ b(NA(i∗ + 1, 11)) + b(Nf
A(i∗ + 1, 0)) + 4δ

≤ b(v∗1) + 4δ ≤ 7δ,

where the first step follows from Definition 4.2, Proposition 4.5 and since dA(i∗ + 1, 01) = 0.

Next we bound b(Lmi∗+1). In EB, either there are edges from v∗0 and v∗1 to (i∗ + 1, 01) and

(i∗+1, 11) respectively, or there are edges from v∗0 and v∗1 to (i∗+1, 0), but not both. Therefore,

by Definition 4.2,

b(Lmi∗+1) ≤ a(NB(i∗ + 1, 01)) + a(NB(i∗ + 1, 11)) + a(NB(i∗ + 1, 0)) + 3δ

≤ a(v∗0) + a(v∗1) + 3δ ≤ 8δ.

Put together we get that a(Lmi∗+1) + b(Lmi∗+1) ≤ 15δ.

Layers i∗ + 2, . . . , i∗ + n − 2: Fix i ∈ [n − 2]. By Proposition 3.1, every vertex v ∈ V has

exactly one out-going edge in each graph. That is, in each graph, either (i∗ + i + 1, 01) and

(i∗+ i+ 1, 11) have no incoming edges from layer Li∗+i, or (i∗+ i+ 1, 0) has no incoming edges

from layer Li∗+i. If (i∗ + i+ 1, 01) and (i∗ + i+ 1, 11) have no incoming edges from layer Li∗+i
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in EA then

a(Lmi∗+i+1) ≤ a(i∗ + i+ 1, 0) + 2δ

≤ b(Nf
A(i∗ + i+ 1, 0)) + 4δ

≤ b(Li∗+i) + 4δ.

where the first step holds since dA(i∗ + i + 1, 01) = dA(i∗ + i + 1, 11) = 0 and the second step

follows from Proposition 4.5. Otherwise, (i∗ + i+ 1, 0) has no incoming edges from layer Li∗+i
in EA and then

a(Lmi∗+i+1) ≤ a(i∗ + i+ 1, 01) + a(i∗ + i+ 1, 11) + 2δ

≤ b(Li∗+i) + 4δ,

where the first step follows from Proposition 4.5 since b(Nf
A(i∗ + i + 1, 0)) = b(∅) = 0 and the

second step follows from Definition 4.2.

The same holds when replacing a with b, and Nf
A with NB. (the fact that there are no back-edges

in GB could only decrease the bound). That is,

b(Lmi∗+i+1) ≤ a(Li∗+i) + 4δ. (2)

Put together we get that

a(Lmi∗+i+1) + b(Lmi∗+i+1) ≤ a(Li∗+i) + b(Li∗+i) + 8δ.

Assume that i < n − 2 and that (1) holds for every 1 ≤ j ≤ i. By Proposition 4.6, a(Li∗+j) +

b(Li∗+j) ≤ 15jδ + 3δ for every 1 ≤ j ≤ i. Therefore,

a(Lmi∗+i+1) + b(Lmi∗+i+1) ≤ 15iδ + 11δ ≤ 15(i+ 1)δ.

Bounding b on the remaining vertices. It remains to bound b on the vertices (i∗ − 1, z),

where z ∈ {0, 1, 01, 11}. It holds that

b(Lmi∗−1) ≤ a(Li∗−2) + 4δ

≤ a(Lmi∗−2) + b(Lmi∗−2) + 7δ

≤ 15(n− 2)δ + 7δ ≤ 5Nδ,

where the first step follows from (2), the second step follows from Proposition 4.6 and the third

step follows from (1). Finally,

b(i∗ − 1, 1) ≤ a(i∗ − 1, 01) + a(i∗ − 1, 11) + δ

≤ b(Li∗−2) + 3δ

≤ a(Lmi∗−2) + b(Lmi∗−2) + 6δ

≤ 15(n− 2)δ + 6δ ≤ 5Nδ,

where the first two steps follow from Definition 4.2, the third step follows from Proposition 4.6

and fourth step follows from (1).
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Bounding a on the remaining vertices. We already bounded a on the vertices (i∗− 1, 01)

and (i∗−1, 11). It remains to bound a on the vertices (i∗−1, x̄i∗−1), (i∗, 01) and (i∗, 11). Denote

ū∗ = (i∗ − 1, x̄i∗−1). Since there is not back-edge into ū∗,

a(ū∗) ≤ b(Li∗−2) + b(i∗ − 1, 01) + b(i∗ − 1, 11) + δ

≤ b(Li∗−2) + a(Li∗−2) + 3δ

≤ a(Lmi∗−2) + b(Lmi∗−2) + 6δ

≤ 15(n− 2)δ + 6δ ≤ 5Nδ,

where the first two steps follow from Definition 4.2, the third step follows from Proposition 4.6

and fourth step follows from (1). Finally,

a(i∗, 01) + a(i∗, 11) ≤ b(Li∗−1) + 2δ

≤ a(i∗ − 1, 01) + a(i∗ − 1, 11) + b(i∗ − 1, 0) + 3δ

≤ b(Li∗−2) + a(Li∗−2) + 6δ

≤ a(Lmi∗−2) + b(Lmi∗−2) + 9δ

≤ 15(n− 2)δ + 9δ ≤ 5Nδ,

where the first three steps follow from Definition 4.2, the fourth step follows from Proposition 4.6

and the fifth step follows from (1).

5 Approximate Nash Equilibrium of The 2-Cycle Game

The following theorem states that given an approximate Nash equilibrium of the 2-cycle game,

the players can recover the pure Nash equilibrium.

Theorem 5.1. Consider a 2-cycle N × N game, given by the utility functions uA, uB. Let

ε ≤ 1
16N2 and let (a∗, b∗) be an ε-approximate Nash equilibrium of the game. Then, there exists

a deterministic communication protocol, that given uA, a∗ to player A, and uB, b∗ to player B,

uses O(logN) bits of communication, and at the end of the communication player A outputs

an action u ∈ V and player B outputs an action v ∈ V , such that (u, v) is the pure Nash

equilibrium of the game.

Theorem 1.3 follows from Theorem 3.5 and Theorem 5.1. For the rest of this section we

prove Theorem 5.1. The proof uses the notion of non-increasing probabilities. For more details

on non-increasing probabilities see Section 5.1.

Definition 5.2 (Non-increasing probabilities). Let p ∈ [0, 1]. A pair of distributions (a, b),

each over the set of actions V , is p-non-increasing for the 2-cycle game if for every u ∈ V the

following conditions hold:

1. If maxv∈NA(u) b(v) ≤ p then a(u) ≤ p.

2. If maxv∈NB(u) a(v) ≤ p then b(u) ≤ p.

In particular, if dA(u) = 0 then maxv∈∅ b(v) = 0 and therefore a(u) ≤ p. Similarly, if dB(u) = 0

then b(u) ≤ p.
The next lemma states that given a pair of distributions which is p-non-increasing for the

2-cycle game, for a small enough p, the players can recover the pure Nash equilibrium. The

proof is in Section 5.2
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Lemma 5.3. Consider a 2-cycle N ×N game, given by the utility functions uA, uB. Let (a, b)

be a pair of distributions, each over the set of actions V , which is p-non-increasing for the game,

where p ∈
[
0, 1

N

)
. Then, there exists a deterministic communication protocol, that given uA, a

and p to player A, and uB, b and p to player B, uses at most O(logN) bits of communication,

and at the end of the communication player A outputs an action u ∈ V and player B outputs

an action v ∈ V , such that (u, v) is the pure Nash equilibrium of the game.

We prove that an approximate Nash equilibrium for the 2-cycle game is a non-increasing

pair of functions. Theorem 5.1 follows from Lemma 5.3 and Claim 5.4.

Claim 5.4. Let (a∗, b∗) be an ε-approximate Nash equilibrium of the 2-cycle N×N game, where

ε ≤ 1
16N2 . Then, the pair (a∗, b∗) is 1

4N -non-increasing for the game.

Proof. Let u′ ∈ V and assume that b∗(v) ≤ 1
4N for every v ∈ NA(u′). Let v′ ∈ V be a vertex such

that b∗(v′) ≥ 1
N (there must exist such a vertex since b∗ is a distribution). By Proposition 3.1,

there exists a vertex u′′ ∈ V such that uA(u′′, v′) = 1. Note that by our assumption, u′ 6= u′′

and uA(u′, v′) = 0. Define a distribution a′ over V as follows:

a′(u′′) = a∗(u′′) + a∗(u′)

a′(u′) = 0

a′(u) = a∗(u) ∀ u ∈ V \ {u′′, u′}.

By Definition 2.5,

ε ≥ Eu∼a′,v∼b∗ [uA(u, v)]− Eu∼a∗,v∼b∗ [uA(u, v)]

= a′(u′′) · b∗(NA(u′′))− a∗(u′′) · b∗(NA(u′′))− a∗(u′) · b∗(NA(u′))

= a∗(u′) · b∗(NA(u′′))− a∗(u′) · b∗(NA(u′))

≥ a∗(u′) · 1

N
− a∗(u′) · 3

4N
,

where the last step follows from Proposition 3.2. Since ε ≤ 1
16N2 we conclude that a∗(u′) ≤ 1

4N .

The same holds when replacing a∗ with b∗, NA with NB, and uA with uB. That is, for every

u′ ∈ V , if a∗(v) ≤ 1
4N for every v ∈ NB(u′) then b∗(u′) ≤ 1

4N .

5.1 On Non-Increasing Probabilities

In this section we describe some useful, basic properties of non-increasing probabilities for the

2-cycle game.

Recall that for a vertex u ∈ V , Nf
A(u) is the set of vertices v such that (v, u) ∈ EA but

(v, u) is not a back-edge. The following proposition states that back-edges can be ignored when

bounding the probabilities of out-neighbors.

Proposition 5.5. Let p ∈ [0, 1] and let (a, b) be a pair of distributions, each over the set of

actions V , which is p-non-increasing for the 2-cycle game. Let (v, u) ∈ EA be a back-edge, where

v 6= v∗0. Assume that max
v∈Nf

A(u)
b(v) ≤ p, then a(u) ≤ p.

Proof. By Proposition 3.3, for every back-edge (v, u) ∈ EA, where v 6= v∗0, it holds that dB(v) =

0 and therefore b(v) ≤ p. We get that

max
v∈Nf

A(u)
b(v) ≤ p ⇒ max

v∈NA(u)
b(v) ≤ p.
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Recall that for i ∈ [n], Lmi = {(i, z) : z ∈ {01, 11, 0}}. The following proposition states that

bounding the probabilities of vertices in a midway layer implies a bound on the corresponding

layer.

Proposition 5.6. Let p ∈ [0, 1] and let (a, b) be a pair of distributions, each over the set of

actions V , which is p-non-increasing for the 2-cycle game. Let i ∈ [n] such that i+1 6= i∗ mod n.

If a(v), b(v) ≤ p for every v ∈ Lmi then a(i, 1), b(i, 1) ≤ p.

Proof. Assume that a(v), b(v) ≤ p for every v ∈ Lmi . Then,

max
v∈NB(i,1)

{a(v)} = max{a(i, 01), a(i, 11)} ≤ p.

By Definition 5.2, b(i, 1) ≤ p and similarly,

max
v∈Nf

A(i,1)
{b(v)} = max{b(i, 01), b(i, 11)} ≤ p.

By Proposition 5.5, a(i, 1) ≤ p.

Recall that an index i ∈ [n] is disputed if xi > yi, where x, y are the strings from which the

game was constructed, otherwise i is undisputed. The game has exactly one disputed index i∗.

Proposition 5.7. Let p ∈ [0, 1] and let (a, b) be a pair of distributions, each over the set of

actions V , which is p-non-increasing for the 2-cycle game. Let x, y be the strings from which

the game was constructed. For every i ∈ [n], if i is undisputed and yi = 0 then b(i, 1) ≤ p.

Proof. Let i ∈ [n] and assume that i is undisputed and yi = 0. There are exactly two edges

in GB going into (i, 1), from the vertices (i, 01) and (i, 11). Since i is undisputed, xi = 0 and

dA(i, 01) = dA(i, 11) = 0. Therefore, b(i, 1) ≤ p.

5.2 From Non-Increasing Probabilities to The Pure Nash Equilibrium

In this section we prove Lemma 5.3. Consider a 2-cycle N × N game, given by the utility

functions uA, uB. Let (a, b) be a pair of distributions, each over the set of actions V , which is

p-non-increasing for the game, where p ∈
[
0, 1

N

)
. By Claim 3.4, the pure Nash equilibrium of

the game is (u∗, v∗0).

The deterministic communication protocol for finding (u∗, v∗0) is described in Algorithm 2.

Player A gets uA, a and p and player B gets uB, b and p. The communication complexity of

this protocol is clearly at most O(logN).

Algorithm 2 Finding (u∗, v∗0) given non-increasing probabilities (a, b)

Player B checks if there exists i ∈ [n] such that yi = 0 and b(i, 1) > p. If there is such an index
i, player B sends i to player A. Then, player A outputs (i−1, xi−1) and player B outputs (i, 0).
Otherwise, player B sends a bit to indicate that there is no such index. Then, player A outputs
u ∈ V such that a(u) > p and player B outputs v ∈ V such that b(v) > p.

By Proposition 5.7, if there exists i ∈ [n] such that yi = 0 and b(i, 1) > p, then i has to be

i∗. In this case the players A,B output u∗ and v∗0 respectively. Otherwise, b(v∗1) ≤ p. In this

case, the correctness of the protocol follows from Lemma 5.8 below. Note that since p < 1
N , we

have that a(u∗) > 1
N > p and b(v∗0) > 1

N > p.
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Lemma 5.8. Consider a 2-cycle N ×N game, given by the utility functions uA, uB. Let (a, b)

be a pair of distributions, each over the set of actions V , which is p-non-increasing for the game,

where p ∈
[
0, 1

N

)
. Then, either b(v∗1) > p or the following two conditions hold:

1. a is p-concentrated on u∗.

2. b is p-concentrated on v∗0.

Remark 5.9. The proof of Lemma 4.8 in Section 4.2 is slightly more delicate than the proof

of Lemma 5.8. Unlike the analysis of the slowly-increasing probabilities, here we do not use the

fact that every vertex has exactly one out-going edge in each graph (see Proposition 3.1), as this

would not improve the parameters of Theorem 1.3.

For the rest of this section we prove Lemma 5.8. Assume that b(v∗1) ≤ p. First, note that

dA(v∗0) = dB(v∗01) = dB(v∗11) = 0 therefore

a(v∗0), b(v∗01), b(v∗11) ≤ p.

By Proposition 5.5, a(v∗1) ≤ p since

max
v∈Nf

A(v∗1)
b(v) ≤ max{b(v∗01), b(v∗11)} ≤ p.

Next, we prove that for every 1 ≤ j ≤ n− 2 and every z ∈ {0, 01, 11},

a(i∗ + j, z), b(i∗ + j, z) ≤ p. (3)

By Proposition 5.6, (3) implies that a(i∗ + j, 1), b(i∗ + j, 1) ≤ p for every 1 ≤ j ≤ n − 2. We

prove (3) by induction on j, from j = 1 to j = n− 2.

Layer i∗+ 1: Since the vertices (i∗+ 1, 01), (i∗+ 1, 11) and (i∗+ 1, 0) have no incoming edges

from v∗0 in EA,

max
v∈Nf

A(Lm
i∗+1)
{b(v)} ≤ b(v∗1) ≤ p.

Therefore, by Proposition 5.5, a(v) ≤ p for every v ∈ Lmi∗+1. Next,

max
v∈NB(Lm

i∗+1)
{a(v)} ≤ max{a(v∗0), a(v∗1)} ≤ p.

Therefore, by Definition 5.2, b(v) ≤ p for every v ∈ Lmi∗+1.

Layers i∗ + 2, . . . , i∗ + n − 2: Fix i ∈ [n − 3] and assume that (3) holds for every 1 ≤ j ≤ i.

By Proposition 5.6, a(i∗ + j, 1), b(i∗ + j, 1) ≤ p for every 1 ≤ j ≤ i. We get that

max
v∈Nf

A(Lm
i∗+i+1)

{b(v)} ≤ max{b(i∗ + i, 0), b(i∗ + i, 1)} ≤ p.

By Proposition 5.5, a(v) ≤ p for every v ∈ Lmi∗+i+1.

The same holds when replacing a with b, and Nf
A with NB (the fact that there are back-edges

in GA but not in GB does not change the bounds). That is, b(v) ≤ p for every v ∈ Lmi∗+i+1.
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Bounding b on the remaining vertices. It remains to bound b on the vertices (i∗ − 1, z),

where z ∈ {0, 1, 01, 11}. It holds that

max
v∈NB(Lm

i∗−1)
{a(v)} ≤ max{a(i∗ − 2, 0), a(i∗ − 2, 1)} ≤ p,

where the last step follows from (3) and Proposition 5.6. Therefore, by Definition 5.2,

b(v) ≤ p ∀ v ∈ Lmi∗−1. (4)

Finally,

max
v∈NA(i∗−1,01)∪NA(i∗−1,11)

{b(v)} ≤ max{b(i∗ − 2, 0), b(i∗ − 2, 1)} ≤ p,

where the last step follows from (3) and Proposition 5.6. Therefore, by Definition 5.2, a(i∗ −
1, 01), a(i∗ − 1, 11) ≤ p and

max
v∈NB(i∗−1,1)

{a(v)} ≤ max{a(i∗ − 1, 01), a(i∗ − 1, 11)} ≤ p.

Therefore, by Definition 5.2,

b(i∗ − 1, 1) ≤ p. (5)

Bounding a on the remaining vertices. We already bounded a on the vertices (i∗− 1, 01)

and (i∗−1, 11). It remains to bound a on the vertices (i∗−1, x̄i∗−1), (i∗, 01) and (i∗, 11). Denote

ū∗ = (i∗ − 1, x̄i∗−1). Since there is not back-edge into ū∗,

max
v∈NA(ū∗)

{b(v)} ≤ max{b(i∗ − 2, 0), b(i∗ − 2, 1), b(i∗ − 1, 01), b(i∗ − 1, 11)} ≤ p,

where the last step follows from (3), Proposition 5.6 and (4). Therefore, by Definition 5.2,

a(ū∗) ≤ p. Finally,

max
v∈NA(i∗,01)∪NA(i∗,11)

{b(v)} ≤ max{b(i∗ − 1, 0), b(i∗ − 1, 1)} ≤ p,

where the last step follows from (4) and (5). Therefore, by Definition 5.2, a(i∗, 01), a(i∗, 11) ≤ p.

5.3 Approximate Well Supported Nash Equilibrium

Since every ε-approximate well supported Nash equilibrium is an ε-approximate Nash equilib-

rium (see Proposition 2.7), Theorem 1.3 gives a lower bound for the communication complexity

of finding ε-approximate well supported Nash equilibrium, for ε ≤ 1
16N2 . However, the following

claim shows that every ε-approximate well supported Nash equilibrium, for ε ≤ 1
N , is a pair

of 0-non-increasing functions for the 2-cycle game. Theorem 1.4 follows from Lemma 5.3 and

Claim 5.10.

Claim 5.10. Let (a∗, b∗) be an ε-approximate well supported Nash equilibrium of the 2-cycle

N ×N game, where ε ≤ 1
N . Then, the pair (a∗, b∗) is 0-non-increasing for the game.

Proof. Let u′ ∈ V and assume that b∗(v) = 0 for every v ∈ NA(u′). Let v′ ∈ V be a vertex such

that b∗(v′) ≥ 1
N (there must exist such a vertex since b∗ is a distribution). By Proposition 3.1,
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there exists a vertex u′′ ∈ V such that uA(u′′, v′) = 1. Note that by our assumption, uA(u′, v′) =

0. By Definition 2.6,

Ev∼b∗ [uA(u′′, v)− uA(u′, v)] ≥ b∗(v′)uA(u′′, v′) ≥ 1

N
.

Therefore, u′ /∈ Supp(a∗).

The same holds when replacing a∗ with b∗, NA with NB, and uA with uB. That is, for every

u′ ∈ V , if a∗(v) = 0 for every v ∈ NB(u′), then u′ /∈ Supp(b∗).

5.4 Approximate Bayesian Nash Equilibrium

We prove a lower bound for finding an approximate Bayesian Nash equilibrium of a game called

the Bayesian 2-cycle game. The Bayesian 2-cycle game is constructed from sub-games, where

each sub-game is similar to the 2-cycle game. We use the construction defined in Section 3 on

strings that have at most one disputed index. We call the resulted game the no-promise 2-cycle

game.

The Bayesian 2-Cycle Game

Let x, y be two k-bit strings, where k = T · n for some T ≥ 2 and n ≥ 3. Assume there exists

exactly one index i ∈ [k], such that xi > yi.

The graphs. For every i ∈ [T ] let GiA = GiA(V,EiA) be the graph constructed by player A

from the n-bit string xi = xn·(i−1)+1xn·(i−1)+2 . . . xn·(i−1)+n, as defined in Section 3. Similarly,

for every i ∈ [T ] let GiB = GiB(V,EiB) be the graph constructed by player B from the n-bit

string yi = yn·(i−1)+1yn·(i−1)+2 . . . yn·(i−1)+n, as defined in Section 3. Note that x = x1x2 . . . xt

and y = y1y2 . . . yt.

The actions, types, prior distribution and utility functions. Define ΘA = ΘB = [T ],

ΣA = ΣB = V and φ is set to be the uniform distribution over the set {(i, i) : i ∈ [T ]}. For

i ∈ [T ], let uiA, u
i
B be the utility functions associated with the graphs GiA and GiB respectively, as

defined in Section 3. Note that the utility functions uiA and uiB define a no-promise 2-cycle N×N
game, where N = 4n. We call it the ith sub-game. The utility function uA : [T ]×V ×V → {0, 1}
of player A is defined for every type i ∈ [T ] and every pair of actions (u, v) ∈ V 2 as

uA(i, u, v) = uiA(u, v) =

{
1 if (v, u) ∈ EiA
0 otherwise

.

The utility function uB : [T ]× V × V → {0, 1} of player B is defined for every type i ∈ [T ] and

every pair of actions (u, v) ∈ V 2 as

uB(i, u, v) = uiB(u, v) =

{
1 if (u, v) ∈ EiB
0 otherwise

.

This is a Bayesian game on N = 4n actions and T types.
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Pure Nash Equilibrium of a Sub-Game

Let i ∈ [T ]. If the ith sub-game has a disputed index j ∈ [n] (that is, xij > yij), then it

is a 2-cycle game and by Claim 3.4 it has exactly one pure Nash equilibrium (ui, vi), where

ui = (j − 1, xij−1) and vi = (j, yij). If the ith sub-game has no disputed index, then it has no

pure Nash equilibrium.

Let x, y be the k-bit strings from which the Bayesian game was constructed. Note that uA
determines x, and uB determines y. Since there exists exactly one index i∗ ∈ [k] for which

xi∗ > yi∗ , there exists exactly one type i ∈ [T ] such that the ith sub-game has a pure Nash

equilibrium (ui, vi), where ui = (j − 1, xij−1), vi = (j, yij) and i∗ = n · (i− 1) + j.

If player A knows ui ∈ V and player B knows vi ∈ V such that (ui, vi) is a pure Nash

equilibrium of the ith sub-game, for some i ∈ [T ], then both players know the index i∗ ∈ [k] for

which xi∗ > yi∗ . Therefore, finding a pure Nash equilibrium of a sub-game is hard.

Claim 5.11. Every randomized communication protocol for finding a pure Nash equilibrium of

a sub-game of the Bayesian 2-cycle game on N actions and T types, with error probability at

most 1
3 , has communication complexity at least Ω(N · T ).

Let ε ≥ 0 and let {a∗i , b∗i }i∈[T ] be an ε-approximate Bayesian Nash equilibrium of the

Bayesian 2-cycle game on N actions and T types. Since the prior distribution φ is uniform

over the set {(i, i) : i ∈ [T ]}, for every i ∈ [T ], (a∗i , b
∗
i ) is an ε-approximate Nash equilibrium

of the ith sub-game. The following claim states that, for every i ∈ [T ], if the ith sub-game has

no pure Nash equilibrium then a∗i and b∗i cannot be concentrated.

Claim 5.12. Let p = 1
4N and let ε ≤ p

4 . and let (a, b) be an ε-approximate Nash equilibrium

of the no-promise 2-cycle N ×N game. Assume that the game has no pure Nash equilibrium.

Then, for every v, a is not p-concentrated on v and b is not p-concentrated on v.

Proof. Let u′ ∈ V . We prove that a is not p-concentrated on u′. The proof that b is not

p-concentrated on u′ is similar. Assume towards a contradiction that a is p-concentrated on u′.

By Proposition 3.1, there exists v′ ∈ V such that (u′, v′) ∈ EB. Let v′′ ∈ V , v′′ 6= v′. Note that

u′ /∈ NB(v′′). Define a distribution b′ over V as follows:

b′(v′) = b(v′) + b(v′′)

b′(v′′) = 0

b′(v) = b(v) ∀ v ∈ V \ {v′′, v′}.

It holds that

ε ≥ Eu∼a,v∼b′ [uB(u, v)]− Eu∼a,v∼b[uB(u, v)]

= b′(v′) · a(NB(v′))− b(v′) · a(NB(v′))− b(v′′) · a(NB(v′′))

= b(v′′) · a(NB(v′))− b(v′′) · a(NB(v′′))

≥ b(v′′) · (1− (N − 1)p)− b(v′′) · 3p,

where the last step follows from Proposition 3.2. Since p = 1
4N we conclude that b(v′′) ≤ 4ε ≤ p.

That is, b is p-concentrated on v′.

Note that Proposition 3.1 holds also for no-promise 2-cycle games. Therefore, there exists

u′′ ∈ V such that (v′, u′′) ∈ EA. Repeating the same argument with b instead of a, u′′ instead

of v′ and NA instead of NB, we get that a is p-concentrated on u′′. Therefore, u′′ = u′, but that

can only happen if (u′, v) is a 2-cycle, which is a contradiction.
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Our Lower Bound

In this section we prove Theorem 1.5. Let ε ≤ 1
16N2 and assume towards a contradiction that

there is a randomized communication protocol π that finds an ε-approximate Bayesian Nash

equilibrium of the Bayesian 2-cycle game on N actions and T types, with error probability at

most 1
3 and communication o(k), where k = N · T .

Given utility functions uA, uB of the Bayesian 2-cycle game to players A and B respectively,

the players run π on the utility functions, exchanging o(k) bits, and at the end of the commu-

nication, with probability at least 2
3 , player A has a set of mixed strategies {a∗i }i∈[T ] and player

B has a set of mixed strategies {b∗i }i∈[T ], such that {a∗i , b∗i }i∈[T ] is an ε-approximate Bayesian

Nash equilibrium of the game.

For p ∈ [0, 1], we define p-non-increasing for the no-promise 2-cycle game the same way

that p-non-increasing for the 2-cycle game are defined. Let p = 1
4N and let i ∈ [T ]. Note

that Claim 5.4 holds also when replacing the 2-cycle game with a no-promise 2-cycle game.

Therefore, since (a∗i , b
∗
i ) is an ε-approximate Nash equilibrium for the ith sub-game, the pair

(a∗i , b
∗
i ) is p-non-increasing for the ith sub-game.

If the ith sub-game has a pure Nash equilibrium then it is a 2-cycle game and there exists

an index j ∈ [n] for which xij > yij . By Lemma 5.8, either b∗i (j, 1) > p or b∗i is p-concentrated

on (j, 0). Otherwise, the ith sub-game has no pure Nash equilibrium. Note that Proposition 5.7

holds also when replacing the 2-cycle game with a no-promise 2-cycle game. That is, for every

j ∈ [n] such that yij = 0, since xij ≤ yij , it holds that b∗i (j, 1) ≤ p. Moreover, by Claim 5.12, b∗i is

not p-concentrated on (j, 0). Therefore, player B can determine if the ith sub-game has a pure

Nash equilibrium or not.

Let i ∈ [T ] be the type for which the ith sub-game has a pure Nash equilibrium. That is,

the ith sub-game is a 2-cycle game. Player B finds i and sends it to player A, using log T bits

of communication. Then, the players run the protocol guaranteed by Lemma 5.3, for finding

the pure Nash equilibrium of the ith sub-game, exchanging at most O(logN) bits. That is, the

players can find the pure Nash equilibrium of a sub-game with communication o(k) and error

probability at most 1
3 , which is a contradiction to Claim 5.11.

6 Open Problems

We highlight some open problems.

1. Coarse correlated equilibrium: The 2-cycle game has an exact coarse correlated equilib-

rium µ defined as follows: Let (u1, v1) and (u2, v2) be two arbitrary edges from GA and GB
respectively, such that v2 /∈ NA(v1) and v1 /∈ NB(v2). Let µ(v1, u1) = µ(u2, v2) = 1/2. Note

that finding such a distribution requires only small amount of communication. Therefore,

it is not possible to prove non-trivial communication complexity lower bounds for finding

a coarse correlated equilibrium of the 2-cycle game. A natural open problem is to prove

any non-trivial bounds on the communication complexity of finding a coarse correlated

equilibrium of a two-player game.

2. Gap amplification: Our lower bounds hold for inverse polynomial approximation values. It

would be interesting to find a way to amplify the approximation without losing much in the

lower bound. In particular, it is still an open problem to prove a non-trivial communication

complexity lower bound for finding a constant approximate rule correlated equilibrium of

a two-player game.
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3. Multi-player setting: Babichenko and Rubinstein [BR17] proved an exponential commu-

nication complexity lower bound for finding a constant approximate Nash equilibrium of

an n-player binary action game. It would be interesting to obtain such an exponential

lower bound using techniques that are similar to the ones discussed in this paper, avoiding

the simulation theorems and Brouwer function. Note that exponential lower bounds can

not be obtained for finding a correlated equilibrium of multi-player games, as there is a

protocol for finding an exact correlated equilibrium of n-player binary action games with

poly(n) bits of communication [HM10, PR08, JL15].
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A Trivial Approximate Equilibria of The 2-Cycle Game

In this section, we provide trivial approximate equilibria of the 2-cycle game from which it is

not possible to recover the disputed index.

A.1 Approximate Correlated Equilibrium

Let us suppose that for all i ∈
[
n
2 + 3

]
, we have xi = yi = 0.

We define a joint distribution µ as follows

µ((i, zA), (j, zB)) =



16α
n2 if zA, zB = 0 and n

4 + 4 ≤ i, j ≤ n
2 + 2,

16α
n2 if zA, zB = 0, n4 + 2 ≤ j ≤ n

2 + 2 and i = n
4 + 3,

16α
n2 if zA, zB = 0, n4 + 2 ≤ i ≤ n

2 + 2 and j = n
4 + 3,

16α
n2 − 64α·(n/4−i+3)

n3 if zA, zB = 0, 2 ≤ i, j ≤ n
4 + 2 and i− j = 1,

16α
n2 − 64α·(n/4−j+3)

n3 if zA, zB = 0, 2 ≤ i, j ≤ n
4 + 2 and j − i = 1,

0 otherwise,

where α is some normalizing constant less than 2 such that
∑

(u,v)∈V 2 µ(u, v) = 1.

Let ε = 64α/n3. For every action u = (i, zA) of Alice such that zA 6= 0, we have that

µ(u, v) = 0 for all v ∈ V . Similarly for every action v = (j, zB) of Bob such that zB 6= 0,

we have that µ(u, v) = 0 for all u ∈ V . Also, for every action u = (i, zA) of Alice such that

i ∈ {n/2 + 3, . . . , n} ∪ {1}, we have that µ(u, v) = 0 for all v ∈ V . And, similarly for every

action v = (j, zB) of Bob such that j ∈ {n/2 + 3, . . . , n} ∪ {1}, we have that µ(u, v) = 0 for

all u ∈ V . Since µ is symmetric1, it follows that in order to show that µ is an ε-approximate

correlated equilibrium we only need to consider a vertex u = (i, 0) when i ∈
[
n
2 + 2

]
.

First, we consider when i ≤ n
4 + 2. Let u′ ∈ V . We have∑

v∈V
µ(u, v) ·

(
uA(u′, v)− uA(u, v)

)
= µ(u,NA(u′))− µ(u,NA(u))

= µ(u,NA(u′))− 16α

n2
+

64α · (n/4− i+ 3)

n3
.

Now if v = (j, zB) ∈ NA(u′) and |j − i| 6= 1 then, we have µ(u, v) = 0. Thus, we assume

j − i = 1, as we suppose u 6= u′. Then, we have

µ(u,NA(u′)) ≤ 16α

n2
− 64α · (n/4− i− 1 + 3)

n3

=
16α

n2
− 64α · (n/4− i+ 3)

n3
+

64α

n3
.

This implies, ∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
≤ 64α

n3
= ε.

1i.e., µ(u, v) = µ(v, u) for all u, v ∈ V .
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Next, we consider when n
4 + 4 ≤ i ≤ n

2 + 2. Let u′ ∈ V . We have∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
= µ(u,NA(u′))− µ(u,NA(u))

= µ(u,NA(u′))− 16α

n2
.

Now if v = (j, zB) ∈ NA(u′) and j ≥ n
2 + 3 then, we have µ(u, v) = 0. Also if j ≤ n

4 + 2 then,

we have µ(u, v) = 0. Thus, we assume j ∈ [n/4 + 3, n/4 + 2] and β = 0. Then, we have

µ(u,NA(u′)) ≤ 16α

n2
.

This implies, ∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
≤ 0.

Finally, we consider when i = n
4 + 3. Let u′ = (i′, z′A) ∈ V . We have

∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
= µ(u,NA(u′))− 16α

n2
+

64α

n3
.

Now if v = (j, zB) ∈ NA(u′) and j ≥ n
2 + 3 then, we have µ(u, v) = 0. Also if j ≤ n

4 + 2

and |j − i| 6= 1 then, we have µ(u, v) = 0. Since u 6= u′ we have that j ∈ [n/4 + 3, n/4 + 2] and

β = 0. Then we have

µ(u,NA(u′)) ≤ 16α

n2
.

This implies, ∑
v∈V

µ(u, v) ·
(
uA(u′, v)− uA(u, v)

)
≤ 64α

n3
= ε.

Thus, µ is an ε-approximate correlated equilibrium. From Proposition 2.4, we have that µ

is also an (ε ·N)-approximate rule correlated equilibrium.

A.2 Approximate Nash Equilibrium

Let us suppose that for all i ∈
[
n
2 + 2

]
, we have xi = yi = 0. We define mixed strategies a, b of

Alice and Bob respectively as follows

a(i, z) = b(i, z) =

{
2/n if z = 0 and 2 ≤ i ≤ n

2 + 1

0 otherwise
.

Let ε = 64/N2. For every mixed strategy a′ for Alice, we have

Eu∼a′Ev∼b[uA(u, v)]− Eu∼aEv∼b[uA(u, v)] =

(∑
u∈V

b(NA(u)) · a′(u)

)
−

(∑
u∈V

b(NA(u)) · a(u)

)
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=

 ∑
i∈[n/2]

2

n
· a′(i+ 2, 0)

−
 ∑
i∈[n/2]

2

n
· a(i+ 2, 0)


=

 2

n
·
∑

i∈[n/2]

a′(i+ 2, 0)

− ( 4

n2
· n− 2

2

)

≤
(

2

n
· 1
)
−
(

2

n
− 4

n2

)
=

4

n2
=

64

N2
= ε

For every mixed strategy b′ for Bob, we have

Eu∼aEv∼b′ [uB(u, v)]− Eu∼aEv∼b[uB(u, v)] =

(∑
v∈V

a(NB(v)) · b′(v)

)
−

(∑
v∈V

a(NB(v)) · b(v)

)

=

 ∑
i∈[n/2]

2

n
· b′(i+ 2, 0)

−
 ∑
i∈[n/2]

2

n
· b(i+ 2, 0)


=

 2

n
·
∑

i∈[n/2]

b′(i+ 2, 0)

− ( 4

n2
· n− 2

2

)

≤
(

2

n
· 1
)
−
(

2

n
− 4

n2

)
=

4

n2
=

64

N2
= ε

Thus, we have that a and b defined above are 64/N2-approximate Nash equilibrium.

A.3 Well Supported Nash Equilibrium

We define mixed strategies a, b of Alice and Bob respectively as follows

a(i, z) =


1/n if z = xi = 0

1/n if xi = 1 and z ∈ {xi, xi−11}
0 otherwise

, b(i, z) =


1/n if z = yi = 0

1/n if yi = 1 and z ∈ {yi, yi−11}
0 otherwise

.

Let ε = 12/N . For every action u ∈ Supp(a) and every action u′ ∈ V ,

Ev∼b[uA(u′, v)− uA(u, v)] = Ev∼b[uA(u′, v)]− Ev∼b[uA(u, v)]

= b(NA(u′))− b(NA(u))

≤ |NA(u′)|
n

≤ 12

N
= ε

For every action v ∈ Supp(b) and every action v′ ∈ V ,

Eu∼a[uB(u, v′)− uB(u, v)] = Eu∼a[uB(u, v′)]− Eu∼a[uB(u, v)]

= a(NB(v′))− a(NB(v))
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≤ |NB(v′)|
n

≤ 8

N
≤ ε

Thus, we have that a and b defined above are 8/N -approximate well supported Nash equi-

librium.
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