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Abstract

The gap-ETH assumption (Dinur 2016; Manurangsi and Raghavendra 2016) asserts that
it is exponentially-hard to distinguish between a satisfiable 3-CNF formula and a 3-CNF for-
mula which is at most 0.99-satisfiable. We show that this assumption follows from the ex-
ponential hardness of finding a satisfying assignment for smooth 3-CNFs. Here smoothness
means that the number of satisfying assignments is not much smaller than the number of
“almost-satisfying” assignments. We further show that the latter (“smooth-ETH”) assump-
tion follows from the exponential hardness of solving constraint satisfaction problems over
well-studied distributions, and, more generally, from the existence of any exponentially-hard
locally-computable one-way function. This confirms a conjecture of Dinur (ECCC 2016).

We also prove an analogous result in the cryptographic setting. Namely, we show that
the existence of exponentially-hard locally-computable pseudorandom generator with linear
stretch (el-PRG) follows from the existence of an exponentially-hard locally-computable “al-
most regular” one-way functions.

None of the above assumptions (gap-ETH and el-PRG) was previously known to follow
from the hardness of a search problem. Our results are based on a new construction of gen-
eral (GL-type) hardcore functions that, for any exponentially-hard one-way function, output
linearly many hardcore bits, can be locally computed, and consume only a linear amount of
random bits. We also show that such hardcore functions have several other useful applications
in cryptography and complexity theory.
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1 Introduction

A constraint satisfaction problem (CSP) consists of a list of m constraints over n formal variables
x = (x1, . . . , xn) where each constraint depends on a constant k number of variables. The com-
putational intractability of CSPs is a basic, well studied phenomena in computer science. The
famous Cook-Levin theorem [Coo71, Lev73] shows that, assuming P 6= NP, no polynomial-time
algorithm can solve the search problem (i.e., find a satisfying assignment) even when each con-
straint depends on k = 3 variables. A seemingly bolder conjecture asserts that the gap version of
the problem is hard, namely, that one cannot distinguish between k-CSPs which are satisfiable to
k-CSPs for which every assignment fail to satisfy at least γ-fraction of the constraints for some con-
stant γ > 0. The celebrated PCP theorem [AS98, ALM+98] shows that the search variant reduces
in polynomial-time to the gap variant, and therefore the two assumptions are actually equivalent.
While we have a relatively clear understanding of polynomial hardness, the picture is less clear
when it comes to exponential-time hardness.

It is widely believed that k-CSP (or specifically 3-SAT) over n variables cannot be solved in
less than exponential time in n (i.e., 2βn for some constant β > 0). This Exponential-Time Hypothesis
(ETH) was introduced almost two decades ago by Impagliazzo and Paturi [IP99], and has gained
a lot of attention lately due to its implications to the exact complexity of problems inside P (“fine-
grained complexity”). Very recently, Dinur [Din16] and Manurangsi and Raghavendra [MR16]
independently made a similar exponential-time conjecture regarding the hardness of Gap-CSPs.

Assumption 1.1 (gapETH). For some constants β, γ > 0 and an integer k there is no 2βn-time proba-
bilistic algorithm that, given a k-CSP ϕ over n variables, distinguishes, with probability better than 2/3,
between the case in which the CSP is satisfiable from the case in which every assignment violates a γ-fraction
of constraints.1

This new assumption have already found several exciting consequences including a weak
form of the so called sliding scale conjecture of [BGLR94], tight results on the hardness of dense
CSPs, strong inapproximability results for the Densest Subgraph problem, and parameterized in-
approximability of some fundamental combinatorial optimization problems like Independent Set
and Set Cover [Din16, MR16, Man16, CCK+17]. Clearly, gapETH implies ETH, however, the
converse direction is currently unknown to hold. Indeed, known PCP reductions from search-
CSPs to Gap-CSPs blow-up the number of variables by a super-constant factor (polylogarithmic
at best [BS08, Din07]) and therefore fail to preserve exponential hardness. This raises the following
natural question:

Question 1. Can we base gapETH on ETH, or at least on the exponential hardness of some search
problem?

It is worth mentioning that ETH easily implies that gap problems for which the constraints are
non-local (e.g., circuit satisfiability) are exponentially hard. It is the combination of constant locality
and exponential hardness that makes the reduction challenging. Put differently, the essence of the
problem is to move from search problems to gap problems without introducing too many auxiliary
variables and while preserving the locality of the constraints.

1By the PCP theorem, one can focus, without loss of generality, on the special case of 3-CNF problems (at the expense
of decreasing the constant γ). Moreover, it is shown in [Din16] that, without loss of generality, the number of constraints
can be assumed to be linear in the number of variables.
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The cryptographic setting. A similar question also arises in the cryptographic setting. Let us
first rephrase the (worst-case) intractability of CSPs in a functional form. Given a CSP ϕ over n
variables and m constraints of arity k, we define a function f : {0, 1}n → {0, 1}m that takes an
n-bit assignment x as an input, and outputs an m-bit string y whose i-th bit equals to 0 if and only
if the i-th constraint is satisfied. The function is k-local in the sense that every output depends on
at most k-inputs. Using this terminology, the intractability of the search problem asserts that it is
hard to find a preimage of the all-zero string y, whereas the intractability of the gap problem says
that it is hard to distinguish between the case where y = 0m is in the image of f to the case where
y is γ-far (in relative Hamming distance) from the image.

The cryptographic setting addresses similar inversion/distinguishing problems but requires
average-case hardness with respect to a natural distribution over the strings y. Specifically, we
say that f is a one-way function if no efficient algorithm can invert f on an image y = f(x) of a

uniformly chosen input x R← {0, 1}n. We say that f is a pseudorandom generator (PRG) if (1) m > n
and (2) no efficient algorithm can distinguish between an image y = f(x) of a uniformly chosen

x
R← {0, 1}n (a satisfiable instance) to a randomly chosen m-bit string y R← {0, 1}m. When the PRG

has a linear stretch m − n = Ω(n), a random y
R← {0, 1}m is likely to be Ω(1)-far from the image of

f , and so the resulting CSP instance is likely to be highly-unsatisfiable.
In the polynomial hardness regime, we have a relatively clear picture of locally-computable

(aka NC0) cryptography. Locally-computable OWFs can be based on NC1 OWFs [AIK06], and
there are generic local transformations from OWFs to PRGs with low (sublinear) stretch [AIK06,
HRV13]. Local PRGs with linear stretch can be based on a concrete candidate OWF of Goldre-
ich [Gol11] via a transformation of [App13].2 However, all these reductions have a polynomial
blow-up in the input length, and so they fail to preserve exponential hardness. As a result, al-
though Goldreich’s function is believed to be exponentially hard to invert [Gol11, CEMT14, BR13,
BIO14], it is unknown how to (provably) turn it into an exponentially-strong NC0 PRG with
linear-stretch. On the other hand, given known attacks, we have no reason to believe that such
PRGs do not exist, and the literature contains several potential candidates (cf. [MST06, AIK08,
ABR16, OW14] and [App16] for a survey.) We therefore ask:

Question 2. Are there exponentially-strong PRGs with linear stretch in NC0? If so, can we base them on
one-wayness assumptions?

Exponentially-strong local PRGs provide an asymptotically optimal level of security together
with an asymptotically optimal level of efficiency (since each output bit can be computed via a
constant number of operations). Moreover, it is shown in [AIK08] that, under these efficiency
and security requirements, one cannot hope for more than linear-stretch, i.e., m − n = O(n). The
existence of exponentially-strong locally-computable PRGs with linear stretch (hereafter referred to as
the elPRG assumption) can be therefore viewed as a fundamental question regarding the best
possible tradeoff between efficiency and security for a basic cryptographic object.

We further mention that if locality is not required then exponentially-strong PRGs with arbi-
trary stretch can be based on any exponentially-hard regular OWF [HILL99, HHR11].3

2This transformation also yields polynomial-stretch PRGs with either slightly super-constant locality or inverse
polynomial distingsuishing advantage. We mention that large stretch is crucial for several important applications of
local PRGs including cryptography with constant computational overhead [IKOS08] and general purpose program
obfuscation [Lin16a, Lin16b, LV16].

3Currently, even in the non-local setting, it is unknown how to get an exponentially-strong PRG based on a gen-
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1.1 Our results

We partially answer Questions 1 and 2 by showing that both, gapETH and elPRG, follow from
the exponential hardness of search problems that satisfy some “smoothness” or “regularity” con-
dition. We move on to a formal statement of our results starting with the worst-case setting.

1.1.1 Sufficient conditions for gapETH

A CSP ϕ over n variables is (γ, α)-smooth if the number of assignments that satisfy at least 1 − γ
of the constraints is at most 2αn-times larger than the number of satisfying assignments. That
is, the relaxation from full satisfiability to “almost satisfiability” does not increase the number of
solutions by much. We introduce the smooth exponential-time hypothesis (smETH) which asserts
that for some integer k and constants a, γ, β and α < β/5, there is no 2βn-time algorithm for
solving k-CSPs over n variables and an constraints which are (γ, α)-smooth. (Here and throughout
the paper, we say that an algorithm A solves a promise search problem if given a Yes instance A
outputs a solution with probability 1

2 .)

Theorem 1.2. gapETH follows from smETH.

We observe that typical candidates for hard (satisfiable) CSPs turn to be smooth. This is true
for random k-CNFs whose clause-to-variable densitym/n is just below the satisfiability threshold,
and for CSPs arising from Goldreich’s one-way function. More generally, we show that the exis-
tence of a locally-computable exponentially-strong OWF yields a distribution over CSPs which
is concentrated over exponentially-hard smooth instances (Theorem 4.9). Combining with Theo-
rem 1.2, we conclude the following theorem.

Theorem 1.3. gapETH follows from the existence of any exponentially-strong locally-computable OWF
f : {0, 1}n → {0, 1}O(n).

The theorem holds even if the function is only one-way on a tiny (e.g., sub-exponential frac-
tion of the inputs) and even if constant locality holds only after some, possibly non-local, public
preprocessing. In addition to Goldreich’s original assumption [Gol11], we show that such OWFs
follow from the exponential hardness of random CNFs, and from a coding-related intractability
assumption of Druk and Ishai [DI14]. We view these results as providing strong evidence towards
the validity of gapETH. Getting rid of the smoothness condition and basing gapETH on ETH
remains an interesting open problem.

1.1.2 Sufficient conditions for elPRG

A function f : {0, 1}n → {0, 1}m is α-almost regular if the number of preimages of y ∈ Im(f) can
vary by a factor of at most 2αn, i.e., |f−1(y)| ∈ [s, s · 2αn], for some s = s(n).

Theorem 1.4. Suppose that there exists an NC0 function f : {0, 1}n → {0, 1}an which is 2βn-hard one-
way function and is α-almost regular for constants α < β/6 and a. Then elPRG holds. In particular,
there exists an exponentially-strong linear-stretch PRG with locality 4.

eral exponentially-hard OWF. The best known construction, due to [VZ12], blows up the number of variables by a
polylogarithmic factor.
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As special cases, elPRG follows from any exponentially-hard local OWF which is either regu-
lar, (i.e., α = 0) or is “at most 2αn-to-1” in the sense that no output has more than 2αn preimages. (In
fact, in the latter case, the relation between α and β can be slightly improved.) Baron et al. [BIO14]
presented, under similar conditions, a linear-time computable transformation from OWF to linear-
stretch PRG. Our construction (which heavily relies on their result) has the additional advantage
of being local.

Since (a variant of) Goldreich’s OWF satisfy the almost-regularity condition [BIO14], we can
plug it into the theorem and get the first exponentially-strong locally-computable PRG with linear-
stretch whose security can be reduced to a one-wayness assumption. The resulting locality (4) is
almost optimal since 2-local functions can be inverted in polynomial time [Gol11]. In fact, using
the aforementioned coding-based assumption of [DI14], we get an optimal locality of 3. Finally,
let us mention that Theorem 1.4 crucially relies on exponential hardness and so it is incomparable
to the reductions of [App13] which apply to the polynomial-hardness regime (and are tailored to
Goldreich’s concrete one-way function). On the other hand, Theorem 1.4 bypasses some of the
limitations of [App13]; Specifically, it can be based on a length preserving function f : {0, 1}n →
{0, 1}n (as opposed to random local functions with large output length in [App13]) and it yields a
PRG G which can be computed locally with no preprocessing (as opposed to a collection of local
PRGs in [App13]).

1.1.3 Other results

Our tools have several other applications both in cryptography and complexity theory. First we
derive a new isolation lemma that reduces the satisfiability of general k-CSPs to the satisfiability of
k-CSPs that are guaranteed to have at most a single satisfying assignment.

Theorem 1.5 (Local Isolation Lemma). There exists a randomized polynomial-time reduction that takes
a k-CSP ϕ over n variables andm constraints and map it into a new max(k, 3)-CSP ϕ′ over n′ = n+O(n)
variables andm′ = m+O(n) constraints such that: (1) If ϕ is unsatisfiable so is ϕ′; and (2) If ϕ is satisfiable
then, with probability Ω(1/n), the CSP ϕ′ is uniquely satisfiable.

In a classical work Valiant and Vazirani [VV86] presented a polynomial-time isolation lemma
which reduces k-SAT to a Unique Circuit-SAT instance ϕ′. One can further reduce ϕ′ to a k-
CSP instance (via the standard transformation), however this introduces a polynomial blow-up
in the number of variables. The resulting transformation therefore preserves polynomial hard-
ness but fails to preserve super-polynomial hardness. This problem was observed by Calabro
et al. [CIKP08], who described, for every ε > 0, an exp(εn)-time isolation lemma that maps k-
CSP ϕ into kε-CSP ϕ′ while preserving the number of variables. In contrast, our reduction runs in
polynomial-time (in fact, almost linear) but introduces a linear blow-up in the number of variables.
As an immediate corollary we conclude that a T (n)-time algorithm for Unique-k-CSP over n vari-
ables implies a poly(n) ·T (O(n))-time algorithm for k-CSP. In particular, for any f(n) = ω(log n) if
k-CSP cannot be solved by 2f(n)-time algorithms then Unique-k-CSP cannot be solved in 2f(Ω(n))

time.
Moving back to the cryptographic domain, our tools allow us to transform intractable coding-

related problems (such as decoding noisy codewords) defined over highly-efficient codes (i.e.,
computable by a linear-size circuit) into locally-computable cryptographic primitives (like OWFs
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and PRGs) while preserving exponential hardness. Examples for such intractable linear-time com-
putable codes were presented by Druk and Ishai [DI14] who proved a “win-win” result: If the
decoding problems turn out to be tractable this would lead to interesting progress in coding the-
ory (i.e., linear-time encodable and efficiently decodable codes that meet the Gilbert-Varshamov
bound.) Previously, exponentially-hard locally-computable primitives were mainly based on di-
rect local assumptions (such as Goldreich’s candidate). Our tools provide a new alternative ap-
proach for such constructions.

1.2 Techniques

We sketch the basic ideas underlying the proof of Theorem 1.2 (smETH ⇒ gapETH). As a
warm-up, we begin with an exponential-time Turing reduction from search k-CSP problem to
gap Circuit-SAT problem where the constraints are non-local. Later, we will show that a variant
of this reduction yields local CSPs.4 Our reduction strongly relies on list-decodable codes (or
equivalently general hardcore functions).

1.2.1 From search to approximate-decision via list-decoding

Our goal is find a satisfying assignment for a satisfiable k-CSP ϕ over n variables x = (x1, . . . , xn)
andm = O(n) constraints in time 2βn based on a 2β

′n-time algorithmA that distinguishes between
satisfiable instances and instances whose value is at most 1− γ. Let x∗ be a satisfying assignment
for ϕ. The basic strategy is to use A in order to get a noisy version of a codeword of x∗, and
then use a decoding procedure to recover x∗. For now, our code will be based on the Goldreich-
Levin multi-output hardcore function [GL89, Gol01] (which can be viewed as a list-decodable
code [STV01]).

Let GLw : Fn2 → Fs2 denote the Goldreich-Levin hardcore function that takes a vector x ∈ Fn2
and a random s × n binary matrix w, and outputs the matrix-vector product w · x. We think of
x as an information word and of (GLw(x))w∈Fs×n2

as a huge codeword of length 2sn over a 2s-size
alphabet. Given a matrix w, we would like to guess GLw(x∗) with advantage of at least 2−s + ε.
For this, we define for each possible z ∈ Fs2 a new (non-local) CSP

ϕz,w := ϕ ∧ (GLw(x) = z),

and reject z if the algorithm A claims that ϕz,w is “highly un-satisfiable”. Our guess for the value
GLw(x∗) is chosen uniformly among all strings z that pass the test. Assuming that the above
procedureB succeeds with probability 2−s+ε, we can use it as a sub-routine inside the Goldreich-
Levin decoding algorithm and recover x∗ by making poly(1/ε)2s calls to A. Since we started with
2βn-time hardness assumption, we can take ε = 2−Θ(n) and s = Θ(n) where the constants in Theta
notation are properly chosen.

To analyze the success probability first observe that z∗ = GLw(x∗) always passes the test since
ϕz∗,w is satisfiable (by the assignments x∗). We should further argue that not too many fake so-
lutions pass the test. Since we added a linear number of constraints, ϕz∗,w passes the test only if
there exists an assignment x′ that violates only γ′-fraction of the constraints in ϕ and γ′-fraction

4There are alternative simpler (polynomial-time Karp) reductions from k-CSP to gap Circuit-SAT, e.g., based on
error-correcting codes. However, we do not know how to “localize” them.
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of the constraints in GLw(x) = z, for some constant γ′. This means that z is γ′-close to GLw(x′)
for some assignment x′ which almost-satisfy ϕ. It follows that when ϕ has “few almost-satisfying
assignments” (here few stands for 2β

′′n for some sufficiently small constant β′′), the number of
“fake solutions” is exponentially sparse in Fs2 and the reduction succeeds (for a properly chosen
γ).

We complete the reduction by showing that smooth CSPs can be efficiently reduced to CSPs
with few almost-satisfying assignments using standard hashing techniques. Indeed, suppose that
there are T = 2t satisfying assignments and at most T · 2β′′n almost-satisfying assignments. Then,
we can add t (non-local) constraints of the form gv(x) = 0t where gv is sampled from a family {gv}
of pairwise independent hash functions. As a result, the set of almost satisfying assignments and
the set of satisfying assignments are likely to decrease by a factor of about T , and so we are likely
to get a satisfiable CSP with few almost-satisfying assignments.

1.2.2 A local reduction via randomized encoding

To make the reduction local we need locally-computable list-decoding codes and locally-computable
hash functions. Unfortunately, locally-computable functions cannot compute such objects, and we
are forced to compromise and use weaker tools. In particular, consider the randomized code ĥw(x; r)
whose input consists of a random string r ∈ {0, 1}ρ, in addition to w and x. For a random choice
of r, the distribution ĥw(x; r) encodes the value z = GLw(x) in the sense that ĥw(x; r) is distributed
uniformly over a set of 2ρ distinct strings Dz ⊂ {0, 1}ŝ. Each set Dz is associated with a single
z ∈ {0, 1}s, and together the sets {Dz}z∈{0,1}s form a partition of {0, 1}ŝ. The function ĥw(x; r) can
be therefore viewed as a perfect randomized encoding (RE) [IK00, AIK06] of the function GLw(x).

Although the function ĥw(x; r) is not a list-decodable code it can be used (with some quanti-
tative loss) in the above reduction. Unlike the “index” w, the randomness r = (r1, . . . , rρ) cannot
be fixed and is therefore treated as a sequence of new formal variables. That is, the instance ϕz,w
is defined over the variables x and r. Consequently, the reduction preserves exponential hardness
as long as the number of auxiliary variables, ρ, is at most linear in n. Similarly, we can replace
the pairwise independent hash functions with their RE at the expense of introducing additional
auxiliary variables. Overall the task of “localizing” the reduction boils down to constructing local
REs with linear complexity.

1.2.3 Local REs with linear complexity

The literature [IK00, AIK06] contains several constructions of local REs for any NC1 or even log-
space computable function f : {0, 1}n → {0, 1}s (cf. [Ish13] for a survey). However, the complexity
of all known constructions grows at least linearly with ns, the product of the input length and
the output length of the encoded function. (Typically, the complexity is also polynomial in the
description length of f with respect to some computational model). As a result, even for simple
functions, like GL, when the output length is linear in the input length, we do not have local REs
with sub-quadratic complexity (let alone linear). We bypass this limitation by presenting a new
construction of local REs for (slightly generalized) parity circuits whose gates compute only parity
operations. The REs that we get are 3-local and their complexity equals to the size of the circuit.
Hence we can efficiently handle any function that can be computed by a linear-size parity circuit.

Somewhat surprisingly, it turns out that this class of functions is more powerful than it seems.
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In a sequence of works it was shown that linear-size parity-circuits can compute asymptotically-
good error correcting codes [Spi96], pairwise independent hash functions [IKOS08], and, most
relevant to us, GL-type list decodable codes [BIO14]. By plugging-in our construction we get the
following theorem. (See Theorem 3.2 for a formal and slightly stronger statement.)

Theorem 1.6. For any s = O(n), there exists t = O(n) and a function h : {0, 1}n × {0, 1}t → {0, 1}s
with the following properties:

1. The collection {h(·, w)}w∈{0,1}t forms a pairwise-independent hash function.

2. The code x 7→ (h(x,w))w∈{0,1}t satisfies a Goldreich-Levin type list decoding properties: For any
ε > 0, the code is list-decodable for radius 1 − 2−s − ε with list of size L = O(n/ε2) and decoding
time of poly(n)L.

3. For anyw ∈ {0, 1}t the function hw(·) := h(·, w) has a perfect randomized encoding ĥw with locality
3 and complexity of O(n).

The theorem provides an unusual example for an RE which collectively encodes all the outputs
of a multi-output function (without encoding each output separately). As a complementary result
we prove that the bilinear function h(x,w) defined above (in which the value of w is not fixed and
does not appear as part of the output) cannot be locally encoded with complexity smaller than
Ω(ns) which is quadratic in the circuit size when s = Θ(n). To the best of knowledge, this is the
first super-linear lower-bound for the complexity of RE.

1.2.4 Putting everything together

Theorem 1.6 allows us to prove Theorem 1.2 via the above list-decoding framework. To prove The-
orem 1.4 we start with the well-known HILL transformation [HILL99] from OWF to PRG. For the
case of almost-regular exponentially-hard OWFs f : {0, 1}n → {0, 1}O(n), one can use a simplified
version of the transformation which essentially: (1) extracts (via hashing) randomness from the

distribution of x R← {0, 1}n conditioned on f(x); (2) generates Ω(n) pseudorandom bits via the use
of hardcore functions; and (3) applies a final hash function to get a pseudorandom distribution.5

We can instantiate the reduction with (several copies of) the function h from Theorem 1.6, and
then encode the reduction locally with the RE. Using the fact that an RE of a PRG is a PRG [AIK06],
we get a new local PRG whose seed is only linearly larger than the original PRG (since the RE has
linear complexity). As a result, exponential hardness is preserved.

1.3 Conclusion

We showed that, for CSPs with some regularity properties, one can locally reduce searching to
gap-distinguishing both in the worst-case and in the average-case. Our results are based on three
main insights: (1) Hardcore-functions can be used for establishing worst-case Gap-hardness in the
exponential regime; (2) Parity circuits can be encoded locally and with an overhead proportional to
their circuit size; and (3) Linear-size parity circuits can compute non-trivial combinatorial objects.

5Observe that the first two steps resemble the reduction from search-CSP to gap CSP. Indeed, our worst-case reduc-
tion was inspired by the analog cryptographic reduction.
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Our work leaves several interesting open problems. First, can we base gapETH and elPRG
on minimal assumptions (i.e., ETH and the existence of an exponentially-hard OWF in NC0)?
One natural way to address this question is to reduce general CSPs to smooth-CSPs. More gener-
ally, for a CSPϕ let us denote bywi the number of assignments that violate exactly i the constraints.
How do restrictions on the weight profile w = (w0, w1, . . . , wm) affect the computational hardness
of ϕ? Note that different promise problems (e.g., unique-CSP, gap-CSP, and smooth-CSP) can be
all presented as putting some simple restrictions on w.

Moving to the domain of REs, it will be interesting to understand which functions can be
encoded locally with linear complexity. Additionaly, we believe that REs of list-decodable codes
(or hash functions) should be further explored. Currently, we do not have a clean abstraction
of such objects and it is not fully clear under which circumstances list-decodable codes (or hash
functions) can be replaced by their REs. Concretely, our proof of Theorem 1.2 adopts the outline
sketched in Section 1.2 to work with REs in a somewhat ad-hoc way. This is very different from
the cryptographic setting where one can prove that REs preserves the security of the encoded
functions (e.g., “RE of PRG is a PRG”). Formulating similar “transference theorems” for other
(worst-case) uses of REs remains an interesting challenge.

Organization. The rest of the paper is organized as follows. Following some preliminaries (Sec-
tion 2), we describe the new RE construction and prove Theorem 1.6. We continue with sufficient
conditions for gapETH and a proof of the new isolation lemma (Section 4), and end-up with
sufficient conditions for elPRG (Section 5).

Acknowledgement. I am grateful to Irit Dinur for suggesting the question of basing gapETH
on Goldreich’s OWF. I also thank Oded Goldreich and Uri Feige for helpful discussions. Thanks
are also due to Pasin Manurangsi for sharing the results of [CCK+17].

2 Preliminaries

The Hamming distance (resp., relative Hamming distance) between a pair of equal-length strings
x, x′ is the number (resp., fraction) of coordinates in which x and x′ differ. We say that x is α-close
(resp., α-far) from x′ if their relative Hamming distance is at most α (resp., at least α). By default,
logarithms are always taken to base 2. We let H2(α) := −α logα − (1 − α) log(1 − α) denote the
binary entropy function, and often use the inequality

(
n
αn

)
≤ 2H2(α)n to upper-bound the volume

of an n-dimensional Hamming ball of radius αn. We use the following standard CSP terminology.
The value of an assignment x ∈ {0, 1}n for a CSP ϕ is defined to be the fraction of constraints that
x satisfies. The value of the instance ϕ is the maximum, over all assignments x, of the fraction of
satisfied constraints. We say that ϕ is γ-unsatisfiable if its value is at most 1− γ.

2.1 Cryptographic Definitions

Let Un denote the uniform distribution over {0, 1}n. An efficiently computable function f :
{0, 1}n → {0, 1}m(n) is (T, ε) one-way if for every T (n)-time probabilistic algorithm A the inver-
sion probability

Pr
y
R←f(Un)

[A(y) ∈ f−1(y)]
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is at most ε(n). (Statements like this mean that we consider a family f = {fn} for growing in-
put lengths, and we think of m,T and ε as functions of n. To simplify notation, we keep this
convention implicit throughout the paper.) We say that f is exponentially-hard OWF if it is
(2βn, 2−βn)-OWF for some constant β. This definition naturally generalize to collections of functions
F =

{
fw : {0, 1}n → {0, 1}m(n)

}
w∈{0,1}t(n) by defining the inversion probability of an algorithm A

to be
Pr

w
R←Ut(n),y

R←fw(Un)

[A(w, y) ∈ f−1
w (y)].

A distribution D0 is (T, ε)-indistinguishable from a distribution D1, if for every T (n)-time prob-
abilistic algorithm A the distinguishing advantage

|Pr[A(D0) = 1]− Pr[A(D1) = 1]|

is at most ε(n). The statistical distance between D0 and D1 is at most ε, if for every T , the distri-
butions are (T, ε)-indistinguishable. (In this case, we say that the distribution are ε-statistically
close). We say that f : {0, 1}n → {0, 1}m(n) is (T, ε) pseudorandom if (1) m(n) > n; and (2) the
distributions f(Un) and Um(n) are (T, ε)-indistinguishable. We say that f is exponentially-secure
PRG if it is (2βn, 2−βn)-PRG for some constant β. A collection F is (T, ε)-PRG if the distributions
(w, fw(Un)) and (w,Um(n)), where w R← Ut(n), are (T, ε)-indistinguishable.

We say that f is k-local if each of its outputs depends on at most k inputs. A function is locally
computable (equivalently in NC0) if it is k-local for some constant k that does not grow with the
input length. Similarly, a (possibly infinite) collection F of functions is local if all the functions in
the collection are k-local for some universal constant.

2.2 Circuits

Let F be a finite field (by default the binary field). An F-arithmetic circuit C over a set of input
variables X , and a set of output variables Y is a directed acyclic graph as follows: Every vertex
v in C is either of in-degree 0 (input gate) or of in-degree 2 (computation gate). Every vertex v of
in-degree 0 is labelled by either a variable in X or a field element in F. Every vertex v of in-degree
2 is labelled by either × (product gate) or + (sum gate). A subset of the computation nodes are
also labeled by output variables (each output variable appears in exactly one output node). Gates
which are neither input gates nor output gates are called internal gates. For two gates u and v, if
(u, v) is an edge in C, then u is called a child of v. The size of C, denoted |C|, is the number of gates
in C. A circuit C is skew with respect to a subset X ′ ⊂ X of the input variables, if every product
gate in C have at least one child which is labeled by a constant or by a variable in X ′. (This,
in particular, implies that the computed function is affine in the variables X \X ′.) An arithmetic
circuit over n input variables andm output variables defines a function f : Fn → Fm in the natural
way.

2.3 Randomized Encoding of Functions

Roughly speaking, a randomized encoding [IK00, AIK06] of a function f(x) is a randomized map-
ping f̂(x; r) such that for every input x the output distribution f̂(x; r) (induced by a random choice
of r) depends only on the output of f(x). Throughout the paper we employ perfect randomized en-
coding as defined below.
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Definition 2.1 (Perfect Randomized Encoding). Let f : {0, 1}n → {0, 1}s be a function. We say that
a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}ŝ is a perfect randomized encoding (PRE) of f if there exists a
deterministic decoding algorithm Dec and a randomized simulator Sim which satisfy the following:

• (Perfect correctness) For every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that Dec(f̂(x; r)) = f(x).

• (Perfect privacy) For every x ∈ {0, 1}n, the distribution f̂(x; r), induced by a uniform choice of
r
R← {0, 1}ρ, is identical to the distribution Sim(f(x)).

• (Balanced simulation) The distribution Sim(y) induced by choosing y R← {0, 1}s is identical to the
uniform distribution over {0, 1}ŝ.

• (Length preserving) The difference between the output length and the total input length of the encod-
ing, ŝ− (n+ρ), is equal to the difference, s−n, between the output length and the input length of f .
Equivalently, the randomness complexity ρ equals to the difference between the output complex-
ity ŝ of f̂ to the output length s of f .

We refer to the second input of f̂ as its random input and define the complexity of the RE to be its ran-
domness complexity ρ. (In the case of local perfect REs, this also measures the computational overhead of
computing the RE compared to computing f .)

Encoding collections. The definition naturally extends to the case where F is a collection of
functions

{
fz : {0, 1}n(z) → {0, 1}s(z)

}
z∈{0,1}∗ . In particular, we say that the collection F̂ , defined

by
{
f̂z : {0, 1}n(z) × {0, 1}ρ(z) → {0, 1}ŝ(z)

}
z∈{0,1}∗

, perfectly encodes F if for every z, f̂z perfectly

encodes fz . Furthermore, we always assume that the encoding is uniform in the sense that there
exists a polynomial-time algorithm which given z outputs a description (say as a boolean circuit)
of the encoding f̂z , its decoder Decz and its simulator Simz .

Combinatorial view. It is not hard to show (see [AIK06, Section 4]) that perfect REs satisfy the
combinatorial structure defined in the introduction: The space of encodings {0, 1}ŝ can be parti-
tioned to 2ρ size sets {Dy}y∈{0,1}s such that for every x the mapping g(r) = f̂(x; r) forms a bijection
from the randomness space {0, 1}ρ to the set Dy. (The injectivity part is sometimes referred to as
the unique randomness property). As a result, we get the following simple but useful claim.

Claim 2.2. Let h : {0, 1}n → {0, 1}s be a function and let ĥ(x, r) : {0, 1}n × {0, 1}ρ → {0, 1}ŝ be a
perfect randomized encoding of h with decoder Dec. Then for any ŷ ∈ {0, 1}ŝ and any subset X ⊂ {0, 1}n
the size of the set {

(x, r) : (x ∈ X) ∧ (x, r) ∈ ĥ−1(ŷ)
}

equals to the size of the set
X ∩ h−1(y),

where y = Dec(ŷ).
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2.4 Pairwise Independent Hashing and List-Decodable Codes

Let h : X × W → Z be a two argument function. In the following we think of the first input
(denoted by x) as the main input and on the second input (denoted by w) as a “key” or an “index”.
Correspondingly, we write hw(x) := h(x,w), and sometimes view h as a collection of functions
{hw : X → Z}w∈W . We say that h is pairwise independent hash function if for any x 6= x′ ∈ X , for a

random choice ofw R←W , the joint distribution of the random variables (hw(x), hw(x′)) is uniform
over Z2.

We can also think of h as a code which maps an information word x into a codeword of length
|W | over the alphabet Z defined by (hw(x))w∈W . That is, h provides a direct access to every
coordinate of the codeword. We say that a (possibly randomized) codeword oracle O : W →
Z ∪ {⊥} is (δ, ε)-correlated with a codeword of x ∈ X (or, in short, correlated with x) if

∀w ∈W,Pr[O(w) 6= ⊥] ≥ δ and Pr
w
R←W

[O(w) = h(x,w)|O(w) 6= ⊥] ≥ 1

|Z|
+ ε.

We say that h is (δ, ε)-list-decodable with κ oracle calls and list size λ if there exists an oracle algo-
rithmAwith running time λ·poly(log(|X|)) which, after at most κ oracle calls to an oracleOwhich
is (δ, ε)-correlated with some x ∈ X , generates a set Λ of size at most λ, such that Pr[x ∈ Λ] ≥ 1

2 .

Linear-time constructions Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS08] proved that there
exists a pairwise hash function h : {0, 1}n × {0, 1}t → {0, 1}s which can be computed by a linear-
size circuit which is skew with respect to the index argument. Baron, Ishai and Ostrovsky [BIO14]
(building on Holenstein, Maurer, Sjödin [HMS04]) showed that a variant of the IKOS construction
yields a locally-decodable code. In particular, the following theorem holds.

Theorem 2.3 ([IKOS08, BIO14]). For any s = O(n), there exists t = O(n) and a function h : {0, 1}n ×
{0, 1}t → {0, 1}s with the following properties:

1. h is pairwise-independent hash function.

2. For any ε, δ > 0 the code induced by h is (δ, ε)-list-decodable with complexity and list size of
O(n/δε2).

3. The function h can be computed by a linear-size circuit which is skew with respect to the second
argument.

3 Efficient Randomized Encoding for List-Decodable Codes

The following lemma (whose proof is deferred to Section 3.1) shows that linear circuits (or more
generally skew circuits whose skew variables are public) can be encoded by a linear size circuits.
For simplicity, the lemma is stated with respect to the binary field though the proof readily gener-
alizes to arithmetic circuits over arbitrary finite fields.

Lemma 3.1. Let h : {0, 1}n×{0, 1}t → {0, 1}s be a function which can be computed by a circuit of size S
which is skew with respect to the second argument of h. Then, for every w ∈ {0, 1}k the function hw(·) =
h(x,w) admits a 3-local PRE of complexity Θ(S). Moreover, the function H : {0, 1}n+t → {0, 1}s+t also
admits such an encoding.
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Combining the above with Theorem 2.3, we derive Theorem 1.6 (re-stated below in a a more
detailed form).

Theorem 3.2 (Theorem 1.6 restated). For any s = O(n), there exists t = O(n) and a function h :
{0, 1}n × {0, 1}t → {0, 1}s with the following properties:

1. h forms a collection of pairwise-independent hash function.

2. For any ε, δ > 0 the code induced by h is (δ, ε)-list-decodable with complexity and list size of
O(n/δε2).

3. For anyw ∈ {0, 1}t the function hw(·) := h(·, w) has a perfect randomized encoding ĥw with locality
3 and complexity of O(n). Moreover, this also holds for the function H(x,w) = (h(x,w), w).6

Remark 3.3. We will sometimes employ Theorem 3.2 with varying output lengths s (e.g., s is chosen at
random from {1, . . . , n}). Note that as long as we have some linear upper-bound on the largest possible
value of s (e.g., n), we get an upper-bound of cn, for some absolute constant c > 0, on the maximal
complexity of the RE.

It is natural to ask whether more general linear-size circuits admit local encodings with linear
complexity. By adopting an argument from [AIK09], we show that there is a degree-2 function
computable by a linear-size circuit that cannot be encoded locally with less than Ω(n2) complexity.
In fact, this holds for the IKOS pair-wise independent hash function h(x,w) (for the case where
the index w is not outputted and remains hidden).

Lemma 3.4. If h : {0, 1}n×{0, 1}t → {0, 1}s is pairwise independent then any perfect encoding ĥ(x,w; r)
of h with locality k must have complexity of at least sn/k. In particular, the function h defined in Theo-
rem 2.3, which is a degree-2 function with O(n) circuit size, cannot be encoded with constant locality with
complexity smaller than Ω(n2).

Lemma 3.4 forms the first quadratic separation between the circuit size and the complexity of
its local encoding.

Proof. Let ĥ(x,w; r) be a k-local encoding of h(x,w) with randomness complexity of ρ and output
complexity of ŝ = s+ ρ. Consider the bipartite dependency graph of the function ĥ in which there
are n+ t+ ρ input nodes and ŝ output nodes and each output is connected to the inputs on which
it depends. The graph has at most ŝk edges and therefore, by an averaging argument, there exists
an input xi which influences at most ` = ŝk/n outputs. Fix some input x (say to 0n). We claim that

given h(x,w) where w R← {0, 1}t, we can guess with probability 2−` the value of h(z, w) where z
denotes the string x with its i-th bit flipped. Indeed, we can apply the simulator to y = h(x,w)
and get a string ŷ which, for some r, equals to ŷ = ĥ(x,w; r). Then, replace the bits which are
influenced by the i-th input with a random `-bit string and get, with probability at least 2−`, a
string ẑ = ĥ(z, w; r). Finally, apply the decoder and get h(z, r). Since h is 2-wise independent
` ≥ s and so the theorem follows.

6The “Moreover part” will be useful for our cryptographic applications and will allow us to get a single local PRG
(as opposed to collection of local PRGs).
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3.1 Proof of Lemma 3.1

We prove the second (Moreover) part of the theorem by constructing a 3-local PRE Ĥ(x,w; r)
of the form (ĥ(x,w; r), w) whose randomness complexity equals to the number of internal gates
in the skew circuit that computes H . The first part then follows by considering the encoding
ĥw(x; r) = ĥ(x,w; r).

The encoding: For every internal gate (which is not an input or an output gate) we allocate
a random input ri. For ease of notation, we also define “dummy” variables for input and output
gates. Specifically, for an input gate i, we set ri to the value of the corresponding label (an x
variable, a w variable or a constant), and for an output gate i we let ri = 0. For every non-input
gate i whose children are the gates j and `, we output the three local function ŷi = rj � r` − ri
where � stands for addition if i is an addition gate and for multiplication if i is a multiplication
gate. We also output the values w = (w1, . . . , wt) of the “key” variables. Observe that the number
of random inputs, ρ, is exactly the number of internal gates, and the number of outputs is exactly
ρ+ s+ t, as required.

Correctness: Fix some input (x,w) and randomness r and let (ŷ, w) denote the output of the
encoding. Let vi = vi(x,w) be the value induced on the i-th gate of H by the input (x,w). Our
goal is to decode the value vi of the i-th output wire of H given the encoding w and ŷ. For this it
suffices to show that we can compute the value gi = vi(x,w) − ri for each gate i (since ri is taken
to be zero for output variables). We compute these values one-by-one by traversing the circuit in
topological order as follows.

• If i is an input/constant gate then we observe that gi = 0.

• If i is an addition gate whose children are the gates j and `, we compute gi by

gj + g` + ŷi = vj − rj + v` − r` + rj + r` − ri = vj + v` − ri = vi − ri,

where ŷi is the output of the encoding which is associated with the i-th gate of H .

• If i is a multiplication gate whose children are the gates j and `, then ` must be an input gate
whose value v` is known as part of the encoding (i.e., it is one of the w variables or just a
field constant). We therefore output the value v` · gj + ŷi. Recalling that v` = r`, the output
simplifies to v`(vj − rj) + rj · v` − ri = v`vj − ri = vi − ri.

Privacy: Let M denote the set of internal gates in H (which are neither input nor output gates)
and let O denote the set of output gates. Given (y, w) the simulator samples an encoding as fol-
lows: (1) Sample (ŷi)i∈M uniformly at random; (2) Apply the decoder to w, (ŷi)i∈M and compute,
for each internal gate i the value gi, and for each output gate o set ŷo = gi + gj − yo where i and j
are the children of the o-th output. (3) Output (ŷ, w).

First observe that the simulator maps the uniform distribution over {0, 1}s+t to the uniform
distribution over {0, 1}ρ+s+t, and therefore it is balanced. Next, we prove that the simulator per-
fectly simulates the encoding. Fix some x and w. Consider the distribution Ĥ(x,w; r) = (ŷ, w)
induced by a random choice of r. Observe that the joint distribution of (ŷi)i∈M is uniform since
each ŷi can be written as fi(w, x, r) − ri, where fi does not depend on ri. Hence, the simulator
perfectly samples the prefix (ŷi)i∈M . Moreover, both in the simulation and in the actual encoding
the suffix ((ŷo)o∈O, w) is uniquely determined by the prefix of the encoding (ŷi)i∈M and by the
output value (y, w) = H(x,w), and therefore the two distributions are identical.
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4 Sufficient conditions for gapETH

4.1 fasETH implies gapETH

In this section we base Gap-ETH on the assumption that it is exponentially hard to solve ϕ even
under the promise that ϕ has only “few almost-satisfying” assignments.

Assumption 4.1 (fasETH). The fasETH(k, a, β, γ, α) assumption asserts that there is no 2βn-time
algorithm that solves k-CSPs over n variables and m ≤ an constraints with at most 2αn assignments of
value larger than 1 − γ. The fasETH assumption asserts that fasETH(k, a, β, γ, β/5) holds for some
integer k and some constants a, β, γ.

Lemma 4.2. fasETH implies gapETH. In particular, if fasETH(k, a, β, γ, β/5) holds then, for some
γ′ > 0, there is no 2βn/5-time algorithm that distinguishes between satisfiable k-CSPs and γ′-unsatisfiable
k-CSPs.

Proof. Let b = β/5 and let h : {0, 1}n × {0, 1}t → {0, 1}bn be the list decodable code promised
by Theorem 3.2. For any given w ∈ {0, 1}t, let hw(x) := h(x,w) and let ĥw(x; r) be a perfect
randomized encoding of hw with randomness complexity of cn and output complexity of (b+ c)n
for a constant c = c(b). (In fact, by Remark 3.3, c can be treated as a universal constant independent
of b.)

Assume, towards a contradiction, that there exists a 2βn/5-time algorithm A which distin-
guishes between satisfiable k-CSPs and γ′-unsatisfiable k-CSPs for some constant γ′ < γ

a+b+c (ad-
ditional restrictions on γ′will be added later). We useA to find a satisfying assignment for a k-CNF
ϕ over n variables and m ≤ an constraints which has no more than 2βn/5 assignments of value
larger than 1 − γ. Specifically, we show how to convert A to an oracle O which is (δ ≥ 2−bn, ε ≥
2−βn/4)-correlated with the h-codeword of a satisfying assignment x ∈ {0, 1}n of ϕ. Each query to
Owill be emulated in time poly(n) and a single call to the algorithmA on a k-CSP over n′ = (1+b)n

variables. Therefore, we can then recover x in time poly(n)·2
βn′
5 · 1

δε2
= poly(n)2(0.9β+β2/25)n < 2βn,

in contradiction to our hypothesis.
The oracle O:

• Given w ∈ {0, 1}t, sample ẑ R← {0, 1}(b+c)n and define a k-CSP ψw,ẑ over n′ = (1 + b)n
variables x = (x1, . . . , xn), r = (r1, . . . , rcn) and m′ = m+ (b+ c)n ≤ (a+ b+ c)n constraints
by ψw,ẑ := ϕ ∧ (ĥw(x; r) = ẑ).

• If A claims that the value of ψw,ẑ is smaller than 1 − γ′ output ⊥; Otherwise, output z =

Decw(ẑ) where Decw is the decoder of the encoding ĥw.

Analysis. The running time of O is evident from its description. Fix some assignment x ∈ {0, 1}n
that satisfies ϕ. We claim that the oracle is (δ, ε)-correlated with x. Fix w and let z = hw(x).
First, observe that if ẑ hits the set G =

{
ĥw(x; r) : r ∈ {0, 1}cn

}
then, by perfect correctness, the

algorithm outputs the correct answer. Also, recall that, since the encoding is perfect, the size of
the set G is exactly 2cn. We conclude that δ ≥ |G|/2(b+c)n ≥ 2−bn, as required.

We move on to analyze ε. Let Ẑ ⊂ {0, 1}(b+c)n be the set of strings ẑ for which ψw,ẑ is (1−γ′)m′
satisfiable. Observe that ẑ ∈ Ẑ only if there exists an assignment (x′, r′) such that (1) x′ satisfies at
leastm−γ′m′ of the constraints of ϕ and (2) the string ẑ differs from the string ĥw(x′; r′) in at most
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γ′m′ coordinates. Recall that γ′ < γ
a+b+c , and therefore, by assumption, (1) holds for at most 2βn/5

strings x′. Denoting this set by X , it holds, by the unique randomness property of the perfect RE,
that the set Ẑ0 =

{
ĥw(x; r) : x ∈ X, r ∈ {0, 1}cn

}
is of size at most 2(c+β/5)n. Since Ẑ consists of all

the strings of length (b + c)n which differ in at most γ′m′ ≤ γ′(a + b + c)n locations from some
string in Ẑ0, it follows that

|Ẑ| ≤ |Ẑ0| · 2H2(
γ′(a+b+c)

b+c
)(b+c)n ≤ 2n(c+β/5+H2(

γ′(a+b+c)
b+c

)(b+c)),

which is upper-bounded by 2βn/4+cn for sufficiently small γ′. We conclude that ε = |G|/|Ẑ| ≥
2−βn/4, as required.

4.2 Smooth-ETH implies Gap-ETH

In this section we base Gap-ETH on the assumption that it is exponentially hard to solve ϕ under
the promise that the number of “almost-satisfying” assignments of ϕ is not “much larger” than
the number of satisfying assignments.

For a CSP ϕ and a real number ε ∈ [0, 1], we let satε(ϕ) denote the number of assignments
that satisfy at least ε-fraction of the constraints of ϕ. In particular, sat1(ϕ) is simply the number of
satisfying assignments. We say that ϕ is (γ, α)-smooth if

sat1−γ(ϕ)

sat1(ϕ)
≤ 2αn.

Assumption 4.3 (smETH). The smETH(k, a, β, γ, α) asserts that there is no 2βn-time algorithm for
solving k-CSPs over n variables and an constraints which are (γ, α)-smooth. The smETH asserts that
smETH(k, a, β, γ, α) holds for some integer k and constants a, γ, β and α < β/5.

Our goal is to show that smETH implies gapETH. By Lemma 4.2, it suffices to derive
fasETH from smETH. We achieve this goal via the following procedure which sparsifies the
set of almost-satisfying assignments of a CSP ϕ by a factor of roughly sat1(ϕ).

Construction 4.4 (The transformation A). Given a k-CSP ϕ over n variables and m constraints output
a max(k, 3)-CSP ϕ′ over n+O(n) variables and m+O(n) constraints defined as follows:

1. Sample s ∈ {2, . . . , n+ 1}, and let h : {0, 1}n × {0, 1}t → {0, 1}s be the pair-wise independent
hash function promised by Theorem 3.2. Sample a string y R← {0, 1}s and a key w R← {0, 1}k for h.

2. Output
ϕ′ =

(
ϕ ∧ (ĥw(x; r) = ŷ)

)
,

where ĥw is the 3-local perfect RE of ĥw and ŷ is sampled by applying the encoding’s simulator to y.

Since ϕ′ contains ϕ as a sub-formula, the transformation preserves unsatisfiability.

Lemma 4.5. For every choice of randomness, ifϕ is unsatisfiable so isϕ′. Moreover, a satisfying assignment
x′ for ϕ′ can be efficiently transformed (by projection) to a satisfying assignment x for ϕ.

We also prove the following isolation property.
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Lemma 4.6. If ϕ is satisfiable and s = dlog(sat1(ϕ))e + 1 then, with probability of at least 1/8 over the
choice of (w, ŷ), the CSP ϕ′ has a unique satisfying assignment.

Proof. Let S be the set of assignments that satisfy ϕ. Fix an arbitrary7 string y ∈ {0, 1}s. Valiant
and Vazirani [VV86] proved that if |S| ∈ [2s−2, 2s−1] then, with probability at least 1/8 over the

choice of w R← {0, 1}t, it holds that

∃ unique x ∈ S such that hw(x) = y. (1)

By Claim 2.2, for every w which satisfies (1), there exists a unique x ∈ S and a unique r for which
ĥw(x, r) = ŷ. The lemma follows.

Theorem 1.5 follows by noting that, for a satisfiable CSPϕ, a random s equals to dlog(sat1(ϕ))e+
1 with probability Ω(1/n).

In the following lemma, we show that A sparsifies the set of almost-satisfying assignments.

Lemma 4.7. For every constants a > 0, γ ∈ [0, 1] and ε > 0 there exists a constant γ′ > 0 for which the
following holds. Suppose that ϕ has m = an constraints, and that s = dlog(sat1(ϕ))e + 1. Then, with
probability 1− o(1) over the choice of w and ŷ,

sat1−γ′(ϕ
′) ≤ 2εn

sat1−γ(ϕ)

sat1(ϕ)
.

Proof. Fix a, γ and ε. Let S be the set of satisfying assignments of ϕ and let B be the set of assign-
ments that satisfy at least 1 − γ fraction of the constraints in ϕ. Recall that s = dlog(|S|)e + 1. Let
ŝ denote the output length of the encoding ĥw and let ρ denote its randomness complexity. Recall
that ρ = Θ(n) and that ŝ = ρ + s = Θ(n), and note that ϕ′ is a CSP over n + ρ variables and over
an + ŝ constraints. Let δ > 0 be a constant for which

(
ŝ
δŝ

)
≤ 2εn/2 and let γ′ > 0 be a constant

smaller than both (γa)/(a+ ŝ/n) and (δŝ/n)/(a+ ŝ/n).
By the choice of γ′, it follows that if an assignment (x, r) violates at most γ′-fraction of the

constraints in ϕ′ then
x ∈ B and ĥw(x, r) is δ-close to ŷ. (2)

To prove the lemma, we show that, with high probability over the choice of w and ŷ, the number
of such assignments is at most |B|2εn−s ≤ 2εn|B|/|S|. For z ∈ {0, 1}s let

Bz = {x ∈ {0, 1}n : x ∈ B ∧ hw(x) = z} .

Observe that, for each z, the expected size of Bz (over the choice of w) is |B|2s . Call z heavy if the size
of Bz is larger than its expectation by a multiplicative factor of 2εn/2. By Markov’s inequality, each
z is likely to be heavy with probability of at most 2−εn/2, and so the expected number of heavy
z’s is at most 2s−εn/2. Call w good if the total number of heavy z’s is at most 2s−εn. By another
application of Markov’s inequality, almost all w’s (except for a negligible fraction) are good.

Fix some good w. Call ŷ good if it lands within a distance of at least δŝ from any string ẑ
which decodes to a heavy string z. Recall that ŷ is sampled independently from w by applying

7Indeed, for this claim, we could use a simpler variant of A which sets y to be the fixed zero string and sets ŷ to be
some fixed encoding of it.
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the simulator on a uniformly chosen y R← {0, 1}s. Since the encoding is perfect, this means that ŷ
is uniformly distributed over {0, 1}ŝ. Therefore, the probability that ŷ lands δ-close to some string
ẑ which decodes to a heavy string z is at most

2s−εn · 2ρ ·
(
ŝ
δŝ

)
2ŝ

≤ 2s−εn+ρ+εn/2−ŝ = 2−εn/2.

It follows that that, except with negligible probability, ŷ is good.
We can now complete the argument. Fix some goodw and ŷ. The number of assignments (x, r)

that satisfy (2) is at most∑
ẑ∈{0,1}ŝ:∆(ẑ,ŷ)≤δ

∣∣∣{(x, r) : x ∈ B ∧ ĥw(x, r) = ẑ
}∣∣∣ ≤ ∑

ẑ∈{0,1}ŝ:∆(ẑ,ŷ)≤δ

|BDec(ẑ)|

≤
(
ŝ

δŝ

)
|B|2(εn/2)−s

≤ |B|2εn−s,

where Dec denotes the decoder of the RE, the first inequality follows from Claim 2.2, the second
inequality follows from the goodness of ŷ and the last inequality follows from our choice of δ.

We can now prove that smETH implies fasETH.

Theorem 4.8. smETH implies fasETH.

Combined with Lemma 4.2, Theorem 4.8 implies Theorem 1.2.

Proof. Suppose that smETH(k, a, β, γ, α) holds for some integer k and constants a, γ, β and α <
β/5. Let ε = 1

2(β/5−α) and let cn (resp., σn) be an upper-bound on the number of variables (resp.,
constraints) added by the transformation A (defined in Construction 4.4) when applied to a CSP
with n variables. We will prove that fasETH(k, a′, β′, γ′, β′/5) holds for the constants a′ = a + σ,
β′ = (β − ε)/(1 + c), some constant γ′ > 0.

Assume, towards a contradiction, that fasETH(k, a′, β′, γ′, β′/5) does not hold. We show that,
in time 2βn, it is possible to find a satisfying assignment for any (γ, α)-smooth satisfiable k-CSP ϕ
over n variables and m = an constraints. First apply A to ϕ and get a k-CSP ϕ′ over n′ = (1 + c′)n
variables and m′ ≤ m+σn ≤ a′n′ constraints where 0 ≤ c′ ≤ c. We condition on the event that the
parameter s is chosen to be dlog(sat1(ϕ))e+1, which happens with probability 1/n. By Lemmas 4.6
and 4.7, with constant probability over the choice of (w, ŷ), the resulting CSP ϕ′ is satisfiable and
has at most

2εn
sat1−γ(ϕ)

sat1(ϕ)
≤ 2εn+αn = 2n

′(α+ε)/(1+c′) ≤ 2n
′β′/5

assignments that satisfy more than 1 − γ′ of the constraints for some γ′(ε, a) > 0. Assuming that
fasETH(k, a′, β′, γ′, β′/5) does not hold, we can find, with probability 1

2 , a satisfiable assignment
x′ for ϕ′ in time 2β

′n′ and, by Lemma 4.5, project it into a satisfying assignment x to ϕ. Overall,
the algorithm has a success probability of Ω(1/n), and so by standard repetition, we can increase
the success probability to 1

2 . The total running time is poly(n) · 2β′n′ ≤ poly(n) · 2(β−ε)n < 2βn,
contradicting smETH(k, a, β, γ, α).
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4.3 Exponentially-hard Local One-way Functions imply Gap-ETH

We prove that smETH follows from the existence of locally-computable function which is weakly
hard to invert for 2Ω(n)-time algorithms. In fact, the theorem holds even for the case of NC0

collections.

Theorem 4.9. If there exists a collection of NC0 functions F =
{
fw : {0, 1}n → {0, 1}O(n)

}
which

cannot be inverted by 2Ω(n)-time algorithms with inversion probability better than 1−2−o(n), then smETH
holds.

To prove the theorem we show that, for any function f , the CSP distribution induced by in-

verting f on a random image y R← f(Un), is almost surely smooth.

Claim 4.10. Let f : {0, 1}n → {0, 1}m be a function, γ, α > 0 be positive reals and ε = α− (m/n)H2(γ).
Then, with all but 2−εn probability over y R← f(Un), the constraint satisfaction problem f(x) = y is
(γ, α)-smooth.

Proof. Let w(y) = Pr[y = f(Un)] denote the weight of y ∈ {0, 1}m under the distribution f(Un).
We define a directed graph over the image of f where y′ → y is an edge if y is γ-close to y′ and
w(y) > w(y′)2αn. Note that the latter condition makes the graph acyclic. Also, by definition, the
CSP f(x) = y is (γ, α)-smooth if and only if y is a sink in the graph. We would like to show that all
but r = 2−εn fraction of the weight is assigned to sinks. For this, it suffices to show that for each
sink y, ∑

y′:∃ path from y′ to y

w(y′) ≤ w(y) · r

1− r
.

Decomposing the sum according to the length i of the path from y′ to y, and noting that the in-
degree of each node is upper-bounded by 2mH2(γ), we can upper-bound the LHS by∑

i≥1

(2mH2(γ))iw(y)(2−αn)i = w(y)
∑
i≥1

(2mH2(γ)−αn)i,

using the standard formula for the sum of infinite geometric series, we get an upper-bound of
w(y) r

1−r , as required.

We can now prove the theorem.

Proof of Theorem 4.9. Let F = {fw : {0, 1}n → {0, 1}an}w∈{0,1}t(n) be a collection of k-local which
cannot be inverted by 2βn-time algorithms with inversion probability better than 1 − 2−o(n). Fix
some β′ < β and some α < β′/5 and let γ > 0 be a constant for which H2(γ) < α/a. Set ε =
α − aH2(γ) > 0. We will show that if smETH(k, a, β′, γ, α) does not hold then, for every w ∈
{0, 1}t, the function fw can be inverted in time 2βn with probability 1− 2−Ω(n). Fix some w and let

f = fw. By Claim 4.10, with probability 1 − 2−εn over y R← f(Un), the k-CSP f(x) = y is (γ, α)-
smooth. Hence, an algorithm which violates smETH(k, a, β′, γ, α) immediately yields a 2β

′n-time

algorithm A that, with probability 1 − 2−εn over y R← f(Un), finds a preimage x′ ∈ f−1(y) with
probability 1/2 (over its internal coin tosses). A standard repetition of poly(n) times yields an
algorithm that inverts the function with all but 2−Ω(n) probability in time poly(n)2β

′n < 2βn. The
theorem follows.
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4.4 Random CNFs are smooth

As mentioned in the introduction, Goldreich’s function is conjectured to be exponentially hard
to invert and thus implies gapETH. (Another coding-based candidate appears in Section 5). In
this section, we present other sufficient conditions based on the conjectured hardness of random
CNFs.

Let Un,m,k denote the uniform distribution over k-CNFs with n variables and m constraints
where the clauses are chosen uniformly, independently and without replacement among all

(
n
k

)
2k

non-trivial clauses of length k, i.e., clauses with k distinct, non-complementary literals. It is be-
lieved that Un,m,k is hard-to-satisfy when the clause density r = m/n is slightly below the satisfia-
bility threshold which is about 2k ln 2. (See [AC08, ACR11] and the survey [Ach09]). We show that
such instances are likely to be smooth, and therefore the exponential hardness of this distribution
implies gapETH.

Lemma 4.11. There is a sequence of εk → 0 for which the following holds for every k ≥ 8 and every
r < (1−εk)2k ln 2. For every γ > 0, a randomly chosen k-CNF ϕ R← Un,m=drne,k is, with high probability,
(α, γ)-smooth where α = k23−k ln 2 + r(3H2(γ)− γ log(1− 2−k)).

Proof. Let ϕ R← Un,m=drne,k and define µm = 2n(1− 2−k)m to be the expected number of satisfying
assignment of ϕ. First we upper-bound the number of (1 − γ)-satisfying assignments. Fix some
subset S ⊂ [m] of size m′ = (1 − γ)m and consider the restriction ϕS of ϕ to the clauses in S. By
Markov’s inequality, the probability that ϕS has more than µm′B satisfying assignments is at most
1/B. Taking B = 22H2(γ)m, and applying a union-bound over all S’s, we conclude that, with high
probability,

sat1−γ(ϕ) <

(
m

(1− γ)m

)
Bµm′ ≤ 23H2(γ)mµm′ .

On the other hand, Lemma 22 of [AC08] shows that (when r satisfies the above conditions), with
high probability,

sat1(ϕ) ≥ µm2−(ln 2)k23−kn.

By a union bound, we conclude that, with high probability,

sat1−γ(ϕ)

sat1(ϕ)
≤ 2αn

where
α = k23−k ln 2 + r(3H2(γ)− γ log(1− 2−k)),

as required.

Noting that α goes to zero when k increases and γ decreases, we derive the following theorem.

Theorem 4.12. Suppose that there exist constants β > 0 and ε > 0 such that for all sufficiently large k’s,
there is no 2βn-time algorithm that with constant probability finds a satisfying assignment for ϕ R← Un,m,k
where m = n(1− ε)2k ln 2. Then, gapETH holds.

The hypothesis assumes that k-CNFs do not become “easier” when k grow. This looks conserva-
tive since the complexity of known exponential-time algorithm actually grows with k.
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Proof. By Theorem 4.8 it suffices to show that smETH holds. Fix some constant α < β/5. By
Lemma 4.11, for sufficiently large k and sufficiently small γ, it holds that 1 − ε < (1 − εk),

and therefore ϕ R← Un,m=drne,k is, with high probability, (γ, α)-smooth. If smETH(k, a = (1 −
ε)2k ln 2, β, γ, α) does not hold then we can solve, with high probability, a random k-CNF sam-
pled from Un,m,k in time 2βn, in contradicting the theorem’s hypothesis.

4.5 Local OWF from Planted CNFs

Another candidate hard distribution over k-CNFs is the planted distribution (again with clause-
to-variables density slightly below the satisfiability threshold). We show that under this hardness
assumption, one can get a local OWF. (The results of Achlioptas, Coja-Oghlan [AC08] establish
some relation between planted CNFs and random CNFs, however, it is not clear to us whether the
relation is strong enough to carry over exponential hardness.)

The planted distribution. Let Pn,m,k denote the planted distribution over k-CNFs with n variables

andm constraints where a k-CNF is chosen by first selecting a random assignment x R← {0, 1}n and
then selecting each clause uniformly, independently and without replacement among all

(
n
k

)
(2k −

1) non-trivial clauses of length k that are satisfied by x.
We note that the intractability of Pn,m,k easily yields a locally-computable collection of one-way

function
{
fw : {0, 1}n+m′k → {0, 1}m′(k+1)

}
where m′ = m/(1− 2−k). The collection is defined as

follows:

• Public index: m′ random distinct k-subsets of [n] := {1, . . . , n}, denoted byw = (S1, . . . , Sm′).
We assume that each set Si is ordered and let Si,j denote the j-th entry of Si.

• Private input: x ∈ {0, 1}n and m′ random k-bit strings z1, . . . , zm′ . We let zi,j denote the j-th
bit of zi.

• The output of the function is parsed a m′ blocks of length k + 1 where the i-block equals to
(1zi) if the boolean expression (zi,1 − xSi,1) ∨ . . . ∨ (zi,k − xSi,k) evaluates to true; and the
output is 0k+1 otherwise.

Clearly, for every fixing of w, the function fw is 2k-local. Note that for uniformly chosen w, x and
z, the distribution (w, y = fw(x, z)), conditioned on seeing b blocks of zeroes, is just an encoding of
a sample ϕw,y from Pn,m−b,k. Moreover, if (x, z) is a preimage of y under fw then the assignment
x satisfies ϕw,y. Note that b takes the value 2−km′ with Ω(1/

√
n) probability. We conclude that

if T -time algorithms cannot solve a random instance ϕ R← Pn,m,k with probability better than ε,
then the collection cannot be inverted in time T with probability better than ε/

√
n. If ε is sub-

exponential in n, then so is ε′. By Theorem 4.9, we conclude that the exponential intractability of
the planted distribution implies gapETH.
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5 Cryptographic Applications

5.1 Exponentially-strong local PRGs with linear stretch

In this section we show that an exponentially-strong PRG with linear stretch and constant locality
can be based on an “almost”-regular 2βn-hard one-way function f : {0, 1}n → {0, 1}O(n) in NC0.
We begin with a non-local construction which can be viewed as a simplified version of the HILL
construction [HILL99] (see also [Gol01, Chapter 3.5.2]).8 The idea is to append to y = f(x) about
s1 = σn-bits of entropy y1 from the input via hashing (where each image of f is assumed to have
at least 2σn preimages), to append Ω(βn) hardcore bits y2, and to apply a randomness extractor to
y and y1 in order to recover almost all n bits of entropy from x. Formally, we employ the following
construction.

Construction 5.1. Let f : {0, 1}n → {0, 1}m be a function and s1, s2, s3 be parameters. Instantiate
Theorem 3.2 with input n and output lengths s1, s2, s3 and denote the resulting functions by h : {0, 1}n ×
{0, 1}t1 → {0, 1}s1 , C : {0, 1}n × {0, 1}t2 → {0, 1}s2 and E : {0, 1}n+s1 × {0, 1}t3 → {0, 1}s3 . Define
the function

Gf : {0, 1}n+t1+t2+t3 → {0, 1}t1+t2+t3+s2+s3

as follows:
Gf (x,w1, w2, w3) = (w1, w2, w3, Ew3(f(x), hw1(x)), Cw2(x)).

We say that f : {0, 1}n → {0, 1}an is (σ0, σ1)-regular if for every y in the image of f ,

σ0 ≤
1

n
| log |f−1(y)| ≤ σ1.

We say that f is α-almost regular if it is (σ, σ + α)-regular for some σ ≥ 0.

Theorem 5.2. Let f : {0, 1}n → {0, 1}an be a 2βn-hard one-way function which is (σ, σ + β/6 − γ)-
regular for some positive constants σ and γ > 0. Then, the functionGf (defined in Construction 5.1) yields
an exponentially-strong PRG with linear stretch whenever

s1 ∈ [n(σ − γ/4), n(σ − γ/8)]

s2 ∈ [n(β/6− γ/4), n(β/6− γ/8)]

s3 ∈ [s1 + n(1− σ − β/6 + γ − γ/4), s1 + n(1− σ − β/6 + γ − γ/8)].

The constant 8 is arbitrary and can be replaced by any constant larger than 4. The theorem
(whose proof is postponed to Section 5.3) yields the following result.

Corollary 5.3 (Theorem 1.4 restated). If there exists an NC0 function f : {0, 1}n → {0, 1}an which is
2βn-hard one-way function and is α-almost regular for α < β/6 then there exists an exponentially-strong
PRG in NC0 with linear stretch. In fact, such a PRG exists even with locality 4.

We mention that 4-local PRGs cannot have super-linear stretch even if one requires only poly-
nomial hardness [MST06]. Also, let us mention that given an exponentially-secure PRG with
constant locality and linear stretch of m = (1 + ε)n for some constant ε > 0, one can get (e.g., via
a tree-like construction) a PRG with linear stretch of m = Cn for arbitrary constant C > 0, while
preserving exponential hardness, and at the expense of increasing the locality to a larger constant.

8The almost-regularity and the exponential hardness assumptions makes the OWF-to-PRG transformation signifi-
cantly easier.
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Proof. Assume that f is (σ, σ + β/6 − γ)-regular and for now assume that σ is known. Then, by
Theorem 5.2, there exists a 2β

′n-secure PRG, G(x,w), with linear stretch. We will show that G can
be encoded locally with linear complexity. First, observe that G(x,w) can be written as

H(x, z, w) = (w, g(x, z, w)), where z = f(x)

and g is computable by an O(n)-size circuit which is skew with respect to the argument w. By
Lemma 3.1, we can perfectly encodeH(x, z, w) by a 3-local encoding Ĥ(x, z, w; r) with complexity
of O(n). Plugging in z = f(x), we derive (by the so-called substitution Lemma, cf. [AIK14]) a
perfect encoding Ĝ(x,w; r) = Ĥ(x, f(x), w; r) for G(x,w) with constant locality (at most 3 times
larger than the locality of G) and linear complexity. By Lemma 6.3 of [AIK06], the function Ĝ,
viewed as a single-input function, is a 2β

′n − poly(n)-strong PRG with additive stretch of Ω(n).
Since the input length n′ of Ĝ is linear in n, both exponential hardness and linear stretch are
preserved, and we get an exponentially-strong PRG in NC0 with linear stretch.

We move on to the case where the parameter σ is unknown. The main observation is that the
“allowed window” for s1, s2, s3 is of width γ/8n. As a result, the parameters can be chosen based
on a γ/8n-additive approximation of σ. In particular, by trying all values of the form σi = iγ/8n
for i ∈ {1, . . . , 8/γ}, we get a constant number of NC0 functions Ĝ1, . . . , Ĝ8/γ out of which at
least one is an exponentially-strong PRG with linear-stretch. Using a constant number of self-
compositions, we can increase the stretch from n′-bits to Cn′ for arbitrary large constant C while
preserving (larger) constant locality. Now we can combine the candidate PRGs by applying them
on independent seeds and XOR-ing their output. The overall input length is n′′ = 8n′/γ = O(n′).
By takingC > 8/γ′ the output is still linearly larger than the input. Moreover, a standard argument
shows that exponential security in n′ (and therefore also in n′′) is preserved. Overall, the resulting
mapping still has (large) constant locality. We can re-encode this PRG via the 4-local perfect RE
of [AIK06] which has only linear complexity when applied to an NC0 function. This yields a
4-local linear-stretch PRG with exponential hardness.

Remark 5.4. We note that Corollary 5.3 yields a black-box transformation from any OWF that satisfies the
stated hardness and regularity conditions to a linear-stretch PRG. The reduction is both local and preserves
exponential hardness. Similarly, it can be shown that the RE Ĥ(x,w; r) of the function H(x,w) from The-
orem 3.2 forms a general local hard-core function that, for any exponentially-hard OWFs, outputs linearly
many exponentially-secure pseudorandom bits while consuming only a linear number of random bits.

5.2 Reducing the locality to 3

The locality achieved in Corollary 5.3 is almost optimal. We can get optimal locality of 3 by com-
bining the techniques of [AIK08] together with an assumption of Druk and Ishai [DI14]. PRGs
with locality 3, sublinear stretch, and polynomial security were previously constructed based on
the intractability of decoding random linear code [AIK09].

In the following, we say that an ensemble C of [m,n] linear codes is (T, ε)-pseudorandom for

noise rate µ if the distribution (C,Cx + e), is (T, ε)-indistinguishable from (C, y), where C R← C,

x
R← {0, 1}n, y R← {0, 1}m and e is a noise vector that each of its entries is chosen to be 1 indepen-

dently with probability µ.
Druk and Ishai [DI14] presented an ensemble of codes with the following properties. For every

constant noise rate µ and every linear codeword length m = O(n), the ensemble is conjectured to
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be exponentially hard-to-decode just like a random linear code.9 Moreover, based on this assump-
tion, there exists a related ensemble which is exponentially pseudorandom for similar parameters.
Finally, each code Cw in the ensemble can be represented by O(n)-bit string w and the mapping
C(x,w) = Cwx can be evaluated by an O(n)-size circuit which is skew with respect to the index w.

The construction. In [AIK08] it is suggested to turn a code which is pseudorandom for noise
rate 2−b into a PRG via the following template.

• Input: a code description w, a random information word x ∈ {0, 1}n, a seed for the noise
distribution y = (yi,j)i∈[m],j∈[b] and a seed z for a seeded randomness extractor hz(·).

• Output: (w, z, Cwx+ e, hz(y)) where ei =
∏
j∈[b] yi,j and multiplication is over F2.

Note that each entry of e takes the value 1 independently with probability 2−b and therefore the
noise distribution is sampled properly. Since the noise sampling procedure is simple but waste-
ful, a randomness extractor is applied to compensate the entropy loss. It is proved in [AIK08,
Lemma 5.6] that except with probability of exp(−m2−b/3), the min-entropy of e conditioned on
Cwx + e, is ` = (1 − exp(−b))bm. Let b = 2 (i.e., use a noise rate of 1/4), and take h to be the
pairwise independent hash function from Theorem 3.2 with output length of, say, `/2. Then, if
we take m = cn for sufficiently large constant c, we get an exponentially-strong PRG with linear
stretch. (The proof is essentially the same as in [AIK08].)

We construct a 3-local encoding with linear complexity for the PRG G(w, x, y, z) as follows.
First, use Lemma 3.1 to encode the function g1(x, e) = (w,Cwx+e) by a local RE ĝ1(x, e; r1) and the
function g2(z, y) = (z, hz(y)) by a local RE ĝ2(z, y; r2). Substituting ei = yi,1 ·yi,2 and concatenating
the encodings, yields a 4-local encoding G′(w, x, y, z; r1, r2) = (ĝ1(x, e; r1), ĝ2(z, y; r2)) with linear
complexity and degree d = 2. Finally, we re-encode G′ via the locality lemma of [AIK06]. When
applied to a degree-d local function the lemma yields an RE Ĝ′(w, x, y, z, r1, r2; r3) with locality
d + 1 (3 in our case) and complexity which is linear in the output length of G′ (which is linear
in n). By using standard concatenation, substitution and composition lemmas of REs ([AIK06]),
we conclude that the final encoding Ĝ(w, x, y, z; r1, r2, r3) encodes the PRG G and is therefore a
PRG. Since we added only O(n) additional inputs the PRG Ĝ(w, x, y, z, r1, r2, r3) is exponentially
secure.

5.3 Proof of Theorem 5.2

First observe that s2 + s3 is at least n(β/6− γ/4 + σ − γ/4 + 1− σ − β/6 + γ − γ/4) > (γ/4)n and
therefore the PRG has Ω(n) stretch. (Note that the total input length n′ ofG is linear in n, the input
length of f , and so the overall stretch is linear in the input length n′).

We prove the pseudoranodmness of G in several steps.

Claim 5.5. If f is (t, ε) one-way then the function

f1(x,w1) = (w1, f(x), hw1(x))

is (t1 = t− poly(n), ε1 ≤ ε+ ε1/22−L/2) one-way where L = nσ − s2.
9Known sub-exponential algorithms for decoding random linear code (e.g.,[BKW03, Lyu05]) apply only to the case

where the codeword is of super-linear length, i.e., the rate is sub-constant.
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Proof. Clearly, given (W1, f(X), R), for X R← {0, 1}n,W1
R← {0, 1}t1 and R

R← {0, 1}s1 , a t1-time
adversary cannot find a preimage of f(X) with probability better than ε. Observe that for every
fixing of Y = y the conditional distribution of X is uniform over a set of size at least 2σ and
therefore has min-entropy of σ bits. Theorem 3.4 of [BDK+11] shows that in such a case no t1-time
algorithm can find a preimage of f(X) given (W1, f(X), hW1(X)) with probability better than
ε1.

We conclude that f1 is a 2β1n-hard one-way function for some constant β1 > β/2.

Claim 5.6. Let (X,W1,W2)
R← {0, 1}n+t1+t2 and Z R← {0, 1}s2 . Then the distributions

(W1,W2, f(X), hW1(X), CW2(X)) and (W1,W2, f(X), hW1(X), Z),

are 2−Ω(n)-indistinguishable for 2Ω(n)-time algorithms.

Proof. Recall that f1 is 2β1n-hard OWF and s2/n is upper-bounded by a constant which is strictly
smaller than β1/3. It is shown in [BIO14, Corollary 23] that under these conditions the claim
follows.

We complete the proof via the following claim.

Claim 5.7. The distribution

(W1,W2,W3, EW3(f(X), hW1(X)), Z) (3)

is 2Ω(−n)-statistically close to the uniform distribution over (t1 + t2 + t3 + s2 + s3)-bit strings.

Proof. To see this, first observe that the distribution

(W1,W2, f(X), hW1(X), Z)

is 2Ω(−n)-statistically close to

(W1,W2, f(X), R, Z) where R R← {0, 1}s1 .

This follows from the leftover hashing lemma [HILL99] and due to the fact that, for every fixed
y, the conditional distribution [X|f(X) = y] is uniform over a set of size ≥ 2σn and therefore has
min-entropy of σn bits. We conclude that the “target distribution” (3) is 2Ω(−n)-statistically close
to

(W1,W2,W3, EW3(f(X), R), Z).

The claim now follows by noting that the last distribution is 2Ω(−n)-statistically close to uniform.
Indeed, this follows from the leftover hashing lemma together with the observation that (f(X), R)
has min-entropy of s1 + n(1 − (σ + β/6 − γ)) > s3 + Ω(n) (due to the upper-bound on preimage
size of f ).

This completes the proof of Theorem 5.2.
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