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Abstract

Yao’s garbled circuit (GC) construction is a central cryptographic tool with numerous ap-
plications. In this tutorial, we study garbled circuits from a foundational point of view under
the framework of randomized encoding (RE) of Functions. We review old and new constructions
of REs, present some lower-bounds, and describe some applications. We will also discuss new
directions and open problems in the foundations of REs.

1 Introduction

Garbled circuits were introduced by Yao (in oral presentations of [86]) as a two-party protocol
for secure function evaluation. At the heart of Yao’s protocol stands a non interactive garbling
technique that became a central tool in the design of constant-round secure computation proto-
cols [86, 21, 43, 80, 66, 75]. Over the years, the garbled circuit technique has found a diverse
range of other applications to problems such as computing on encrypted data [84, 35], parallel
cryptography [10, 11], verifiable computation [46, 14], software protection [55, 58, 25], functional
encryption [83, 56], key-dependent message security [19, 2], code obfuscation [5, 38], and others.
Correspondingly, it is currently evident that the garbling technique should be treated as a stand-
alone abstract object.

The first such abstraction was introduced by Ishai and Kushilevitz [66, 67] under the algebraic
framework of randomizing polynomials, and was later extended and abstracted under the termi-
nology of randomized encoding of functions [10, 11]. In this framework we view garbled circuits
as an encoding (or encryption) of a computation. Roughly speaking, we would like to represent a
function f(x) by a randomized function f̂(x; r) such that the following hold:

• (Correctness) For every fixed input x and a uniformly random choice of r, the output dis-
tribution f̂(x; r) forms a “randomized encoding” of f(x), from which f(x) can be efficiently
decoded. Namely, there exists an efficient decoding algorithm Dec, referred to as a decoder,
such that for every x and r, it holds that Dec(f̂(x; r)) = f(x). In particular, this means that,
if f(x) 6= f(x′), then the random variables f̂(x; r) and f̂(x′; r′), induced by a uniform choice
of r and r′, should have disjoint supports. (We will later discuss relaxations in which the
supports are “almost disjoint” and decoding succeeds for most r’s.)

∗This paper appears in a book of surveys in honor of Oded Goldreich’s 60th birthday, and subsumes the short
survey [3].
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• (Privacy) The distribution of this randomized encoding depends only on the encoded value
f(x) and essentially does not reveal further information on x. Namely, there exists an effi-
cient randomized algorithm Sim, referred to as a simulator, which, given f(x), samples the
distribution f̂(x; r) induced by a random choice of r. Ideally, the simulator’s output should
be identically distributed to the encoding, but we will also consider variants in which the two
distributions are only statistically or computationally close. Note that the privacy require-
ment implies that, if f(x) = f(x′), then the random variables f̂(x; r) and f̂(x′; r′) are close
to each other, or even identical when the simulator is perfect.

• (Efficiency/simplicity) To be useful, the encoding f̂ should be “simpler” or more “efficient”
than the original function with respect to some measure of complexity.

Observe that privacy can be trivially satisfied by the constant function f̂(x) = 0 whereas correctness
can be trivially satisfied by the identity function f̂(x) = x. However, the combination of privacy
and correctness forms a natural relaxation of the usual notion of computing. The last, “efficiency”
requirement ensures that this relaxation is nontrivial. As we will later see, the use of randomness is
necessary for achieving all three goals. For the sake of concreteness consider the following examples:

Example 1.1 (Encoding modular squaring). Let N be a (public) integer and consider the modular
squaring function f(x) = x2 mod N . Then, f can be encoded by the function f̂(x; r) = x2 + r ·N ,
where computation is over the integers and r is a random integer in [0, B] for some large integer
B � N . To see that the encoding is correct consider the decoder Dec which, given an integer ŷ
(supposedly in the image of f̂), outputs ŷ mod N . Clearly, Dec(f̂(x; r)) = f(x) for every x and r.
Privacy holds since any pair of inputs x and x′ for which f(x) = f(x′) = y are mapped to a pair of
distributions f̂(x; r) and f̂(x′; r) which are (N/B)-statistically close. In particular, given y = f(x),

the simulator Sim outputs y + rN for a uniformly chosen r
R← [0, B]. It is not hard to show that

the resulting distribution Dy is (N/B)-statistically close to f̂(x; r). Finally, the encoder f̂ avoids
modular reduction, which in some cases, may be considered an expensive operation.

Let us briefly explain how Yao’s garbled circuit fits into the randomized encoding framework.
(Readers who are not familiar with Yao’s construction may safely skip the following example; A
full and modular description of this construction appears later in Section 3.)

Example 1.2 (Yao’s construction as randomized encoding). Given a Boolean circuit C : {0, 1}n →
{0, 1}m and secret randomness r, Yao’s construction generates a “garbled circuit” Ĉ (which consists
of several ciphertexts per logical gate of C), together with n pairs of “short” keys (K0

i ,K
1
i ), such

that for any (a priori unknown) input x, the garbled circuit Ĉ together with the n keys Kx =
(Kx1

1 , . . . ,Kxn
n ) reveal C(x) but give no additional information about x. Therefore, the mapping

g : (x; r) 7→ (Ĉ,Kx) forms a randomized encoding of the computation C(x). The decoder Dec
takes (Ĉ,Kx) as an input and recovers the value C(x). (This is done by gradually decrypting, for
each gate of C, a ciphertext of Ĉ, starting with the input layer for which the keys Kx are used for
decryption, and ending up in the output layer from which the actual output C(x) is recovered.) The
construction also admits a simulator which, given y = C(x), samples a distribution Sim(y) which
is computationally indistinguishable from the encoder’s distribution (Ĉ,Kx). The encoding satisfies
several notions of simplicity. In particular, each output of g depends on at most a single bit of
x. Moreover, most of the output entries (the ones that correspond to the “garbled circuit” part Ĉ)
depend only on the randomness r, and so they can be computed in an “offline phase” before the

2



actual input x is known. As we will later see, these efficiency properties are extremely useful for
several applications.

Note that, in the above examples, the saving in efficiency of the encoder has some cost: the
decoder itself performs expensive operations (i.e., modular reduction in Example 1.1, and, in Ex-
ample 1.2 an evaluation of a garbled version of the circuit C). This is inherent, as the computation
f(x) can be written as Dec(f̂(x; r)) and so we do not expect to simultaneously reduce the com-
plexity of the encoder and decoder, since this would allow us to “speed up” the computation of
f . Nevertheless, the ability to decompose the computation into an easy part (f̂) and complicated
part (Dec), while preserving privacy, can be useful in many cases, as demonstrated by the following
example:

Example 1.3 (Simple usage scenario). Imagine a scenario of sending a weak device U into the field
to perform some expensive computation f on sensitive data x. The computation is too complex for
U to quickly perform on its own, and since the input x is sensitive, U cannot just send the entire
input out. Randomized encoding provides a noninteractive solution to this problem: U simply sends
out a single (randomized) message f̂(x; r). The rest of the world can, at this point, recover f(x)
(by applying the decoder) and nothing else (due to the privacy property). In fact, one could define
RE as a noninteractive solution to the above problem.

Remark 1.4 (FHE vs. RE). It is instructive to compare the use of RE in the above scenario
(Example 1.3) with a solution based on fully homomorphic encryption (FHE) [47]. Using FHE, the
client can send an encryption FHE(x) to an outside server, which can generate, in turn, the value
FHE(f(x)). However, in order to publish f(x), another round of interaction is needed, since U has
to decrypt the output. More generally, the power of RE stems from the ability to reveal f(x) to
anyone (while hiding x).

This tutorial. The abstract framework of randomized encoding (RE) is quite general and can
be instantiated in several ways, including computational and information-theoretic variants and
different forms of efficiency/simplicity requirements. In this tutorial, we use this framework to
study garbled circuits from a foundational point of view. As we will see, the use of a general and
abstract framework is beneficial, even if one is interested in concrete forms of REs (e.g., ones that
correspond to “standard garbled circuits”). Our presentation emphasizes the properties of REs and
the way that basic REs can be combined and manipulated to produce better ones. Naturally, this
leaves several important aspects uncovered. Most notably, many useful direct information-theoretic
randomization techniques are omitted. Such techniques are thoroughly covered in the survey of
Ishai [64]. We also focus on asymptotic analysis and leave out the concrete efficiency of REs.

Organization. The rest of this paper is organized as follows: In Section 2, we formally define
REs and present their basic properties. A general template for constructing randomized encodings
appears in Section 3, together with basic feasibility results. Recent constructions of REs which
provide better efficiency or stronger security are presented in Section 4. Some basic applications
of REs are sketched in Section 5. We conclude in Section 6 with a summary and suggestions for
further reading. A brief comparison of REs with the “garbling scheme” framework of Bellare et
al. [26] appears in Appendix A.
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2 Definitions and Basic Properties

Notation. For a positive integer n ∈ N, let [n] denote the set {1, . . . , n}. A function ε : N→ [0, 1]
is negligible if it tends to zero faster than 1/nc for every constant c > 0. The term “efficient”
refers to probabilistic polynomial time. For a finite set (resp., probability distribution) X, we

let x
R← X denote an element that is sampled uniformly at random from X (resp., according to

the distribution X). We let Un denote the uniform distribution over n-bit strings. The statis-
tical distance between a pair of random variables X and Y over a finite range R is defined by
1
2

∑
r∈R |Pr[X = r]− Pr[Y = r]|.

2.1 Syntax and Basic Definition

We begin with a formal definition of randomized encoding of functions. In the following let X,Y, Z,
and R be finite sets (typically taken to be sets of fixed-length strings).

Definition 2.1 (Randomized encoding [10, 11]). Let f : X → Y be a function. We say that a
function f̂ : X ×R→ Z is a δ-correct, (t, ε)-private randomized encoding of f if there exist a pair
of randomized algorithms, decoder Dec and simulator Sim, for which the following hold:

• (δ-correctness) For any input x ∈ X,

Pr
r
R←R

[Dec(f̂(x; r)) 6= f(x)] ≤ δ.

• ((t, ε)-privacy) For any x ∈ X and any circuit1 A of size t∣∣∣∣∣Pr[A(Sim(f(x))) = 1]− Pr
r
R←R

[A(f̂(x; r)) = 1]

∣∣∣∣∣ ≤ ε.
We refer to the second input of f̂ as its random input, and a use semicolon (;) to separate deter-
ministic inputs from random inputs. We will sometimes write f̂(x) to denote the random variable

f̂(x; r) induced by sampling r
R← R. We refer to log |R| and log |Z| as the randomness complexity

and the communication complexity of f̂ , respectively. By default, we measure the computational
complexity of f̂ by its circuit size.

1For simplicity, throughout the paper we model adversaries as non-uniform circuits. However, all the results
presented here also hold in a uniform model where adversaries are modeled as probabilistic polynomial-time Turing
machines. A uniform treatment of REs can be found in [11, 15].
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Infinite functions and collections. Definition 2.1 naturally extends to infinite functions f :
{0, 1}∗ → {0, 1}∗, and, more generally, to collections of functions. Let F be a collection of functions
with an associated representation (by default, a boolean or arithmetic circuit). We say that a class
of randomized functions F̂ is a δ(n)-correct, (t(n), ε(n))-private RE of F if there exists an efficient
algorithm (compiler) which gets as an input a function f : X → Y from F and outputs (in
time polynomial in the representation length |f |) three circuits (f̂ ∈ F̂ ,Dec, Sim) which form a
(t(n), ε(n)-RE of f where n denotes the input length of f , i.e., n = log |X|.

Remark 2.2. We use n both as an input length parameter and as a cryptographic “security pa-
rameter” quantifying computational privacy. When describing some of our constructions, it will
be convenient to use a separate parameter k for the latter, where computational privacy will be
guaranteed as long as k = nε for some constant ε > 0.

Variants. Several variants of randomized encodings have been considered in the literature. Cor-
rectness is said to be perfect when δ = 0 and statistical if δ(n) is negligible (i.e., δ(n) = n−ω(1)).
We say that the encoding is ε-private if it satisfies (t, ε)-privacy for every t, namely, the simulator
output Sim(f(x)) is ε-close in statistical distance to the encoding f̂(x, Um). Under this convention,
perfect privacy corresponds to 0-privacy and statistical privacy corresponds to ε(n)-privacy for some
negligible ε. An encoding is computationally private if it is (t, 1/t)-private for every polynomial
t(n). Throughout this paper, we mainly focus on computational encodings which are both com-
putationally private and perfectly correct. However, we will also mention basic feasibility results
regarding perfect encodings which achieve perfect correctness and perfect privacy.

2.2 Efficiency and Simplicity

So far, the notion of RE can be trivially satisfied by taking f̂ = f and letting the simulator and
decoder be the identity functions.2 To make the definition nontrivial, we should impose some
efficiency constraint. The most obvious efficiency measure is sequential time; i.e., we would like to
encode functions computable by large circuits (or by Turing machines with large time complexity)
via relatively small circuits (or fast Turing machines). In addition to sequential time, several other
notions of efficiency/simplicity have been considered in the literature. Here we review only a few
of them.

Online/offline complexity. We would like to measure separately the complexity of the outputs
of f̂ which depend solely on r (offline part) from the ones which depend on both x and r (online
part).3 Without loss of generality, we assume that f̂ can be written as f̂(x; r) = (f̂off(r), f̂on(x; r)),
where f̂off(r) does not depend on x at all. We can therefore split the communication complexity
(resp., computational complexity) of f̂ into the online communication complexity (resp., online
computational complexity), which corresponds to the online part f̂on(x; r), and the offline commu-
nication complexity (resp., offline computational complexity), which corresponds to the offline part
f̂off(r).

2The omission of efficiency requirements from Definition 2.1 is not accidental. We believe that, at a definitional
level, it is best to leave such requirements unspecified and adopt appropriate efficiency requirements in an application-
dependent context. Moreover, the ability to treat inefficient encodings as “legal REs” turns out to be useful. Indeed,
as we will later see, some constructions start with a trivial RE and gradually convert it into a more efficient one.

3The online/offline terminology hints towards applications in which f is known ahead of time in an “offline phase”,
whereas x becomes available only later in an “online phase”.
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Efficient online encodings. Let F̂ be an encoding of the collection F . We say that F̂ is online
efficient if, for every function f ∈ F , the online computational complexity of the encoding f̂ is
independent of the computational complexity (i.e., circuit size) of the encoded function f (but
grows with the bit length of the input of f). We may further require online universality, which
means that the computation of the online part f̂on corresponds to some universal computation
which is independent of the encoded function f . In such a case, we may think of the encoding of
F as being composed of two mappings: One that maps the function f ∈ F and the randomness r
to f̂off(r), and one that maps the input x and the randomness r to f̂on(x; r). (Indeed, this view is
taken in [26].) In the context of garbled circuits, f̂off(r) is typically referred to as the garbled circuit
part, and f̂on(x; r) is typically referred to as the garbled input. It is sometimes useful to think of
f̂off(r) as a ciphertext and f̂on(x; r) as a key Kx that “opens” the ciphertext to the value f(x).

Remark 2.3. The distinction between the online part of the encoding and its offline part naturally
gives rise to a stronger form of adaptive privacy in which the adversary may choose the input x
based on the offline part of the encoding. This form of security is discussed later, in Section 4.5. For
now, we use the online/offline terminology only as an efficiency requirement without imposing any
additional requirement on privacy; That is, all we require is standard privacy as per Definition 2.1.

Affinity and decomposability. Some of the applications of REs further require some form
of algebraic simplicity. Assume that the function f is an arithmetic function whose input x =
(x1, . . . , xn) is a vector of elements of some ring R. We say that an RE f̂ : Rn × {0, 1}m → Rs of
f is an affine randomized encoding (ARE) if, for every fixing of the randomness r, the online part
of the encoding f̂on(x; r) becomes an affine function over the ring R, i.e., f̂on(x; r) = Mr · x + vr,
where Mr (resp., vr) is a matrix (resp., vector) that depends on the randomness r. We say that f̂
is a decomposable randomized encoding (DRE) if each output of the online part of f̂ depends on
at most a single input xi. Namely, f̂on(x; r) decomposes to (f̂1(x1; r), . . . , f̂n(xn; r)), where f̂i may
output several ring elements. An RE which is both decomposable and affine is called a DARE.
Observe that, in the binary case where R = Z2, decomposability implies affinity and so any DRE
is also a DARE, although this is not the case for general rings.

Algebraic degree and output locality. Affinity and decomposability essentially require simple
dependency on x. One can strengthen these notions by also placing restrictions on the way f̂
depends on the randomness r. Specifically, one can require that the algebraic degree of each output
of f̂(x; r), viewed as a polynomial in r and x, will be small (e.g., constant). Similarly, one may
require that each output of f̂(x; r) will depend on a constant number of inputs (including the
r’s), namely that f̂ should have constant output locality. Over the binary ring Z2, constant locality
implies constant degree (since over the binary ring, polynomials may be assumed to be multilinear).

The necessity of randomness. For any of the above notions of simplicity, randomness is nec-
essary in order to obtain a “simple” encoding for a “nonsimple” boolean function. To see this,
assume that f : {0, 1}n → {0, 1} has a deterministic encoding f̂ : {0, 1}n → {0, 1}s. The privacy
of the encoding promises that there exists a pair of strings y0, y1 ∈ {0, 1}s such that, for every
x ∈ {0, 1}n, we have f̂(x) = yf(x). Also, by correctness, y0 and y1 disagree in some position, say

the first. Hence, we can compute f(x) by computing the first bit of f̂(x) or its negation. We
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conclude that if f̂ is simple then so is f , assuming that “simplicity” is closed under projection
(which is the case for affinity, decomposability, locality, and degree).4

2.3 Useful Properties

REs satisfy several natural properties which hold regardless of their efficiency. First, just like in

the case of string encodings, if we take an encoding f̂ of f , and re-encode it by
ˆ̂
f , then the resulting

encoding also encodes the original function f . Second, an encoding of a tuple (f1(x), f2(x)) can
be obtained by encoding each element of the pair separately and concatenating the result. Finally,
given an encoding f̂(y; r) of f(y), we can encode a function of the form f(g(x)) by encoding the
outer function and substituting y with g(x), i.e., f̂(g(x); r). We summarize these properties via the
following lemmas [10]. For simplicity, we restrict our attention to perfectly correct encodings and
refer to perfectly correct (t, ε)-private encodings as (t, ε)-encodings.

Lemma 2.4 (Composition). Suppose that g(x; rg) is a (t1, ε1)-encoding of f(x) with decoder
Decg and simulator Simg, and that h((x, rg); rh) is a (t2, ε2)-encoding of the function g(x, rg),
viewed as a single-argument function, with decoder Dech and simulator Simh. Then, the function
f̂(x; (rg, rh)) = h((x, rg); rh) together with the decoder Dec(ŷ) = Decg(Dech(ŷ)) and the simulator
Sim(y) = Simh(Simg(y)) forms a (min(t1 − s, t2), ε1 + ε2)-encoding of f(x) where s upper-bounds
the circuit complexity of h and its simulator Simh.

Proof. Perfect correctness follows by noting that Prrg ,rh [Dec(f̂(x; rg, rh)) 6= f(x)] is upper-bounded
by

Pr
rg ,rh

[Dec(h(x, rg; rh)) 6= g(x, rg)] + Pr
rg

[Dec(ĝ(x; rg)) 6= f(x)] = 0.

To prove privacy, consider a t-size adversary A which, for some x, distinguishes the distributions
Sim(f(x)) from f̂(x) with advantage ε, where ε > ε1 + ε2 and t < min(t1 − s, t2). We show that
we can either violate the privacy of the encoding g or the privacy of the encoding h. Indeed, by
considering the “hybrid” distribution Simh(g(x)), we can write

ε1 + ε2 <

∣∣∣∣Pr[A(Simh(Simg(f(x)))) = 1]− Pr
rg ,rh

[A(h((x, rg); rh)) = 1]

∣∣∣∣ (1)

=

∣∣∣∣Pr[A(Simh(Simg(f(x)))) = 1]− Pr
rg

[A(Simh(g(x; rg))) = 1]

∣∣∣∣ (2)

+

∣∣∣∣Pr
rg

[A(Simh(g(x; rg))) = 1]− Pr
rg ,rh

[A(h((x, rg); rh)) = 1]

∣∣∣∣ . (3)

It follows that either (2) is larger than ε1 or (3) is larger than ε2. In the first case, we get, for some
fixing of the coins of Simh, an adversary A(Simh(·)) of complexity t + s < t1 which violates the
privacy of the encoding g. In the second case, there exists an input (x, rg) for which A violates the
privacy of h.

4This argument relies heavily on the fact that f is a boolean function. Indeed, the claim does not hold in the
case of non-boolean functions. Suppose, for example, that f : {0, 1}n → {0, 1}n is a permutation. Then it can be
trivially encoded by the identity function. Moreover, if f can be computed and inverted in polynomial time, then
the encoding allows efficient decoding and simulation.
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Lemma 2.5 (Concatenation). Suppose that f̂i(x; ri) is a (t, ε)-encoding of the function fi : {0, 1}n →
{0, 1}`i with decoder Deci and simulator Simi for every i ∈ [c]. Then the function f̂(x; (r1, . . . , rc)) =
(f̂i(x; ri))

c
i=1 together with the decoder Dec(ŷ) = (Deci(ŷi))

c
i=1 and simulator Sim(y) = (Simi(yi))

c
i=1

forms a (t − cs, cε)-encoding of f(x) = (f1(x), . . . , fc(x)) where s is an upper-bound on the com-
plexity of the encodings f̂i.

Proof. Perfect correctness follows from

Pr
r

[Dec(f̂(x; r)) 6= f(x)] ≤
c∑
i=1

Pr
r

[Dec(f̂i(x; ri)) 6= fi(x)] = 0.

Privacy is proved via a standard hybrid argument. Specifically, suppose towards a contradiction,
that A is a (t − cs)-size adversary that distinguishes f̂(x; r) from Sim(f(x); ρ) with advantage
cε. Then, by an averaging argument, for some j ∈ {1, . . . , c}, the adversary A distinguishes with
advantage at least ε between the tuple

(f̂1(x; r1), . . . , f̂j−1(x; rj−1),Simj(fj(x)), . . . ,Simc(fc(x)))

and the tuple
(f̂1(x; r1), . . . , f̂j(x; rj), Simj+1(fj(x)), . . . ,Simc(fc(x))).

By an averaging argument, A distinguishes with advantage at least ε between (w,Simj(fj(x)), z)

and (w, f̂j(x; rj), z) for some fixing w = (w1, . . . , wj−1) and z = (zj+1 . . . zc). Let B be an adversary
that, given a challenge ŷj , calls A on the input (w, ŷj , z) and outputs the result. The adversary B
can be implemented by a t-size circuit and it distinguishes f̂j(x; rj) from Simj(fj(x)) with advantage
ε, in contradiction to our hypothesis.

Lemma 2.6 (Substitution). Suppose that the function f̂(x; r) is a (t, ε)-encoding of f(x) with
decoder Dec and simulator Sim. Let h(z) be a function of the form f(g(z)) where z ∈ {0, 1}k and
g : {0, 1}k → {0, 1}n. Then, the function ĥ(z; r) = f̂(g(z); r) is a (t, ε)-encoding of h with the same
simulator and the same decoder.

Proof. Follows immediately from the definition. For correctness we have that, for all z,

Pr
r

[Dec(ĥ(z; r)) 6= h(z)] = Pr
r

[Dec(f̂(g(z); r)) 6= f(g(z))] = 0,

and for privacy we have that, for all z, the distribution Sim(h(z)) = Sim(f(g(z))) cannot be
distinguished from the distribution f̂(g(z)) = ĥ(z) with advantage better than ε by any t-size
adversary.

Remark 2.7 (Composition, concatenation, and substitution with constructive simulators/decoders).
Observe that, in all the above cases, the simulator and the decoder of the new encoding can be derived
in a straightforward way based on the original simulators and decoders.

Remark 2.8 (The efficiency of simulation). In the composition lemma, the loss in security depends,
in part, on the complexity of the simulator. Typically, the latter is roughly the same as the complexity
of the encoding itself. Indeed, a natural way to define a simulator Sim(y) is to sample an encoding
f̂(xy) where xy is some fixed canonical preimage of y under f . The complexity of such a simulator
is the same as the complexity of the encoding plus the cost of finding xy given y. In fact, it is
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not hard to see that, if f̂ is a (t, ε)-private encoding with some simulator Sim′, then the canonical
simulator defined above is (t, 2ε)-private. Of course, in some cases, the canonical simulator may
not be efficiently computable, since it may be hard to find a canonical input xy for some y’s (e.g.,
when f is a one-way permutation).

3 Feasibility Results

In this section we present basic feasibility results regarding the existence of DARE for several rich
function classes. We present these constructions via the unified framework of [15].

3.1 Perfect DARE for Finite Functions

As a warmup, we consider several examples of DARE for finite functions. (The examples apply to
any finite ring.)

Example 3.1 (Addition). The addition function f(x1, x2) = x1 + x2 over some finite ring R is
perfectly encoded by the DARE

f̂(x1, x2; r) = (x1 + r, x2 − r).

Indeed, decoding is performed by summing up the two components of the encoding, and simulation
is done by sampling a random pair whose sum equals to y = f(x1, x2).

Example 3.2 (Multiplication). The product function f(x1, x2) = x1 · x2 over a ring R is perfectly
encoded by the ARE

g(x1, x2; r1, r2) = (x1 + r1, x2 + r2, r2x1 + r1x2 + r1r2).

Indeed, given an encoding (c1, c2, c3), we can recover f(x) by computing c1 · c2 − c3. Also, perfect
privacy holds, since the triple (c1, c2, c3) is uniform subject to the correctness constraint. Hence, the
simulator Sim(y; c1, c2) := (c1, c2, c1c2 − y) perfectly simulates g. Observe that the above encoding
is affine but not decomposable (the last entry depends on both x1 and x2). We can derive a DARE
by viewing the last entry g3(x, r) = (r2x1) + (r1x2 + r1r2) as a deterministic function in x and r
and re-encoding it via the DARE for addition (Example 3.1):

ĝ3(x, r; s) = (r2x1 + s, r1x2 + r1r2 − s).

By the concatenation lemma, the function ĝ(x, r; s) = (g1(x, r), g2(x, r), ĝ3(x; r)) perfectly encodes
g(x, r), and therefore, by the composition lemma, ĝ(x; r, s) perfectly encodes f(x).

Using similar ideas, it can be shown that any polynomial f over a ring R can be encoded by
a perfect DARE (whose complexity may be large). In the next section, we show how to achieve
complexity which is polynomial in the formula size of f . For this, it will be useful to record the
following concrete DARE for the function x1x2 + x3 (MUL-ADD).

Fact 3.3 (DARE for MUL-ADD [15]). The function f(x1, x2, x3) = x1x2 + x3 over a finite ring R
is perfectly encoded by the DARE f̂(x1, x2, x3; r1, r2, r3, r4) defined by(

x1

[
1
r2

]
+

[
−r1

−r1r2 + r3

]
, x2

[
1
r1

]
+

[
−r2
r4

]
, x3 − r3 − r4

)
,

where r1, r2, r3, r4 are random and independent ring elements.

9



3.2 Perfect DARE for Formulas

Our goal in this section is to construct perfect DARE for arithmetic circuits with logarithmic
depth (i.e., formulas). An arithmetic circuit over a ring R is defined similarly to a standard boolean
circuit, except that each wire carries an element of R and each gate can perform an addition or
multiplication operation over R. We prove the following theorem:

Theorem 3.4. There exists a perfect DARE for the class of arithmetic circuits with logarithmic
depth over an arbitrary ring.5

We mention that a stronger version of the theorem (cf. [67, 40, 10]) provides perfect DAREs for
arithmetic branching programs over an arbitrary ring. The latter class is believed to be computa-
tionally richer than the class of logarithmic-depth arithmetic circuits, and therefore, as a feasibility
result, the branching program-based encoding subsumes the one from Theorem 3.4.6 The existence
of efficient perfect or statistical DARE for general polynomial-size circuits, or even for circuits with,
say, log2 n depth, is wide open.

Proof of Theorem 3.4. Let C be an arithmetic circuit over a ring R. Instead of individually con-
sidering each wire and gate of C (as in Yao’s classical garbled circuit construction), we build the
encoder by processing one layer at a time. For simplicity, we assume that C is already given in a
layered form; That is, C(x) = B1 ◦B2 ◦ · · · ◦Bh(x), where each Bi is a depth-1 circuit. We further
assume that each gate has a bounded fan-out, say of 2. (For circuits of logarithmic depth, such
a restriction can be forced with overhead polynomial in the size while keeping the depth logarith-
mic.) We denote by yi (values of) variables corresponding to the input wires of layer Bi; That is,
yi = Bi+1 ◦ · · · ◦ Bh(x), where y0 = C(x) and yh = x. We denote by Ci the function mapping yi

to the output of C; that is, Ci(yi) = B1 ◦ . . . ◦Bi(yi), where C0(y0) is the identity function on the
outputs.

We build the encoding Enc in an iterative fashion, processing the layers of C from top (outputs)
to bottom (inputs). We start with a trivial encoding of the identity function C0. In iteration i,
i = 1, 2, . . . , h, we transform a DARE for Ci−1(yi−1) into a DARE for Ci(yi) by first substituting
Bi(y

i) into yi−1, and then re-encoding the resulting function to bring it into a decomposable affine
form. The affinization step is performed by adding new random inputs and has the effect of
increasing the size of the online part.

Formally, the DARE compiler is described in Figure 1. As explained in Figure 1, Lem-
mas 2.4, 2.5, and 2.6 guarantee that, in the i-th iteration, the compiler generates a decomposable
affine encoding Enci(yi) of Ci(yi), and so, at the final iteration, we derive a DARE for Ch = C.
Observe that the computational complexity of Enci (and, in particular, the length of its online
part) is larger by a constant factor than the complexity of Enci−1. More precisely, the online part
grows by a factor of at most twice the fan-out of Bi. Hence, the encoding can be generated in
polynomial time as long as the encoded circuit has logarithmic depth. Circuits for the simulator
and decoder can be generated with similar complexity due to the constructive nature of the sub-
stitution, composition, and concatenation lemmas (see Remark 2.7). This completes the proof of
the theorem.

5Recall that, by default, a statement like this always means that the encoding is efficiently constructible as defined
in Section 2.

6Arithmetic branching programs can emulate arithmetic circuits of logarithmic depth with only polynomial over-
head, whereas the converse is believed to be false (this is equivalent to separating log-space computation from NC1).
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1. Let Enc0(y0) = y0 be the identity function on the variables y0 (one variable for each
output of C).

2. For i = 1, 2, . . . , h, obtain an encoding Enci(yi) of Ci(yi) from an encoding Enci−1(yi−1)
of Ci−1(yi−1) using the following two steps:

(a) Substitution. Let F (yi) = Enci−1(Bi(y
i)).

The substitution lemma (2.6) guarantees that, if Enci−1 encodes Ci−1, then F
encodes Ci. Assuming that Enci−1 is a DARE, each output of F can be written
as

Q∗ = a ∗ (yi` ∗ yir) + b or as Q+ = a ∗ (yi` + yir) + b,

where a and b depend on the randomness and ` and r are some indices of gates in
the i-th layer. This means that F is not decomposable anymore, since each of the
resulting outputs depends on a pair of input variables of Ci. Moreover, if the i-th
layer contains a multiplication gate, then F is also not affine (since Q∗ contains a
product of two input variables of Ci).

(b) Affinization. Turn F into a decomposable affine encoder Enci of the same func-
tion by applying to each output that depends on two inputs yij a perfect DARE.
Here we rely on the fact that the above expressions (Q+ and Q∗) are finite and thus
have a constant-size DARE. Concretely, the term Q∗ can be handled by applying
the basic gadget of Fact 3.3 to Q∗ = z ∗ yir + b and substituting ayi` into z. The

resulting encoding of Q∗ can be written in the form Q̂∗ = (a′`y
i
` + b′`, a

′
ry
i
r + b′r, w),

where a′i, b
′
i, w are vectors in R2 that depend only on random inputs. Similarly, we

can handle Q+ by rewriting it as Q+ = z1+z2, where z1 = a∗yi` and z2 = a∗yir+b,
and then applying the encoding for addition (Example 3.1), leading to a DARE of
the form (a ∗ yi` + b′, a ∗ yir + b′′), where a, b, b′′ ∈ R. Applying this transformation
to every term Q in the output of F and concatenating different affine functions of
the same input, we get, by the concatenation and composition lemmas (2.5, 2.4),
decomposable affine encoding Enci of Ci.

3. Output the arithmetic circuit computing Enc(x) = Ench(x).

Figure 1: DARE compiler for arithmetic circuits of logarithmic depth. For simplicity, we treat
encoders as probabilistic circuits and omit their random inputs from the notation.

11



Example 3.5. Let us apply the DARE compiler (Figure 1) to the formula ab+ cd depicted in Fig-
ure 2. The initial trivial encoding is simply y0. Then, substitution yields y11+y12, which after affiniza-
tion becomes (y11+r0, y

1
2−r0). Another substitution results in the encoding (x1x2+r0, x3x4−r0). Af-

ter an additional affinization, we get the final encoding f̂(x1, x2, x3, x4; (r0, r1, r2, r3, r4, r
′
1, r
′
2, r
′
3, r
′
4))

defined by

x1

[
1
r2

]
+

[
−r1

−r1r2 + r3

]
, x2

[
1
r1

]
+

[
−r2
r4

]
, x3

[
1
r′2

]
+

[
−r′1

−r′1r′2 + r′3

]
, x4

[
1
r′1

]
+

[
−r′2
r′4

]
,

[
r0 − r3 − r4
−r0 − r′3 − r′4

]
.

+ y0

× y11

x1 y21 x2 y22

× y12

x3 y23 x4 y24

Figure 2: An arithmetic formula computing the function x1x2 + x3x4.

3.3 Generalization: “Simple” Encodings for Formulas

The proof of Theorem 3.4 provides a general template for constructing “simple” encodings. For-
mally, consider a class Simple of single-output (possibly randomized) functions defined over some
ring R. Call an encoding f̂ simple if each of its outputs is computed by a function in Simple.

Theorem 3.6 (Simple encodings for formulas (meta-theorem)). Suppose that the class Simple
satisfies the following conditions:

• Simple contains the identity function f(x) = x.

• There exists a simple DARE ĝ for every function g obtained by taking some function f(x; r) ∈
Simple and substituting a deterministic input xi by the expression y � z, where y and z are
deterministic inputs and � ∈ {+, ∗} is a ring operation. Moreover, the circuit complexity of
ĝ is at most c times larger than the complexity of f for some universal constant c.

Then, any depth-d arithmetic circuit C : Rn → R` has a simple perfect encoding of complexity at
most `cd.

Theorem 3.4 can be derived from Theorem 3.6. Indeed, the notion of DARE corresponds to
the case where Simple is the class of randomized functions with a single deterministic input x and
(possibly many) random inputs r of the form f(x; r) = x ∗ g(r) +h(r), where g and h are arbitrary.

The proof of Theorem 3.6 follows the outline of Theorem 3.4 except that the affinization gadget
is replaced with a simple encoding of f(x � y) (for appropriate f and �). The details are left for
the reader. We further mention that one can state a more general result by considering circuits
over an arbitrary basis G = {g}, assuming that f(g(x1, . . .)) admits a simple encoding for every
f ∈ Simple and every g ∈ G. In some cases, this version leads to better concrete efficiency then the
current “gate-by-gate” approach.
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3.4 Computational DARE for Boolean Circuits

Falling short of providing perfect DARE for general circuits, we aim for computationally private
DARE. Let us reconsider the previous encoding (Figure 1) under the terminology of keys (online
part) and ciphertexts (offline part). In each iteration, the affinization step increases the length of
the keys by a constant factor, and as a result the size of the keys becomes exponential in the depth.
We fix this problem by using a key-shrinking gadget.

Definition 3.7 (Key-shrinking gadget). Consider the affine function with 4k-long keys over the
ring R

f(y, c, d) = yc+ d, y ∈ R, c, d ∈ R4k.

A key-shrinking gadget is a computational encoding f̂ for f with shorter keys of length k of the
form

f̂(y, c, d; r) = (ya+ b,W ) y ∈ R, a, b ∈ Rk,

where a, b, and W may depend on c, d and on the internal randomness of f̂ but not on y.

Remark 3.8. The concrete shrinkage factor (4k to k) is somewhat arbitrary. Indeed, it is possible
to turn a key-shrinking gadget with minimal shrinkage (k + 1 to k) into a key-shrinking gadget
with arbitrary polynomial shrinkage (kc to k for any constant c > 0) by re-encoding the gadget
polynomially many times and applying the composition lemma (2.4).

Given such a gadget, we can fix the key-blowup problem of the previous encoding. First, rear-
range the affine encoding obtained from the affinization step terms into blocks (grouping together
outputs that depend on the same variable), and then apply the key-shrinking gadget to each output
block. As a result, the size of the keys is reduced at the cost of generating additional outputs that
do not depend on the inputs and thus can be accumulated in the offline part (as a ciphertext).
See Figure 3 for a formal description. Again, correctness and privacy follow easily (and modularly)
from the substitution, concatenation, and composition properties of randomized encodings (see
Section 2.3).

Lemma 3.9. Assume that the key-shrinking gadget is (t, ε)-private and can be computed and sim-
ulated by a circuit of size s. Then, the compiler from Figure 3 constructs a perfectly correct
(t− |C|s, |C|ε)-private DARE for the circuit C with online complexity kn and offline complexity of
at most s|C|, where n is the input length of C.

Proof. For brevity, we refer to a perfectly correct (t, ε)-private encoding with online complexity of
k and offline complexity of m as a (t, ε, k,m)-encoding. Keeping the notation from Theorem 3.4, we
prove that, in the i-th iteration, the compiler generates a (ti, εi, k`i,mi)-DARE Enci(yi) of Ci(yi),
where ti = t − s|Ci|, εi = ε|Ci|, mi = s|Ci|, and `i denotes the input length of Ci (which is the
number of gates in the i-th layer of the circuit C).

The proof is by induction on i. Observe that the claim is trivial for i = 0. Let us assume that the
claim holds for the i−1 iteration. As in the proof of Theorem 3.4, Lemmas 2.4, 2.5, and 2.6 guarantee
that the function Gi is a (ti−1, εi−1, 4k`i,mi−1)-DARE of Ci(yi). Indeed, recall that affinization
increases the online complexity by a factor of two (and does not affect the offline complexity). Since
the fan-out is assumed to be two, this leads to a total factor of 4 in the online complexity. The
key-shrinking gadget provides a (t, ε, k, s) affine encoding for Gij (for every j ∈ [`i]). Therefore, by

Lemma 2.5, the concatenation of these encodings Enci(yi) is a (t− `is, `iε, k`i, s`i)-encoding of Gi.
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1. Let Enc0(y0) = y0 be the identity function on the variables y0 (one variable for each
output of C).

2. For i = 1, 2, . . . , h, obtain an encoding Enci(yi) of Ci(yi) from an encoding Enci−1(yi−1)
of Ci−1(yi−1) using the following three steps:

(a) Substitution. Let F (yi) = Enci−1(Bi(y
i)).

(b) Affinization. Turn F into a decomposable affine encoder Gi of the same function
by applying to each output that depends on two inputs yij a perfect DARE. (See
affinization step in Figure 1.)

(c) Key shrinkage. To avoid the exponential blowup of keys, the compiler applies
the key-shrinking gadget. Partition Gi to (Gi1, . . . , G

i
`), where Gij = cjy

i
j + dj is

an affine function in the variable yij and ` is the number of gates in the i-th level.

For every Gij whose length is larger than k, the key-shrinking gadget is applied to

bring it to the form (W,ajy
i
j + bj), where aj ∈ Rk, bj ∈ Rk, and aj , bj ,W depend

only on random inputs. The W entries are aggregated in the offline part of the
encoding. Let Enci(yi) be the decomposable affine encoding resulting from this
step.

3. Output the arithmetic circuit computing Enc(x) = Ench(x).

Figure 3: Encoding arithmetic circuits via key-shrinking gadget. Think of k as a security parameter
which is set it to some polynomial in the input length n. We assume, without loss of generality,
that the circuit has fan-out of two.
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Finally, by the composition lemma (2.4), Enci(yi) is a (ti − `is, εi + `iε, k`i,mi−1 + s`i)-DARE of
Ci(yi), as required.

As in Theorem 3.4, the compiler implicitly defines a simulator and decoder of complexity
poly(|C|, s) using the constructive version of the substitution, composition, and concatenation
lemmas mentioned in Remark 2.7.

Shrinking the keys in the binary case. Lemma 3.9 reduces the construction of DARE com-
pilers to an implementation of the key-shrinking gadget. In the binary case, this can be done quite
easily with the help of a standard symmetric encryption scheme. First, observe that, in the binary
setting, an affine function ya + b in y operates as a “selection” function which outputs b if y = 0,
and a+ b if y = 1. Hence, in order to implement the key-shrinking gadget, we need to encode the
selection function

Sel(y,M0,M1) := My, where y ∈ {0, 1},M0,M1 ∈ {0, 1}n

with n-long vectors (M0,M1) by a selection function with shorter vectors (K0,K1) (and, possibly,
an offline part). Let us start with a slightly easier task and try to encode a variant of the selection
function which leaks the “selection bit” y, i.e.,

Sel′(y,M0,M1) := (y,My).

A simple way to implement such an encoding is to employ symmetric encryption, where M0 is
encrypted under the random key K0 and M1 under the random key K1. Formally, we prove the
following claim:

Claim 3.10. Let (E,D) be a perfectly correct one-time semantically secure symmetric encryption
with key length k and message length n. Then, the function

g′(y,M0,M1; (K0,K1)) = (Sel′(y,K0,K1),EK0(M0),EK1(M1))

is a computational DARE for Sel′(y,M0,M1).

Sketch. Given the encoding (y,Ky, C0, C1), we can decode My by applying the decryption algorithm
to Cy. The simulator takes (y,My) as input, samples a pair of random keys K0 and K1, and
outputs (y,Ky, C0, C1), where Cy = EKy(My) and C1−y = EKy(0

n). It is not hard to show that the
simulator’s output is computationally indistinguishable from the distribution of the real encoding
based on the semantic security of the encryption.

We move on to encode the selection function Sel. For this we have to hide the value of y. One way
to achieve this is to remove y from the output of the previous encoding and to randomly permute
the order of the ciphertexts C0 and C1. The resulting function privately encodes Sel, however,
to guarantee correctness we have to assume that the encryption is verifiable (i.e., decryption with
an incorrect key can be identified). This variant of the encoding typically leads to a statistically
small decoding error (as in the garbled circuit variant of [76]). A perfectly correct solution can
be achieved by releasing a “pointer” to the correct ciphertext. (This version corresponds to the
garbled circuit variant in [21, 80, 11].) More abstractly, observe that the input to Sel(y,M0,M1)
can be randomized to

y′ = y + r, M ′0 = (1− r) ·M0 + r ·M1, and M ′1 = r ·M0 + (1− r) ·M1,
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where the random bit r is treated as a scalar over Z2, and M0 and M1 as vectors over Zn2 . This
means that Sel(y,M0,M1) can be encoded by Sel′(y′,M ′0,M

′
1) (since y′ can be released). We can

now re-encode Sel′(y′,M ′0,M
′
1) via Claim 3.10, and derive an encoding g(y,M0,M1; (r,K0,K1)) for

the Sel function whose polynomial representation is

(y + r, (1− (y + r))K0 + (y + r)K1,EK0((1− r)M0 + rM1),EK1(rM0 + (1− r)M1)).

It is not hard to see that g satisfies the syntactic requirements of Definition 3.7. We therefore
obtain a key-shrinking gadget based on a semantically secure encryption scheme. Since the latter
can be based on any one-way function, we derive the following corollary (Yao’s theorem):

Theorem 3.11. Assuming the existence of one-way functions, there exists an online-efficient
DARE for the class of polynomial-size boolean circuits.

The above encoding provides a modular and, arguably, conceptually simpler derivation of Yao’s
original result for boolean circuits.

3.5 Computational DARE for Arithmetic Circuits

We would like to obtain online-efficient DARE for arithmetic circuits. Since arithmetic compu-
tations arise in many real-life scenarios, this question has a natural motivation in the context of
most of the applications of garbled circuits (to be discussed in Section 5). Clearly, one can always
encode an arithmetic function f : Rn → R` by implementing an equivalent boolean circuit f ′ (re-
placing each R-operation by a corresponding boolean subcircuit) and applying a boolean encoding
to the result. This approach suffers from an overhead which depends on the boolean complexity
of ring operations (which may be too high), and requires access to the bits of the inputs, which
may not be accessible in some scenarios.7 Instead, we would like to obtain an arithmetic encoding
which treats the elements as atomic values and manipulates them only via ring operations just like
the arithmetic encoding of Theorem 3.4 for the case of logarithmic-depth arithmetic circuits (i.e.,
formulas).

Observe that the encoding presented in Figure 3 reduces the problem of constructing arith-
metic ARE to the construction of an arithmetic key-shrinking gadget, since all other components
“arithmetize”. Over a large ring, the key-shrinking gadget essentially implements a symmetric
encryption scheme with special homomorphic properties that applies both to the keys and to data.
Indeed, we can view the offline part of the key-shrinking gadget as an encryption of the long keys
c, d ∈ Rn under the short keys a, b ∈ Rk with the property that the linear combination of the keys
ay + b allows one to decrypt the linear combination of the plaintexts cy + d (and hides any other
information). Such a gadget was (approximately) implemented over bounded-size integers by [15],
leading to the following theorem:

Theorem 3.12 (Informal). Assuming the hardness of the Learning with Errors problem, there
exists an efficient compiler that, given an arithmetic circuit f : Zn → Z` over the integers and a
positive integer U bounding the value of circuit wires, outputs (in time polynomial in the size of f
and in the binary representation of U) an arithmetic circuit f̂ (over the integers) which forms an
online-efficient DARE of f .

We mention that [15] also provide an alternative (less efficient) construction of arithmetic gar-
bled circuits over the integers based on one-way functions.

7E.g., when the input ring elements are encrypted under some cryptographic scheme that supports some limited
form of ring operations.

16



Mod-p arithmetic encodings. The task of encoding circuits over Zp can be reduced to encoding
circuits over the integers (e.g., by applying the encoding in Example 1.1). The reduction is efficient
but “nonarithmetic” since it treats the elements of Zp as integers (as opposed to abstract ring
elements of Zp). It would be interesting to obtain a fully arithmetic encoder which treats the ring
Zp in a fully black-box way.8 We ask:

Is there an efficient compiler that takes an arithmetic circuit f : Rn → R` which treats
the ring in an abstract way and generates an arithmetic circuit f̂ over R such that, for
any concrete (efficiently implementable) ring R, the function f̂ forms an online-efficient
ARE of f?

This question is open even for the special case of prime-order fields Zp. It was recently shown
in [8] that, if the decoder is also required to be fully arithmetic (as achieved by Theorem 3.4 for
formulas), then the online complexity must grow with the output length of f and so it is impossible
to achieve online efficiency. This limitation applies even to the simpler case of prime-order fields Zp.
Extending this impossibility result to single-output functions remains an interesting open problem.

4 Advanced Constructions

Having established the feasibility of online-efficient DARE, we move on to study their complexity.
In Section 4.1, we minimize the parallel-time complexity of the encoding, and in Section 4.2, we
minimize the online communication complexity. The computational complexity of REs is amortized
in Section 4.3 by reusing the offline part of REs over many invocations. Then, in Section 4.4, we
study the possibility of reducing the total complexity even in a single invocation. We end with a
discussion on adaptively secure REs (Section 4.5).

4.1 Minimizing the Parallel Complexity

In this section, we show that any efficiently computable function admits an encoding with con-
stant locality ; i.e., each of its outputs depends on a constant number of inputs (counting both
deterministic and random inputs). Such an encoding can be computed by a constant-depth circuit
with bounded fan-in gates (also known as an NC0 circuit), and so it captures a strong form of
constant-parallel-time computation.

We begin with the following theorem from [10]:

Theorem 4.1 (NC0 RE for branching programs). There exists a perfect degree-3 DARE in which
each output depends on four inputs for the class of arithmetic branching programs over an arbitrary
ring.

The theorem is based on a direct randomization technique for branching programs from [67, 40].
Below, we sketch a proof for a weaker version of the theorem that applies to arithmetic circuits of
logarithmic depth (NC1 circuits).

8Formally, one should define a set of legal operations (gates) which are available for the encoder. A natural choice
is to allow field operations (addition, subtraction, multiplication, and possibly division and zero-checking), access
to the constants {0, 1}, and some form of randomization gate, say allowing to sample random field elements and a
random {0, 1} elements.
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Proof of Theorem 4.1 restricted to NC1 functions. We rely on the meta-theorem for encoding logarithmic-
depth circuits (Theorem 3.6). Let Simple denote the class of randomized functions of the form
{abc+ d, b+ c+ d} where a can be a deterministic or a random input, and b, c, d are either ran-
dom inputs (possibly with a minus sign) or ring constants. Recall that an encoding f̂ is simple
if, for every output i, the function that computes the i-th output of f̂ is a function in Simple. By
Theorem 3.6, it suffices to present a perfect simple DARE of finite complexity for the function
Q+ = (x+ y)bc+ d and for the function Q∗ = (x ∗ y)bc+ d where x and y are deterministic inputs.
(Note that only a is allowed to be a deterministic input, and so we do not have to consider the case
where one of the other variables is substituted.)

Indeed, for the case of addition, the function Q+ can be written as X + Y where X = xbc+ d
and Y = ybc. By applying the encoding for addition (Example 3.1), we derive the encoding
(xbc+ d+ r, ybc− r). The first item can be viewed as X + Y where X = xbc and Y = d+ r, and
so, by re-encoding it again, we get the encoding (xbc+ r′, d+ r − r′, ybc− r), which is simple.

We move on to the case of multiplication. For simplicity, assume that the ring is commutative.
(The more general case can also be treated with slightly more work.) The function Q∗ can then be
written as XY + d where X = xbc and Y = ybc. By applying the MUL-ADD encoding (Fact 3.3),
we derive an encoding which is simple except for one output of the form r0xb + r1r2 + r3. The
latter can be brought to simple form via double use of the addition encoding (Example 3.1).

In [11] it was shown how to extend the above theorem to the case of polynomial-size circuits.
Formally,

Theorem 4.2 (NC0-RE for circuits). Assuming the existence of one-way functions computable
by circuits of logarithmic depth (NC1), the class of polynomial-size boolean circuits admits an
online-efficient DARE of degree 3 and locality 4.

Proof idea. First observe that it suffices to encode a polynomial-size boolean circuit f by an NC1-
computable encoding g. Indeed, given such an encoding, we can apply Theorem 4.1 to re-encode
the encoding g by an NC0 encoding ĝ and derive (by the composition lemma) an NC0 encoding
for f .

The second observation is that the DARE from Theorem 3.11 (Yao’s theorem) can be computed
by an NC1 circuit, assuming that the key-shrinking gadget is computable in NC1. Hence, it suffices
to implement the key-shrinking gadget in NC1. Such an implementation is given in [11] based on
the existence of NC1-computable pseudorandom generators (PRGs) with minimal stretch (i.e.,
ones that stretch a k-bit seed into a k + 1 pseudorandom string). It was shown by [59] that such
PRGs follow from the existence of NC1-computable one-way functions.9

The existence of one-way functions in NC1 follows from most standard cryptographic assump-
tions including ones that are related to hardness of factoring, discrete logarithm, and lattice prob-
lems. Hence, the underlying assumption is very conservative. Still, the question of proving Theo-
rem 4.2 based on a weaker assumption (e.g., the existence of arbitrary one-way functions) remains
an interesting open question.

We also mention that the concrete degree and locality bounds (3 and 4) are known to be (at
least) almost optimal, since most functions do not admit an encoding of degree 1 or locality 2.
It is also known that perfectly private encodings require degree 3 and locality 4 ([66], see also [6,

9Indeed, the original statement in [11], which precedes [59], relied on the existence of minimal-stretch pseudoran-
dom generators (PRGs) in NC1. See discussion in [6, Chapter 5].
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Chapter 3]). The existence of statistical (or computational) encodings of locality 3 and degree 2
remains open.

Finally, we mention that stronger notions of constant-parallel-time encodings were studied in [12,
13].

4.2 Reducing the Online Complexity

As we saw in Theorem 3.11, every function f can be encoded by an online-efficient DARE f̂(x; r) =
(f̂off(r), f̂on(x; r)). In particular, the online communication (and computational complexity) is
O(|x| · k), where k is the security parameter. Let us define the online rate of DARE to be the ratio

|f̂on(x; r)|
|x|

.

Using this terminology, the online rate achieved by Theorem 3.11 is proportional to the security
parameter. In [16], it was shown that this can be significantly improved.

Theorem 4.3 (Online-succinct RE). Under the decisional Diffie-Hellman assumption (DDH),
the RSA assumption, or the Learning-with-Errors assumption (LWE), the class of polynomial-size
circuits admits an RE with online rate 1+o(1) and with O(n1+ε) online computation, for any ε > 0.

Theorem 4.3 shows that, instead of communicating a cryptographic key per input bit (as in
Theorem 3.11), it suffices to communicate n bits together with a single cryptographic key (i.e.,
n+ k bits instead of nk bits). A similar result holds for arithmetic mod-p formulas under the LWE
assumption. (See [16].)

Proof idea. We briefly sketch the proof of Theorem 4.3. The starting point is a standard decom-
posable affine RE, such as the one from Theorem 3.11. Since this DARE is defined over the binary
field, its online part can be viewed as a sequence of selection operations: For each i, we use the
i-th bit of x to select a single “key” Kxi

i out of two k-bit vectors (K0
i ,K

1
i ) that depend only on

the randomness of the encoding. By the composition theorem, it suffices to encode this online
procedure by an encoding such that most of its bits depend on the keys (K0

i ,K
1
i )i∈[n] while few of

its bits (say n + k) depend on the input x. Put differently, we would like to have a compact way
to reveal the selected keys.

Let us consider the following “riddle”, which is a slightly simpler version of this problem. In
the offline phase, Alice has n vectors M1, . . . ,Mn ∈ {0, 1}k. She is allowed to send Bob a long
encrypted version of these vectors. Later, in the online phase, she receives a bit vector x ∈ {0, 1}n.
Her goal is to let Bob learn only the vectors which are indexed by x, i.e., {Mi}i:xi=1, while sending
only a single message of length O(n) bits (or even n+ k bits).10

Before solving the riddle, let us further reduce it to an algebraic version in which Alice wants
to reveal a 0–1 linear combination of the vectors which are indexed by x. Observe that, if we can
solve the new riddle with respect to nk-bit vectors T = (T1, . . . , Tn), then we can solve the original
riddle with k-bit vectors (M1, . . . ,Mn). This is done by placing the Mi’s in the diagonal of T ; i.e.,
Ti is partitioned to k-size blocks with Mi in the i-th block and zero elsewhere. In this case, Tx
simply “packs” the vectors {Mi}i:xi=1.

10The main difference between the riddle and our actual encoding problem is that, in the latter case, the vector x
itself should remain hidden; this gap can be bridged by permuting the pairs and randomizing the vector x; see [16]
for details.
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It turns out that the linear version of the riddle can be efficiently solved via the use of a
symmetric-key encryption scheme with some (additive) homomorphic properties. Specifically, let
(E,D) be a symmetric encryption scheme with both key homomorphism and message homomor-
phism as follows: A pair of ciphertexts Ek(x) and Ek′(x

′) can be mapped (without any knowledge
of the secret keys) to a new ciphertext of the form Ek+k′(x+x′). Given such a primitive, the answer
to the riddle is easy: Alice encrypts each vector under a fresh key Ki and publishes the ciphertexts
Ci. At the online phase, Alice sends the sum of keys Kx =

∑
Kixi together with the indicator

vector x. Now Bob can easily construct C = EKx(Mx) by combining the ciphertexts indexed by
x, and since Kx is known, Bob can decrypt the result. Intuitively, Bob learns nothing about a
column Mj which is not indexed by x, as the online key Kx is independent of the j-th key. Indeed,
the DDH- and LWE-based solutions provide (approximate) implementations of this primitive. (A
somewhat different approach is used in the RSA-based construction.)

A few comments regarding Theorem 4.3 are in order.

Reducing the online computational complexity. The online computational overhead of the
encoding from Theorem 4.3 still has multiplicative dependence on the security parameter. It is
possible to achieve linear computational complexity (e.g., O(n + poly(k))) based on very strong
cryptographic assumptions (such as general-purpose obfuscation). Achieving a linear computational
overhead based on weaker assumptions is an interesting open question.

Impossibility of DARE with constant rate. The encoding constructed in Theorem 4.3 is not
a DARE. Specifically, while the theorem yields affine encodings (e.g., under DDH or LWE), it does
not provide decomposable encodings. It turns out that this is inherent: constant-rate DAREs are
impossible to achieve even for very simple functions [16].

Rate 1 is optimal. Theorem 4.3 provides an asymptotic online rate of 1. It is clear that this
is optimal for functions with a long output (such as the identity function). However, the case of
boolean functions is slightly more subtle. It is not hard to show that the online rate must be at
least 1, if the online part is independent of the encoded function f . (As in the case of affine REs or
in the model of [26].) Indeed, for every i ∈ [n], consider the function fi(x) = xi, and assume that
all these functions admit encodings f̂i(x; r) whose online parts are all identical to g(x; r). Using
the appropriate decoders and the offline parts (which are independent of x), one can recover the
value xi from g(x; r) for every i. The length of g(x; r) must therefore be at least n.

It is not trivial to extend the lower bound to the more general case where the online computation
f̂on(x; r) may fully depend on the code of f . This is especially true in the uniform model, where f
has a succinct description (say as a Turing machine). Interestingly, it was observed in [16] that an
encoding with online rate smaller than 1 would allow us to compress f(x) in the following sense.
Given x we can compute f̂on(x; r) for some fixed r and derive a short string x̂ of length smaller than
|x| from which the value of f(x) can be recovered. Moreover, the online efficiency of the encoding
implies that x̂ can be computed much faster than the time complexity of f . Following [60, 41],
it was conjectured in [16] that some efficiently computable functions cannot be compressed, and
so online rate smaller than 1 cannot be achieved. Later in [7], it was shown that the existence of
incompressible functions can be based on relatively standard complexity-theoretic assumptions. A
combination of these results yields the following theorem:
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Theorem 4.4 ([16, 7]). The class of polynomial-time computable functions does not admit an
online-efficient randomized encoding with online rate smaller than 1, unless every function which is
computable by a deterministic Turing machine in time 2O(n) can be computed by subexponential-size
nondeterministic circuits.11

4.3 Reusable RE

Having minimized the online communication complexity of the encoding, we move on to a more
ambitious goal: Improving the total computational complexity of f̂ . Recall that Theorem 3.11
yields an encoding whose offline complexity is proportional to the circuit size of f . A natural way
to reduce this expensive offline cost is to amortize it over many independent inputs. For this, we
need a reusable randomized encoding.

Definition 4.5 (ρ-Reusable randomized encoding). Let f : {0, 1}n → {0, 1}` be a function. We
say that f̂ = (f̂off , f̂on) is a perfectly correct (t, ε)-private ρ-reusable randomized encoding of f if,
for any i ≤ ρ, the function

f̂ i(x1, . . . , xi; r) := (f̂off(r), f̂on(x1; r), . . . , f̂on(xi; r))

is a perfectly correct, (t, ε)-private encoding of the i-wise direct-product function

f i(x1, . . . , xi) = (f(x1), . . . , f(xi)).

Remark 4.6. Observe that the definition is monotone: a ρ-reusable RE is always (ρ− 1)-reusable,
and a 1-reusable RE is simply an RE. Also note that a decoder of f̂ i can always be defined by
applying the basic decoder of f̂ to the offline part of the encoding and to each coordinate of f̂ i

separately. Hence, reusability is essentially a strengthening of the privacy requirement. Finally,
note that the above definition is static; i.e., the i-th input xi is chosen independently of the encodings
of the previous inputs. We will discuss stronger (adaptive) versions of security later in Section 4.5.

As before, the definition naturally extends to infinite functions f : {0, 1}∗ → {0, 1}∗, and, more
generally, to collections of functions via the use of an efficient compiler. Given a description of a
function f with input length of n, the compiler should output (the descriptions of) an encoder f̂ ,
a decoder, and a (t(n), ε(n))-private ρ(n)-reusable simulator. The latter should be uniform over
the number of encoded instances. Specifically, we assume that the simulator is given as a Turing
machine that takes as an input a sequence of f -outputs and outputs the corresponding simulated
encodings. By default, ρ(n) and t(n) should be larger than any polynomial and ε(n) should be
smaller than any polynomial.

Reusable REs with low online complexity. Reusable REs are nontrivial if their online com-
plexity is smaller than the complexity of f . None of the encodings that we have seen so far satisfy
this requirement, even for the case of 2-reusability. Recently, Goldwasser et al. [54] (building on
the work of Gorbunov et al. [57]) showed that it is possible to construct nontrivial reusable REs
whose online complexity depends only on the depth of the encoded function.12

11Similar assumptions are widely used in the complexity-theoretic literature. Such assumptions are considered to
be strong, and yet plausible—their failure will force us to change our current view of the interplay between time,
non-uniformity, and nondeterminism.

12In fact, [57] and [54] construct so-called predicate encryption, and functional encryption which can be viewed as
a multi-user variant of randomized encoding.
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Theorem 4.7 (Reusable REs). Assuming the intractability of Learning with Errors, there exists a
reusable RE for efficiently computable functions whose online complexity depends only on the input
length, output length, and circuit depth of the encoded function f .

It follows that the amortized complexity of encoding f grows only with its circuit depth and
input/output length.

4.3.1 Proof Idea of Theorem 4.7

The proof of Theorem 4.7 consists of two high-level steps. First, we prove the theorem for functions
of a certain type, denoted as “conditional disclosure of secrets” (CDS) functions, and then we reduce
the general case to the first, via the use of fully homomorphic encryption.

CDS functions. We begin with the definition of CDS functions. For a predicate P : {0, 1}n →
{0, 1}, let gP denote the non-boolean function which maps an n-bit input τ (“tag”) and a k-bit
string s (“secret”) to the value (τ, c), where

c =

{
s if P (τ) = 1

⊥ otherwise.

That is, gP always reveals the value of the tag, but reveals the secret s only if the tag satisfies the
predicate. In this sense, gP conditionally discloses the secret.13

Rekeyable encryption. Our reusable REs for CDS are based on a special type of public-key
encryption scheme with the following rekeying mechanism: For every pair of public keys (A,B) and
a target public key C, there exists a special re-encryption key TA,B→C that allows one to transform
a pair of ciphertexts (EA(s),EB(s)) into a ciphertext EC(s). Intuitively, the re-encryption key
TA,B→C should be “useless” given only one of the two encryptions (EA(s),EB(s)); For example,
given EA(s) and TA,B→C , it should be impossible to generate EC(s). In fact, this ciphertext should
be pseudorandom, and so even if the secret key that corresponds to C is known, s should be
hidden. It is shown in [57] that such a rekeyable encryption scheme can be based on the Learning
with Errors assumption, where the length of the ciphertext grows linearly with the number of
iterated re-encryptions.14

From rekeyable encryption to reusable RE for CDS [57]. In order to encode the CDS
function we would like to encrypt s in a way that is decryptable only if the (public) tag τ satisfies
the predicate P . This should be done with a reusable offline part (whose complexity may grow
with the complexity of P ) while keeping the online part (which depends on s and τ) short, i.e.,
independent of the circuit size of P . The basic idea is as follows. For each wire i of the circuit
that computes P , we will have a pair of public keys (pki,0, pki,1), labeled by zero and one. In the
online part, we release the tag τ together with n ciphertexts, one for each input wire, where the
i-th ciphertext is Epki,τi

(s), i.e., an encryption of s under the key of the i-th wire which is labeled by

13The term “conditional disclosure of secretes” originates from the work of [50] who considered an information-
theoretic variant of this primitive. In a reusable setting, the resulting primitive is closely related to the notion of
attribute-based encryption, cf. [68, 45].

14In the original terminology of [57], this is called two-to-one recoding (TOR).
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τi. The offline part of the encoding consists of the secret key sk of the output wire which is labeled
by 1, together with several re-encryption keys. Specifically, for each internal gate g, we include all
four re-encryption keys that correspond to the semantic of the gate. Namely, if the keys of the left
incoming wire are (A0, A1), the keys of the right incoming wire are (B0, B1), and the keys of the
outgoing wire are (C0, C1), then we include the transformation key TAa,Bb→Cg(a,b) , for every pair of
bits a, b ∈ {0, 1}.

Given such an encoding, the decoder can propagate the ciphertexts from the inputs to the
outputs, and compute for each wire i the ciphertext Epki,σi

(s), where σi is the value that the public
tag τ induces on the i-th wire. If the predicate is satisfied, the decoder learns an encryption of
s under the 1-key of the output wire, and since the corresponding private key appears as part of
the encoding, s is revealed. The security properties of the underlying encryption guarantee that
s remains hidden when P (τ) is not satisfied. Moreover, the offline part is reusable and the online
part grows linearly with the depth of the circuit that computes P , and is independent of the circuit
size.

From CDS to general functions [54]. We move on to handle a general (non-CDS) function f .
For this step, we employ a fully homomorphic encryption (FHE) which, by [34], can also be based
on the intractability of Learning with Errors. In such an encryption, there exists a special Eval
algorithm that maps a public key pk, a ciphertext FHEpk(x), and a circuit g to a new ciphertext
FHEpk(g(x)).

The encoding of f is based on the following basic idea. Encrypt the input x using FHE and
include the ciphertext ct in the online part. In addition, provide (ideally in the offline part) some
sort of conditional decryption mechanism that decrypts an FHE ciphertext ct′ only if ct′ is “legal”
in the sense that it is the result of homomorphically applying f to ct = FHEpk(x). Such an encoding
would allow the decoder to transform FHEpk(x) to FHEpk(f(x)) and then decrypt the value f(x),
without learning any other information on x.

To implement this approach, we should find a way to push most of the complexity of the
conditional decryption mechanism to the offline phase. This is somewhat tricky since the condition
depends on the online ciphertext ct. We solve the problem in two steps. First, consider the following
naive (and inefficient) encoding:

(pk, ct = FHEpk(x), D̂(sk, ct′; r)), (4)

where D̂ is a DARE of the decryption algorithm D, and ct′ = Eval(pk, f, ct). It is not hard to verify
that this is indeed an encoding of f(x). However, the encoding is not even online efficient. Indeed,
ct′ is computed in the online phase (based on ct) at a computational cost which depends on the
circuit size of f .

In order to improve the efficiency, we take a closer look at D̂(sk, ct′; r)). Since D̂ is a DARE, we
can decompose it to D̂0(sk; r) and to D̂i(ct

′
i; r) for i ∈ [`], where ` is the bit length of ct′. Using the

“keys” terminology, for each bit of ct′, there exists a pair of keys (Ki,0,Ki,1) where Ki,b = D̂i(b; r),

and the encoding D̂ reveals, for each i, the key that corresponds to ct′i. Namely, Ki,b is exposed
only if the i-th bit of Evalf (ct) equals to b. This means that we can re-encode (4) by

(pk, ct = FHEpk(x), D̂0(sk; r), [gi,b((pk, ct),Ki,b)]i∈[`],b∈{0,1}),

where gi,b((pk, ct), s) is the CDS function that releases the secret s only if the pair (pk, ct) satisfies
the predicate “the i-th bit of Eval(pk, f, ct) equals to b”. Now, we can re-encode gi,b by a re-usable
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CDS encoding ĝi,b, and, by the composition and concatenation lemmas, get a reusable encoding for
f . In the online part of the resulting encoding we sample a public/private key pair for the FHE
(pk, sk) and compute ct = FHEpk(x), D̂0(sk; r) together with the online parts of ĝi,b. Overall, the
online complexity is independent of the circuit size of f . (The dependence on the circuit depth is
inherited from that of the CDS encoding.) This completes the proof of Theorem 4.7.

4.4 Reducing the Computational Complexity of REs

Theorem 4.7 implies that the amortized complexity of encoding f grows only with its parallel
complexity (i.e., circuit depth) and input/output length. This result does not leave much room for
improvements. Still, one can ask whether it is possible to obtain an encoding whose complexity
is independent of the complexity of the encoded function f in a non-amortized setting, i.e., even
for a single use of f̂ . This question makes sense only if the encoded function f has a succinct
representation whose length is independent of its time complexity. Indeed, let us move to a uniform
setting and assume that f can be computed by a Turing machine (whose description length is
independent of its time complexity). We will show that, under sufficiently strong cryptographic
assumptions, one can obtain an encoding whose complexity is completely independent of the time
complexity of f and depends only on the input/output length of f . We refer to such an encoding
as a fast RE. The construction will employ a powerful cryptographic tool: the general-purpose
program obfuscator.

Obfuscators. General-purpose program obfuscation allows us to transform an arbitrary com-
puter program into an “unintelligible” form while preserving its functionality. Syntactically, an
obfuscator for a function family F = {fK} is a randomized algorithm that maps a function fK ∈ C
(represented by an identifier K) into a “program” [f ] ∈ {0, 1}∗. The obfuscated program should
preserve the same functionality as fK while hiding all other information about fK . The first prop-
erty is formalized via the existence of an efficient universal evaluation algorithm Eval which, given
an input x and an obfuscated program [f ], outputs fK(x). The second property has several differ-
ent formulations. We will rely on indistinguishability obfuscation (iO), which asserts that, given a
pair of functionally equivalent functions f and f ′, it is hard to distinguish between their obfuscated
versions [f ] and [f ′].

Obfuscators Versus REs. As a cryptographic primitive, obfuscators are stronger than REs.
Intuitively, an obfuscator provides the adversary the ability to compute the function by herself,
while REs provide only access to encodings that were computed by the encoder (which is out of the
adversary’s control). Indeed, given an iO for a function class F , we can easily get an RE for the
same class by obfuscating the constant function g = f(x) (x is hardwired) and letting the simulator
Sim(y) be an obfuscated version of the constant function h = y. We can therefore trivially get fast
REs based on “fast” obfuscators whose complexity is independent of the time complexity of the
obfuscated function (and depends only on its description length). The following theorem provides
a stronger result: Fast REs (for Turing machines) can be based on standard obfuscators whose
complexity is proportional to the circuit complexity of the obfuscated function.

Theorem 4.8 (Fast RE from circuit obfuscators [28, 37, 72]). Assuming the existence of iO for
circuits and the existence of one-way functions, the class of polynomial-time computable functions
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P admits an RE with computational complexity of poly(n, `), where n and ` denote the input and
output length of the encoded function.

Fast REs were first constructed by Goldwasser et al. [53] based on a stronger assumption.
Bitansky et al. [28] and Canetti et al. [37] concurrently relaxed the assumption to iO, but their
results yield REs whose complexity grows with the space complexity of f . The dependence on the
space complexity was later removed by Koppula et al. [72]. We mention that Theorem 4.8 was
further used to obtain fast obfuscators. (For more on the relation between REs and obfuscators
see [74].) The proof of Theorem 4.8 is beyond the scope of this paper. The interested reader is
referred to the original papers.

Optimality of Theorem 4.8. Theorem 4.8 provides REs whose complexity depends on the
input length and on the output length of the encoded function. We already saw in Theorem 4.4
that one cannot go below the input length. The following theorem (from [16]) shows that one
cannot go below the output length either:

Theorem 4.9 (Communication of RE is larger than the output length). Assuming that one-way
functions exist, for every constant c there exists a function f : {0, 1}n → {0, 1}nc such that every
(nω(1), 1/3)-private RE of f has communication complexity of at least nc bits. Furthermore, there
are at least nc bits in the output of the simulator Sim(y) that depend on the input y (as opposed to
the randomness).

Note that some complexity-theoretic assumption is necessary for Theorem 4.9. In particular,
if, say P = NP, then one can obtain an encoding with total complexity n. Indeed, this can be
done by letting f̂(x; r) = x′, where x′ is a random sibling of x under f , and taking the decoder to
be Dec(x′) = f(x′), and the simulator to be Sim(y) = x′, where x′ is a random preimage of y. If
P = NP, then this encoding can be implemented efficiently.15

Proof. Fix some constant c, and let f : {0, 1}n → {0, 1}` be a pseudorandom generator with output
length ` = nc. (The existence of such a pseudorandom generator follows from the existence of
one-way functions [61].) It suffices to prove the “furthermore” part, as the online complexity of the
simulator lower-bounds the communication complexity of the encoding. Let f̂(x; r) be an RE of f
with decoder Dec and simulator Sim such that the number of bits of Sim(y) that depend on y is
smaller than `. Then, we distinguish the output of f from a truly random string via the following
test: Given a string y ∈ {0, 1}`, we accept if and only if the outcome of Dec(Sim(y)) is equal to y.

First we claim that, when y is random, the test accepts with probability at most 1
2 . Indeed,

fix some value r for the randomness of the simulator and some value d for the randomness of the
decoder. Then the image of Sim(y; r) = (zr,Simon(y; r)) can take at most 2`−1 values, and therefore
the decoder Dec(·; s) recovers y successfully for at most half of all y’s in {0, 1}`.

On the other hand, if y is in the image of f , the test accepts with probability at least 2/3−neg(n).
Indeed, let x be a preimage of y, then by definition Dec(f̂(x; r)) outputs y = f(x) with probability
1. Since f̂(x; r) is (t, 1/3)-indistinguishable from Sim(f(x)), it follows that Dec(Sim(y)) = y with
probability at least 2/3− neg(n).

15In fact, if one-way functions do not exist, then it can be shown that the aforementioned encoding achieves a
relaxed version of privacy (against uniform adversaries).
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Remark 4.10 (Inefficient simulation). Theorem 4.9 exploits the efficiency of the simulator to “com-
press” an “incompressible” source. This argument does not hold if we allow inefficient simulation.
The resulting notion corresponds to the following indistinguishability-based definition of privacy.
The encodings f̂(x) and f̂(x′) should be indistinguishable for any pair of inputs x and x′ which are
mapped by f to the same output, i.e., f(x) = f(x′). Indeed, based on iO, one can get fast REs with
inefficient simulation whose complexity grows only with the input length of the encoded function
(see [28, 37, 72]).

4.5 On Adaptive Security

The standard security definition of REs can be captured by the following game: (1) The challenger

secretly tosses a random coin b
R← {0, 1}; (2) the adversary chooses an input x, submits it to the

challenger, and gets as a result the string ŷ which, based on the secret bit b, is either sampled from
the encoding f̂(x; r) or from the simulator Sim(f(x)). At the end, the adversary outputs his guess
b′ for the bit b. The security of REs says that t-bounded adversaries cannot win the game (guess
b) with probability better than 1

2 + ε/2.
In some scenarios (e.g., the online/offline setting or the reusable setting) it is natural to consider

an adaptive version of this game in which the adversary chooses its input x based on the previous
part of the encodings. Let us focus on the simpler online/offline setting. Syntactically, this requires
an online/offline simulator Sim(y; r) = (Simoff(r);Simon(x; r)) whose offline part does not depend
on its input f(x), and has the same length as the offline part of the encoding. Adaptive security
can be defined as follows:

Definition 4.11 (Adaptively secure RE [25]). Let f be a function and f̂(x; r) = (f̂off(r), f̂on(x; r))
be a perfectly correct RE with decoder Dec and online/offline simulator Sim(y; r) = (Simoff(r), Simon(y; r)).
We say that f̂ is (t, ε) adaptively private if every t-bounded adversary A wins the following game
with probability at most 1

2 + ε:

1. The challenger secretly tosses a random coin b
R← {0, 1}, chooses randomness r, and outputs

ŷoff =

{
f̂off(r) if b = 1,

Simoff(r) if b = 0.

2. Based on ŷoff , the adversary A chooses an input x, submits it to the challenger, and gets as
a result the string

ŷon =

{
f̂on(x; r) if b = 1,

Simon(f(x); r) if b = 0.

3. At the end, the adversary outputs his guess b′ and wins if b′ = b.

It turns out that the online complexity of adaptively secure REs must grow with the output
length of the encoded function and thus cannot be online efficient. Indeed, this follows directly
from Theorem 4.9.

Corollary 4.12 (Adaptive security requires long online communication [16]). Assuming one-way
functions exist, for every constant c there exists a function f : {0, 1}n → {0, 1}nc such that every
RE of f has online communication complexity of at least nc bits.
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Proof. By Theorem 4.9, there exists a function f for which the online part of the simulator must be
longer than nc. Privacy ensures that the online communication complexity of f̂ satisfies the same
bound.

Remark 4.13 (Adaptive security with inefficient simulation). The output length limitation does
not seem to apply to inefficient simulators (just like in Remark 4.10), and so, in this case, one
may hope to achieve online efficiency. In fact, such a construction of adaptive REs with inefficient
simulation easily yields efficiently simulatable adaptive REs: To encode f : {0, 1}n → {0, 1}s encode
the related function

g(x, b, y) =

{
f(x) if b = 0

y otherwise
,

via an adaptive encoding ĝ(x, y, b; r) with inefficient simulation. Now, the function ĝ(x, y, b; r) with
b fixed to zero and y fixed to, say, the all zero string, forms an adaptive encoding for f with the
(efficient) simulator Sim(y; r) := ĝoff(r), ĝon(x, y, b; r)) with b = 1 and x = 0n. Note that the input
length of g equals the sum of the input and output lengths of f . Hence, the above transformation
incurs an overhead which is (at least) as large as the output length, as expected due to Corollary 4.12.

Constructions. Any standard RE can be viewed as an adaptive one by including all the encoding
in the online part. Yao’s construction (Theorem 3.11) therefore provides an adaptive RE based on
one-way functions whose online part depends on the circuit of the encoded function f . An encoding
whose online part depends only on the size of the circuit was constructed by Bellare et al. [25].
This is done by taking Yao’s encoding f̂ = (f̂off , f̂on), encrypting its offline part via a one-time pad,
and releasing the key in the online part of the encoding. This yields an encoding whose online
complexity is proportional to the circuit size of f based on one-way functions.

Using a (programmable) random oracle, it is possible to “compress” the key of the one-time
pad and get an online-efficient adaptive encoding. Alternatively, such an encoding can be obtained
via “complexity leveraging”. Indeed, any (t, ε) adaptive attack against an encoding f̂ with offline
communication complexity of s immediately translates into a (t, ε · 2−s) static attack against f̂
by guessing the offline part and calling the adaptive adversary. Hence, a sufficiently strong static
encoding (e.g., Yao’s construction instantiated with subexponential secure encryption) yields an
adaptively secure RE.

In the standard model, Theorem 4.8 provides an adaptively-secure encoding with an optimal
total complexity (proportional to the input and output length) based on the existence of general-
purpose indistinguishability obfuscation. Based on general one-way functions, Hemenway et al. [62]
constructed an adaptive encoding whose online complexity is proportional to the width of the
encoded circuit (or exponential in its depth). Achieving an online complexity which depends only
on the input and output lengths of f (based on one-way functions) remains an interesting open
problem.

5 Applications

The ability to encode complex functions by simple ones is extremely useful. In the next subsections
we will demonstrate several interesting ways in which this tool can be employed. We consider the
archetypal cryptographic setting where Alice and Bob wish to accomplish some computational goal
(e.g., a functionality f) in the presence of an adversary. We will see that REs can be beneficial
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when they are applied to each component of this system: to the functionality, to the honest parties,
and even to the adversary.

5.1 Encoding the Functionality

Delegating computations. Suppose that Bob is a computationally weak device (client) who
wishes to compute a complex function f on an input x. Bob is too weak to compute f on his
own, and so he delegates the computation to a computationally strong server Alice. Since Bob
does not trust Alice, he wishes to guarantee the following: (1) secrecy : Alice should learn nothing
on the input x; and (2) verifiability : Bob should be able to verify the correctness of the output
(i.e., a cheating Alice should be caught w.h.p.). Similar problems have been extensively studied
in various settings, originating from the early works on interactive proofs, program checking, and
instance-hiding schemes.

Let us start with secrecy and consider a variant where both parties should learn the output
f(x) but x should remain private. As we saw in the introduction (Example 1.3), a randomized
encoding f̂ immediately solves this problem via the following single-round protocol: Bob selects
private randomness r, computes f̂(x; r), and sends the result to Alice, who applies the recovery
algorithm and outputs the result. The privacy of the RE guarantees that Alice learns nothing
beyond f(x). We refer to this protocol as the basic RE protocol. Jumping ahead, we note that the
protocol has a nontrivial correctness guarantee: even if the server Alice deviates from the protocol
and violates correctness, she cannot force an erroneous output which violates privacy; that is, it is
possible to simulate erroneous outputs solely based on the correct outputs.

It is not hard to modify the basic protocol and obtain full secrecy: instead of encoding f , encode
an encrypted version of f . Namely, define a function g(x, s) = f(x) ⊕ s, where s plays the role of
a one-time pad (OTP), and apply the previous protocol as follows: Bob uniformly chooses the pad
s and the randomness r, and sends the encoding ĝ(x, s; r) of g to Alice, who recovers the result
y = g(x, s) = f(x) ⊕ s, and sends it back to Bob. Finally, Bob removes the pad s and terminates
with f(x). (See [11] for more details.)

Achieving verifiability is slightly more tricky. The idea, due to [14], is to combine an RE with
a private-key signature scheme (also known as message authentication code or MAC) and ask
the server to sign the output of the computation under the client’s private key. Here the privacy
property of the RE will be used to hide the secret key. Specifically, given an input x, Bob asks Alice
to compute y = f(x) (via the previous protocol) and, in addition, to generate a signature on f(x)
under a private key k which is chosen randomly by the client. The latter request is computed via
the basic RE protocol that hides the private key from Alice. More precisely, Bob, who holds both x
and k, invokes an RE protocol in which both parties learn the function g(x, k) = MACk(f(x)). Bob
then accepts the answer y if and only if the result of the protocol is a valid signature on y under
the key k. (The latter computation is typically cheap.) The soundness of the protocol follows by
showing that a cheating Alice, which fools Bob to accept an erroneous y∗ 6= f(x), can be used to
either break the privacy of the RE or to forge a valid signature on a new message. For this argument
to hold, we crucially rely on the ability to simulate erroneous outputs based on the correct outputs.

The main advantage of this approach over alternative solutions is the ability to achieve good
soundness with low computational overhead; For example, a soundness error of 2−τ increases the
communication by an additive overhead of τ , whereas the overhead in competing approaches is
multiplicative in τ . (See [14] for a more detailed comparison.) Instantiating these approaches
with known constructions of REs leads to protocols with highly efficient clients; For example,
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Theorems 4.1 and 4.2 yield an NC0 client for either log-space functions or poly-time functions
depending on the level of security needed (information-theoretic or computational). In the com-
putational setting, we can use online-efficient REs (Theorem 3.11) to get a client whose online
computational complexity does not grow with the complexity of f , at the expense of investing a lot
of computational resources in a preprocessing phase before seeing the actual input x.16 Moreover,
we can achieve optimal online communication via the use of online-succinct REs (Theorem 4.3),
amortize the cost of the offline phase by employing reusable REs (Theorem 4.7), or even avoid the
offline cost at all via the use of fast REs (Theorem 4.8).

We also mention that REs can achieve other related properties such as correctability [14]: i.e.,
Bob is able to correct Alice’s errors as long as Alice is somewhat correct with respect to a pre-
defined distribution over the inputs. In the latter case, REs yield NC0 correctors for log-space
computations, strengthening the results of [52].

Secure computation [66]. Let us move on to a more general setting where the roles of Alice
and Bob are symmetric and neither of them is computationally weak. The main observation is
that, instead of securely computing f , it suffices to securely compute the randomized encoding
f̂(x; r). Indeed, if Alice and Bob learn a sample from f̂(x; r) then they can locally recover the
value of f(x) and nothing else. In other words, the task of securely computing f reduces to the
task of securely computing a simpler randomized functionality f̂(x; r). As protocol designers, we
get a powerful tool which allows us to construct a complex interactive object (protocol) by arguing
about a simpler noninteractive object (RE).

This paradigm, which was introduced in [66] (and motivated the original definition of REs),
yields several new results in the domain of secure computation. As an example, if the algebraic
degree of f̂ is constant, then it can be computed in a constant number of rounds [27, 39]. By instanti-
ating this approach with known perfect-RE constructions (Theorem 4.1), we derive constant-round
protocols for boolean or arithmetic log-space functions with information-theoretic security. In the
computational setting, constant-degree REs (Theorem 4.2) yield a new constant-round protocol for
poly-time functions, providing an alternative construction to the classical protocol of [21].17

The above paradigm was implicitly used by Yao to prove the feasibility of general secure
computation based on oblivious transfer (OT) [85]. Indeed, consider a two-party functionality
f(x, y), where x is given to Alice and y is given to Bob. A DARE f̂ for f can be written as
f̂(x, y; r) = (f̂1(x1, y; r), . . . , f̂n(xn, y; r)), and therefore it can be privately computed (with semi-
honest security) by using n calls to an OT functionality. For each i ∈ [n], Bob prepares a pair of
“keys”: Ki,0 = f̂i(0, y; r) and Ki,1 = f̂i(0, y; r), and lets Alice choose the key Ki,xi that corresponds
to her input by using the OT. After collecting all the n keys, Alice can recover the output by apply-
ing the decoder. The existence of DARE for any efficiently computable function f (Theorem 3.11)
therefore gives a direct noninteractive reduction from securely computing f to OT. Other classical
completeness results (e.g., for the multiparty case [51] and for the malicious case [69]) can also be
proved using the above paradigm.

16The standard privacy of REs guarantees security only if the input x is chosen independently of the offline part.
Adaptively secure REs can be used to deal with the case where the input is (adversarially) chosen based on the offline
part.

17The RE-based solution requires a slightly stronger assumption—one-way function computable in log-space rather
in poly-time—but can also lead to efficiency improvements, cf. [41].
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5.2 Encoding the Primitive: Parallel Cryptography

Suppose now that we already have an implementation of some cryptographic protocol. A key
observation made in [10] is that we can “simplify” some of the computations in the protocol by
replacing them with their encodings. Consider, for example, the case of public-key encryption: Alice
publishes a public/private key pair (pk, sk); Bob uses the public key pk and a sequence of random
coins s to “garble” a message m into a ciphertext c = E(pk,m, s); Finally, Alice recovers m by
applying the decryption algorithm to the ciphertext D(sk, c). Suppose that Bob sends an encoding
of his ciphertext Ê(pk,m, s; r) instead of sending c. This does not violate semantic security as all
the information available to an adversary in the modified protocol can be emulated by an adversary
who attacks the original protocol (thanks to the simulator of the RE). On the other hand, Alice
can still decrypt the message: first she recovers the original ciphertext (via the recovery algorithm)
and then she applies the original decryption algorithm. As a result, we “pushed” the complexity
of the sender (encryption algorithm) to the receiver (decryption algorithm).

By employing REs with some additional properties, it is possible to prove similar results for
many other cryptographic protocols (e.g., one-way functions, pseudorandom generators, collision-
resistance hash functions, signatures, commitments, and zero-knowledge proofs) and even information-
theoretic primitives (e.g., ε-biased generators and randomness extractors). In the case of stand-
alone primitives (e.g., one-way functions and pseudorandom generators) there is no receiver and so
the gain in efficiency comes for “free”.

Being security preserving, REs give rise to the following paradigm. In order to construct some
cryptographic primitive P in some low-complexity class WEAK, first encode functions from a
higher-complexity class ST RONG by functions from WEAK; then, show that P has an imple-
mentation f in ST RONG, and finally replace f by its encoding f̂ ∈ WEAK and obtain a low-
complexity implementation of P. This approach was used in [10, 11, 13] to obtain cryptographic
primitives in NC0 and even in weaker complexity classes. The fact that REs preserve cryptographic
hardness has also been used to reduce the complexity of cryptographic reductions [10, 11] and to
reduce the complexity of complete problems for subclasses of statistical zero-knowledge [42].

5.3 Encoding the Adversary: Key-Dependent Security

Key-dependent message (KDM) secure encryption schemes [36, 29] provide secrecy even when
the attacker sees encryptions of messages related to the secret key sk. Namely, we say that an
encryption is KDM secure with respect to a function class F if semantic security holds even when
the adversary can ask for an encryption of the message f(sk) where f is an arbitrary function in
F . Several constructions are known to achieve KDM security for simple linear (or affine) function
families [31, 9, 32]. To improve this situation, we would like to have an amplification procedure
which starts with an F̂-KDM secure encryption scheme and boosts it into an F-KDM secure
scheme, where the function class F should be richer than F̂ . It was shown in [33, 19] that a strong
form of amplification is possible, provided that the underlying encryption scheme satisfies some
special additional properties. Below we show how to use REs in order to achieve a generic KDM
amplification theorem [2].

Let f(x) be a function and let us view the encoding f̂(x; r) as a collection of functions F̂ ={
f̂r(x)

}
r
, where each member of the collection corresponds to some possible fixing of the random-

ness r, i.e., f̂r(x) = f̂(x; r). Now suppose that our scheme is KDM secure with respect to the family
F̂ , and we would like to immunize it against the (more complicated) function f . This can be easily
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achieved by modifying the encryption scheme as follows: To encrypt a message m we first translate
it into the f̂ -encoding by applying the RE simulator Sim(m), and then encrypt the result under the
original encryption scheme. Decryption is done by applying the original decryption algorithm, and
then applying the decoding algorithm Dec to translate the result back to its original form. Observe
that an encryption of f(sk) in the new scheme is the same as an encryption of S(f(sk)) = f̂(sk; r)
under the original scheme. Hence, a KDM query for f in the new scheme is emulated by an old
KDM query for a randomly chosen function f̂r. It follows that the KDM security of the new scheme
with respect to f reduces to the KDM security of the original scheme with respect to F̂ .

This idea easily generalizes to the case where, instead of a single function f , we have a class
of functions F which are all encoded by functions in F̂ . Moreover, the simple structure of the
reduction (i.e., a single KDM query of the new scheme translates to a single KDM query of the
original scheme) allows one to obtain a strong amplification theorem which is insensitive to the
exact setting of KDM security, including the symmetric-key/public-key setting, the cases of chosen-
plaintext/chosen-ciphertext attacks, and the case of multiple keys. Using known constructions of
REs (Theorem 3.11), we can amplify KDM security with respect to linear functions (or even bit
projections) into functions computable by circuits of arbitrary fixed polynomial size (e.g., n2).

Interestingly, here we essentially encoded the adversary and used the simulator in the construc-
tion rather than in the proof. A similar approach (“encoding the adversary”) was used by [20] to
obtain strong impossibility results for concurrent non-malleable secure computation.

6 Summary and Suggestions for Further Reading

Randomized encodings form a powerful tool with a wide range of applications. Since Yao’s original
construction in the early 1980s, the complexity of REs has been significantly improved, especially in
the last decade. Many of these improvements are based on encryption schemes which suggest various
forms of homomorphism. (This includes Theorems 3.12, 4.3, 4.7, and 4.8 as well as works which
are not covered here, cf. [49, 4, 30].) It is interesting to find out whether this use of homomorphism
is necessary. In particular, we ask:

Is it possible to achieve highly efficient REs (such as the ones constructed in Section 4)
based on weaker assumptions, e.g., one-way functions?

An even more basic question is to understand the power of information-theoretic REs:

Are there efficiently computable perfectly secure DAREs for polynomial-size circuits?

The question is interesting also for other notions of simplicity such as constant algebraic degree or
constant output locality. Coming up with a positive result, or developing tools for proving nontrivial
lower bounds, is an important problem in the context of information-theoretic cryptography.

Another interesting direction for future research is to explore stronger forms of security for REs.
This direction is being extensively pursued by the study of primitives such as functional encryption
(and its variants) and even program obfuscators. Indeed, these primitives can be viewed as REs
which offer richer functionalities and stronger security guarantees (cf. [83, 56]).

6.1 Suggestions for Further Reading

We end by briefly mentioning some of the aspects of REs that were omitted from this paper.
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Encoding RAM computation. A relatively recent line of work, initiated by Lu and Ostro-
vsky [78], studies the possibility of encoding stateful computations modeled as RAM programs.
Roughly speaking, such a computation is defined by a (large) memory D, a (typically small) pro-
gram P , and an input x. The computation PD(x) generates an output y and updates the memory
D (typically only at a small number of locations). The goal is to obtain a stateful RE that initializes
the memory D̂ based on D, and then, given a program/input pair (P, x), generates an encoding
(P̂ , x̂) that together with D̂ forms an encoding of the original computation. The complexity of
(P̂ , x̂) is allowed to depend on the time complexity of P and the input length x but should have
only a minor (say poly-logarithmic) dependence on the size of the memory. The security definition
allows one to sequentially execute many programs, and so the initialization cost of the memory is
amortized. Following [78], several constructions of garbled RAM have been presented, including
ones which are based solely on one-way functions [48, 44].

Concrete efficiency and practical implementations. Starting with the work of Malkhi et
al. [79], computational DAREs (garbled circuits) were implemented on various platforms, and their
concrete efficiency was extensively studied. These constructions are typically formalized under
the garbling-schemes framework of Bellare, Hoang, and Rogaway [26], and offer a wide range of
concrete tradeoffs between computational complexity, communication complexity, and intractability
assumptions (cf. [80, 77, 71, 81, 63, 73, 24, 70, 87]). A partial summary of these results can be
found in [82].

Communication complexity treatment. Feige, Kilian, and Naor [43] and Ishai and Kushile-
vitz [65] studied REs in a communication complexity framework. In this model, the input x ∈
{0, 1}n is partitioned between several parties (typically two or n) who also have access to shared
randomness r. Each party should send a single message Mi(xi; r), based on her input xi and on
the randomness r, to a referee, who should be able to recover the value of f(x) and nothing else.
All parties are computationally unbounded, and the goal is to minimize the communication. In the
two-party setting, such a private simultaneous message (PSM) protocol naturally defines a two-
decomposable RE f̂(x; r) = (M1(x1; r),M2(x2; r)), and in the multiparty setting it corresponds to a
DARE f̂(x; r) = (M1(x1; r), . . . ,Mn(xn; r)). The best known protocols (for an arbitrary function)
appear in [23]. This model and its variants (e.g., for conditional disclosure of secrets) are further
studied in [68, 45, 18, 22].

Complexity-theoretic treatment. From a complexity-theoretic perspective, the notion of “sim-
ple” computation may be associated with probabilistic polynomial-time computation. Hence, the
question of encoding a complex function by a “simpler” one naturally corresponds to polynomial-
time computable encodings. We can now ask which functions can be statistically encoded by
efficiently computable encodings, and define a corresponding complexity class SRE. To avoid triv-
ialities, we allow the decoder to be inefficient. Going back to Example 1.3, this corresponds to the
setting where a weak (polynomial-time) client who holds an input x wishes to release the value
f(x) to a computationally unbounded server without leaking the value of x. It is not hard to show
that the resulting complexity class SRE contains BPP and is contained in the class of languages
that admit statistical zero-knowledge protocols (SZK) [6]. The exact relation between these three
classes is further studied in [1] and [17].
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B. Speckmann, editors, ICALP 2015, Part I, volume 9134 of LNCS, pages 1–13. Springer,
Heidelberg, July 2015.

[2] B. Applebaum. Key-dependent message security: Generic amplification and completeness. In
K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 527–546. Springer,
Heidelberg, May 2011.

[3] B. Applebaum. Randomly encoding functions: A new cryptographic paradigm - (invited talk).
In S. Fehr, editor, ICITS 11, volume 6673 of LNCS, pages 25–31. Springer, Heidelberg, May
2011.

[4] B. Applebaum. Garbling XOR gates “for free” in the standard model. In A. Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 162–181. Springer, Heidelberg, Mar. 2013.

[5] B. Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In P. Sarkar and
T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 162–172. Springer,
Heidelberg, Dec. 2014.

[6] B. Applebaum. Cryptography in Constant Parallel Time. Information Security and Cryptog-
raphy. Springer, 2014.

[7] B. Applebaum, S. Artemenko, R. Shaltiel, and G. Yang. Incompressible functions, relative-
error extractors, and the power of nondeterministic reductions (extended abstract). In 30th
Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA, pages 582–600, 2015.

[8] B. Applebaum, J. Avron, and C. Brzuska. Arithmetic cryptography: Extended abstract. In
T. Roughgarden, editor, ITCS 2015, pages 143–151. ACM, Jan. 2015.

[9] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In S. Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 595–618. Springer, Heidelberg, Aug. 2009.

[10] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS, pages
166–175. IEEE Computer Society Press, Oct. 2004.

[11] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials
and their applications. Computational Complexity, 15(2):115–162, 2006.

[12] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography with constant input locality. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 92–110. Springer, Heidelberg,
Aug. 2007.

[13] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography by cellular automata or how fast
can complexity emerge in nature? In A. C.-C. Yao, editor, ICS 2010, pages 1–19. Tsinghua
University Press, Jan. 2010.

33



[14] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and
P. G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages 152–163. Springer,
Heidelberg, July 2010.

[15] B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In R. Ostrovsky,
editor, 52nd FOCS, pages 120–129. IEEE Computer Society Press, Oct. 2011.

[16] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant
online rate or how to compress garbled circuits keys. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 166–184. Springer, Heidelberg, Aug.
2013.

[17] B. Applebaum and P. Raykov. On the relationship between statistical zero-knowledge and sta-
tistical randomized encodings. Electronic Colloquium on Computational Complexity (ECCC),
15, 2015. To appear in CRYPTO 2016.

[18] B. Applebaum and P. Raykov. From private simultaneous messages to zero-information Arthur-
Merlin protocols and back. LNCS, pages 65–82. Springer, Heidelberg, 2016.

[19] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444. Springer,
Heidelberg, May 2010.

[20] B. Barak, M. Prabhakaran, and A. Sahai. Concurrent non-malleable zero knowledge. In 47th
FOCS, pages 345–354. IEEE Computer Society Press, Oct. 2006.

[21] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[22] A. Beimel, A. Gabizon, Y. Ishai, and E. Kushilevitz. Distribution design. In M. Sudan, editor,
ITCS 2016, pages 81–92. ACM, Jan. 2016.

[23] A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz. On the cryptographic complexity of
the worst functions. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 317–342.
Springer, Heidelberg, Feb. 2014.

[24] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-
key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–492. IEEE
Computer Society Press, May 2013.

[25] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with applications to one-
time programs and secure outsourcing. In X. Wang and K. Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, Dec. 2012.

[26] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In T. Yu,
G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, Oct. 2012.

[27] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10.
ACM Press, May 1988.

34



[28] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized encodings and their
applications. In R. A. Servedio and R. Rubinfeld, editors, 47th ACM STOC, pages 439–448.
ACM Press, June 2015.

[29] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-
dependent messages. In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS,
pages 62–75. Springer, Heidelberg, Aug. 2003.

[30] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[31] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision
Diffie-Hellman. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125.
Springer, Heidelberg, Aug. 2008.

[32] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 1–20. Springer, Heidelberg, Aug. 2010.

[33] Z. Brakerski, S. Goldwasser, and Y. T. Kalai. Black-box circular-secure encryption beyond
affine functions. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 201–218. Springer,
Heidelberg, Mar. 2011.

[34] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In R. Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, Oct.
2011.

[35] C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation and secure
autonomous mobile agents. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, ICALP
2000, volume 1853 of LNCS, pages 512–523. Springer, Heidelberg, July 2000.

[36] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

[37] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Succinct garbling and indistin-
guishability obfuscation for RAM programs. In R. A. Servedio and R. Rubinfeld, editors, 47th
ACM STOC, pages 429–437. ACM Press, June 2015.

[38] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic circuits
and applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of
LNCS, pages 468–497. Springer, Heidelberg, Mar. 2015.
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A Randomized Encodings vs. Garbling Schemes [26]

In this section we briefly compare the RE framework to the notion of garbling schemes introduced
by Bellare, Hoang and Rogaway (BHR) in [26].

Roughly speaking, garbling schemes can be viewed as a concrete variant of RE which is required
to satisfy some additional syntactic properties. In particular, the encoding f̂(x; r) is partitioned
into three parts (F, d,X), where X is the online part, and (F, d) essentially corresponds to the
offline part of the encoding. (The d part is viewed as a “decoding key” and it allows to consider a
designated decoding variant as opposed to public decoding). The BHR framework decomposes the
encoder into two algorithms (Gb,En), and decomposes the decoder into two algorithms (De,Ev) as
follows.

Syntax. The probabilistic garbling algorithm Gb is given a security parameter 1k and a de-
scription of a function f (under some fixed representation scheme) and returns a triple of strings

(F, e, d)
R← Gb(1k, f). Think of F as an offline encoding, and on e and d as an encoding and decod-

ing keys, respectively. The strings e, d and the length of F are allowed to depend on the syntactic
properties of f (i.e., its input length, output length and description length), but, otherwise, should
be independent of f . The (deterministic) input encoding algorithm, En(·, ·), takes an encoding key
e and an input x ∈ {0, 1}n and outputs a garbled input X = En(e, x). The decoding proceeds
in two steps: first the algorithm Ev(F,X) maps F and a garbled input X to a “garbled output”
Y = Ev(F,X), and second the decoding algorithm De(d, Y ) maps a decoding key d and a garbled
output Y to a final output y = De(d, Y ). Correctness asserts that De(d,Ev(F,En(e, x))) = ev(f, x),
where ev is a universal evaluation algorithm that maps a description f of a function, and an input
x to the value of the corresponding function on the input x. Overall, BHR define a garbling scheme
as the five-tuple (Gb,En,De,Ev, ev).

Security. Garbling schemes can satisfy different variants of security. The most central one is a
parameterized version of privacy which, in addition to standard privacy (as defined for REs), may
support some notion of “function hiding” for the encoded function f (the exact level of hiding
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depends on a leakage parameter). Other notions of security include obliviousness and authenticity.
Obliviousness means that decoding can be performed only given a secret key d (i.e., (F,X) do not
reveal y = f(x)). Authenticity essentially means that, given (F,X), it is hard to generate Y ′ which
leads to an undetected decoding error (i.e., De(d, Y ′)) /∈ {f(x),⊥}).

Comparison. Syntactically, garbling schemes and REs are quite different. These differences
reflect two conflicting goals. The garbling scheme framework offers a concrete and highly detailed
treatment of garbled circuits which can be almost given to a programmer as an API. As a result,
efficiency requirements (e.g., online efficiency) are hard-wired into the syntax itself. Moreover,
in order to keep the framework wide enough (while keeping it concrete), the syntax has to take
into account several different usage scenarios (e.g., the possibility of designated decoding) which,
inevitably, make the definition more complicated (e.g., the decomposition of the decoder into an
evaluator and decoder). In contrast, the RE framework strives for minimalism. It deals only
with basic correctness and privacy, and deliberately leave efficiency issues to be determined in an
application-dependent context.18 As a result, the RE framework offers a high-level view which
misses some practical aspects but highlights the general properties of REs which are independent
of efficiency concerns (cf. Section 2.3).

18This is also the case with more refined security variants. Indeed, function-hiding, obliviousness, and authenticity
can all be reduced to basic privacy via simple transformations with a polynomial overhead (e.g., by encoding a
universal circuit g(〈f〉, x) = f(x), encoding an encrypted circuit g(s, x) = f(x) ⊕ s or encoding a MAC-ed circuit
g(s, x) = MACs(f(x)); see Section 5.1). Of course, a direct study of these notions may lead to solutions with better
efficiency.
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