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Abstract

We show a new duality between the polynomial margin complexity of f and the discrepancy of the
function f ◦XOR, called an XOR function. Using this duality, we develop polynomial based techniques
for understanding the bounded error (BPP) and the weakly-unbounded error (PP) communication
complexities of XOR functions. This enables us to show the following.

• A weak form of an interesting conjecture of Zhang and Shi1 [41] asserts that for symmetric
functions f : {0, 1}n → {−1, 1}, the weakly unbounded-error complexity of f◦XOR is essentially
characterized by the number of points i in the set {0, 1, . . . , n−2} for which Df (i) 6= Df (i+2),
where Df is the predicate corresponding to f . The number of such points is called the odd-even
degree of f . We observe that a much earlier work of Zhang [40] implies that the PP complexity
of f ◦XOR is O(k log n), where k is the odd-even degree of f . We show that the PP complexity
of f ◦ XOR is Ω(k/ log(n/k)).

• We resolve a conjecture of Zhang [40] characterizing the Threshold of Parity circuit size of
symmetric functions in terms of their odd-even degree.

• We obtain a new proof of the exponential separation between PP
cc and UPP

cc via an XOR

function.

• We provide a characterization of the approximate spectral norm of symmetric functions, affirm-
ing a conjecture of Ada et al. [2] which has several consequences (cf. [2]). This also provides a
new proof of the characterization of the bounded error complexity of symmetric XOR functions
due to [41].

Additionally, we prove strong UPP lower bounds for f ◦ XOR, when f is symmetric and periodic
with period O(n1/2−ǫ), for any constant ǫ > 0. More precisely, we show that every such XOR function
has unbounded error complexity nΩ(1), unless f is constant or parity or its complement, in which
case the complexity is just O(1). As a direct consequence of this, we derive new exponential lower
bounds on the size of depth-2 threshold circuits computing such XOR functions. Our UPP lower
bounds do not involve the use of linear programming duality.
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1The full conjecture has just been reported to be independently settled by Hatami and Qian [18]. However, their

techniques are quite different and are not known to yield many of the results we obtain here.
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1 Introduction

We consider three well known models of randomized communication, in all of which Alice and Bob use
only private random coins. Alice and Bob receive a pair of inputs X ∈ X and Y ∈ Y respectively. They
want to jointly evaluate a function f : X × Y → {0, 1} on the pair (X,Y ) by using a communication
protocol that minimizes the total cost in the worst case. The protocol is probabilistic with the require-
ment that Pr [Π(X,Y ) = f(X,Y )] ≥ 1/2 + ǫ, where ǫ > 0. Each of the three models specifies a basic
requirement on ǫ, and the goal of the players is to design an efficient protocol meeting this requirement
that minimizes the cost. Further, each model has its own cost function. Protocols are efficient if their
cost is poly-logarithmic in n, the length of the inputs to Alice and Bob.

Yao [39] introduced the model where the advantage ǫ needs to be a positive constant independent
of the length of the inputs and the cost is the total number of bits communicated. The cost of the
best protocol for computing a function in this model is called its bounded error complexity. Paturi and
Simon [28] relaxed the requirement on advantage completely: ǫ only needs to be positive, but it can be
otherwise decreasing arbitrarily with n. The complexity of f in this model is called its unbounded error
complexity. Babai et al. [3] introduced a semi-relaxed model whose power is sandwiched between the two
above models: while the correctness requirement is the same as that in the unbounded error case, low
advantage is penalised by introducing a term in the cost function: the cost of a protocol is the sum of
the total number of bits communicated and log

(
1/ǫ
)
. The complexity of a function in this semi-relaxed

model is called its weakly-unbounded error complexity. The set of functions that have efficient bounded,
weakly-unbounded and unbounded error protocols are called BPP

cc,PPcc and UPP
cc respectively, closely

borrowing terminology from standard Turing machine complexity classes.
Clearly, BPPcc ⊆ PP

cc ⊆ UPP
cc. Set-Disjointness, denoted by DISJ, separates BPP

cc from PP
cc

due to [3] and the following simple PP protocol of logarithmic cost: Alice randomly chooses an index i
in [n] and sends the value of i and her ith bit to Bob. If both Alice and Bob have 1 as their ith bit,
Bob outputs that they are not disjoint. Otherwise Alice and Bob output a random answer. Thus, the
weakly-unbounded error complexity of DISJ, commonly considered to be a hard function [3, 29, 19], is
exponentially smaller than its bounded error complexity.

There are fewer known strong lower bounds for the PP model than the bounded error one. This
is partly explained by the fact that while techniques based on corruption and information theory yield
lower bounds for bounded error model, the PP model is exactly characterized by the stronger measure
of discrepancy [20]. Still, there are several functions for which discrepancy can be bounded. PP

cc was
separated from UPP

cc in independent works of Sherstov [31] and Buhrman et al. [7]. Proving lower
bounds for the unbounded error model, on the other hand, is even more difficult. The only known way
for proving bounds here is lower bounding the sign-rank of the communication matrix [28]. The sign
rank of a real matrix M with non-zero entries is the smallest number r such that there exists a matrix
M ′ of rank r and the same dimension as that of M such that each of its entries has the same sign as
the corresponding one in M . Clearly, there is a matrix rigidity-like flavor to this definition, perhaps
explaining the difficulty of estimating this quantity well. In a beautiful and breakthrough work, Forster
[14] managed to show that the Inner-Product (IP) function has high sign rank and consequently high
unbounded-error complexity. The technique of Forster, relating the spectral norm of a matrix to its sign
rank, forms the basis for the few subsequent works on lower bounds for explicit functions in the model.
In particular, Razborov and Sherstov [30] and Sherstov [34] prove lower bounds on different functions
making very interesting use of additional tools from approximation theory.

We consider a different class of functions in the unbounded error model. To explain this, let us
introduce function composition. Given f : {0, 1}n → {0, 1} and g : {0, 1}2b → {0, 1}, we denote by f ◦ g
the following composed function: its input is naturally viewed as a 2× bn matrix consisting of n blocks
each of which is a 2× b matrix. Alice and Bob get the first and second row respectively of this matrix.
We define

(
f ◦ g

)(
w1, . . . , wn

)
= f

(
g(w1), . . . , g(wn)

)
, where wi is the ith block. Here b is called the

block length. Thus, DISJ is NOR ◦ AND, with block length 1. Similarly, IP is the block size 1 function
XOR ◦ AND. Both have AND as the inner function but, as pointed out earlier, have widely different
unbounded error complexity. What makes AND functions, that is functions of the form f ◦ AND with
block length 1, difficult?

An important step towards understanding this was taken in the works of Sherstov [32, 33] and Shi and
Zhu [37]. These papers reduced the task of proving lower bounds on the cost of both (quantum) bounded
error and weakly unbounded error protocols for functions of the form f ◦ AND to that of analyzing the
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approximability of f by low degree real polynomials. This passage was achieved by making very elegant
use of linear programming duality. This method spawned further progress in at least two directions.
One was the adaptation of the technique to multi-party communication complexity in [10, 12, 24, 11],
resulting in the first super-polynomial lower bounds for Disjointness in the hard NOF model. Using
even more powerful approximation theoretic tools for polynomials, Sherstov [35] significantly improved
these bounds. In another direction, Razborov and Sherstov [30] and Sherstov [34] further demonstrated
the power of these dual polynomial based techniques by analyzing the unbounded error complexity of
f ◦ AND when f is a certain AC0 function or it is symmetric. In short, dual polynomial techniques
provide a systematic way of analyzing the communication complexity of AND functions. Besides these
impressive developments, this approach relates to research on approximation theoretic questions on
boolean functions, that are of independent interest (see for example [9, 38]).

There are essentially two inner functions of block length 1, AND and XOR. A natural example of
an XOR function is AND ◦ XOR, better known as Equality. However, even its bounded error (private
coin) complexity is only O(log n), while its unbounded error complexity is just O(1). In fact, in some
contexts as discussed later in this work, proving even PP lower bounds for XOR functions seems more
challenging than proving lower bounds for AND functions. Interestingly, Sherstov [31] used an XOR

function introduced by Goldmann, H̊astad and Razborov [16], to separate PP
cc from UPP

cc. Zhang
and Shi [41] characterized the bounded error and quantum complexity of all symmetric XOR functions.
Recently, Hatami, Hosseini and Lovett [17] nearly characterized the deterministic complexity of all XOR
functions. Even more recently, after an initial version of this manuscript containing weaker results was
submitted, Hatami and Qian [18] have just reported settling a conjecture of Zhang and Shi [41] on the
unbounded error complexity of symmetric XOR functions. Both [41, 18] analyze XOR functions by finding
simple reductions to appropriate AND functions. While such arguments are short, as commented by Ada
et al. [2], it seems they do not provide new insights and techniques that can be applied more broadly to
XOR functions.

In this work, we develop a dual polynomial based technique for analyzing XOR functions.
Along the way, we discover an independently interesting general connection between the discrepancy

of functions of the form f ◦ XOR and the polynomial margin complexity of f . Using this and other
tools, we characterize the PP complexity of symmetric XOR functions and provide a new proof of the
exponential separation between PP

cc and UPP
cc via an XOR function. We further provide a new proof of

the characterization of Zhang and Shi [41] of the bounded error complexity of symmetric XOR functions.
Our argument, unlike theirs, is based on a connection between the approximate spectral norm of f and
the bounded error communication complexity of f ◦XOR. While this connection seems to have been first
reported in the survey by Lee and Shraibman [25], as far we know, and as expressed in Ada et al. [2], it
has not been used before this work in deriving explicit lower bounds on communication complexity.

In the course of proving lower bounds on communication complexity, we obtain new results on two
complexity measures of symmetric functions that are of independent interest. First, we characterize
symmetric functions computable by quasi-polynomial size depth 2 boolean circuits of the form Threshold
of Parity, resolving an old conjecture of Zhang [40]. Further, we characterize the approximate spectral
norm of symmetric functions, confirming a conjecture of Ada et al. [2], which has various consequences
(cf. [2]). We feel that these developments exhibit the potential of the dual polynomial based technique
for proving lower bounds against XOR functions in general (that are not necessarily symmetric).

1.1 Our Results

In this section, we outline our main results.

1.1.1 Polynomial complexity measures of symmetric functions

In this section, we outline results we obtain by amplifying hardness of functions using the method of
lifting as defined in Krause and Pudlák. We list applications of this ‘hardness amplification’ to symmetric
functions, which resolve conjectures by Ada et al. [2] and Zhang [40].

For any function f : {−1, 1}n → {−1, 1}, let f =
∑

S⊆[n] cS
∏
i∈S

xi be the unique multilinear expansion

of f . Define the weight of f , denoted by wt(f) to be
∑

S⊆[n] |cS |. 2

2Note that this notion coincides with ||f̂ ||1, the spectral norm of f . However, for the purposes of this paper, we shall
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Definition 1.1 (Approximate weight). Define the ǫ-approximate weight of a function f : {−1, 1}n →
{−1, 1}, denoted by wtǫ(f) to be the weight of a minimum weight polynomial such that for all x ∈
{−1, 1}n, |p(x)− f(x)| < ǫ. 3

Definition 1.2. Let F : {−1, 1}n → {−1, 1} be a symmetric function. Define r0 = r0(F ), r1 = r1(F )
to be the minimum integers r′0 and r′1 respectively, such that r′0, r

′
1 ≤ n/2 and DF (i) = DF (i+ 2) for all

i ∈ [r′0, n− r′1). Define r = r(F ) = max{r0, r1}.

Definition 1.3 (Margin). The margin of a function f : {−1, 1}n → {−1, 1} is defined as follows.

m(f) , max
p:wt(p)≤1

(
min

x∈{−1,1}n
p(x)f(x)

)

Here, the maximum is only taken over those polynomials p which sign represent f everywhere.

We prove the following powerful theorem which gives us lower bound tools against approximate
weight, signed monomial complexity, and polynomial margin of symmetric functions.

Theorem 1.4. Let F : {−1, 1}n → {−1, 1}n be any symmetric function.

1. If r(F ) ≥ 5, then there exists a universal constant c1 > 0 such that

log(wt1/3(F )) ≥ c1 · r(F ).

2. If k = degoe(F ) ≥ 16, then there exists a universal constant c2 such that

mon±(F ) ≥ 2c2·k/ log(n/k)

3. If k = degoe(F ) ≥ 16, then there exists a universal constant c3 such that

m(F ) ≤ 1

2c3·k/ log(n/k)

We also use Part 1 of Theorem 1.4, to prove the following theorem, posed as a conjecture by Ada et
al. [2].

Theorem 1.5 (Conjecture 1 in [2]). For any symmetric function F : {−1, 1}n → {−1, 1}, there exist
universal constants c0, c1 > 0 such that

c0 · r(F ) log

(
n

r(F )

)
≥ logwt(F ) ≥ logwt1/3(F ) ≥ c1 · r(F )

This has several consequences (cf. [2]), which we do not state here. We also resolve the following
conjecture by Zhang [40].

Theorem 1.6 (Conjecture 1 in [40]). A symmetric function f : {−1, 1}n → {−1, 1} is computable by a

quasi-polynomial size Threshold of Parity circuit if and only if its odd-even degree is logO(1) n.

1.1.2 PP complexity

In this section, we list our results regarding the PP complexity of XOR functions.
Our main tool for analyzing the discrepancy of XOR functions is a tight relationship (upto constant

factors) between disc(f ◦ XOR) and m(f). We derive this using linear programming duality.

Theorem 1.7 (Polynomial Margin-Discrepancy theorem). Let f → {−1, 1}n → {−1, 1}.

m(f) ≤ m(f ◦ XOR) ≤ 4disc(f ◦ XOR) ≤ 4m(f)

use the former notation.
3This notion coincides with the notion of the ǫ-approximate spectral norm of f , denoted by ||f̂ ||1,ǫ, as defined in [2].
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The proof of Theorem 1.7 shows that the discrepancy of every XOR function is attained on a lifted
distribution. Indeed, our Margin-Discrepancy Theorem is a lifting theorem for XOR functions that
primarily reduces the task of lower bounding the discrepancy of f ◦XOR with that of establishing bounds
on the polynomial margin of f . The second task is likely easier using tools from approximation theory.
There is a compelling parallel here with the Degree-Discrepancy Theorem of Sherstov [32]. This theorem
has yielded a methodical way of proving discrepancy bounds for f ◦ PM by lower bounding the sign
degree of f , where PM denotes the pattern matrix gadget, and is defined formally in Section 2. This has
led to much progress in understanding the communication complexity of AND functions (for example,
[10, 12, 33, 34]). We believe our polynomial Margin-Discrepancy Theorem will yield a unified approach
in making similar progress for XOR functions. As evidence of this, we provide two applications of this
theorem.

The first shows that the PP complexity of functions of the form F ◦XOR for symmetric F is essentially
the odd-even degree of F (upto polylogarithmic factors) as predicted by the conjecture of Shi and Zhang.

Theorem 1.8. Let F : {−1, 1}4n → {−1, 1} be any symmetric function, and let r ≥ 4 be its odd-even
degree. Then, there exists a universal constant c > 0 such that PP(F ◦ XOR) ≥ cr/ log(n/r) where
PP(F ◦ XOR) denotes the PP complexity of F ◦ XOR.

To prove the above, Theorem 1.7 sets the goal of establishing a bound on the margin complexity of
symmetric functions with large odd-even degree. We do this by showing that symmetric functions with
large odd-even degree can be projected onto a certain lift of symmetric functions with high sign degree.
This enables us to work with the more convenient notion of sign degree rather than odd-even degree of
symmetric functions.

As another application of our Margin-Discrepancy connection, we provide a new proof of the sepa-
ration of PPcc from UPP

cc. We do this by proving that an XOR function, almost identical to the GHR

function (cf. [16]) has exponentially small discrepancy. It is well known that this function has very
efficient UPP protocols. We define the GHR function formally in Section 2.4.

Theorem 1.9.

1. There exists a linear threshold function f : {−1, 1}n → {−1, 1} and an absolute constant c > 0
such that PP(f ◦ XOR) ≥ cn.

2. PP(GHR) ≥ Ω(
√
n).

1.1.3 BPP complexity

Using linear programming duality and the generalized discrepancy method (Theorem 2.20), we give a
simple alternate proof of the following result from [25].

Theorem 1.10. For any function f : {−1, 1}n → {−1, 1}, there exists a universal constant c > 0 such
that

R1/3(f ◦ XOR) ≥ c log
(
wt1/3(f)− 4

)
.

Remark 1.11. In fact, lower bounds on wt1/3(f) yield lower bounds on the bounded error quantum
communication complexity of f ◦ XOR).

Although Theorem 1.10 was known from [25], to the best of our knowledge, ours is the first work to
use this technique to prove lower bounds for explicit functions.

Using Part 1 of Theorem 1.4 in conjunction with Theorem 1.10 provides an alternate proof of the
following result of Zhang and Shi [41].

Theorem 1.12 ([41]). Let F : {−1, 1}n → {−1, 1} be any symmetric function. Then, R1/3(F ◦XOR) =
Ω(r(F )).

Blais et al. [4] also provided an alternate proof to Theorem 1.12 by showing a lower bound on
the information complexity of symmetric XOR functions (this however, does not imply quantum lower
bounds).
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1.1.4 UPP complexity

We consider the UPP complexity f ◦ XOR when f is symmetric and periodic. More precisely,

Definition 1.13 (MOD functions and simple accepting sets). A function f : {0, 1}n → {−1, 1} is called
a MOD function if there exists a positive integer m < n and an ‘accepting’ set A ⊆ [m] such that

f(x) =




−1

n∑
i=1

xi ≡ k mod m for some k ∈ A

1 otherwise

We write f = MOD
A
m. We call an accepting set A simple if MOD

A
m either represents the constant 0

function, constant 1 function, or the parity function or its negation. We also call the corresponding
predicate simple in this case.

We now state our main result regarding unbounded error communication below:

Theorem 1.14. For any integer m ≥ 3, express m = j2k uniquely, where j is either odd or 4, and k is
a positive integer. Then for any non-simple A,

UPP(MOD
A
m ◦ XOR) ≥ Ω

(
n− km

jm

)
− 2j log j

m

where UPP(f) denotes the unbounded error communication complexity of f .

Remark 1.15. A very recent result of Hatami and Qian [18] subsumes Theorem 1.14. However, their
result is based on a simple reduction to symmetric AND functions, whose unbounded error complexity
has been tightly characterized by Sherstov [34] using sophisticated tools from approximation theory. Our
result, on the other hand, is based on first principles using Fourier analysis of boolean functions.

The above implies that the XOR function corresponding to a symmetric and periodic f with period
O(n1/2−ǫ), for some constant ǫ > 0, has unbounded-error complexity nΩ(1) as long as f is neither constant
nor Parity nor its complement.

A well known consequence of proving unbounded error lower bounds against f is a lower bound for the
size of depth-2 circuits of the form THR ◦ Lcomm computing f where Lcomm denotes the class of functions
with low deterministic communication complexity. As a result, Theorem 1.14 implies that in particular,
MOD

A
m ◦ XOR is not in polynomial sized THR ◦ SYM circuits, which we formally state in Theorem 6.11.

This generalizes a result of Zhang [40] and Krause and Pudlák [22] who showed, among other things,

that MOD
{0}
p cannot be computed by polynomial sized Threshold of Parity circuits.

1.2 Proof outline

Our proof strategy is depicted in Figure 1. First, we use a nice idea due to Krause and Pudlák [22], who
showed that if a function f has high sign degree, then a certain lift of that function, denoted by fop has
high sign monomial complexity. We observe that their argument can be easily adapted to show a more
general result. In particular, our Lemma 3.1 shows that the hardness of f for low degree polynomials,
with respect to natural notions like uniform approximation and sign representation, gets amplified to
corresponding hardness of fop for sparse (low weight) polynomials. Next, we observe that LP duality
implies, via Theorems 1.7 and 1.10, that such hardness of a function F against sparse polynomials
translates to the hardness of F ◦XOR for the appropriate randomized (BPP,PP) communication model.
The main problem at this point is to understand how F relates to an appropriately hard fop. In
particular, our interest is when F is a symmetric function or a linear halfspace. These functions do not
seem to have the structure of a lifted function fop.

At this point, inspired by the work of Krause [21], we make a simple but somewhat counter-intuitve
observation that turns out to be crucial. A function g is called a monomial projection of h, if g can be
obtained by substituting each input variable of h with a monomial in variables of g. What is nice about
such projections is that for the polynomial sparsity measures (Lemma 3.3) that are relevant for us, the
complexity of g is upper bounded by that of h. We observe (Lemma 3.5 and Lemma 3.4) that if f is a
symmetric (linear threshold) function, then there exists a symmetric (linear threshold) function F such
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fopf
degree-monomial

amplification

F

projection
Lemma 3.4
Lemma 3.5

F ◦ XORlift

communication game

BPP complexity

PP complexity

approximate degree

large-error high-
degree approximation

sign degree

approximate weight

The
orem

1.10

polynomial margin

The
orem

1.7

signed monomial complexity
[22]

Lemma 3.1

Figure 1: General framework

that fop is a monomial projection of F . Moreover, the combinatorial parameters of f that caused its
hardness against low-degree polynomials, nicely translate to combinatorial parameters of F that have
been conjectured to cause hardness of F against sparse (low weight) polynomials. By our LP duality
theorems, these result in the hardness of F ◦ XOR against randomized communication protocols as well.

The above describes the general framework of our passage from polynomials to communication pro-
tocols. We describe below the particular instantiations of this framework for each of the lower bounds
that we prove.

1.2.1 PP complexity

We prove two main results regarding PP complexity by upper bounding margin complexity. The first
is to reprove an exponential separation of PP protocols from those of UPP, making use of the above
framework. For this, it is natural to prove a strong PP lower bound against a function of the type
F ◦ XOR where F is a linear threshold function. Proving a polylogarithmic UPP upper bound for such
a function is straightforward. However, precisely this feature of F makes it difficult to prove a strong
PP lower bound. Goldmann et al. [16] used an ingenious specialized argument directly establishing that
the discrepancy is small. We, on the other hand, use Theorem 1.7 which directs us in proving that F
must have small margin complexity. The challenge here is to prove a strong unrestricted degree margin
complexity lower bound against a function with sign degree just 1. We use a variety of techniques to prove
this. First, we use a result of Sherstov, Theorem 2.5, which states that there exists a linear threshold
function f which requires linear degree to approximate uniformly, even with error inverse exponentially
close to 1. Second, we use lifting as depicted in Figure 1 to show that fop has a small upper bound on
the (unrestricted degree) margin complexity. We then use our monomial projection lemma for threshold
functions, Lemma 3.4, to embed such a lifted function in a linear threshold function F without blowing
up the weights too much. Finally, we exploit the fact that the Universal Threshold function (UTHR)
embeds any other threshold function with at most a quadratic loss in number of variables. The last step
of considering the UTHR is needed only to provide an explicit exponential separation of PP and UPP.

As a second application of our framework to PP complexity, we prove Theorem 1.8, which states
that the PP complexity of F ◦ XOR is essentially the odd-even degree of F when it is symmetric. The
main challenge here is to work with the notion of odd-even degree, which has no immediate algebraic
interpretation as opposed to sign degree. Lemma 3.5 solves this by essentially showing that there exists
a symmetric f whose sign degree corresponds to the odd-even degree of F , such that fop is a monomial
projection of F . Finally, our polynomial hardness amplification Lemma 3.1 shows that the margin of
fop must be small if the base function f has large sign degree.
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1.2.2 BPP complexity and approximate weight

We first make a simple observation that the polynomial margin of a function F equals its threshold
weight, as defined in Definition 2.11. Just as the notion of threshold degree inspires the natural notion of
approximate degree, threshold weight inspires the definition of approximate weight as in Definition 1.1. In
Section 5, we consider a linear program capturing the (1/3)-approximate weight of a symmetric function
F : {−1, 1}n → {−1, 1}. Using linear programming duality and the generalized discrepancy method,
we show in Theorem 1.10 that logwt1/3(F ) is a lower bound on the bounded error communication
complexity of F ◦ XOR.

The general framework of Figure 1 then prescribes us to find a suitable symmetric f such that fop

has large approximate weight and is a monomial projection of F . Lemma 3.5 provides such a monomial
projection in which the combinatorial quantity r(F ) corresponds to another combinatorial quantity Γ(f),
which is defined in Section 2. Paturi’s Theorem [27] shows that Γ(f) characterizes the approximate degree
of f . The polynomial hardness amplification of Figure 1, via Lemma 3.1, implies that fop, and therefore
F , has large approximate weight. This already proves Theorem 1.5 which was conjectured by Ada et
al. [2]. Moreover, Theorem 1.10 implies the hardness of F ◦ XOR against bounded error protocols.

1.2.3 UPP complexity

We remark here that, although a very recent independent result of Hatami and Qian [18] subsumes our
results on UPP complexity of symmetric XOR functions, our methods vary vastly from theirs. We prove
our lower bounds from first principles, and do not make a reduction to Sherstov’s result [34] on symmetric
AND functions. Interestingly, our UPP lower bounds are not obtained via linear programming duality,
as opposed to our PP and BPP lower bounds.

The starting point of our work in proving UPP lower bounds is a modification of Forster’s theorem
[14] by Forster et al. [15] who relate the sign-rank of a function f : {0, 1}n × {0, 1}n → R in terms of
the minimum value taken by f and the spectral norm of the communication matrix of f . Informally,
the unbounded error complexity of f is large if the minimum value taken by it is not too small, and the
spectral norm is small. Refer to Theorem 2.23 for details. We then note in Lemma 2.24 that the spectral

norm of f ◦ XOR is just a scaling of the maximum Fourier coefficient of f . Observe that MOD
{0}
3 has a

large principal Fourier coefficient even though the other coefficients are inverse exponentially small. Thus,
one cannot use Theorem 2.23 directly. Next, we prove in Theorem 6.3 that if the L1 mass of a subset
of the Fourier coefficients of f is sufficiently bounded away from 1, and the remaining coefficients are
sufficiently small, we can still obtain a strong unbounded error lower bound for f ◦XOR. We then analyze
the Fourier coefficients of MOD functions, to show that they satisfy the above properties, and this helps
us prove lower bounds for MOD

A
m ◦XOR for odd integers m with values upto O(n1/2−ǫ) as long as MOD

A
m

does not represent a constant or parity function. This still does not prove hardness for all MOD functions

with period at most O(n1/2−ǫ) since it can be proved, for example,

∣∣∣∣
̂

MOD
{0}
4 (∅)

∣∣∣∣ +
∣∣∣∣
̂

MOD
{0}
4 ([n])

∣∣∣∣ = 1,

thus not allowing us to use Theorem 6.3. To handle this case, we make two crucial observations. One
is that setting a few variables (which we can view as shifting the accepting set by a small amount) does
not change the unbounded error communication complexity of MOD

A
m ◦ XOR by much. The second is

the fact that the unbounded error complexity of f ⊕ g is at most the unbounded error complexity of f
plus that of g. Armed with these facts, we use a shifting and XORing trick that enables us to reduce the
modulus of the target MOD

A
m function to either 4 or a prime without using too large or too many shifts,

or too many XORs. We then use induction on m to finish the proof of our main theorem regarding
unbounded error communication (Theorem 1.14).

2 Preliminaries

We provide the necessary preliminaries in this section.
Note that in the following definitions, we interchangeably use the view of the input variables being

{−1, 1} valued, and {0, 1} valued. For most of our results regarding the discrepancy of XOR functions,
we view the input variables as {−1, 1} valued, whereas we view the inputs as {0, 1} valued while dealing
with the unbounded error model. In general, 0 corresponds to 1, and 1 corresponds to −1 in the two
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views. We denote the Hamming weight of a string x ∈ {0, 1}n ({−1, 1}n) to be the number of variables
set to 1 (−1) in x.

2.1 Types of functions

A function f : {−1, 1}n → {−1, 1} is called symmetric if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all
σ ∈ Sn where Sn denotes the set of all permutations on n elements. The value taken by a symmetric
function on an input only depends on the Hamming weight of the input. For a symmetric function
f : {−1, 1}n → {−1, 1}, define its spectrum or predicate Df : {0, 1, . . . , n} → {−1, 1} by Df (i) = f(x)
where x ∈ {−1, 1}n is such that there are i many variables in x taking the value −1. Note that the
spectrum (predicate) of a symmetric function is well defined. Define the odd-even degree of a symmetric
function f , which we denote by degoe(f), to be |i ∈ {0, 1, . . . , n− 2} : Df (i) 6= Df (i+ 2)|.
Definition 2.1 (XOR functions). A function F : {0, 1}n×{0, 1}n → {−1, 1} is said to be an XOR function
if there exists a function f : {0, 1}n → {0, 1} such that F (x1, . . . , xn, y1, . . . , yn) = f(x1⊕y1, . . . , xn⊕yn)
for all x1, . . . , xn, y1, . . . yn ∈ {0, 1}. We use the notation F = f ◦ XOR.
Definition 2.2 (Threshold functions). Define a function f : {0, 1}n → {−1, 1} to be a linear threshold
function if there exist integer weights a1, . . . , an such that for all inputs x = (x1, . . . , xn) ∈ {0, 1}n,
f(x) = sgn (

∑n
i=1 aixi). Let THR denote the class of all such functions. Let MAJ denote the class of

linear threshold functions whose weights are polynomially bounded in n.

Definition 2.3 (Universal threshold). Define a class of threshold functions, Ul,k : {{−1, 1}k}l → {0, 1}
defined by

Ul,k(x1,1, . . . , x1,k, . . . , xl,1, . . . , xl,k) = sgn




k∑

i=1

l∑

j=1

2ixi,j +
1

2




The constant term 1
2 is added to ensure that the sum inside the brackets is never 0.

Fact 2.4 (Minsky and Papert [26]). Ul,k is universal in the sense that any linear threshold function on
n variables occurs as a subfunction of Ul,k for some l, k ∈ O(n log n).

We use the notation UTHR to denote such a function.

2.2 Fourier analysis

Consider the vector space of functions from {0, 1}n to R, equipped with the following inner product.

〈f, g〉 = Ex∈{0,1}nf(x)g(x) =
1

2n

∑

x∈{0,1}n

f(x)g(x)

Define characters χS for every S ⊆ [n] by χS(x) = (−1)
∑

i∈S xi . The set {χS : S ⊆ [n]} forms an
orthonormal basis for this vector space. Thus, every f : {0, 1}n → R can be uniquely written as

f =
∑

S⊆[n]

f̂(S)χS where

f̂(S) = 〈f, χS〉 = Ex∈{0,1}nf(x)χS(x) (1)

2.3 Polynomials

For a polynomial of weight 1, say p, which sign represents a function f , we say that p represents f
with a margin of value minx∈{−1,1}n f(x)p(x). Let us also define a notion of the error in a pointwise
approximation of a function by low degree polynomials. This notion is studied widely in classical approx-
imation theory, see [37, 33, 38] for example. Note that we do not restrict the weight of the approximating
polynomial in this case.

εd(f) , min
p:deg(p)≤d

(
max

x∈{−1,1}n
|p(x)− f(x)|

)
(2)

Sherstov [36] proved that there exists a linear threshold function which cannot be approximated well,
even by large degree polynomials.
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Theorem 2.5 ([36], Cor 3.3). There exists a linear threshold function f : {−1, 1}n → {−1, 1} and an
absolute constant c > 0 such that

εcn(f) > 1− 2−cn

Moreover, the weights of the coefficients in the function have magnitude at most 2n.

Definition 2.6 (Approximate degree). For any function f : {−1, 1}n → {−1, 1} and polynomial p :
{−1, 1}n → R, we say that p approximates f to error ǫ if for all x ∈ {−1, 1}n, |p(x)− f(x)| ≤ ǫ. The

ǫ-approximate degree of f , denoted d̃egǫ(f) is the minimum degree of a polynomial p which approximates
f to error ǫ.

Definition 2.7 (Signed monomial complexity). The signed monomial complexity of a function f :
{−1, 1}n → {−1, 1}, denoted by mon±(f) is the minimum number of monomials required by a polynomial
p to sign represent f on all inputs.

Note that the signed monomial complexity of a function f exactly corresponds to the minimum size
Threshold of Parity circuit computing it.

Theorem 2.8 ([40]). Let f : {−1, 1}n → {−1, 1} be a symmetric boolean function such that degoe(f) =

logO(1) n. Then, f can be computed by a quasi-polynomial size Threshold of Parity circuit.

The following is a result by Paturi [27] which gives us tight bounds on the approximate degree of
symmetric functions.

Theorem 2.9 ([27]). For any symmetric function f : {0, 1}n → {−1, 1}, define the quantity Γ(f) =
min{|2k − n+ 1| : Df (k) 6= Df (k + 1) and 0 ≤ k ≤ n− 1}. Then,

d̃eg2/3(f) = Θ(
√

n(n− Γ(f)))

Definition 2.10. For functions f, g : {−1, 1}n → {−1, 1} and a distribution ν on {−1, 1}n, define the
correlation between f and g under the distribution ν to be

corrν(f, g) = Eν [f(x)g(x)]

Definition 2.11 (Threshold weight). Define the threshold weight of a function f : {−1, 1}n → {−1, 1},
denoted by wt±(f) to be the weight of a minimum weight real polynomial p such that p(x)f(x) ≥ 1 for
all x ∈ {−1, 1}n.

Note that this definition differs from the notion of more widely studied notion of threshold weight (see
for example [21], [33], [8]), where the coefficients of p are restricted to be integer valued. It is convenient
for us to work with the notion as defined in Definition 2.11 because of its following relationship with the
polynomial margin, which can be easily verified.

Lemma 2.12. For any function f : {−1, 1}n → {−1, 1},

m(f) =
1

wt±(f)

The following theorem was proved by Ada et al. [2], which characterizes the weight of a symmetric
function.

Theorem 2.13 ([2]). For any symmetric function f : {−1, 1}n → {−1, 1},

log(wt(f)) = Θ

(
r(f) log

(
n

r(f)

))
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2.4 Communication complexity

We now recall some notions from communication complexity.
In the models of communication of our interest, two players, say Alice and Bob, are given inputs

X ∈ X and Y ∈ Y for some finite input sets X ,Y, they have access to private randomness and they wish
to compute a given function f : X ×Y → {−1, 1}. Unless mentioned otherwise, we use X = Y = {0, 1}n.
Alice and Bob communicate according to a protocol which has been fixed in advance. The cost of a
protocol is the maximum number of bits communicated on the worst case input. A probabilistic protocol
Π computes f with advantage ǫ if the probability that f and Π agree is at least 1/2 + ǫ for all inputs.
Denote the cost of the best such protocol to be Rǫ(f). Note that we deviate from the notation used in
[23]. Define the following measures of complexity of f .

PP(f) = min
ǫ

(
Rǫ(f) + log

(
1

ǫ

))

and
UPP(f) = min

ǫ
(Rǫ(f)).

The latter quantity was introduced by Paturi and Simon [28], and we call it the unbounded error
communication complexity of f . The former adds a penalty term depending on the advantage, and
was proposed by Babai et al. [3]. We refer to this cost as the weakly-unbounded error communication
complexity of f . These measures give rise to the following communication complexity classes [3].

Definition 2.14.

PP
cc(f) ≡ {f : PP(f) = polylog(n)}

UPP
cc(f) ≡ {f : UPP(f) = polylog(n)}

Define the discrepancy of a rectangle S×T under a distribution λ on {−1, 1}n ×{−1, 1}n as follows.

Definition 2.15 (Discrepancy).

discλ(S × T, f) =
∑

(x,y)∈S×T

f(x, y)λ(x, y)

The discrepancy of f under a distribution λ is defined as

discλ(f) = max
S⊆[n],T⊆[n]

discλ(S × T, f)

and the discrepancy of f is defined to be

disc(f) = min
λ

discλ(f)

Klauck [20] proved that discrepancy and PP complexity are equivalent notions.

Theorem 2.16 (Klauck [20]). For any function f : {−1, 1}n → {−1, 1},

PP(f) = Θ

(
log

(
1

disc(f)

))

In [16], Goldmann et al. exhibited a distribution under which the one way communication complexity
of U4n,n ◦ XOR is large. Sherstov [31] noted that the same proof can be used to show that disc(U4n,n ◦
XOR) ≤ O

( √
n

2n/2

)
.

Remark 2.17. We remark here that the function considered by Goldmann et al. was not exactly U4n,n ◦
XOR, because the variables feeding to the XOR gates had a mild dependence on each other. Thus the
discrepancy bound they obtained was slightly stronger than as stated above. However, we will refer to
UTHR ◦ XOR as the GHR function.
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Sherstov defined the notion of a pattern matrix communication game in [33]. Let n be a positive
integer and f : {0, 1}n → {−1, 1}. Alice is given 2n bits x1,1, x1,2, x2,1, x2,2, . . . , xn,1, xn,2. Bob is given
2n bits z1, z2, . . . , zn, w1, w2, . . . wn. Define PM to be the function on 4 bits defined as PM(x0, x1, z, w) =
xz ⊕ w. In the pattern matrix game corresponding to f , the PM gadget is applied on each tuple
{xi,1, xi2 , zi, wi}, and the resultant n bit string is fed as input to f . This is the composed function,
f ◦ PM. Notice that this is similar to the lifting as defined in Equation 3.

Theorem 2.18 ([33] Thm 1.5). Let F = f ◦ PM for a given function f : {0, 1}n → {−1, 1}. Then

disc(F ) ≤ min
d=1,...,n

max

{(
n

W (f, d− 1)

)1/2

,

(
1

2

)d/2
}

In the above theorem, W (f, d − 1) corresponds to the minimum weight of a polynomial of degree
d− 1 with integer weights which sign represents f .

Remark 2.19. Sherstov defined pattern matrices in a more general fashion, where n bits could be split
into t blocks containing n/t elements each. However, for the purposes of this paper, we only consider the
case when each block is of size 2.

The following theorem, first proposed by Klauck [20], provides a tool for proving bounded error
communication lower bounds for functions. Its proof may be found in [11, 12], for example.

Theorem 2.20 (Generalized discrepancy). Let F,G : {−1, 1}n × {−1, 1}n → {−1, 1} and ν be a distri-
bution over {−1, 1}n × {−1, 1}n such that corrν(F,G) ≥ δ. Then.

Rǫ(f) ≥ log

(
δ − 1 + 2ǫ

discν(G)

)

For notational convenience, we use the notation U(f) to represent UPP(f ◦ XOR). We also use the
notation U(MODm) to denote the minimum value of U(MOD

A
m) over all non-simple accepting sets A.

Paturi and Simon [28] showed an equivalence between UPP(f) and a quantity called the sign rank of
Mf where Mf denotes the communication matrix of f . Define the sign rank of a real matrix M with no
0 entries as follows.

Definition 2.21 (Sign Rank).

sr(M) = min
A

{rk(A) : sgn(Aij) = sgn(Mij)}

We overload notation and use sr(f) to denote sr(Mf ).

Theorem 2.22 (Paturi and Simon [28]).

UPP(f) = log sr(A)±O(1)

Finding an explicit matrix with superlogarithmic sign rank remained a challenge until a breakthrough
result of Forster [14], who proved that the sign rank of any N ×N Hadamard matrix is at least Ω(

√
N).

This implied an asymptotically tight lower bound for the unbounded error communication complexity
of the inner product (modulo 2) function. We use a generalization of Forster’s theorem by Forster et
al. [15].

Theorem 2.23 (Forster et al. [15]). Let Mm×N be a real matrix with no 0 entries. Then,

sr(M) ≥
√
mN

||M || ·min
x,y

|M(x, y)|

where ||M || denotes the spectral norm of the matrix M .

Thus, it suffices to prove upper bounds on the spectral norm of the communication matrix of a
function in order to prove unbounded error lower bounds for that function. Let us now state a lemma
characterizing the spectral norm of the communication matrix of XOR functions.
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Lemma 2.24 (Folklore). Let f : {0, 1}n×{0, 1}n → R be any real valued function and let M denote the
communication matrix of f ◦ XOR. Then,

||M || = 2n · max
S⊆[n]

∣∣∣f̂(S)
∣∣∣

Although this is farily well known, we supply a proof below for completeness.

Proof. Let M denote the communcation matrix of f ◦ XOR. That is, Mx,y = f(x ⊕ y). Corresponding
to each T ⊆ [n], consider the vector zT ∈ {−1, 1}2n defined by (zT )y = χT (y).

Note that

Mx,y =
∑

S⊆[n]

f̂(S)χS(x⊕ y) =
∑

S⊆[n]

f̂(S)χS(x)χS(y)

Fix any T ⊆ [n]. We now show zT is an eigenvector of M with eigenvalue 2nf̂(T ). Consider the xth
coordinate of MzT .

(MzT )x =
∑

y∈{0,1}n

∑

S⊆[n]

f̂(S)χS(x)χS(y)χT (y)

=
∑

S

f̂(S)χS(x)
∑

y∈{0,1}n

χS△T (y)

= f̂(T )χT (x)2
n

Hence the eigenvalues of M are precisely {2nf̂(S) : S ⊆ [n]}. Now, the singular values of M are just
the square root of the eigenvalues of MTM , which are the absolute values of the eigenvalues of M since
M is symmetric. The lemma now follows.

3 Lifting functions

In this section we first show how we ‘lift’ functions as introduced by Krause and Pudlák [22]. We then
show how certain hardness properties of the base function translate to related hardness properties of
the lifted function. Then, we show how lifted functions can be embedded in certain simple functions,
if the base function was simple itself. Finally, we list the consequences we obtain for lifting symmetric
functions, which include resolving conjectures posed by Ada et al. [2] and Zhang [40].

3.1 Lifting functions by the Krause-Pudlák selector

In this section, we show how certain hardness properties of a function f can be amplified into other
hardness properties of a particular lifted function obtained from f .

For any f : {−1, 1}n → {−1, 1}, define a function fop : {−1, 1}3n → {−1, 1} as follows.

fop(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f(u1, . . . , un) (3)

where for all i, ui = (xi ∧ zi) ∨ (yi ∧ z̄i). Intuitively speaking, the value of zi decides whether to feed xi

or yi as the ith input to f . This method of lifting f was introduced by Krause and Pudlák [22].
The following lemma translates hardness properties of f into other hardness properties of fop. The

proof of this lemma is based on ideas from [22].

Lemma 3.1. Let f : {−1, 1}n → {−1, 1} be any function.

1. If εd(f) > 1− 2−d for some d ≥ 2, then m(fop) ≤ 2−c′d for any constant 0 < c′ < 1− 1
d .

2. mon±(fop) ≥ 2deg±(f).

3. wt1/3(f
op) ≥ 2c·d̃eg2/3(f) for any constant c < 1− 1/d̃eg2/3(f).
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Proof. We first prove part 1.
Let p be a polynomial of weight 1 representing fop with margin at least 1

2c′d
for a fixed positive

constant 0 < c′ < 1 − 1
d , and say p =

∑
S⊆[n]×[n]×[n]

wSχS . Recall that fop (and also p) has 3n input

variables. For this proof, we view the input variables as {xj,1, xj,2, zj |j ∈ {1, . . . , n}}, where zi’s are the
‘selector’ variables.

For any fixing of the z variables, define a relevant variable to be one that is ‘selected’ by z. Thus, for
each j ∈ {1, . . . , n}, exactly one of {xj,1, xj,2} is relevant. Analogously, define a relevant monomial to be
one that contains only those variables selected by z. For a uniformly random fixing of z and any subset
S ⊆ [n] such that |S| ≥ d,

Pr
z
[χS is relevant] ≤ 1

2d

Now since wt(p) = 1, we have

Ez[weight of relevant monomials in p
∣∣
z
of degree at least d] =

∑

|S|≥d

|wS | · Pr
z
[χS is relevant]

≤ 1

2d

∑

|S|≥d

|wS | ≤
1

2d

Thus, there exists a fixing of the z variables such that the weight of the relevant monomials of degree at
least d in p

∣∣
z
is at most 1

2d
. Select this fixing of z.

• Note that p
∣∣
z
is a polynomial on only the variables {xi,1, xi,2|i ∈ {1, . . . , n}}. Drop the relevant

monomials of degree at least d from p
∣∣
z
to obtain a polynomial p1.

• Observe that p1 sign represents fop
∣∣
z
with margin at least 1

2c′d
− 1

2d
.

• For each j ∈ {1, . . . , n}, denote the irrelevant variable by xj,ij . Consider the polynomial p2 on n
variables defined by p2 = Ex1,i1

,...,xn,in
[p1], where the expectation is over each irrelevant variable

being sampled uniformly and independently from {−1, 1}.

• It is easy to see that any monomial containing an irrelevant variable in p1 vanishes in p2. Also
note that p2 is a polynomial of degree at most d, and it must sign represent f with margin at least
1

2c′d
− 1

2d
. This leads to a contradiction when c′ < 1− 1

d , since we assumed that εd(f) > 1− 1
2d
.

We omit the proofs of the other two statements as they follow along extremely similar lines.

3.2 Lifts as projections of simpler functions

In this section, we show how lifts of threshold (and symmetric) functions can be viewed as the projections
of threshold (symmetric) functions.

Definition 3.2 (Monomial projection). We call a function g : {−1, 1}m → {−1, 1} a monomial pro-
jection of a function f : {−1, 1}n → {−1, 1} if g(x1, . . . , xm) = f(M1, . . . ,Mn), where each Mi is a
monomial in the variables x1, . . . , xm.

The following lemma is an easy consequence of definitions.

Lemma 3.3. For any functions f : {−1, 1}n → {−1, 1} and g : {−1, 1}m → {−1, 1} such that g is a
monomial projection of f , and any ǫ > 0, we have

m(f) ≤ m(g),

mon±(g) ≤ mon±(f),

wt(g) ≤ wt(f),

wtǫ(g) ≤ wtǫ(f).

We first show that any lifted threshold function can be viewed as a monomial projection of a threshold
function with a similar number of input variables. This proof is based on methods of [21].
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Lemma 3.4. Given any linear threshold function f : {−1, 1}n → {−1, 1}, there exists a linear threshold
function f ′ : {−1, 1}4n → {−1, 1} such that fop is a monomial projection of f .

Proof. Let f : {−1, 1}n → {−1, 1} be a linear threshold function such that m(fop) ≤ δ. Fix a threshold

representation for f , that is f(x) = sgn

(
n∑

i=1

wixi

)
. Note that

fop(x, y, z) = sgn

(
n∑

i=1

wi

(
xi(1− zi)

2
+

yi(1 + zi)

2

))

= sgn

(
n∑

i=1

wi(xi + yi − xizi + yizi)

)

Consider a linear threshold function f ′ : {−1, 1}4n → {−1, 1} defined as

f ′(x, y, u, v) = sgn

(
n∑

i=1

wi(xi + yi − ui + vi)

)

Clearly, fop is a monomial projection of f ′.

Lemma 3.5. Given a symmetric function F : {−1, 1}4n → {−1, 1}, defined by the predicate DF : [n] →
{−1, 1}, define a symmetric function f : {−1, 1}n → {−1, 1} defined by the predicate Df (b) = DF (2b+n)
for all b ∈ {0, 1, . . . , n}. Then, fop is a monomial projection of F .

Proof. Let g : {−1, 1}3n → {−1, 1} be defined as follows.

g(x1, . . . xn, y1, . . . , yn, z1, . . . , zn) = F (x1, . . . , xn, y1, . . . , yn,−x1z1, . . . ,−xnzn, y1z1, . . . , ynzn).

Clearly, g is a monomial projection of F . We show now that g = fop.
For every input to g and each i ∈ [n], define the i’th relevant variable to be xi if zi = −1 (define yi

to be the irrelevant variable in this case), and yi if z1 = 1 (xi is irrelevant in this case). Suppose there
are b many relevant variables with value −1 on a fixed input x1, . . . , xn, y1, . . . , yn, z1, . . . , zn and n − b
relevant variables with value 1. Say (x1, . . . , xn, y1, . . . , yn,−x1z1, . . . ,−xnzn, y1z1, . . . , ynzn) contains a
many −1’s. Then,

4n− 2a =

n∑

i=1

xi + yi − xizi + yizi =

n∑

i=1

xi(1− zi) + yi(1 + zi) = 2n− 4b

=⇒ a = 2b+ n

Thus,

g(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = DF (2b+ n) = Df (b)

= fop(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)

The last equality follows from Equation 3.

In fact, the proof of Lemma 3.5 can be seen to imply the following lemma.

Lemma 3.6. Given a symmetric function f : {−1, 1}n → {−1, 1} defined by the predicate Df (b),
define a function F : {−1, 1}4n → {−1, 1} such that on inputs of Hamming weight 2b + n for some
b ∈ {0, 1, . . . , n}, F takes the value Df (b), and F takes arbitrary values on inputs of Hamming weight
not in {2b+ n : b ∈ {0, 1, . . . , n}}. Then, fop is a monomial projection of F .
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3.3 Consequences for symmetric functions

In this section, we show consequences of hardness amplification of lifted symmetric functions.
We first prove Theorem 1.4.

Proof of Theorem 1.4.

• Assume that n is even and that r−1 is a multiple of 4. (If not, we can fix a constant number of input
bits). Note that DF (r − 1) 6= DF (r + 1). Further assume r0(F ) > r1(F ). Define F ′ : {0, 1}2r →
{−1, 1} by DF ′(i) = DF (i). It suffices to show logwt1/3(F

′) ≥ c′r for some universal constant
c′ > 0. (If r1(F ) ≥ r0(F ), define F ′ : {0, 1}2r → {−1, 1} by DF ′(i) = DF (4n − 2r + i), and an
analogous argument to the one that follows can be carried out. Define f : {0, 1}(r−1)/2 → {−1, 1}
by Df (i) = DF ′(2i + (r − 1)/2). By Lemma 3.5, fop is a monomial projection of F ′. Note that

Df

(
r−1
4

)
6= Df

(
r−1
4 + 1

)
, and thus Γ(f) ≤ 1. By Theorem 2.9, d̃eg2/3(f) = Θ(r).

Using Lemma 3.1 and Lemma 3.3, we obtain that there exists a universal constant c1 > 0 such
that

log(wt1/3(F )) ≥ log(wt1/3(F
′)) ≥ log(wt1/3(f

op)) ≥ c1r (4)

• Consider any symmetric function F : {−1, 1}4n → {−1, 1} such that degoe(F ) ≥ 4j where j ≥ 4.
Assume that there are at least 2j many (i, i + 2) sign changes in [0, 3n]. Further assume that at
least j of them occur when i’s are even integers (if not, set one variable to −1). Define a family of

symmetric functions {fi : {−1, 1} 4n

3i → {−1, 1} : i ∈ {0, 1, . . . , ⌈ 1
log 3 log

(
2n
j

)
⌉}} as follows.

∀b ∈
[
4n

3i

]
, Dfi(b) = DF

(
2b+

4n

3i

)
.

(If there were less than j many (i, i+2) sign changes in [0, 3n] for even integers i, then there must
be at least j many (i, i+2) sign changes in [n, 4n]. In this case, define Dfi(b) = DF

(
4n− 2b− 4n

3i

)
,

and an argument similar to the one that follows can be carried out).

Note that the sign degree of fi equals the number of (k, k + 2) sign changes in the spectrum of F
in the interval [ n3i ,

n
3i−1 ]. Since DF has at least ⌊j/2⌋ many (k, k + 2) sign changes in the interval

[⌊j/2⌋, 3n], this implies that at least one of the fi’s has at least
⌊j⌋/2

⌈ 1
log 3 log( 2n

j )⌉
many (k, k + 1) sign

changes (sign degree). Using Lemma 3.5, Lemma 3.1 and Lemma 3.3, we obtain that there exists
a constant c2 > 0 such that

mon±(F ) ≥ 2c2j .

• The proof of the Part 3 follows along extremely similar lines as that of Part 2, and we omit it.

We next prove Theorem 1.5, resolving a conjecture of Ada et al. [2].

Proof of Theorem 1.5. It follows as a direct consequence of Part 1 of Theorem 1.4 and the upper bound
in Theorem 2.13.

Finally, we prove Theorem 1.6 here, settling a conjecture of Zhang [40].

Proof of Theorem 1.6. The upper bound follows from Theorem 2.8. It suffices to show a lower bound
for when degoe(f) ≥ 16. The lower bound follows from Part 2 of Theorem 1.4 in this case.

4 Discrepancy of XOR functions

In this section, we analyze the discrepancy of XOR functions.
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4.1 Margin-discrepancy equivalence

In this section, we prove Theorem 1.7, which is a necessary and sufficient approximation theoretic
condition of f in order for f ◦ XOR to have small discrepancy.

Proof of Theorem 1.7. We first show that m(f) ≤ m(f ◦ XOR). For notational convenience, let us
denote f ◦ XOR by F . View f ’s inputs as x1, . . . xn, and F ’s inputs as y1, . . . , yn, z1, . . . , zn, where f is
fed y1 ⊕ z1, . . . , yn ⊕ zn. Let p be any polynomial of weight 1 sign representing f . Replace every variable
xi in p by yizi. Clearly, the new polynomial obtained sign represents F with the same margin as p
represented f , and the weight remains unchanged. Thus, m(f) ≤ m(F ).

Next, we show that m(F ) ≤ 4disc(F ). Let λ denote a distribution under which discλ(F ) = disc(F ),
and let P (x, y) =

∑
S⊆[2n] cSχS(x, y) be a polynomial of weight 1, which sign represents F .

m(F ) ≤ Eλ[F (x, y)P (x, y)]

≤ Eλ


F (x, y)

∑

S⊆[2n]

cSχS(x, y)




≤


 ∑

S⊆[2n]

|cS |


 · max

S⊆[2n]
(|Eλ[F (x, y)χS(x, y)]|)

≤

∣∣∣∣∣∣∣∣

∑

χS(x)=1
χS(y)=1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

∑

χS(x)=1
χS(y)=−1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

∑

χS(x)=−1
χS(y)=1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

∑

χS(x)=−1
χS(y)=−1

F (x, y)λ(x, y)

∣∣∣∣∣∣∣∣

≤ 4disc(F )

Thus, m(F ) ≤ 4disc(F ).
Now we show that disc(F ) ≤ m(f).
Let us first write a linear program whose optimal value corresponds to the margin of f .

Variables ∆, {αS : S ⊆ [n]}
Maximize ∆
s.t. f(x)

∑
S⊆[n]

αSχS(x) ≥ ∆ ∀x ∈ {−1, 1}n
∑

S⊆[n]

|αS | ≤ 1

∆ ∈ R

αS ∈ R ∀S ⊆ [n]

We write another linear program, which is easier to work with.

Variables ∆, {α′
S : S ⊆ [n]}, {α′′

S : S ⊆ [n]}
Maximize ∆
s.t. f(x)

∑
S⊆[n]

χS(x)(α
′′
S − α′

S) ≥ ∆ ∀x ∈ {−1, 1}n
∑

S⊆[n]

(α′
S + α′′

S) ≤ 1

∆ ∈ R

α′
S , α

′′
S ≥ 0 ∀S ⊆ [n]
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Note that any solution to the first program is a valid solution to the second one, by setting one of
α′
S or α′′

S to 0, and the other to |αS | for each S ⊆ [n]. We can also assume that a solution to the second
program must have α′

S = 0 or α′′
S = 0 for each S ⊆ [n]. If this was not the case, one could reduce the

values of α′
S and α′′

S by the same amount, thus not changing the value of α′′
S −α′

S , and not violating any
constraints. This gives us a solution to the first program by setting αS = α′′

S if α′′
S 6= 0, and αS = α′

S

otherwise. Thus, the optima of the two programs above are equal.
Let us now look at the corresponding dual to the above linear program. Notice that the program looks

like a minimization problem with the objective to minimize max
S⊆[n]

∣∣∣f̂µ(S)
∣∣∣ under a variable distribution

µ on {−1, 1}n.

Variables ǫ, {µ(x) : x ∈ {−1, 1}n}
Minimize ǫ
s.t. |∑

x
µ(x)f(x)χS(x)| ≤ ǫ ∀S ⊆ [n]

∑
x
µ(x) = 1

ǫ ≥ 0
µ(x) ≥ 0 ∀x ∈ {−1, 1}n

Thus, if f has margin at most δ, there exists a distribution µ on {−1, 1}n such that
∣∣∣f̂µ(S)

∣∣∣ ≤ δ
2n

for all S ⊆ [n]. Let µ⊕ be a distribution denoting the lift of µ on {−1, 1}n × {−1, 1}n. That is,
µ⊕(x, y) = 1

2nµ(x ⊕ y). We now show that the discrepancy of F is small under µ⊕. For matrices A,B,
let A ◦H B denote the Hadamard (entrywise) product of A and B. Note that under the distribution µ⊕,
the discrepancy of F is

discµ⊕(F ) = max
S⊆[n],T⊆[n]

1TS (µ
⊕ ◦H F )1T

≤ ||µ⊕ ◦H F || · 2n Cauchy-Schwarz

Thus,

discµ⊕(F ) ≤ ||fµ ◦ XOR||
2n

· 2n = 2n · ||f̂µ||∞ ≤ δ

Here, the first inequality follows from the definition of µ⊕, and the following equality follows from
Lemma 2.24. This proves the claim.

We remark here that Linial and Shraibman [24] had shown a similar equivalence between the discrep-
ancy of a matrix (the communication matrix of the target function) and its margin. This margin refers
to the margin of the matrix, and not the base function. However, since we do not use this notion in the
rest of this paper, we overload notation and use m(A) to denote the margin of the matrix A. Define the
margin of an m× n sign matrix A as follows.

m(A) = supmin
i,j

|〈xi, yj〉|
||xi||2||yj ||2

where the supremum is over all choices of x1, . . . , xm, y1, . . . , yn ∈ Rm+n such that sgn(〈xi, yj〉) = ai,j for
all i, j. Linial and Shraibman [24] showed that the margin of a sign matrix is equivalent to its discrepancy
up to a constant factor.

Theorem 4.1 ([24] Thm 3.1). For every sign matrix A,

disc(A) ≤ m(A) ≤ 8disc(A)

We now note that Theorem 1.7 implies the first inequality of Theorem 4.1 for the special case of XOR
functions.
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Claim 4.2. Let f : {−1, 1}n → {−1, 1}. Then,

m(f) ≤ m(Mf◦XOR)

Proof. Let p =
∑

S⊆[n] cSχS be a polynomial which sign represents f with margin δ. This implies

p′(x, y) =
∑

S⊆[n] cSχS(x)χS(y) sign represents f ◦ XOR with margin δ.

We will exhibit 2n+1 vectors, {uT : T ⊆ [n]} and {vT : T ⊆ [n]} in R2n such that m(Mf◦XOR) ≥ δ.
Index the coordinates by characteristic sets, T ⊆ [n]. For a set T ⊆ [n], we use wT to denote the
corresponding characteristic vector in R2n . Define uT (S) = vT (S) =

√
cSχS(wT )

Since wt(p′) = 1, ||uT ||2 = ||vT ||2 = 1. Also, 〈uT1
, vT2

〉 =∑S⊆[n] cSχS(wT1
⊕ wT2

) ≥ δ since p′ sign
represents f ◦ XOR with margin δ.

Thus,

m(Mf◦XOR) = sup min
T1,T2

|〈uT1
, vT2

〉|
||uT1

||2||vT2
||2

≥ δ

4.2 A new separation of PPcc from UPP
cc

In this section, we show here how to obtain an alternate proof that the GHR function has large PP

complexity. It is well known that GHR ∈ UPP
cc.

Proof of Theorem 1.9. Theorem 2.5 and Lemma 3.1 show the existence of a linear threshold function
f : {−1, 1}n → {−1, 1} such that m(fop) ≤ 2−cn for some absolute constant c > 0. Lemma 3.3
and Lemma 3.4 then show existence of a linear threshold function f ′ : {−1, 1}4n → {−1, 1} such that
m(f ′) ≤ 2−cn. Using Theorem 1.7 and Theorem 2.16, we already obtain the existence of a linear
threshold function f ′ : {−1, 1}4n → {−1, 1} such that PP(f ′ ◦ XOR) ≥ c′n for some absolute constant
c′ > 0.

By Fact 2.4, one can embed f ′ in the universal threshold function by blowing up the number of
variables by a quadratic factor (note that we do not lose a logarithmic factor as stated in Fact 2.4,
because it can be verified that the weights of f ′ are at most 2αn for an absolute constant α > 0). Thus,
m(UTHR) ≤ 2−Ω(

√
n). By Theorem 1.7 and Theorem 2.16, we have

PP(GHR) ≥ Ω(
√
n)

4.3 XOR is harder than PM

In this section, we observe that if f ◦ XOR has small discrepancy, then so does f ◦ PM. Note that the
converse is not true, since the inner product function is a large subfunction of ⊕◦PM, which has inverse
exponential discrepancy, but ⊕ ◦ XOR has extremely large discrepancy.

Theorem 4.3. Let f : {−1, 1}n → {−1, 1}. Then,

disc(f ◦ XOR) < δ =⇒ disc(f ◦ PM) ≤
√
4δn

Proof. Consider f ◦ PM and substitute d = n in Theorem 2.18 to obtain

disc(f ◦ PM) ≤
(

n

W (f, d− 1)

)1/2

By Theorem 1.7, disc(f ◦ XOR) < δ =⇒ m(f) < 4δ. Suppose W (f, n − 1) ≤ 1
4δ . This would show

existence of a polynomial with integer weights, say
∑

S⊆[n] λSχS , sign representing f , and with total

weight at most 1/4δ. This in turn implies existence of a polynomial of weight 1, p =
∑

S⊆[n] λSχS∑
S⊆[n] |λS | , which

sign represents f with margin at least 4δ, which is a contradiction. Thus,

disc(f ◦ PM) ≤
√
4δn
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4.4 Symmetric functions with large odd-even degree

We show that for any symmetric function F , PP(F ◦ XOR) is lower bounded by degoe(F ) (up to a
logarithmic factor in the input size).

Proof of Theorem 1.8. Using Theorem 1.7 and Part 3 of Theorem 1.4, we obtain that there exists a
universal constant c > 0 such that PP(F ◦ XOR) ≥ cr/ log(n/r), which proves Theorem 1.8.

5 Bounded error communication complexity of XOR functions

In this section, we analyze the bounded error communication complexity of XOR functions.

Proof of Theorem 1.10. We write a linear program which captures the best error a weight w polynomial
can achieve in approximating a given function f .

Variables ǫ, {αS : S ⊆ [n]}
Minimize ǫ

s.t.

∣∣∣∣∣f(x)−
∑

S⊆[n]

αSχS(x)

∣∣∣∣∣ ≤ ǫ ∀x ∈ {−1, 1}n
∑

S⊆[n]

|αS | ≤ w

ǫ ≥ 0
αS ∈ R ∀S ⊆ [n]

By manipulations similar to those in Section 4.1, we obtain the following dual program.

Variables ∆, {µ(x) : x ∈ {−1, 1}n}
Maximize

∑
x f(x)µ(x)−∆w

s.t. |∑
x
µ(x)χS(x)| ≤ ∆ ∀S ⊆ [n]

∑
x
µ(x) ≤ 1

∆ ≥ 0
µ(x) ≥ 0 ∀x ∈ {−1, 1}n

By strong linear programming duality, the optima of the two programs above are equal. Let us call
the optimal value OPT, which is clearly non-negative. Note that in any feasible solution to the dual,
1 − ∆w ≥ ∑

x
f(x)µ(x) − ∆w ≥ 0. This implies ∆ ≤ 1

w . Suppose a function f : {−1, 1}n → {−1, 1}
satisfied wt1/3(f) = w′. This means if we fix w = w′ in the programs, then OPT = 1/3, which implies∑
x
f(x)µ(x) ≥ 1/3 since ∆ is non-negative. Thus, any optimum solution to the dual must satisfy

∑
x
µ(x) ≥ 1/3. Define a distribution µ′ by µ′(x) = µ(x)∑

x∈{−1,1}n µ(x) , and we obtain |∑
x
µ′(x)χS(x)| ≤ 3

w′

(hence, setting ∆ = 3
w′ gives us a feasible solution).

Write µ′ = g ·ν uniquely, where g : {−1, 1}n → {−1, 1} is a boolean function and ν : {−1, 1}n → [0, 1]
is a distribution on the inputs. Thus, corrν(f, g) ≥ 1/3 (which implies corrν⊕(f ◦XOR, g ◦XOR) ≥ 1/3),
and

discν⊕(g ◦ XOR) ≤ ||gν ◦ XOR||
2n

· 2n = 2n · ||ĝν||∞ ≤ ∆ ≤ 3

w′ .

This, along with Theorem 2.20 proves the following.

R7/15(f ◦ XOR) ≥ logw′ − 4

By standard error reduction, we obtain Theorem 1.10.

Using Part 1 of Theorem 1.4 and Theorem 1.10, we obtain a new proof of Theorem 1.12.
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6 Sign rank of XOR functions

In this section, we analyze the unbounded error communication complexity of XOR functions.

6.1 Fourier analysis of some modular functions

We first closely analyze the Fourier coefficients of functions of the type MOD
A
m, when m is odd, using

exponential sums.

Claim 6.1. For odd m, and any A ⊆ {0, 1, . . . ,m− 1} which is not the full or empty set,

∣∣∣∣
̂
MOD

A
m(S)

∣∣∣∣ ≤
{
1− 2

m + 2m
(
cos
(

π
2m

))n
S = ∅

2m
(
cos
(

π
2m

))n
S 6= ∅

Zhang [40] showed that for a fixed prime p,

∣∣∣∣M̂ODp

{0}
(∅)
∣∣∣∣ < 1 − 1

p , and

∣∣∣∣M̂ODp

{0}
(S)

∣∣∣∣ = O
(

1
2Ω(n)

)

when S 6= ∅. We show that a similar bound holds for odd integers m for values up to m = O(n1/2−ǫ)
using a different technique. In particular, we show that for m = O(n1/2−ǫ), the principal coefficient is

roughly 1− 1
m , and all other coefficients are exponentially small

(
1

2n
Ω(1)

)
, for any non simple accepting

set A.
We use the characterization of the MOD

A
m function in terms of exponential sums to analyze its Fourier

coefficients. Note that exponential sums have been used in similar contexts in previous papers as well.
For example, the reader may refer to [5, 13, 1]. The notation we use is that from [1].

Definition 6.2. Let ω = e2πi/m be a primitive m-th root of unity. Then, for x = {0, 1}n, define

EXP
a,b
m (x1, . . . , xn) = ωa((

∑n
j=1 xj)−b)

Let us now prove Claim 6.1.

Proof. First, we use exponential sums to represent a MOD
A
m function for odd m.

It is easy to check that for any integer k, and any input x = (x1, . . . , xn),

1

m

m−1∑

a=0

EXP
a,k
m (x) =

{
1 |x| ≡ k (mod m)

0 otherwise

Thus, for a general accepting set A ⊆ [m],

∑

k∈A

(
1

m

m−1∑

a=0

EXP
a,k
m (x)

)
=

{
1 |x| ≡ k (mod m) for some k ∈ A

0 otherwise

Just by a simple linear transformation from {0, 1} to {−1, 1}, we can express the MOD
A
m function in

terms of exponential sums as follows.

MOD
A
m(x) = 1− 2

m

∑

k∈A

(
m−1∑

a=0

EXP
a,k
m (x)

)
=

{
−1 |x| ≡ k(mod m) for some k ∈ A

1 otherwise
(5)

Let us now look at the Fourier coefficients of MOD
A
m for odd m, and A not ∅ or [m]. Let us consider 2

cases, the first where S is non-empty, and the second where S is empty.

1. S 6= ∅.
By Equation (1),

̂
MOD

A
m(S) = Ex∈{0,1}n

[
MOD

A
m(x)χS(x)

]

= Ex∈{0,1}n [χS(x)]−
2

m

∑

k∈A

m−1∑

a=0

Ex∈{0,1}n

[
EXP

a,k
m (x)χS(x)

]
(6)
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where the second equality follows from Equation (5) and linearity of expectation. Recall from Defi-

nition 6.2 that EXPa,b
m (x) = ωa((

∑n
j=1 xj)−b). Note that when a = 0, Ex∈{0,1}n

[
EXP

0,b
m (x)χS(x)

]
=

Ex∈{0,1}n [χS(x)] = 0 since S 6= ∅. For a ∈ {1, . . . ,m− 1},

EXP
a,k
m (x)χS(x) = ωa((

∑n
j=1 xj)−k)(−1)

∑
i∈S xi

= ωa
∑n

j=1 xj · ω−ak · (−1)
∑

i∈S xi

= ω−ak · (−ω)a
∑

i∈S xi · ωa
∑

j /∈S xj

Thus, in Equation (6), the first term is 0 since S 6= ∅. The summands with a = 0 contribute 0 to the

expectation. Every other summand in the second term is of the form Ex∈{0,1}n

[
EXP

a,k
m (x)χS(x)

]
.

Since the expectation is over the uniform distribution which is uniform and independent over the
input bits, the absolute value of such a term can be bounded as follows.

∣∣∣Ex∈{0,1}n

[
EXP

a,k
m (x)χS(x)

]∣∣∣ ≤
∣∣∣Ex∈{0,1}n

[
ω−ak · (−ω)a

∑
i∈S xi · ωa

∑
j /∈S xj

]∣∣∣

≤
∣∣∣∣∣
∏

i∈S

Exi
(−ω)axi

∣∣∣∣∣ ·

∣∣∣∣∣∣
∏

j /∈S

Exj
ωaxj

∣∣∣∣∣∣

≤
∣∣∣∣
(
1− ωa

2

)∣∣∣∣
|S|∣∣∣∣
(
1 + ωa

2

)∣∣∣∣
n−|S|

≤ max
a∈{1,...,m−1}

{∣∣∣∣
1− ωa

2

∣∣∣∣
n

,

∣∣∣∣
1 + ωa

2

∣∣∣∣
n}

Since a ∈ {1, . . . ,m − 1} and m is odd, it is fairly straightforward to check that the value of
maxa

{∣∣ 1−ωa

2

∣∣,
∣∣ 1+ωa

2

∣∣} is maximized at a = m±1
2 , and the value attained at the maximum is

1
2

√
(1 + cos(π/m))2 + sin2(π/m) = 1

2

√
2 + 2 cos(π/m) = cos(π/2m). Thus, the above, along with

Equation (6) gives us

∣∣∣∣
̂
MOD

A
m(S)

∣∣∣∣ ≤
∣∣Ex∈{0,1}n [χS(x)]

∣∣+
∣∣∣∣∣
2

m

∑

k∈A

m−1∑

a=0

Ex∈{0,1}n

[
EXP

a,k
m (x)χS(x)

]∣∣∣∣∣ (7)

≤ 2(m− 1)2

m
·
(
cos
( π

2m

))n
≤ 2m

(
cos
( π

2m

))n
(8)

2. S = ∅.
One can follow a similar argument as above to analyze the absolute value of the principal Fourier
coefficient. Note that in this case, the first term on the right hand side of Equation (6) is not 0,
but 1. Next, note that for a ∈ {1, . . . ,m− 1}, the same bound as in the previous case holds. That
is,

∣∣∣Ex∈{0,1n}
[
EXP

a,k
m (x)χS(x)

]∣∣∣ ≤
∏

i∈S

Exi
(−ω)axi ·

∏

j /∈S

Exj
ωaxj

≤
∣∣∣∣
(
1− ωa

2

)∣∣∣∣
|S|

·
∣∣∣∣
(
1 + ωa

2

)∣∣∣∣
n−|S|

≤
(
cos
( π

2m

))n

by the same argument as in the case of S 6= ∅. However, when S = ∅ and a = 0, we have

Ex∈{0,1}n

[
EXP

a,b
m (x)χ∅(x)

]
= 1 (unlike the case when S 6= ∅, where this expectation was 0).
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Plugging these values into Equation (6) and using the above observations, we get

∣∣∣∣
̂
MOD

A
m(∅)

∣∣∣∣ ≤
∣∣∣∣∣Ex∈{0,1}n [χ∅(x)]−

2

m

∑

k∈A

Ex∈{0,1}n

[
EXP

0,k
m (x)χ∅(x)

]∣∣∣∣∣

+

∣∣∣∣∣
2

m

∑

k∈A

m−1∑

a=1

Ex∈{0,1}n

[
EXP

a,k
m (x)χ∅(x)

]∣∣∣∣∣ (9)

≤
∣∣∣∣1− 2

|A|
m

∣∣∣∣+ 2m
(
cos
( π

2m

))n
(10)

≤ 1− 2

m
+ 2m

(
cos
( π

2m

))n
since A 6= ∅, [m]

6.2 A lower bound for MOD
A
m ◦ XOR

In this section, we show unbounded error lower bounds for functions of the type MOD
A
m ◦XOR for values

of m up to O(n1/2−ǫ), when A is non-simple. Note that if A is a simple set, then either MOD
A
m ◦ XOR

is a constant or MOD
A
m represents parity (or its negation), in which case MOD

A
m ◦ XOR just represents

the parity function (or its negation), so its communication complexity (even deterministic) is very small.
We prove a new sign rank lower bound criterion for XOR functions. As an application of this theorem,
we show that UPP(MODm ◦ XOR) = nΩ(1) for values of odd m up to O(n1/2−ǫ). Theorem 2.22 tells us
that the log of the sign rank of a communication matrix is essentially equivalent to the unbounded error
communication complexity of the function.

Let f : {0, 1}n → R, and let A denote the communication matrix of f ◦ XOR. In order to show a
lower bound on the sign rank of f ◦XOR, it suffices to show an upper bound on the spectral norm of the
communication matrix of f ◦ XOR.

Combining Theorem 2.23 and Theorem 2.24, we get

Corollary 1. Let f : {0, 1}n → R be any real valued function and let A denote the communication
matrix of f ◦ XOR. Then,

sr(A) ≥ 1

max
S⊆[n]

∣∣∣f̂(S)
∣∣∣
·min

x
|f(x)|

Thus, sr(f ◦XOR) = 2Ω(n) for any {−1, 1} valued function with inverse exponential l∞ Fourier norm.
Note that we cannot use the outer function to be MODp (for a constant p) in Corollary 1, since its

principal Fourier coefficient is a constant (though sufficiently bounded away from 1, which we crucially
require). The following theorem allows us to ignore a subset of large Fourier coefficients, as long as
their mass is not too large, which gives us a stronger condition for unbounded error hardness of XOR

functions.

Theorem 6.3. For any function f : {0, 1}n → {−1, 1}, and any collection of sets S ⊆ supp(f̂), if∑
S∈S

∣∣∣f̂(S)
∣∣∣ ≤ 1− δ, and maxS/∈S

∣∣∣f̂(S)
∣∣∣ ≤ c. Then, sr(f ◦ XOR) ≥ δ

c .

Proof. Define f ′ : {0, 1}n → R by f ′(x) = f(x)− ∑
S∈S

f̂(S)χS(x). Notice

min
x∈{0,1}n

|f ′(x)| ≥ 1−
∑

S∈S

∣∣∣f̂(S)
∣∣∣ ≥ δ

Also note that ∀S ∈ S, f̂ ′(S) = 0, and ∀S /∈ S, f̂ ′(S) = f̂(S). Thus, max
S⊆[n]

∣∣∣f̂ ′(S)
∣∣∣ ≤ c. It is easy to see

that f ′ sign agrees with f . Thus, the sign rank of these functions agree by definition. Using Corollary
1, we have

sr(f ◦ XOR) = sr(f ′ ◦ XOR) ≥ 1

max
S/∈S

∣∣∣f̂ ′(S)
∣∣∣
·min

x
|f ′(x)| ≥ δ

c
(11)
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Let us first recall the Complete Quadratic function, whose Fourier coefficients were analyzed by Bruck
[6]. Define CQ : {0, 1}n → {−1, 1} by

CQ(x) = MOD
{0,1}
4 (x)

Lemma 6.4 ([6]). For even n,
∣∣∣ĈQ(S)

∣∣∣ = 2−n/2 for all S ⊆ [n]. For odd n,
∣∣∣ĈQ(S)

∣∣∣ ∈ {0, 2−(n−1)/2}
for all S ⊆ [n].

Theorem 6.5. For m odd, and and A ⊆ {0, 1, . . . ,m− 1} which is not the empty set or full set,

U(MOD
A
m) = Ω(n/m2)− 2 log(m)

Proof. In Theorem 6.3, use S = ∅. The values obtained using Claim 6.1 are δ = 2
m − 2m

(
cos
(

π
2m

))n
,

and c = 2m
(
cos
(

π
2m

))n
. Hence,

sr(MOD
A
m ◦ XOR) ≥

(
2

m
− 2m

(
cos
( π

2m

))n)
· 1

2m
(
cos
(

π
2m

))n

≥ 1

m2
(
cos
(

π
2m

))n − 1

Using a standard series expansion for cos θ, and the fact that 1− x ≤ e−x for all x ∈ R, we get

sr(MOD
A
m ◦ XOR) ≥ 2Ω(n/m2)

m2
−O(1)

Thus, using the equivalence between sign rank and unbounded error communication complexity from
Theorem 2.22,

U(MOD
A
m) = Ω(n/m2)− 2 log(m)

This already shows us that the unbounded error complexity of functions of the type MOD
A
m are large

when m is odd, and A is not the full set or empty set, for m up to O(n1/2−ǫ). Note that one cannot use

Theorem 6.3 to prove a sign rank lower bound for MOD
{0}
4 , since

∣∣∣∣
̂

MOD
{0}
4 (∅)

∣∣∣∣ +
∣∣∣∣
̂

MOD
{0}
4 ([n])

∣∣∣∣ = 1,

which can be easily checked. In Claim 6.8, we also show hardness for the case when m = 4 and A is not
a simple accepting set.

In the analysis of our main claim (Theorem 6.9), we will be concerned with the size of the input
string. For notational convenience, we add a subscript to MOD

A
m which denotes the input size. That is,

MOD
A
m,n : {0, 1}n → {−1, 1}

and we define it exactly the same as in Definition 1.13.
We denote the sumset A+ {p} = {a+ p | a ∈ A} (the sums are modulo m, where m is the period of

the MOD function we are interested in) by A+ p for convenience.

Lemma 6.6. Suppose MOD
A′

p,n = MOD
A
m,n ⊕MOD

A+i
m,n for some p < m, and any integer i. Then,

U(MOD
A
m,n) ≥

U(MOD
A′

p,n−m)

2

We require the following simple, yet powerful lemma, the proof of which we omit.

Lemma 6.7 (Folklore). For any functions f, g : {0, 1}n → R

U(f ⊕ g) ≤ U(f) + U(g)
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Proof of Lemma 6.6. Since MOD
A′

p,n = MOD
A
m,n ⊕MOD

A+i
m,n , applying Lemma 6.7 gives us

U(MOD
A′

p,n−m) ≤ U(MOD
A
m,n−m) + U(MOD

A+i
m,n−m)

The first term on the right is at most U(MOD
A
m,n) since we can just pad m number of 0’s each to Alice’s

and Bob’s inputs and obtain a protocol (of the same cost) for MOD
A
m,n−m given a protocol for MOD

A
m,n

The second term is also at most U(MOD
A
m,n) for a similar reason. Pad m− i number of 1’s and i number

of 0’s each to Alice’s and Bob’s inputs. It is easy to see that MOD
A+i
m,n−m(x, y) = −1 if and only if

MOD
A
m,n(x

′, y′) = −1, where x′ and y′ are x and y padded with m − i 1’s and i 0’s respectively. The
lemma now follows.

Let us analyze the unbounded error communication complexity of MOD
A
4 ◦XOR for various accepting

sets A. Note that if A = {0, 2} or {1, 3}, then MOD
A
4 ◦ XOR is just parity or its negation respectively.

Its communication complexity is a constant in these cases. Let us look at the other cases.

Claim 6.8. Suppose A is not a simple accepting set. Then, U(MOD
A
4 ) = Ω(n).

Proof. 1. A = {0, 1}. Then, MOD
A
4 = CQ, and by Lemma 6.4,

U(CQ) ≥ n/2

2. |A| = 2, and MOD
A
4 does not represent parity (or its negation). Then, this is clearly a translate of

CQ, and

U(MOD
A
4,n) ≥ U(MOD

{0,1}
4,n−4) ≥ (n− 4)/2

3. A is non simple and does not fall in the previous 2 cases. Without loss of generality, may assume
|A| = 1 because if it was 3, the complexity of MOD

A
m is the same as MOD

Ac

m , and |Ac| = 1. In this
case, we can use Lemma 6.6 to get

U(MOD
A
4 ⊕MOD

A+1
4 ) ≥ U(MOD

A′

m )

for some non simple A′ of size 2. From the previous case, we conclude,

U(MOD
A
4,n) ≥ U(MOD

A′

4,n−4) ≥
((n− 4)/2)− 4

2
= (n− 12)/4

Recall our main theorem regarding unbounded error complexity (Theorem 1.14), which says that any
function of the type MOD

A
m ◦ XOR for any non-simple A is hard in the unbounded error communication

model for values of m up to O(n1/2−ǫ).

Theorem. For any integer m ≥ 3, express m = j2k uniquely, where j is either odd or 4, and k is a
positive integer. Then for any non-simple A,

U(MOD
A
m,n) ≥ Ω

(
n− km

jm

)
− 2j log j

m

Note that since k is at most log(n), and j is at most m, this gives us an nΩ(1) lower bound on the
unbounded communication complexity of MOD

A
m ◦ XOR for any non-simple accepting set A, for m as

large as O(n1/2−ǫ).
We require the following claim to prove Theorem 1.14.

Claim 6.9. For any integer m ≥ 3, and for all representations m = j2k for some j ≥ 3 and a positive
integer k, and any non-simple A ⊆ [m], we have

U(MOD
A
m,n) ≥

U(MODj,n−km)

2k
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Let us first see how Claim 6.9 implies Theorem 1.14. Recall that Theorem 6.5 gave us

U(MODj,n) = Ω(n/j2)− 2 log(j)

This, along with Claim 6.8 and Claim 6.9, implies that if m = j2k where j is either 4 or odd,

U(MOD
A
m,n) ≥

U(MODj,n−km)

2k
≥

Ω
(

(n−km)
j2

)
− 2 log(j)

m/j
≥ Ω

(
n− km

jm

)
− 2j log j

m

Let us now prove Claim 6.9.

Proof. We prove this by induction on m.

1. The base cases are when m is odd. In this case, the hypothesis is trivially true since m = j2k can
only imply j = m, k = 0.

2. Suppose m = 2p, where p is odd. Let a = xy denote the characteristic vector of the accepting set
A, where x corresponds to the first p elements, and y the last p elements. We interchangeably use
the notation MOD

A
m and MOD

a
m when a is the characteristic vector of the set A. Our assumption

is that a is not the all 0, or all 1, or the parity (negation of parity) vector. Let x ⊕ y denote the
bitwise XOR of x and y.

(a) Suppose x ⊕ y is neither the all 0 or all 1 vector. Since x ⊕ y does not represent a simple
accepting set A, in this case, MOD

A
m ⊕MOD

A+p
m = MOD

x⊕y
p . By Lemma 6.6,

U(MOD
A
m,n) ≥

U(MOD
x⊕y
p,n−m)

2

(b) If x ⊕ y is the all 0 vector, then x = y, and neither of them are all 0 or all 1. This means
MOD

a
m = MOD

x
p .

(c) If x ⊕ y is the all 1 vector, this means y = xc. Consider A′ = A + 1. One may verify that
A⊕A′ has characteristic vector a′′ = bb.

i. If b is not the all 0 or all 1 string, MOD
b
p = MOD

A
m ⊕ MOD

A+1
m . Use Lemma 6.6 and

conclude

U(MOD
A
m,n) ≥

U(MOD
b
p,n−m)

2

ii. It is easy to check that b can never be the all 0 vector.

iii. Close inspection reveals that if b is the all 1 vector, then the original vector a must
represent parity or its negation, which was not the case by assumption.

3. Suppose m = 2k, where k is even. Again, let a = xy, where a is the characteristic vector of
accepting set A.

(a) If x ⊕ y is neither the all 0 string, all 1 string, nor does it represent parity (or its negation),
then MOD

A
m ⊕MOD

A+k
m = MOD

x⊕y
k . By Lemma 6.6,

U(MOD
A
m,n) ≥

U(MOD
x⊕y
k,n−m)

2

By the induction hypothesis, the claim is true for MOD
x⊕y
k,n−m. It is easy to see that this

implies the claim for MOD
A
m,n.

(b) If x ⊕ y is the all 0 vector, then x = y, and neither of them are all 0 or all 1. This means
MOD

a
m is the same as MOD

x
k.

(c) If x ⊕ y is the all 1 vector, this means y = xc. Consider A′ = A + 1. One may verify that
A⊕A′ has a characteristic vector of the form a′′ = bb.
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i. If b is neither the all 0 or all 1 string, nor does it represent parity (or its negation), then
MOD

b
k = MOD

A
m ⊕MOD

A+1
m . Use Lemma 6.6 and conclude

U(MOD
A
m,n) ≥

U(MOD
b
k,n−m)

2

By the induction hypothesis, the theorem is true for MOD
b
k since b does not represent the

all 0, all 1, or parity (or its negation) string. The theorem now follows easily for MOD
A
m,n.

ii. It is easy to check that b can never be the all 0 or all 1 vector.

iii. One may check that b can be the parity (or its negation) vector only if k ≡ 2(mod 4),
and A must have represented CQ (or a translate of it by at most 2) which we know to be
hard. In this case, we obtain

U(MOD
a
m) = Ω(n)

(d) If x ⊕ y represents the parity (or negation of parity) vector, then consider A′ = A + 2. It is
simple to verify that the characteristic vector of A⊕A′ is of the form zz.

i. If z is not the all 0 or all 1 string, or does not represent parity (or its negation), then we
have MOD

A
m ⊕MOD

A+2
m = MOD

z
k. Use Lemma 6.6 to say

U(MOD
A
m,n) ≥

U(MOD
z
k,n−m)

2

The claim now follows because of the induction hypothesis.

ii. One may verify (by considering cases when k has residue either 0 or 2 modulo 4) that z
cannot be the all 0 or all 1 string.

iii. If z represents parity or its negation, then it can be checked that the only case when this
occurs is when A represented a non simple accepting set, say X, modulo 4. Thus,

U(MOD
a
m) = U(MOD

X
4 ) = Ω(n)

6.3 An upper bound

In this section, we show that for any symmetric function f : {−1, 1}n → {−1, 1}, the PP complexity
of f ◦ XOR is upper bounded by essentially degoe(f). Our proof follows along the lines of Zhang [40]
who shows that a symmetric function with small odd-even degree has a small Threshold of Parity circuit
representation.

Theorem 6.10. Suppose f : {−1, 1}n → {−1, 1} is a symmetric function defined by the predicate
Df : {0, 1, . . . , n} → {−1, 1}. Say the odd-even degree of f equals k and n is even. Then,

PP(f ◦ XOR) = O(k log n)

Proof. Define Seven = {i ∈ {0, 2, . . . , n} : Df (i) 6= Df (i + 2)}, and define Sodd = {i ∈ {1, 3, . . . , n − 1} :
Df (i) 6= Df (i+ 2)}. By our assumption, |Seven|, |Sodd| ≤ k.

Consider the polynomials peven, podd : {−1, 1}n → R defined by

peven(x) = Df (0) ·
∏

i∈Seven


n− 2i+ 1−




n∑

j=1

xj






and

podd(x) = Df (1) ·
∏

i∈Sodd


n− 2i+ 1−




n∑

j=1

xj






The polynomial p : {−1, 1}n → R defined by

p(x) = (1 + χ[n](x))peven(x) + (1− χ[n](x))podd(x)
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sign represents f on {−1, 1}n.
We now use the simple observations that wt(q1 ·q2) ≤ wt(q1)·wt(q2) and wt(q1+q2) ≤ wt(q1)+wt(q2).

Thus,

wt(p) ≤ 2wt(peven) + 2wt(podd)

≤ 2(2n)k + 2(2n)k

≤ 4(2n)k

Note that all the coefficients of p are integer valued. Thus, the polynomial p′ = p
wt(p) is a polynomial

of weight 1, which sign represents f with margin at least 1
wt(p) . By Theorem 1.7 and Theorem 2.16,

PP(f ◦ XOR) ≤ O(log(wt(p))) ≤ O(k log n)

6.4 Circuits

In this section, we show how to obtain a size lower bound on a restricted class of threshold circuits
computing MOD

A
m ◦ XOR for non simple A. Forster et al. [15] noted that sign rank lower bounds also

yield lower bounds against THR ◦MAJ circuits. In fact, it yields lower bounds for the class THR ◦ Lcomm

where Lcomm denotes any gate with low deterministic communication complexity. We show the following.

Theorem 6.11. Any THR ◦ C circuit computing MOD
A
m ◦ XOR must have size

s ≥ 2Ω(
n−km

jm )− 2j log j
m −c

where c is the deterministic communication complexity of C, and m = j2k is the unique representation
of m ≥ 3, where j is either odd or 4, and k is a positive integer.

Proof. The rank of the communication matrix of each C gate is at most c, thus the sign rank of a
function computed by a THR ◦ C circuit is at most sc, where s is the size of the circuit. Theorem 1.14

and Theorem 2.22 tells us that sr(MOD
A
m ◦ XOR) ≥ 2Ω(

n−km
jm )− 2j log j

m , where m = j2k, and j is either 4
or odd. Thus,

sc ≥ 2Ω(
n−km

jm )− 2j log j
m =⇒ s ≥ 2Ω(

n−km
jm )− 2j log j

m −c

Thus, we obtain that for m up to O(n1/2−ǫ), and any non-simple A, MOD
A
m ◦ XOR is not in subex-

ponential sized THR ◦MAJ. A similar argument shows that MOD
A
m ◦XOR is not even in subexponential

size THR ◦ SYM, where SYM denotes the class of all symmetric functions. This is because all symmetric
functions have deterministic communication complexity bounded above by O(log(n)).

This generalizes one particular result of Krause and Pudlak [22], and of Zhang [40] which state that

MOD
{0}
m /∈ THR◦PAR, where PAR denotes the class of all parity gates. This is because we have shown that

MOD
A
m◦XOR /∈ THR◦SYM, which implies MOD

A
m◦XOR /∈ THR◦PAR. This implies MOD

A
m /∈ THR◦PAR.
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