
Cell-Probe Lower Bounds from Online Communication Complexity

Josh Alman∗ Joshua R. Wang† Huacheng Yu‡

April 20, 2017

Abstract

In this work, we introduce an online model for communication complexity. Analogous to how online
algorithms receive their input piece-by-piece, our model presents one of the players Bob his input piece-
by-piece, and has the players Alice and Bob cooperate to compute a result it presents Bob with the next
piece. This model has a closer and more natural correspondence to dynamic data structures than the
classic communication models do and hence presents a new perspective on data structures.

We first present a lower bound for the online set intersection problem in the online communica-
tion model, demonstrating a general approach for proving online communication lower bounds. The
online communication model prevents a batching trick that classic communication complexity allows,
and yields a stronger lower bound. Then we apply the online communication model to data structure
lower bounds by studying the Group Range Problem, a dynamic data structure problem. This problem
admits an O(log n)-time worst-case data structure. Using online communication complexity, we prove
a tight cell-probe lower bound: spending o(log n) (even amortized) time per operation results in at best
an exp(−δ2n) probability of correctly answering a (1/2 + δ)-fraction of the n queries.

∗MIT CSAIL and EECS, jalman@mit.edu. Supported by an NSF Graduate Research Fellowship.
†Stanford University, joshua.wang@cs.stanford.edu. Supported by NSF CCF-1524062 and a Stanford Graduate Fellowship.
‡Stanford University, yuhch123@gmail.com. Supported by NSF CCF-1212372.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 66 (2017)

1 Introduction

One of the successes of complexity theory has been Yao’s cell-probe model [Yao81], a powerful model of
computation which captures the difficult aspects of many data structure problems. In this model, the data
structure is charged only for the number of cells of memory that it probes, and not for any computation
that it does on the contents of those cells. The strength of this model means that lower bounds here apply to
most common models of data structure computation as well. The model bears similarities to communication
complexity, where the players are charged only for the bits that they send to each other and not for com-
putation they do. It is hence unsurprising that many cell-probe lower bound results are proved by invoking
communication complexity [Ajt88, MNSW95, BF02, Pǎt07, PT11, Yu16, WY16].

Unfortunately, the sheer power offered to the data structure by this model often makes it difficult to prove
strong lower bounds. In many cases, a matching lower bound in the cell-probe model may be impossible;
it is possible that counting cell probes in lieu of computation time does indeed make several problems
easier [LW17]. Partly as a result of this difficulty, only a few techniques are known for proving cell-probe
lower bounds. In this paper, we propose a new technique to add to our growing toolbox, and demonstrate its
usefulness by using it to prove a lower bound for the following variant of the Partial Sums problem (from
e.g. [PD04]):

The problem we consider is the Group Range Problem on a group G along with a binary encoding of
the group elements e : G → {0, 1}s. We will be considering this problem in the cell-probe model with
cell-size w = Θ(log n), and when the group is not too large: log |G| = O(w). Our data structure should
store a sequence of n group elements a0, . . . , an−1 while supporting the following operations:

• Update(i, a) sets entry ai ← a.

• Query(`, r, i) returns the ith bit of the binary encoding of the group product a`a`+1 · · · ar−1ar.

Our main result about this problem is a strong lower bound:

Theorem 1.1. There exists a distribution over n updates and queries for the Group Range Problem with
binary encoding of the group elements e : G → {0, 1}s, such that for any randomized cell-probe data
structure D with word size w = Θ(log n), which with probability p answers at least a (1

2 + δ) fraction
of queries correctly and spends εn log n total running time, we must have p ≤ exp(−δ2n), as long as
s ≤ (1 + ε) log |G|, δ2 � ε ≥ Ω(1/ log n), and n is sufficiently large.1

Theorem 1.1 settles the trade-off between the running time and the accuracy of the output for the Group
Range Problem. There are two regimes: Either we are willing to pay Θ(log n) time per operation, in which
case, there exists a deterministic worst-case data structure,2 or else we require the data structure to spend
o(log n) time per operation, in which case, Theorem 1.1 shows that we cannot hope to do much better than
outputting a random bit for each query (except for a constant factor improvement in δ). To the best of our
knowledge, this is the first tight data structure lower bound in such a high error regime, where a data structure
may answer barely more than half the queries correctly, and do so with such small success probability.

Our lower bound is proved by means of a novel model of communication we introduce, called the online
communication model. In this model, Alice gets an input x, and Bob gets inputs y1, . . . , yk for a parameter
k, and there is a function f such that Alice and Bob want to compute f(x, yi) on all pairs (x, yi). In usual
models of communication, Bob is given all of y1, . . . , yk as input at the beginning of the communication
protocol. Instead, in the online model, Bob starts with only y1, and Alice and Bob need to compute f(x, yi)
before Bob is given yi+1.

1In this paper, we use exp(f(n)) to mean 2Θ(f(n)).
2Any classic data structure for the Partial Sums problem solves our problem.

1

Our main result about the online communication model is that the online version of the set intersection
problem requires more communication than the offline version. Informally, in the online set intersection
problem, Alice is given a set X ⊆ [n] of size k, and Bob is given the elements yi of another set Y ⊆ [n] one
by one. The players have to decide whether yi is in X before Bob receives the next element.

Theorem 1.2 (informal). When n ≥ k2, the online set intersection problem requires Ω(k log log k) bits of
total communication.

Furthermore, our proof shows that deciding whether X and Y are disjoint (whether we have yi /∈ X for
all i) requires Ω(k log log k) bits of communication in the online model. In contrast, an O(k)-bit protocol
exists for the set disjointness problem in the classic communication model, by using a “batching” trick to
test all the yi simultaneously [HW07]. Our lower bound in the online model is tight for large enough k, since
there is a simple protocol that solves the problem in O(k log logn) bits of communication. See Section 2.2
for more details.

1.1 Our Technique and Related Work

In this subsection, we introduce the new ideas used in the proof of Theorem 1.1. The high-level idea is
similar to the previous communication-complexity-based techniques for proving dynamic cell-probe lower
bounds [PT11, Yu16, WY16]: first “decompose” the computation into communication games, and show
that an efficient data structure induces efficient protocols for these games; then prove communication lower
bounds for them. To decompose the computation into communication games, we consider a random se-
quence of operations consisting of updates and queries, and two consecutive intervals in it. Roughly speak-
ing, in each communication game, the first interval of operations is only revealed to the first player Alice,
while the second interval is only revealed to the second player Bob (all other operations are revealed to both
players). The goal of the game is to cooperatively answer all queries in the second interval.

The choice of the communication model in this type of proof is crucial. The first step, solving the
communication game given a fast data structure, can be done more efficiently if we use a stronger model.
The second step, proving the communication lower bounds, is tougher if the model we study is too powerful.
Hence, designing the right communication model as the proxy is one of the key ingredients in the proof.
In the proof of Theorem 1.1, we analyze our communication game in the online communication model
(see Section 2.1 for the formal definition). Compared to other models used in previous work to prove cell-
probe lower bounds, the online communication model has a more natural correspondence to data structures.
A data structure must output the answer to a query before it sees the next operation; similarly, an online
communication protocol must compute the current function value before the players receive the next (partial)
input. Studying the game in the online communication model allows us to examine the data structure from a
more fine-grained view. See Section 3.1.3 for more details on the connection between online communication
complexity and dynamic data structures.

More importantly, the communication game induced by our Group Range Problem (for some group G)
has a protocol in the offline setting, where both players receive their inputs at once, which is too efficient,3

precluding a strong enough communication lower bound which is necessary to prove a tight data structure
lower bound. Therefore, it is provably impossible to use any of the previous communication models as the
proxy — the communication game is simply not “hard” in them. The detailed proof of our main theorem
can be found in Section 3.1.

Pǎtraşcu and Demaine [PD04] proved a (tight) Ω(log n) lower bound for the Partial Sums problem, a
problem similar to our Group Range Problem, where the Query operation returns the entire group product

3For some G, Bob has a succinct encoding of his queries. Thus, sending the (compressed) input to Alice allows them to solve
the problem more efficiently than the trivial protocol.

2

rather than a single bit, and no error is allowed in answering queries. Their information-transfer technique
does not apply directly to our problem, since it relies on the fact that each query outputs many bits and
hence reveals a lot of information, and that the data structure has no errors. Their technique was later
generalized [PD06] to prove lower bounds for problems with single-bit output, but their argument mostly
focuses on the query which the data structure spends the “least amount of time” on. Therefore, it is hard to
apply this generalization directly when both overall running time and overall accuracy need to be considered.
On the other hand, it is worth noting that their argument does apply to our Group Range Problem if only
zero-error data structures are considered.

1.2 Further Results

The fact that Theorem 1.1 holds for any group G, in addition to more ‘common’ groups like Zm and permu-
tation groups, makes it quite versatile. For example, it holds when G is the direct product of many smaller
groups. In this case, the problem can be viewed as many disjoint copies of the Group Range problem on the
smaller component groups with simultaneous updates, yet the lower bound remains.

The case where G is the general linear group of invertible matrices also has many applications; see
Appendix A for a discussion of applications to physics and to other dynamic data structure problems. In this
case, we show how the matrix structure can be exploited to prove further results. We consider a variant of
the original problem, which we call the Matrix Product Problem, where queries can only ask for a bit about
the bottom-right entry of the product of the entire range of matrices, rather than any bit about the product of
any subrange, and in Section 4 we show that the lower bound still applies:

Corollary 1.3. Theorem 1.1 holds for the Matrix Product Problem.

We show a similar result for upper-triangular matrices as well in Section 4.1.
It would be interesting to extend Theorem 1.1 to hold for an even wider class of algebraic structures. For

instance, some past work (e.g. [PD04]) considers the partial sums problem where G is any semi-group. We
show that such an extension is impossible, not only to semi-groups, but even for monoids (a type of algebraic
structure between groups and semi-groups, which satisfies all the group axioms except the existence of
inverses). Indeed, we show in Section 3.2 that the Ω(log n) lower bound can be beaten for the Monoid
Range Problem (the same as the Group Range Problem except that G can be any monoid), so no general
lower bound applies:

Theorem 1.4. There exists a family of monoids (Gn)n such that the Monoid Range Problem can be solved
in O

(
logn

log logn

)
time per operation worst-case deterministically in the cell-probe model.

1.3 Organization

We first formally define the online communication model in Section 2.1, and then we prove the online set
intersection lower bound in Section 2.2. In Section 3.1, we prove our main result, the cell-probe lower bound
for the Group Range Problem. In Section 3.2, we show that the invertibility of group elements is necessary
for the lower bound. In Section 4, we prove stronger results for the special case of the group G of invertible
matrices.

2 The Online Communication Model

In this section, we define the online communication model, and then we present a general approach for
proving lower bounds in it. As a demonstration of our approach, we prove a concrete (and almost tight)
lower bound for the online set-intersection problem.

3

2.1 Model Definition

In the online communication model, two players Alice and Bob are given inputsX ∈ X and Y1, Y2, . . . , Yk ∈
Y gradually. Alice and Bob want to compute f(X, i, Yi) for every i ∈ [k]. Alice receives X at the begin-
ning, while the Yi’s are revealed to the players gradually as follows.

1. The game consists of k stages. The players may communicate at any time as if they were in the classic
communication model. The players remember the transcript from previous stages.

2. At the beginning of Stage i for i ∈ [k], Yi is revealed to Bob.

3. Next, the players communicate so that Bob can compute f(X, i, Yi).

4. At the end of Stage i, Yi is revealed to Alice, and the players proceed to the next stage.

In a deterministic (resp. randomized) online communication protocol, the players communicate as if
they were in the deterministic (resp. randomized) communication model in the second step of each stage.

2.2 Online Set-Intersection Lower Bound

Online Set-Intersection. In the online set-intersection problem (OSI), Alice is given one set X of size
k over the universe [n]. In each stage, Bob is given an input Yi ∈ [n], which is an element in the same
universe. The goal of this stage is to verify whether Yi ∈ X . Equivalently, the inputs are two (multi-)sets
X,Y ⊆ [n] of size k each. Each element of the set Y is revealed one by one. The goal is to compute their
intersection.

Theorem 2.1. For n ≥ k2, any zero-error OSI protocol using public randomness must have expected total
communication cost at least Ω(k log log k).

As a complement to our lower bound, the following simple protocol has expected communication cost
O(k log log n+ |X ∩ Y | · log n):

1. The players use public randomness to sample a hash function h : [n]→ [k log n].

2. Alice sends Bob the set h(X) in O(log
(
k logn
k

)
) = O(k log logn) bits.

3. For each Yi, if h(Yi) is not in h(X), Bob returns “NO” immediately. Otherwise, Bob solves this stage
trivially by sending Alice Yi.

For each Yi /∈ X , the probability that h(Yi) ∈ h(X) is at most 1/ log n. Therefore, the total expected
communication cost for stages such that Yi /∈ X is O(k). Thus, the above protocol has the claimed total
communication cost. Our lower bound is tight as long as n = 2logO(1) k and |X ∩ Y | is not too large.

In the following, we prove the communication lower bound. First by Yao’s Minimax Principle [Yao77],
we may fix an input distribution and assume the protocol is deterministic. Now let us consider the following
hard distribution.

Hard distribution. We take the first k2 elements from the universe, and divide them into k blocks of size
k each. X will contain one uniformly random element from each block independently. Each Yi will be a
uniformly random element from the first k2 elements. Different Yi’s are chosen independently.

The high-level idea of the proof is to first reduce from OSI to a classic (non-online) communication
complexity problem. In particular, we consider the problem solved in each stage of the OSI problem:
Alice is given a set of k elements from a universe of size n and Bob is given a single element from the same
universe, and their goal is to determine if Bob’s element is in Alice’s set. This is precisely the index problem.
Then we focus on the stage that costs the least amount of communication, and show an index lower bound
with respect to this stage. The hard distribution for OSI induces the following hard distribution for index.

4

Hard distribution for index. Divide the first k2 elements of the universe into k blocks of size k each.
Alice’s set X consists of one uniformly random elements from each block independently. Bob’s element y
is chosen from the first k2 elements uniformly at random.

The following lemma characterizes OSI protocols by (classic) index protocols.

Lemma 2.2. Under the above hard input distributions, there is a protocol for OSI which uses O(g(n, k))
bits in expectation if and only if there is a protocol for index where Alice first sends a message of expected
length of O(g(n, k)) bits and then Alice and Bob only speak an additional O(g(n, k)/k) bits in expectation.

Proof. We first prove the forward direction, which is more nuanced. Suppose we have a protocol P for OSI,
and we want such a protocol P ′ for index. The main idea is to fix the stage in which the players send the
least bits in expectation, and embed the index problem into this stage of OSI. Let the i-th stage be one stage
in which the players only speak O(g(n, k)/k) bits in expectation. To solve the index problem on inputs X
and y, we invoke the following protocol P ′:

1. The players use public randomness to sample Y1, Y2, . . . , Yi−1 according to the hard distribution for
OSI;

2. Now Alice has all the information for the first i−1 stages, she simulates P for both players, and sends
Bob the entire transcript;

3. The players pretend that they in the i-th stage of OSI with Yi = y, and continue to simulate P from
the transcript Alice sent in the previous step;

4. Bob outputs y ∈ X if and only if the output of P indicates that Yi ∈ X .

In this protocol P ′, the first message is sent by Alice, which has expected length no more than that of
the transcript of P , which is O(g(n, k)). Then the players simulates the i-th stage of P . Note that the
distribution of first i stages of the simulate is identical to the first i stages of the hard distribution. Thus, the
expected communication cost of step 3 is at most O(g(n, k)/k). Since the goal is stage i is to determine if
Yi ∈ X , which is precisely if y ∈ X by the way we set up the simulation, the output of P ′ will be correct if
P is correct.

We finish with the easy reverse direction. Suppose there is such a protocol P ′ for index; we want to
construct a protocol P for OSI. We begin by noticing that Alice’s first O(g(n, k)) bits can only depend on
her input. We begin by having Alice simulate P ′ and sends the long message before Bob begins speaking.
Now in each stage, for Bob’s input Yi, we have Alice and Bob simulate P ′ on (X,Yi), but skipping the first
O(g(n, k)) bits since they have already been communicated.

In this protocol, Alice sendsO(g(n, k)) bits in her first message. Then in each stage, only O(g(n, k)/k)
bits are transmitted between the players. Thus, the total communication cost is O(g(n, k)) in expectation.

Let P ′ be a zero-error protocol for index such that Alice first sends c0 bits in expectation, and then Alice
and Bob communicate for cA and cB bits respectively (in expectation). The following lemma lower bounds
c0, cA, cB .

Lemma 2.3. For sufficiently large k, any such P ′ must have either

• c0 ≥ 1
7k log k, or

• cA ≥ c0 · 2−13 max{cB ,1}·26c0/k .

5

The main idea of the proof is to let Alice simulate Bob. For simplicity, let us first assume the protocol
has three rounds: Alice sends c0 bits, then Bob sends cB bits, finally Alice sends cA bits. To simulate Bob,
Alice goes over all possible messages that Bob could send, then for each message, sends Bob what she
would say if she received that message. If Bob sends at most cB bits in worst case, Alice will be able to
complete the above simulate in c0 + cA · 2cB bits of communication. Then Bob will be output whether his
input Yi is in Alice’s set X . In particular, Alice’s message depends only her input X , and Bob can do so
for any Yi. That is, Bob will be able to recover the set X based only on this message, which yields a lower
bound on c0, cA, cB .

Proof of Lemma 2.3. Without loss of generality, we may first assume cB ≥ 1. By Markov’s inequality and
a union bound, for any C ≥ 2, with probability at least 1− 2/C, Alice sends no more than C · cA bits and
Bob sends no more than C · cB bits after Alice’s first message. The next step is to let Alice simulate the
entire protocol, and turn it into one-way communication.

More specifically, the transcript π of a conversation between Alice and Bob is a binary string, in which
each bit represents the message sent in the chronological order. Given π and a fixed protocol, there shall be
no ambiguity in which bits are sent by which player. That is, for any π, we can always decompose it into
(πA, πB), where πA is a binary string obtained by concatenating the bits sent by Alice in the chronological
order, and similar for πB . On the other hand, given (πA, πB), there is a unique way to combine them into a
single transcript π, since a prefix of the transcript uniquely determines the player who speaks the next. We
know that with probability at least 1 − 2/C, |πA| ≤ C · cA and |πB| ≤ C · cB . In the new protocol, after
Alice sends the first c0 · k bits, she goes over all 2C·cB strings s of length at most C · cB . For each s (in
alphabetical order), she sends the first C · cA bits of πA based on her input assuming πB = s. That is, Alice
tells Bob that “if s was your first C · cB bits of the conversation, then here is what I would say for my first
C · cA bits.” In total, she sends another C · cA · 2C·cB bits. Thus, Bob can figure out the answer based only
on the above messages, with probability 1 − 2/C (over the random input pairs). To balance the lengths of
two messages, we set C = 1

2cB
log c0

cA
. If C < 2, then we have log c0

cA
< 4cB , and thus

cA > c0 · 2−4cB ,

which implies the second inequality in the statement. Otherwise, the above argument holds, and we have

C · cA · 2C·cB = C · cA ·
√
c0

cA

=
cA
2cB
·
(√

c0

cA
log

c0

cA

)
≤ cA ·

(√
c0

cA
log

√
c0

cA

)
≤ cA ·

c0

cA
= c0.

Thus, Alice sends at most 2c0 bits in expectation in total. This message only depends on her input
X . By Markov’s inequality, for at least 2/3 of the X’s, Alice sends no more than 6c0 bits. By Markov’s
inequality again, for at least 2/3 of the X’s, the probability (over a random y) that Bob can figure out if
b ∈ A based only on Alice’s first message is at least 6/C. Since there are kk different possible X’s, at least
kk/3 different X’s have both conditions hold. Thus, there must be kk/3 · 2−6c0 such X’s that Alice sends
the same message M . Denote this set of X’s by X . Moreover, when M is the message Bob receives, there
are at least (1 − 6/C)k2 different y’s such that Bob can figure out the answer based only on the value of y
and M . Denote this set of y’s by Y . In the combinatorial rectangle R = X × Y , for every y ∈ Y , either
y ∈ X for every X ∈ X , or y /∈ X for every X ∈ X . That is, R is a column-monochromatic rectangle4 of

4A rectangle with the same function value in every column.

6

size (kk/3 · 2−6c0)× (1− 6/C)k2.
On the other hand, for the index problem, in any column-monochromatic rectangle R = X × Y , the

answer is “YES” in no more than k columns of Y (the element is in the set). This is because each setX ∈ X
has size k. In order to upper bound the number of y ∈ Y that is not in any X , let ri for 1 ≤ i ≤ k be the size
of the intersection of Y and the i-th block of the universe. Thus, the number of X’s that avoids all y ∈ Y is
at most

(k − r1)(k − r2) · · · (k − rk) ≤
(
k − 1

k
(r1 + · · ·+ rk)

)k
by the AM-GM inequality. That is, at most k2 − k|X |1/k y are not in any X . Overall, we have |Y | ≤
k + k2 − k|X |1/k. Combining this with the parameters from the last paragraph, we get

(1− 6/C)k2 ≤ k + k2 − k
(

(kk/3 · 2−6c0)
)1/k

.

Simplifying the inequality yields
6/C ≥ 2−6c0/k · 3−1/k − 1/k.

When c0 <
1
7k log k, we have 2−6c0/k · 3−1/k − 1/k > 12

13 · 2
−6c0/k for sufficiently large k. Pluging-in the

value of C(= 1
2cB

log c0
cA

) and simplifying, we obtain

cA ≥ c0 · 2−13cB/2
−6c0/k

.

This proves the lemma.

Proof of Theorem 2.1. For any OSI protocol with total communication cost c, by Lemma 2.2 and Lemma 2.3,
we have either

• c ≥ 1
7k log k, or

• c/k ≥ c · 2−13 max{c/k,1}·26c/k
.

The second inequality simplifies to max{c/k, 1}·2Θ(c/k) ≥ Ω(log k). Thus, we must have c ≥ Ω(k log log k).

3 The Group Range Problem

3.1 Lower Bound Proof

The goal of this subsection is to prove our main result:

Theorem 1.1 (restated). There exists a distribution over n updates and queries for the Group Range Prob-
lem with binary encoding of the group elements e : G → {0, 1}s, such that for any randomized cell-probe
data structure D with word size w = Θ(log n), which with probability p answers at least a (1

2 + δ) frac-
tion of queries correctly and spends εn log n total running time, we must have p ≤ exp(−δ2n), as long as
s ≤ (1 + ε) log |G|, δ2 � ε ≥ Ω(1/ log n), and n is sufficiently large.

For convenience, we will assume that n is a power of two. A similar argument applies to the general
case. We will also say that the data structure succeeds on an input when the event described occurs: it
answers a (1

2 + δ) fraction of queries correctly and spends at most εn log n total running time.
Our proof is divided into three steps. First, we construct a random input sequence so that we can

apply Yao’s minimax principle and consider a determinstic data structure. Second, we consider various

7

Shorthand Operation
u0 Update(0,UG)
q0 Query(0,U[n],U[s])
u1 Update(2,UG)
q1 Query(0,U[n],U[s])
u2 Update(1,UG)
q2 Query(0,U[n],U[s])
u3 Update(3,UG)
q4 Query(0,U[n],U[s])

Figure 1: Structure of our random input sequence (n = 4). Here, US is an entry drawn from the uniform
distribution on set S.

v1

v2 v3

v4 v5 v6 v7

Level 0:

Level 1:

Level 2:

Figure 2: Our subproblems correspond to nodes of a balanced binary tree (n = 4).

subproblems of this sequence. We show that the data structure must do well on at least one of them,
but with some additional structure on how it probes cells when solving this subproblem. Third, we use
the data structure on this subproblem to produce a communication protocol for a problem in our online
communication complexity model.

3.1.1 Step One: The Hard Distribution

Our random input sequence for D is as follows. Our sequence u0, q0, u1, q1, . . . , un−1, qn−1 consists of
2n alternating update and query operations. Intuitively, we want the update operations in any contiguous
window to look relatively spaced out, and we want query operations to check a random interval that starts at
the beginning of the sequence.

More formally, let rev(i) be the integer whose s-bit binary representation is the reverse of the represen-
tation of i. For example, rev(0) = 0 and rev(1) = 2n−1. Update operation ui will set the rev(i)th group
element to a uniform random group element. Query operation qi will use the range [0, R] where R is drawn
uniformly from {0, 1, . . . , n − 1} and ask for a random bit of that group product. Figure 1 shows what a
random input looks like in the n = 4 case.

Yao’s minimax principle guarantees that since D is a randomized structure with guarantees on worst-
case inputs, there must be a deterministic data structure D′ with the same guarantees on a random input
sequence of this form.

3.1.2 Step Two: Identifying Efficient Subproblems

Our next step is to divide an input from this distribution into several subproblems. Since D′ should do well
on the entire input, it must also do well on many subproblems. We will then be able to use the fact that
D′ does well on a subproblem to derive an efficient communication protocol for a related communication
game, in the next step of the proof.

In each subproblem, we consider two equally-sized adjacent intervals of operations, IA (Alice’s interval)
and IB (Bob’s interval). Each subproblem corresponds to the node of a balanced binary tree with log2 2n

8

Operations u0 q0 u1 q1 u2 q2 u3 q3

Level 0 IA(v1) IB(v1)

Level 1 IA(v2) IB(v2) IA(v3) IB(v3)

Level 2 IA(v4) IB(v4) IA(v5) IB(v5) IA(v6) IB(v6) IA(v7) IB(v7)

Figure 3: Division into subproblem intervals (n = 4).

levels. Such a tree has (2n − 1) nodes: v1, . . . , v2n−1, where v1 is the root node and the children of vi are
v2i (left) and v2i+1 (right). We denote node v’s corresponding intervals as IA(v) and IB(v).

Level 0 of our tree consists of just the root node v1. Its corresponding subproblem concerns interval
IA(v1) as the first half of the entire sequence, and IB(v1) as the second half of the entire sequence. The
other subproblems are defined recursively as follows. If vi is a left child, then IA(vi) is the left half of
IA(vi/2) and IB(vi) is the right half. If vi is a right child, then IA(vi) is the left half of IB(v(i−1)/2) and
IB(vi) is the right half. See Figure 3 for the intervals of the n = 4 case.

Definition 1. The set of nodes in level j is denoted `(j) and consists of {v2j , . . . , v2j+1−1}. The set of cells
that the data structure probes when processing the operations of IA(v) is PA(v) (P stands for probes), and
similarly for IB(v) and PB(v).

We are now ready to connect the running time of the data structure with a property of these subprob-
lems. Consider the sum

∑
j∈[log 2n]

∑
v∈`(j) |PA(v) ∩ PB(v)|. Each time the data structure probes a cell, it

contributes to this summation in at most one subproblem v: the one where its previous access to the cell was
in PA(v) and its current access is in PB(v). When the data structure succeeds on an input, this summation
is is at most 2εn log(2n), since it is at most the running time of D′ on 2n operations.

We know that overall the data structure succeeds on a (1
2 + δ) fraction of queries, and that the sum of

these intersection sizes is small. We wish to identify subproblems v with similar guarantees, namely: (i)
|PA(v) ∩ PB(v)| is small (on the order of ε|PA(v)|) and (ii) D′ answers many queries in IB(v) correctly.
In step three of the proof, we will show that such a subproblem must have a low probability of success. In
particular, we will prove the following lemma in step three, and the remainder of this step is concerned with
identifying subproblems with these guarantees as efficiently as possible:

Lemma 3.1. For two intervals IA = IA(v) and IB = IB(v) consisting of k updates and queries each. Then
the probability that

• |PA(v) ∩ PB(v)| ≤ εv · k and

• D answers a (1/2 + δv)-fraction of queries in IB(v) correctly

conditioned on all operations O before IA(v) is at most

exp(−(δv − c · (
√
ε+
√
εv))

2 · k)

for some constant c, as long as k � log n and δv − c · (
√
ε+
√
εv) ≥ 0.

Using Lemma 3.1, we can now prove Theorem 1.1. The main idea to find our desired subproblem is to
find a level that is both “efficient” (

∑
v |PA(v) ∩ PB(v)| is small) and “accurate” (a decent fraction of the

queries in IB(v)’s are correct). Since we only care about the queries in IB(v)’s, we first argue that as long
as (1/2 + δ)-fraction of the queries are correct overall, then the sum of correctly answered queries over all
IB’s in all levels cannot be small. To find such a desired level, we observe from the above lemma that the
only important parameter is δv − c · (

√
ε +
√
εv). We then apply an averaging argument to conclude the

existence of a level with a large average value of δv − c · (
√
ε+
√
εv). In the following, we formally prove

the theorem.

9

000

001 010

011

100

101 110

111

Hamming Weight 0

Hamming Weight 1

Hamming Weight 2

Hamming Weight 3

Figure 4: Queries correspond to vertices of a hypercube (n = 8). In this example, 5
8 = 62.5% of queries

in the big hypercube are shaded, but the average small subhypercube Hi only has 1+2+2
12 = 41.6̄% of its

queries shaded, and no small hypercube Hi has more than 2
4 = 50% of its queries shaded.

Proof of Theorem 1.1. Our plan is to apply Lemma 3.1 to all the subproblems of an entire level. We want
such a level to require little communication, yet also gets many queries correct. Additionally, since we
require that k � log n, this level cannot be near the bottom of the tree. The following definitions will help
us perform this analysis on levels:

Definition 2. Let δj be a random variable so that a (1
2 + δj) fraction of the queries in ∪v∈`(j)IB(v) are

answered correctly. Let εj be a random variable so that
∑

v∈`(j) |PA(v) ∩ PB(v)| = εjn.

It seems intuitive that if the data structure answers many queries correctly, it must also do so over all
intervals IB(v). Unfortunately, this claim is not cut and dried; some queries may show up a logarithmic
number of times in intervals IB(v), while others only show up once. For example, in Figure 3, q0 shows up
in one subproblem, q1 and q2 show up in two, and q3 shows up in three. However, we can say something
about which levels qi shows up in some IB(v). Ignoring the final level of the tree (we can’t use the bottom
levels anyway), if we write i as a (log n)-bit binary number, then it shows up in level j exactly when its jth

bit (starting from most-significant) is a one. Returning to our Figure 3 example, q1 can be written as q012

and hence does not show up in level 0 but does show up in level 1, while q3 can be written as q112 and hence
shows up in both level 0 and 1.

Let d = log n; we can visualize our queries as vertices of the d-dimensional hypercube H . As discussed
above, the IB(v)’s of a level correspond to the (d−1)-dimensional subhypercubesHi = {x ∈ H | xi = 1}.
If we have a 0-1 labelling of the big hypercube with a (1

2 +δ) fraction labelled 1, let us consider the smallest
average fraction of the subhypercubes needs to be labeled 1. Figure 4 demonstrates that the fraction may
decrease. We aim to show that this drop cannot be that large.

Since a node of Hamming weight j contributes to exactly j subhypercubes, the worst case labelling
occurs when nodes with the lowest Hamming weight are labeled 1 first. Suppose (1/2 + δ)-fraction of
nodes have Hamming weight at most l, i.e., let l be the largest integer such that

l∑
j=0

(
d

j

)
≤ (1/2 + δ)2d.

Therefore, we have
∑l

j=dd/2e+1

(
d
j

)
≥ (δ − O(1/

√
d))2d. Then the average fraction of labelled nodes in

10

the subhypercubes is at least

1

d

l∑
j=0

(
d

j

)
· j · 2−(d−1) =

1

d

dd/2e∑
j=0

(
d

j

)
· j · 2−(d−1) +

1

d

l∑
j=dd/2e+1

(
d

j

)
· j · 2−(d−1)

≥
dd/2e∑
j=1

(
d− 1

j − 1

)
· 2−(d−1) +

1

d

l∑
j=dd/2e+1

(
d

j

)
· d

2
· 2−(d−1)

≥ 1

2
+

l∑
j=dd/2e+1

(
d

j

)
· 2−d

≥ 1

2
+ δ −O(1/

√
log n).

Translating back to our original problem, we have shown that avgi∈[logn]δi = δ −O(1√
logn

). However,
we would like to avoid the bottom levels of the tree, since Lemma 3.1 requires k to be bigger than log n.
Hence we restrict to the top L = 1

3 log n levels of our tree, where k ≥ n2/3. We would like to show that
avgi∈[L]δi = δ − O(1√

logn
) as well. Fortunately, the same proof works even when we ignore a constant

fraction of coordinates. Each point now has duplicity n2/3, and we still end up with the fact that an average
subhypercube has a

(
1
2 + δ −O(1√

logn
)
)

fraction of 1’s, albeit with the dimension now L instead of log n.
This brings us halfway to our objective of identifying a level j with good guarantees on δj and εj . We

next claim that if the data structure succeeds, there is some level j ∈ [L] such that (δj − c(
√
ε +
√
εj))

2 is
large.

We know that avgj∈[L]δj = δ − O
(

1√
logn

)
. Next, we know that avgj∈[L]εj ≤ 3εn, since the average

of one-third of all levels cannot be larger than three times the overall average (this is analagous to Markov’s
inequality). Hence by Jensen’s inequality, we know that:∑

j∈[L]

(δj − c(
√
ε+
√
εj)) ≥ L

(
δ −O

(
1√

log n

)
− 2c
√

3ε

)

Thus,

max
j∈[L]

(δj − c(
√
ε+
√
εj)) ≥ δ −O

(
1√

log n

)
− 2c
√

3ε

≥ Ω(δ).

Hence whenever our algorithm succeeds, there must be some level j ∈ [L] with this guarantee on δj and εj .
However, the level j may differ depending on the random input that the algorithm succeeds on. We do know
that there must be some level j ∈ [L] which has this guarantee with at least p

L probability. It will suffice to
prove that p

L is exponentially small, since L is absorbed into our exp notation.
We have now identified our level of interest, and we want to apply Lemma 3.1 to its subproblems.

Analagous to how we defined communication parameters εj and success parameters δj for levels, we can
define these parameters for each subproblem:

Definition 3. Let δv be a random variable so that a (1
2 + δv) fraction of the queries in IB(v) are answered

correctly. Let εv be a random variable so that |PA(v) ∩ PB(v)| = εvk where k = |IA(v)| = |IB(v)|.

Fix sequences {εv}v∈`(j) and {δv}v∈`(j) such that
∑

v∈`(j) εv = εjn/2k and
∑

v∈`(j) δv = δjn/2k. We
apply Lemma 3.1 to each subproblem v ∈ `(j) with parameters εv and δv such that δv− c · (

√
εv +
√
ε) ≥ 0.

11

By noticing that all the interval pairs (IA(v), IB(v)) are disjoint, using Jensen’s inequality, and the fact that
δj −O(

√
εj +

√
ε) > 0, we have the probability that:

• ∀v ∈ `(j), |PA ∩ PB| ≤ εv · k and

• ∀v ∈ `(j), D answers a (1/2 + δv)-fraction of queries in IB(v) correctly

is at most

∏
v∈`(j)

exp(−(max{0, δv − c · (
√
ε+
√
εv)})2 · k) = exp

− ∑
v∈`(j)

(max{0, δv − c · (
√
ε+
√
εv)})2 · k


≤ exp

−
k
n
·
∑
v∈`(j)

max{0, δv − c · (
√
ε+
√
εv)}

2

· n


≤ exp

−
k
n
·
∑
v∈`(j)

(δv − c · (
√
ε+
√
εv))

2

· n


≤ exp

(
−
(
δj −O(

√
εj +

√
ε)
)2 · n) .

We can finish applying a union bound over all such sequences {εv}v∈`(j) and {δv}v∈`(j). There are(εjn+n/k
n/2k

)
many {εv}’s and

(O(n)
n/2k

)
many {δv}’s. The probability of level j having good guarantees can be

at most: (
εjn+ n/k

n/k

)
·
(
O(n)

n/k

)
· exp

(
−
(
δj −O(

√
εj +

√
ε)
)2 · n)

≤ exp(n/k · log k) · exp
(
−
(
δj −O(

√
εj +

√
ε)
)2 · n) .

Since 1
k log k � (δj −O(

√
εj +

√
ε))2 and we picked j so that (δj −O(

√
εj +

√
ε))2 > δ2, this yields our

desired result.

3.1.3 Step Three: The Communication Game

The main goal of this step is to prove Lemma 3.1. The key idea is to show how an efficient data structure
can be used to produce an efficient communication protocol for a particular communication game, and then
to rule out the possibility of an efficient communication protocol, hence proving that the original efficient
data structure could not exist. We begin by defining the communication game on interval pairs we will be
focusing on, which uses our online communication model from Section 2.1.

Communication Game We define one communication game for each interval pair (IA, IB). Fix two in-
tervals IA = IA(v) and IB = IB(v) consisting of k updates and queries each, all operationsO prior to these
intervals, all queries QA in IA and all updates UB in IB . That is, the only undetermined operations up to
the end of IB are the updates in IA and the queries in IB . We embed these operations into a communication
game. In the associated online communication game G = G(v,O,QA, UB), X consists of the updates in
IA, and Yi is the ith query in IB . The goal of Stage i is to compute the ith query in IB .5

5Note that the previous queries do not affect the output of the ith query.

12

Input Distribution The input X is sampled as a random set of updates in IA(v) and (Y1, . . . , Yk) as a
random set of queries in IB(v) under our hard distribution for the Group Range problem.

Lemma 3.2. Consider two intervals IA(v) and IB(v), consisting of k updates and queries each. Let the op-
erations prior to them beO, the queries in IA(v) beQA, the updates in IB(v) be UB . For any data structure
D for the group range problem and εv, there is a protocolPD for the communication gameG(v,O,QA, UB)
such that

1. Alice sends O(εv · k · log n) bits;

2. Bob sends no message;

3. For every δv, the probability that PD answers (1/2 + δv − εv)-fraction of the f(X, i, Yi)’s correctly
is at least

Pr [|PA ∩ PB| ≤ εv · k,D answers a (1/2 + δv)-fraction of queries in IB correctly | O,QA, UB] .

Lemma 3.3. For any protocol P for G(v,O,QA, UB) and εv, δv where:

1. Alice sends O(εvk · log n) bits, and

2. Bob sends no message

must have

Pr[P answers (1/2 + δv − εv)-fraction of the f(X, i, Yi)’s correctly] ≤ exp(−(δv −O(
√
ε+
√
εv))

2 · k).

Lemma 3.1 follows directly from applying both Lemma 3.2 and Lemma 3.3. Hence it remains to prove
these two lemmas.

Proof of Lemma 3.2. The idea is that the players simulate D as operations are revealed, and Alice sends
some necessary information to Bob. Consider the following protocol PD:

1. (Preprocessing) Recall that Alice knows all operations up to the end of IA and the updates in IB , Bob
knows all operations prior to IA and all operations in IB . First, Alice simulates D up to the end of IA,
and Bob simulates D up to the beginning of IA and skips IA. Denote the memory state that Alice has
at this moment by MA. Next, the players are going to simulate operations in IB .

2. (Stage i - Alice’s simulation) Since the (i − 1)-th query is revealed to Alice in the last stage, Alice
continues the simulation up to the i-th query. Alice sends Bob the cells (their addresses and contents
in MA) that are

• probed during this part of the simulation, and

• probed during IA, and

• not probed in the previous stages.

That is, Alice sends Bob all cells in PA ∩ PB that are just probed for the very first time among all
stages so far.

3. (Stage i - Bob’s simulation) Bob first updates his memory state according to Alice’s message: For
each cell in the message, Bob replaces its content with the actual content in MA. Since this is the first
timeD probes these cells, their contents remain the same as inMA. Bob then continues the simulation
up to i-th query.

13

4. (Stage i - query answering) Bob simulates D on query Yi. During the simulation, Bob pretends that
he has the right memory state for the query, even though he has skipped IA, and only has received
partial information about it. Then he outputs the same answer as D does. Finally, Bob rolls back the
memory to the version right before this query (after simulation described in Step 3). That is, since the
simulation on this query may be incorrect, Bob does not make any real changes to the memory in this
step.

5. As soon as Alice has sent 2εvk ·w + 1 bits (where w is the word-size), the players stop following the
above steps, and output uniform random bit for all queries from this point.

Analyzing the Protocol It is easy to verify that Bob sends no message, and due to the last step, Alice
always sends no more than O(εvk · log n) bits (word-size w = Θ(log n)). Thus, PD has the first two
properties claimed in the lemma statement. In following, we are going to show that whenever |PA ∩ PB| ≤
εvk and (1/2 + δv)-fraction of queries in IB are correct, PD answers at least (1/2 + δv − εv)-fraction of the
queries correctly, which implies the third property.

In Step 2, Alice only sends Bob cells in PA ∩ PB . Moreover, each cell in the intersection will only be
sent once - in the stage when it is probed by D the first time. Since sending the address and content of a
cells takes 2w bits, as long as |PA ∩ PB| ≤ εvk, the last step will not be triggered, and the players follow
the first four steps. Let us now focus on Step 4, query answering. Although Bob pretends that he has the
right memory state, which might not always hold, indeed for all queries during which D does not probe any
cell in PA that is not in Alice’s messages, Bob will perform a correct simulation. That is, as long as D does
not probe any “unknown” cell in PA ∩ PB , Bob will simulate D correctly. In the other words, each cell in
PA ∩ PB can only lead to one incorrect query simulation among all k queries. When |PA ∩ PB| ≤ εvk, on
all but εvk queries, Bob’s output agrees with the data structure. Thus, at least (1/2 + δv − εv)-fraction of
the queries will be answered correctly, and this proves the lemma.

To rule out the possibility of an efficient communication protocol for our problem, and prove Lemma 3.3,
the main idea is to show that Bob has only learned very little information about the updates before each query
Yi. Alice’s message can only depend on X and the previous queries, which are independent of Yi. Thus,
the probability that Bob answers each query correctly must be close to 1/2. Finally, we obtain the desired
probability bound from an application of the Azuma-Hoeffding inequality.

Proof of Lemma 3.3. Let R be the public random string, and Mi be Alice’s message in Stage i. Let Ci be
the indicator variable for correctly computing the i-th function f(X, i, Yi). We first show that until Stage i,
Bob has learned very little about X even conditioned on C1, . . . , Ci−1, and thus could answer Yi correctly
with probability barely greater than 1/2. Formally, we will prove by induction on i that

Pr[Ci = 1 | C1, . . . , Ci−1] ≤ 1

2
+O(

√
ε+
√
εv).

Fix a sequence c1, . . . , ci−1 ∈ {0, 1}. For simplicity of notation, denote the eventC1 = c1, . . . , Ci−1 = ci−1

by Wc. By induction hypothesis, we have Pr[Wc] ≥ 2−O(i) ≥ 2−O(k). Now conditioned on Wc, we upper
bound the probability that P correctly answers the i-th query:

Pr[P correctly computes f(X, i, Yi) |Wc]

=
1

ns

∑
q=(l,b)∈[n]×[s]

Pr[P correctly computes f(X, i, q) |Wc] (1)

14

Equality (1) is due to the fact that Yi is uniform and independent of the previous inputs.

≤ 1

2
+

1

ns

∑
q=(l,b)∈[n]×[s]

E
R,Y1,...,Yi−1,M1,...,Mi|Wc

∣∣∣∣Pr[f(X, i, q) = 1 | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc]−
1

2

∣∣∣∣
(2)

Inequality (2) holds because since Bob answers the query q based only on R, Y1, . . . , Yi−1,M1, . . . ,Mi, his
advantage over 1

2 of answering correctly is at most the bias of the conditional probability of f(X, i, q).

≤ 1

2
+

1

ns

∑
q=(l,b)∈[n]×[s]

Θ
(√

1−H(f(X, i, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)
)

(3)

Inequality (3) is due to Jensen’s inequality and the fact that for a binary random variable Z such that Pr[Z =
1] = 1

2 ± ε, its entropy is H(Z) = 1−Θ(ε2).

≤ 1

2
+ Θ

√√√√ 1

ns

∑
q=(l,b)∈[n]×[s]

(1−H(f(X, i, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc))

 . (4)

Finally, Inequality (4) is from another application of Jensen’s inequality.
Furthermore, we have

1

ns

∑
q=(l,b)∈[n]×[s]

H(f(X, i, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)

≥ 1

ns

∑
l∈[n]

H(a≤l(X, i) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc) (5)

≥ 1

ns

∑
o∈[n/k]

H(a≤o(X, i), a≤o+n/k(X, i), . . . , a≤o+(k−1)n/k(X, i) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)

(6)

a≤t(X, i) is the product of first t elements of a right before i-th query of IB if the updates in IA isX , i.e., the
group element that q = (t, ∗) queries. Inequality (5) and (6) is by the subadditivity of entropy and definition
of the query function.

≥ 1

ns

∑
o∈[n/k]

(H(X | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)− s) (7)

Inequality (7) is by our construction of the update sequence. The updates in IA are evenly spaced. Thus,
evenly spaced query can recover X (possibly except one element, which has entropy at most s).

=
1

ks
·H(X | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)−

1

k
(8)

≥ 1

ks
· (H(X | R, Y1, . . . , Yi−1,Wc)−H(M1, . . . ,Mi | R, Y1, . . . , Yi−1,Wc))−

1

k
(9)

Inequality (9) is by the chain-rule for conditional entropy.

≥ 1

ks
·H(X | R, Y1, . . . , Yi−1,Wc)−O(εv)−

1

k
(10)

15

Inequality (10) is due to the fact that Alice sends no more than O(εvk log n) bits and s = Θ(log n).

≥ 1

ks
·
(
k log |G| − log

1

Pr[Wc]

)
−O(εv)−

1

k
(11)

Inequality (11) is by the fact that X is uniform and independent of R, Y1, . . . , Yi−1. For uniform X , we
have H(X |W) ≥ H(X)− log 1

Pr[W] for any event W .

≥ log |G|
s
−O

(
1

s

)
−O(εv)−

1

k
≥ log |G|

s
−O(εv + ε), (12)

Inequality (12) is by the induction hypothesis that Pr[Wc] ≥ 2−O(k) and ε ≥ Ω(1/ log n)� 1/k.
Combining the above inequalities, we have

Pr[P correctly computes f(X, i, Yi) |Wc] ≤
1

2
+O

(√
1− log |G|

s
+O(εv + ε)

)
≤ 1

2
+O

(√
ε+
√
εv
)
.

We have shown that conditioned on whether P successfully computes first i − 1 function values, the
probability that it succeeds on the next is always upper bounded by 1

2 +O
(√
ε+
√
εv
)
. Hence the random

variables for the cumulative number of correct answers minus out cumulative upper bounds form a super-
martingale, and we can apply the Azuma-Heoffding inequality [Hoe63]. The probability that (1/2+δv−εv)-
fraction of the function values are computed correctly is at most

exp(−(δv −O(
√
ε+
√
εv))

2 · k).

This proves the lemma.

3.2 Groups versus Monoids

One key property of groups needed for our proof is the invertibility. Consider generalizing to the Monoid
Range Problem, which considers general monoids instead of groups. Monoids are sets closed under an
associative operation and have an identity element (notice they do not have the invertibility property). We
show that our lower bound does not hold for the Monoid Range Problem:

Theorem 1.4 (restated). There exists a family of monoids (Gn)n such that the Monoid Range Problem can
be solved in O

(
logn

log logn

)
time per operation.

Proof. Consider the following family of monoids. We use × to denote the operator and 0 to denote the
identity element, and ? to denote a special element. The family has the following property: for any elements
x, y ∈ Gn we have that x× y = ? unless x or y is 0 (in which case their product equals the other, due to the
identity property).

See Table 1 for small examples of these monoids. One way to think about these monoids is that the
elements are zero, singletons, or products of more than one singleton (?).

Thus, the product of a sequence of elements in Gn is ? if there are more than one non-zero element;
the product is 0 if all elements are zeros; the product is the only if non-zero element if there is exactly
one. To efficiently maintain the range product of a Gn sequence, we use a segment tree of branching factor
B = Θ(log n).

16

× 0 ?

0 0 ?
? ? ?

× 0 1 ?

0 0 1 ?
1 1 ? ?
? ? ? ?

× 0 1 2 ?

0 0 1 2 ?
1 1 ? ? ?
2 2 ? ? ?
? ? ? ? ?

Table 1: Multiplication tables for G2, G3, and G4.

The data structure Assume without loss of generality, that n is a power of B. Each node of the tree at
depth i is associated with a (contiguous) subsequence of length n/Bi. Dividing the associated subsequence
of a node E into B subsequences evenly, the j-th child of E is associated with the j-th subsequence.
In particular, the root is associated with the entire sequence, the j-th child of the root is associated with
((j− 1) ·n/B+ 1)-th element to (j ·n/B)-th element, and each leaf is associated with a singleton. In each
node E of the segment tree, the data structure maintains

(1) for each child of E, the minimum of two and the number of non-zero elements in their associated
subsequences, i.e., if there is none or one or more than one non-zero element;

(2) if there is exactly one non-zero element in the associated subsequence of E, what this element is.

Note that Part (1) costs O(1) bits for each child, thus O(B) = O(log n) bits in total, and Part (2) costs
O(log n) bits to indicate the element. Thus, both parts can be stored in O(1) words for each node.

Updates Upon receipt of an update ai := x, the data structure iteratively updates the information in the
tree bottom-up. It is not hard to verify that this update could only affect the nodes associated with some
subsequence consisting of i. It first finds the leaf associated with {i}, and updates the two parts according to
the value of x. Once all descendants of a node E are up-to-date, Part (1) of E can be updated by checking
Part (1) of the only child of E affected by the update. From the updated Part (1) of E, one can figure out if
there is exactly one non-zero element in the associated subsequence and which subtree it is in if there is. By
checking Part (2) of the relevant subtree, the data structure will be able to update Part (2) of E. Updating
each node takes O(1) time, only O(logB n) nodes are affected by the update. Thus, the total update time is
O(log n/ log log n).

Queries Recall that each child Ei of the root node is associated with a subsequence of length n/B. To
answer the query ai×· · ·×aj , the data structure first breaks [i, j] into subsequences S1, S2, . . . , Sm, such that
S2, . . . , Sm−1 are associated to Ea, . . . , Ea+m−2 for some a, S1 and Sm are subsequences of the associated
subsequences of Ea−1 and Ea+m−1 respectively. By accessing Part (1) of the root node, the data structure
learns whether there is none, exactly one or more than one non-zero elements in S2, . . . , Sm−1. Then it
recurses on S1 in the subtree rooted at Ea−1 and Sm in the subtree rooted at Ea+m−1. By combining the
answer from three parts, it will be able to output the answer to the query. It is not hard to verify that at each
depth, at most two nodes of the tree may be recursed on. The query algorithm spends O(1) time in each
node. Thus, the total query time is O(log n/ log logn).

Therefore, we conclude that the Monoid Range Problem with this particular family of monoids can be
solved in O(log n/ log log n) time per operation.

4 The Matrix Range Problem

In this section, we show that for a particular group G, even maintaining one particular bit (say the last bit)
of the whole product

∏n
i=1 ai is hard. The group G we focus on is the general linear group of invertible

17

matrices over the field Fp for constant p, namely G = GL(
√

log n,Fp).
The binary encoding of matrices we would like to focus on is the encoding of a matrix as the concate-

nation of its entries. Hence, queries will return a bit about an entry of the matrix product. We call the
Group Range Problem with G = GL(

√
log n,Fp) and this encoding the Matrix Range Problem. However,

since not all
√

log n ×
√

log n matrices over Fp are invertible, this is not the most concise encoding of
GL(
√

log n,Fp). We remark that our desired encoding is nonetheless concise enough for Theorem 1.1 to
hold:

Lemma 4.1. Theorem 1.1 holds for the Matrix Range Problem.

Proof. Consider the group of
√

log n ×
√

log n invertible matrices over the field Fp where p is constant.
Recall that this group has |GL(

√
log n, p)| =

∏√logn−1
i=0 (pn − pi) elements (see e.g. [DF04, page 413]).

We would like to represent this group in usual matrix format, i.e. as the concatenation of the representations
of their entries. This representation uses log n log p bits. On the other hand, notice that log |GL(n, p)| ≥
(log n−

√
log n) log p, so Theorem 1.1 implies that our lower bound holds for this setting.

The Matrix Product Problem is the same as the Matrix Range Problem, except that instead of being able
to query for (a bit of) any entry of the product of the matrices in any subinterval, we are only allowed to query
for (a bit of) the bottom-right entry of the product of the entire range of matrices. Despite this substantial
restriction on the types of queries allowed, we find that the Matrix Range Problem can be reduced to the
Matrix Product Problem such that our lower bounds from the previous section still apply to the Matrix
Product Problem.

Lemma 4.2. If the Matrix Product Problem for n matrices of dimension d × d can be solved in amortized
T (n, d) time per operation, then the Matrix Range Problem n matrices of dimension d× d can be solved in
amortized O(T (n, d+ 1)) time per operation.

Proof. The inspiration for the reduction is the following fact: Let ei denote the ith standard basis vector, i.e.
the vector of length n whose entries are all 0 except for its ith entry which is 1. For any d × d matrices A,
B, and C, consider the following product of three (d+ 1)× (d+ 1) matrices:

D =

[
A 0
eTj′ 1

] [
B 0
0T 1

] [
C ei′
0T 1

]
In the resulting matrix D, the bottom right entry D(d+1)(d+1) is equal to (Bi′j′ + 1).
The reduction is hence as follows. For any sequence M1,M2, . . . ,Mn of d × d matrices, and any two

indices 1 < i < j < n, consider the following product of (d+ 1)× (d+ 1) matrices:

D =

[
M1 0
0T 1

] [
M2 0
0T 1

]
· · ·
[
Mi−1 0

eTj′ 1

] [
Mi 0
0T 1

]
· · ·
[
Mj 0
0T 1

] [
Mj+1 ei′

0T 1

]
· · ·
[
Mn 0
0T 1

]
Similar to before, the bottom right entry D(d+1)(d+1) will be equal to the (i′, j′)th entry of the product

Mi · · ·Mj plus one. To deal with i = 1, then no matrix has eTj′ as its bottom row. The first d entries of the
right column of D will be the i′th column of M1 · · ·Mj . There is a similar case for j = n.

Updates to the original sequence of d × d matrices can be translated directly into updates to the new
sequence of (d+ 1)× (d+ 1) matrices. Queries to the original sequence result in at most four updates and
a query on the new sequence. This completes the proof.

Corollary 1.3 (restated). Theorem 1.1 holds for the Matrix Product Problem.

18

4.1 Upper Triangular Matrices

We further restrict our focus to the group G of invertible upper triangular matrices. In some applications,
only upper triangular matrices are sufficient instead of the full general linear group of all invertible matrices,
and the proof of Lemma 4.2 does not immediately imply that the Upper Triangular Matrix Product Problem
has a Theorem 1.1 style of lower bound, as our gadget would make one matrix no longer upper triangular.
Nonetheless, we are able to prove the lower bound via a modification of Lemma 4.2.

Lemma 4.3. If the Upper Triangular Matrix Product Problem for n matrices of dimension d × d can be
solved in amortized T (n, d) time per operation, then the Matrix Range Problem n matrices of dimension
d× d can be solved in amortized O(T (2n+ 1, 2d)) time per operation.

Proof. The reduction uses the following identity: Let N(i,j) denote the d × d matrix which has all entries
0 except its (i, j) entry is 1. For any d × d upper triangular matrices A, B, and C, we have the following
identity of 2d× 2d upper triangular matrices:[

A 0

0 I

] [
N(1,j) 0

0 I

] [
B 0

0 I

] [
I N(i,1)

0 I

] [
C 0

0 I

]
=

[
ABjC B(i,j)

0 I

]
,

where Bj is the all zeroes matrix except that its first row is the jth row of B, and B(i,j) is the all zeroes
matrix except that its top right entry is the (i, j) entry of B.

Similar to before, to maintain the sequenceM1, . . . ,Mn of d×dmatrices, we will maintain the following
sequence of 2d× 2d matrices:[

I 0

0 I

] [
M1 0

0 I

] [
I 0

0 I

] [
M2 0

0 I

] [
I 0

0 I

]
· · ·
[
I 0

0 I

] [
Mn 0

0 I

] [
I 0

0 I

]
.

To query the (i, j) entry of the product MaMa+1 · · ·Mb, we change the (2a−1)th matrix to
[
N(1,j) 0

0 I

]
,

and change the (2b + 1)th matrix to
[
I N(i,1)

0 I

]
, and then our desired value is the top right entry of the

product of all the matrices.

Corollary 4.4. Theorem 1.1 holds for the Upper Triangular Matrix Product Problem.

References

[Ajt88] Miklós Ajtai. A lower bound for finding predecessors in yao’s call probe model. Combinator-
ica, 8(3):235–247, 1988.

[BF02] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related prob-
lems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

[BH11] George F Burkhard and Eric T Hoke. Transfer matrix optical modeling. 2011.

[DF04] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken,
2004.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

19

[HW07] Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjoint-
ness. Theory of Computing, 3(1):211–219, 2007.

[LD69] YK Lin and BK Donaldson. A brief survey of transfer matrix techniques with special reference
to the analysis of aircraft panels. Journal of Sound and Vibration, 10(1):103–143, 1969.

[LW17] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In
SODA, pages 2182–2189, 2017.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. In STOC, pages 103–111, 1995.

[Pǎt07] Mihai Pǎtraşcu. Lower bounds for 2-dimensional range counting. In STOC, pages 40–46,
2007.

[PD04] Mihai Pătraşcu and Erik D Demaine. Tight bounds for the partial-sums problem. In SODA,
pages 20–29, 2004.

[PD06] Mihai Pătraşcu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
Journal on Computing, 35(4):932–963, 2006.

[PRI99] Leif AA Pettersson, Lucimara S Roman, and Olle Inganäs. Modeling photocurrent action spec-
tra of photovoltaic devices based on organic thin films. Journal of Applied Physics, 86(1):487–
496, 1999.

[PT11] Mihai Pătraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots. In
STOC, pages 559–568, 2011.

[PYF03] Peter Peumans, Aharon Yakimov, and Stephen R Forrest. Small molecular weight organic
thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7):3693–3723, 2003.

[WY16] Omri Weinstein and Huacheng Yu. Amortized dynamic cell-probe lower bounds from four-
party communication. In FOCS, pages 305–314, 2016.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In FOCS, pages 222–227, 1977.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM (JACM), 28(3):615–628,
1981.

[Yu16] Huacheng Yu. Cell-probe lower bounds for dynamic problems via a new communication
model. In STOC, pages 362–374, 2016.

A Applications of the Group Range Problem

Physics

One example in the areas of optics and computer graphics is the propagation of electromagnetic waves
through different media. The transfer-matrix method from optics describes how to analyze the propagation
of such waves by computing a product of characteristic matrices, one corresponding to each medium. In
optical modeling experiments, physicists sometimes need to quickly determine how making changes to one
characteristic matrix alters the overall product, a computational task described by our problem. [PRI99,
PYF03, BH11] Some forms of ray tracing in computer graphics also use this transfer matrix analysis.

20

The transfer matrix method is also used in some mechanical engineering problems, like in the design of
aircraft panels. Due to the details of these mechanics problems, the matrices involved are typically upper-
triangular matrices. [LD69]

In many of these applications, one is only interested in being able to query the product of the entire
sequence of matrices, rather than querying arbitrary subintervals of matrices. We show that, when G is the
group of invertible matrices, or the group of invertible upper triangular matrices, our lower bound still holds
even if only an entry of the product of the entire sequence of matrices can be queried.

Dynamic Permanent for Banded Matrices

Consider the following data structure problem. We want to keep track of the permanent of an n× n matrix
M over some finite field Fp. To keep the problem tractable (because Permanent is NP-complete), we restrict
attention to the case where M is a band matrix, i.e. Mi,j is nonzero only when |i− j| ≤ k for some constant
k. We want to support the following two operations:

• Update(i, j,∆), which updates Mi,j ←Mi,j + ∆ but only for |i− j| ≤ 1.

• Query(), which returns the permanent of M .

It turns out that this problem is reducible to the Matrix Range Problem. Consider the k = 1 case, and
treat the permanent as the sum of weights of perfect matchings of a bipartite graph G = ([n], [n], E), we
define Pi to be the sum of weights of perfect matchings of the bipartite graph Gi = ([i], [i], E ∩ ([i]× [i])).
Because of the banded property of the matrix, there are only two vertices that vertex i on the left hand side
of the graph can be matched to: vertex i − 1 or vertex i on the right hand side. Furthermore, if left i is
matched to right i− 1 then left i− 1 must be matched to right i. Hence:

Pi = Pi−1Mi,i + Pi−2Mi−1,iMi,i−1[
Pi
Pi−1

]
=

[
Mi,i Mi−1,iMi,i−1

1 0

] [
Pi−1

Pi−2

]
[

Pn
Pn−1

]
=

[
Mn,n Mn−1,nMn,n−1

1 0

]
· · ·
[
M2,2 M1,2M2,1

1 0

] [
M1,1

1

]

Therefore it suffices to keep a Matrix Range which stores the n − 1 matrices
[
Mi,i Mi−1,iMi,i−1

1 0

]
. Each update to the Dynamic Permanent data structure results in exactly one update to the Matrix Range
data structure, and a query to the Dynamic Permanent data structure can be answered by querying for the
top row (two entries) of the product of the entire range.

Modulo the fact that these matrices may not be invertible (if Mi−1,iMi,i−1 = 0), our results show that
this approach to the problem should cost Ω(log n) time per operation. In particular, our lower bound for
the Matrix Product Problem showed that this problem is still hard even when queries only request the entire
range of matrices and not arbitrary subintervals.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

