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Abstract

We prove that any non-adaptive algorithm that tests whether an unknown Boolean function
f : {0, 1}n → {0, 1} is a k-junta or ε-far from every k-junta must make Ω̃(k3/2/ε) many queries
for a wide range of parameters k and ε. Our result dramatically improves previous lower bounds
from [BGSMdW13, STW15], and is essentially optimal given Blais’s non-adaptive junta tester

from [Bla08], which makes Õ(k3/2)/ε queries. Combined with the adaptive tester of [Bla09] which
makes O(k log k + k/ε) queries, our result shows that adaptivity enables polynomial savings in
query complexity for junta testing.
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1 Introduction

This paper is concerned with the power of adaptivity in property testing, specifically property testing
of Boolean functions. At a high level, a property tester for Boolean functions is a randomized
algorithm which, given black-box query access to an unknown and arbitrary Boolean function
f : {0, 1}n → {0, 1}, aims to distinguish between the case that f has some particular property of
interest versus the case that f is far in Hamming distance from every Boolean function satisfying
the property. The main goals in the study of property testing algorithms are to develop testers
that make as few queries as possible, and to establish lower bounds matching these query-efficient
algorithms. Property testing has by now been studied for many different types of Boolean functions,
including linear functions and low-degree polynomials over GF (2) [BLR93, AKK+05, BKS+10],
literals, conjunctions, s-term monotone and non-monotone DNFs [PRS02, DLM+07], monotone and
unate functions [GGL+00, FLN+02, CS13, CST14, CDST15, KMS15, BB16, KS16, CS16, BMPR16],
various types of linear threshold functions [MORS10, MORS09, BBM11], size-s decision trees and
s-sparse GF (2) polynomials and parities [DLM+07, BBM11, BK12], functions with sparse or low-
degree Fourier spectrum [GOS+11], and much more. See e.g. [Ron08, Ron10, Gol10] for some fairly
recent broad overviews of property testing research.

In this work we consider the property of being a k-junta, which is one of the earliest and most
intensively studied properties in the Boolean function property testing literature. Recall that f is
a k-junta if it has at most k relevant variables, i.e., there exist k distinct indices i1, . . . , ik and a
k-variable function g : {0, 1}k → {0, 1} such that f(x) = g(xi1 , . . . , xik) for all x ∈ {0, 1}n. Given
k = k(n) : N → N and ε = ε(n) : N → R>0, we say an algorithm which has black-box access to an
unknown and arbitrary f : {0, 1}n → {0, 1} is an ε-tester or ε-testing algorithm for k-juntas if it
accepts with probability at least 5/6 when f is a k(n)-junta and rejects with probability at least
5/6 when f is ε(n)-far from all k(n)-juntas (meaning that f disagrees with any k(n)-junta g on at
least ε(n) · 2n many inputs).

Property testers come in two flavors, adaptive and non-adaptive. An adaptive tester receives
the value of f on its i-th query string before deciding on its (i + 1)-st query string, while a non-
adaptive tester selects all of its query strings before receiving the value of f on any of them. Note
that non-adaptive testers can evaluate all of their queries in one parallel stage of execution, while
this is in general not possible for adaptive testers. This means that if evaluating a query is very
time-consuming, non-adaptive algorithms may sometimes be preferable to adaptive algorithms even
if they require more queries. For this and other reasons, it is of interest to understand when,
and to what extent, adaptive algorithms can use fewer queries than non-adaptive algorithms (see
[RT11, RS13] for examples of property testing problems where indeed adaptive algorithms are
provably more query-efficient than non-adaptive ones).

The query complexity of adaptive junta testing algorithms is at this point well understood. In
[CG04] Chockler and Gutfreund showed that even adaptive testers require Ω(k) queries to distin-
guish k-juntas from random functions on k + 1 variables, which are easily seen to be constant-far
from k-juntas. Blais [Bla09] gave an adaptive junta testing algorithm that uses only O(k log k+k/ε)
queries, which is optimal (for constant ε) up to a multiplicative factor of O(log k).

Prior to the current work, the picture was significantly less clear for non-adaptive junta testing.
In the first work on junta testing, Fischer et al. [FKR+04] gave a non-adaptive tester that makes
O(k2(log k)2/ε) queries. This was improved by Blais [Bla08] with a non-adaptive tester that uses
only O(k3/2(log k)3/ε) queries. On the lower bounds side, [Bla08] also showed that for all ε ≥ k/2k,
any non-adaptive algorithm for ε-testing k-juntas must make Ω (k/(ε log(k/ε))) queries. Buhrman et
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al. [BGSMdW13] gave an Ω(k log k) lower bound (for constant ε) for non-adaptively testing whether
a function f is a size-k parity; their argument also yields an Ω(k log k) lower bound (for constant ε)
for non-adaptively ε-testing k-juntas. More recently, [STW15] obtained a new lower bound for non-
adaptive junta testing that is incomparable to both the [Bla08] and the [BGSMdW13] lower bounds.
They showed that for all ε : k−ok(1) ≤ ε ≤ ok(1), any non-adaptive ε-tester for k-juntas must make

Ω

(
k log k

εc log(log(k)/εc)

)
many queries, where c is any absolute constant less than 1. For certain restricted values of ε such as
ε = 1/ log k, this lower bound is larger than the O(k/ε+ k log k) upper bound for [Bla09]’s adaptive
algorithm, so the [STW15] lower bound shows that in some restricted settings, adaptive junta testers
can outperform non-adaptive ones. However, the difference in performance is quite small, at most
a o(log k) factor. We further note that all of the lower bounds [Bla08, BGSMdW13, STW15] are of
the form Ω̃(k) for constant ε, and hence rather far from the Õ(k3/2)/ε upper bound of [Bla08].

1.1 Our results

The main result of the paper is the following theorem:

Theorem 1. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N→ N and ε = ε(n) : N→ R>0

be two functions that satisfy k(n) ≤ αn and 2−n ≤ ε(n) ≤ 1/6 for all sufficiently large n. Then any
non-adaptive ε-tester for k-juntas must make Ω̃(k3/2/ε) many queries.

Together with the Õ(k3/2)/ε non-adaptive upper bound from [Bla08], Theorem 1 settles the
query complexity of non-adaptive junta testing up to poly-logarithmic factors.

1.2 High-level overview of our approach

Our lower bound approach differs significantly from previous work. Buhrman et al. [BGSMdW13]
leveraged the connection between communication complexity lower bounds and property testing
lower bounds that was established in the work of [BBM11] and applied an Ω(k log k) lower bound
on the one-way communication complexity of k-disjointness to establish their lower bound. Both
[Bla08] and [STW15] are based on edge-isoperimetry results for the Boolean hypercube (the edge-
isoperimetric inequality of Harper [Har64], Bernstein [Ber67], Lindsey [Lin64], and Hart [Har76] in
the case of [Bla08], and a slight extension of a result of Frankl [Fra83] in [STW15]). In contrast, our
lower bound argument takes a very different approach; it consists of a sequence of careful reductions,
and employs an upper bound on the total variation distance between two Binomial distributions
(see Claim 15).

Below we provide a high level overview of the proof of the lower bound given by Theorem 1.
First, it is not difficult to show that Theorem 1 is a consequence of the following more specific lower
bound for the case where k = αn:

Theorem 2. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N→ N and ε = ε(n) : N→ R>0

be two functions that satisfy k(n) = αn and 2−(2α−1)n/2 ≤ ε(n) ≤ 1/6 for sufficiently large n. Then
any non-adaptive ε-tester for k-juntas must make Ω̃(n3/2/ε) many queries.

See Appendix A for the proof that Theorem 2 implies Theorem 1.
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We now provide a sketch of how Theorem 2 is proved. It may be convenient for the reader, on
the first reading, to consider α = 3/4 and to think of ε as being a small constant such as 0.01.

Fix a sufficiently large n. Let k = αn and ε = ε(n) with ε satisfying the condition in Theorem
2. We proceed by Yao’s principle and prove lower bounds for deterministic non-adaptive algorithms
which receive inputs drawn from one of two probability distributions, Dyes and Dno, over n-variable
Boolean functions. The distributions Dyes and Dno are designed so that a Boolean function f ← Dyes

is a k-junta with probability 1−o(1) and f ← Dno is ε-far from every k-junta with probability 1−o(1).
In Section 2 we define Dyes and Dno, and establish the above properties. By Yao’s principle, it then
suffices to show that any q-query non-adaptive deterministic algorithm (i.e., any set of q queries)
that succeeds in distinguishing them must have q = Ω̃(n3/2/ε).

This lower bound proof consists of two components:

1. A reduction from a simple algorithmic task called Set-Size-Set-Queries (SSSQ for short),
which we discuss informally later in this subsection and we define formally in Section 3. This
reduction implies that the non-adaptive deterministic query complexity of distinguishing
Dyes and Dno is at least as large as that of SSSQ.

2. A lower bound of Ω̃(n3/2/ε) for the query complexity of SSSQ.

Having outlined the formal structure of our proof, let us give some intuition which may hopefully
be helpful in motivating our construction and reduction. Our yes-functions and no-functions have
very similar structure to each other, but are constructed with slightly different parameter settings.
The first step in drawing a random function from Dyes is choosing a uniform random subset M of
Θ(n) “addressing” variables from x1, . . . , xn. A random subset A of the complementary variables M
is also selected, and for each assignment to the variables in M (let us denote such an assignment by
i), there is an independent random function hi over a randomly selected subset Si of the variables in
A. A random function from Dno is constructed in the same way, except that now the random subset
A is chosen to be slightly larger than in the yes-case. This disparity in the size of A between the
two cases causes random functions from Dyes to almost always be k-juntas and random functions
from Dno to almost always be far from k-juntas.

An intuitive explanation of why this construction is amenable to a lower bound for non-adaptive
algorithms is as follows. Intuitively, for an algorithm to determine that it is interacting with (say)
a random no-function rather than a random yes-function, it must determine that the subset A is
larger than it should be in the yes-case. Since the set M of Θ(n) many “addressing” variables is
selected randomly, if a non-adaptive algorithm uses two query strings x, x′ that differ in more than
a few coordinates, it is very likely that they will correspond to two different random functions
hi,hi′ . Hence every pair of query strings x, x′ that correspond to the same hi can differ only in a
few coordinates in M, with high probability, which significantly limits the power of a non-adaptive
algorithm in distinguishing Dyes and Dno no matter which set of query strings it picks. This makes
it possible for us to reduce from the SSSQ problem to the problem of distinguishing Dyes and Dno

at the price of only a small quantitative cost in query complexity, see Section 4.
At a high level, the SSSQ task involves distinguishing whether or not a hidden set (corresponding

to A) is “large.” An algorithm for this task can only access certain random bits, whose biases are
determined by the hidden set and whose exact distribution is inspired by the exact definition of the
random functions hi over the random subsets Si. Although SSSQ is an artificial problem, it is much
easier to work with compared to the original problem of distinguishing Dyes and Dno. In particular,
we give a reduction from an even simpler algorithmic task called Set-Size-Element-Queries (SSEQ
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for short) to SSSQ (see Section 5.1) and the query complexity lower bound for SSSQ follows directly
from the lower bound for SSEQ presented in Section 5.2.

Let us give a high-level description of the SSEQ task to provide some intuition for how we prove
a query lower bound on it. Roughly speaking, in this task an oracle holds an unknown and random
subset A of [m] (here m = Θ(n)) which is either “small” (size roughly m/2) or “large” (size roughly
m/2 + Θ(

√
n · log n)), and the task is to determine whether A is small or large. The algorithm may

repeatedly query the oracle by providing it, at the j-th query, with an element ij ∈ [m]; if ij /∈ A
then the oracle responds “0” with probability 1, and if ij ∈ A then the oracle responds “1” with
probability ε/

√
n and “0” otherwise. Intuitively, the only way for an algorithm to determine that

the unknown set A is (say) large, is to determine that the fraction of elements of [m] that belong
to A is 1/2 + Θ(log n/

√
n) rather than 1/2; this in turn intuitively requires sampling Ω(n/ log2 n)

many random elements of [m] and for each one ascertaining with high confidence whether or not it
belongs to A. But the nature of the oracle access described above for SSEQ is such that for any
given i ∈ [m], at least Ω(

√
n/ε) many repeated queries to the oracle on input i are required in order

to reach even a modest level of confidence as to whether or not i ∈ A. As alluded to earlier, the
formal argument establishing our lower bound on the query complexity of SSEQ relies on an upper
bound on the total variation distance between two Binomial distributions.

1.3 Organization and Notation

We start with the definitions of Dyes and Dno as well as proofs of their properties in Section 2. We
then introduce SSSQ in Section 3, and give a reduction from SSSQ to the problem of distinguishing
Dyes and Dno in Section 4. More formally, we show that any non-adaptive deterministic algorithm
that distinguishes Dyes and Dno can be used to solve SSSQ with only an O(log n) factor loss in the
query complexity. Finally, we prove in Section 5 a lower bound for the query complexity of SSSQ.
Theorem 2 then follows by combining this lower bound with the reduction in Section 4.

We use boldfaced letters such as f ,A,S to denote random variables. Given a string x ∈ {0, 1}n
and ` ∈ [n], we write x(`) to denote the string obtained from x by flipping the `-th coordinate. An
edge along the `th direction in {0, 1}n is a pair (x, y) of strings with y = x(`). We say an edge
(x, y) is bichromatic with respect to a function f (or simply f -bichromatic) if f(x) 6= f(y). Given
x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x on S.

2 The Dyes and Dno distributions

Let α ∈ (0.5, 1) be an absolute constant. Let n be a sufficiently large integer, with k = αn, and let
ε be the distance parameter that satisfies

2−(2α−1)n/2 ≤ ε ≤ 1/6. (1)

In this section we describe a pair of probability distributions Dyes and Dno supported over Boolean
functions f : {0, 1}n → {0, 1}. We then show that f ← Dyes is a k-junta with probability 1− o(1),
and that f ← Dno is ε-far from being a k-junta with probability 1− o(1).

We start with some parameters settings. Define

δ
def
= 1− α ∈ (0, 0.5), p

def
=

1

2
, q

def
=

1

2
+

log n√
n
,

m
def
= 2δn+ δ

√
n log n, t

def
= n−m = (2α− 1)n− δ

√
n log n, N

def
= 2t.
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Figure 1: An example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes (or Dno). The relevant
variables of x are shaded gray. All variables in M index x into h2, which is a random function over
the variables S2, which are sampled from A by including each with probability ε/

√
n.

A function f ← Dyes is drawn according to the following randomized procedure:

1. Sample a random subset M ⊂ [n] of size t. Let Γ = ΓM : {0, 1}n → [N ] be the function that
maps x ∈ {0, 1}n to the integer encoded by x|M in binary plus one. Note that

|M| = n− t = m.

2. Sample an A ⊆M by including each element of M in A independently with probability p.

3. Sample independently a sequence of N random subsets S = (Si : i ∈ [N ]) of A as follows: for
each i ∈ [N ], each element of A is included in Si independently with probability ε/

√
n. Next

we sample a sequence of N functions H = (hi : i ∈ [N ]), by letting hi : {0, 1}n → {0, 1} be a
random function over the coordinates in Si, i.e., we sample an unbiased bit zi(b) for each
string b ∈ {0, 1}Si independently and set hi(x) = zi(x|Si).

4. Finally, f = fM,A,H : {0, 1}n → {0, 1} is defined using M,A and H as follows:

f(x) = hΓM(x)(x), for each x ∈ {0, 1}n.

In words, an input x is assigned the value f(x) as follows: according to the coordinates of x
in the set M (which intuitively should be thought of as unknown), one of the N functions hi
(each of which is, intuitively, a random function over an unknown subset Si of coordinates)
is selected and evaluated on x’s coordinates in Si. For intuition, we note that both M and
M will always be of size Θ(n), the size of A will almost always be Θ(n), and for a given
i ∈ [N ] the expected size of Si will typically be Θ(ε

√
n) (though the size of Si may not be as

highly concentrated as the other sets when ε is tiny).

A function f ← Dno is generated using the same procedure except that A is a random subset of M
drawn by including each element of M in A independently with probability q (instead of p). See
Figure 1 for an example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes or Dno.

2.1 Most functions drawn from Dyes are k-juntas

We first prove that f ← Dyes is a k-junta with probability 1− o(1).
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Lemma 3. A function f ← Dyes is a k-junta with probability 1− o(1).

Proof. By the definition of Dyes, all the relevant variables of f ∼ Dyes belong to M∪A. Note that
|M| = t. On the other hand, the expected size of A is δn+ δ

√
n log n/2. By a Chernoff bound,

|A| ≤ δn+
δ
√
n log n

2
+
δ
√
n log n

4
< δn+ δ

√
n log n

with probability 1− o(1). When this happens we have |M ∪A| < αn = k.

2.2 Most functions drawn from Dno are ε-far from k-juntas

Next we prove that f ← Dno is ε-far from any k-junta with probability 1− o(1). The details of the
argument are somewhat technical so we start by giving some high-level intuition, which is relatively
simple. Since q = p+ log(n)/

√
n, a typical outcome of A drawn from Dno is slightly larger than a

typical outcome drawn from Dyes, and this difference causes almost every outcome of |M ∪A| in
Dno (with M ∪A being the set of relevant variables for f ← Dno) to be larger than k by at least
9
√
n. As a result, the relevant variables of any k-junta must miss either (a) at least one variable

from M, or (b) at least 9
√
n variables from A. Missing even a single variable from M causes the

k-junta to be far from f (this is made precise in Claim 6 below). On the other hand, missing 9
√
n

variables from A means that with probability at least Ω(ε), at least one variable is missing from
a typical Si (recall that these are random (ε/

√
n)-dense subsets of A). Because hi is a random

function over the variables in Si, missing even a single variable would lead to a constant fraction of
error when hi is the function determining the output of f .

Lemma 4. A function f ← Dno is ε-far from being a k-junta with probability 1− o(1).

Proof. Fix any subset M ⊂ [n] of size t, and we consider f = fM,A,H where A and H are sampled
according to the procedure for Dno. With probability 1− o(1) over the choice of A, we have

|A| ≥ qm− δ
√
n log n

2
≥ δn+ 2δ

√
n log n and |M ∪A| ≥ k + δ

√
n log n. (2)

We assume this is the case for the rest of the proof and fix any such set A ⊂M . It suffices to show
that f = fM,A,H is ε-far from k-juntas with probability 1− o(1), where H is sampled according to
the rest (steps 3 and 4) of the procedure for Dno (by sampling Si from A and then hi over Si).

The plan for the rest of the proof is the following. For each V ⊂M ∪A of size 9
√
n, we use EV

to denote the size of the maximum set of vertex-disjoint, f -bichromatic edges along directions in V
only. We will prove the following claim:

Claim 5. For each V ⊂M ∪A of size 9
√
n, we have EV ≥ ε2n with probability 1− exp(−2Ω(n)).

Note that when EV ≥ ε2n, we have dist(f , g) ≥ ε for every function g that does not depend on
any variable in V . This is because, for every f -bichromatic edge (x, x(`)) along a coordinate ` ∈ V ,
we must have f(x) 6= f(x(`)) since the edge is bichromatic but g(x) = g(x(`)) as g does not depend
on the `th variable. As a result, f must disagree with g on at least ε2n many points.

Assuming Claim 5 for now, we can apply a union bound over all(
|M ∪A|

9
√
n

)
≤
(

n

9
√
n

)
≤ 2O(

√
n logn)
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possible choices of V ⊂M ∪A to conclude that with probability 1− o(1), f = fM,A,H is ε-far from
all functions that do not depend on at least 9

√
n variables in M ∪ A. By (2), this set includes all

k-juntas. This concludes the proof of the Lemma 4 modulo the proof of Claim 5.

In the rest of the section, we prove Claim 5 for a fixed subset V ⊂M ∪A of size 9
√
n. We start

with the simpler case when V ∩M is nonempty.

Claim 6. If V ∩M 6= ∅, then we have EV ≥ 2n/5 with probability 1− exp(−2Ω(n)).

Proof. Fix an ` ∈ V ∩M ; we will argue that with probability 1−exp(−2Ω(n)) there are at least 2n/5
f -bichromatic edges along direction `. This suffices since such edges are clearly vertex-disjoint.

Observe that since ` ∈M , every x ∈ {0, 1}n has Γ(x) 6= Γ(x(`)). For each b ∈ {0, 1}M , let Xb be
the set of x ∈ {0, 1}n with x|S = b. We partition {0, 1}n into 2t−1 pairs Xb and Xb(`) , where b ranges

over the 2t−1 strings in {0, 1}M with b` = 0. For each such pair, we use Db to denote the number of
f -bichromatic edges between Xb and Xb(`) . We are interested in lower bounding

∑
b Db.

We will apply Hoeffding’s inequality. For this purpose we note that the Db’s are indepen-
dent (since they depend on distinct hi’s), always lie between 0 and 2m, and each one has expecta-
tion 2m−1. The latter is because each edge (x, x(`)) has f(x) and f(x(`)) drawn as two independent
random bits, which is the case since Γ(x) 6= Γ(x(`)). Thus, the expectation of

∑
b Db is 2n−2. By

Hoeffding’s inequality, we have

Pr

[∣∣∣∑Db − 2n−2
∣∣∣ ≥ 2n

20

]
≤ 2 · exp

(
−2(2n/20)2

2t−1 · 22m

)
= exp

(
−2Ω(n)

)
since t = Ω(n). This finishes the proof of the claim.

Now we may assume that V ⊂ A (and |V | = 9
√
n). We use I to denote the set of i ∈ [N ] such

that Si ∩ V 6= ∅. The following claim shows that I is large with extremely high probability:

Claim 7. We have |I| ≥ 4.4εN with probability at least 1− exp(−2Ω(n)) over the choice of S.

Proof. For each i ∈ [N ] we have (using 1− x ≤ e−x for all x and 1− x/2 ≥ e−x for x ∈ [0, 1.5]):

Pr
[
i ∈ I

]
= 1−

(
1− ε√

n

)9
√
n

≥ 1− e−9ε ≥ 4.5ε,

since ε/
√
n is the probability of each element of A being included in Si and ε ≤ 1/6 so 9ε ≤ 1.5.

Using ε ≥ 2−(2α−1)n/2 from (1), we have E[|I|] ≥ 4.5εN = 2Ω(n). Since the Si’s are independent,
a Chernoff bound implies that |I| ≥ 4.4εN with probability 1− exp(−2Ω(n)).

By Claim 7, we fix S1, . . . , SN to be any sequence of subsets of A that satisfy |I| ≥ 4.4εN in the
rest of the proof, and it suffices to show that over the random choices of h1, . . . ,hN (where each hi
is chosen to be a random function over Si), EV ≥ ε2n with probability at least 1− exp(−2Ω(n)).

To this end we use ρ(i) for each i ∈ I to denote the first coordinate of Si in V , and Zi to denote
the set of x ∈ {0, 1}n with Γ(x) = i. Note that the Zi’s are disjoint. We further partition each Zi
into disjoint Zi,b, b ∈ {0, 1}Si , with x ∈ Zi,b iff x ∈ Zi and x|Si = b. For each i ∈ I and b ∈ {0, 1}Si
with bρ(i) = 0, we use Di,b to denote the number of f -bichromatic edges between Zi,b and Zi,b(ρ(i))
along the ρ(i)th direction. It is clear that such edges, over all i and b, are vertex-disjoint and thus,

EV ≥
∑
i∈I

∑
b∈{0,1}Si
bρ(i)=0

Di,b. (3)
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We will apply Hoeffding’s inequality. Note that Di,b is 2m−|Si| with probability 1/2, and 0 with
probability 1/2. Thus, the expectation of the RHS of (3) is∑

i∈I
2|Si|−1 · 2m−|Si|−1 = |I| · 2m−2 ≥ 1.1ε2n,

using |I| ≥ 4.4εN . Since all the Di,b’s are independent, by Hoeffding’s inequality we have

Pr
[ ∣∣RHS of (3)− |I| · 2m−2

∣∣ ≥ 0.01|I| · 2m−2
]
≤ 2 · exp

(
− 2(0.01|I| · 2m−2)2∑

i∈I 2|Si|−1 · 22(m−|Si|)

)
≤ exp

(
−2Ω(n)

)
,

since |I| ≥ Ω(εN) = 2Ω(n). When this does not happen, we have EV ≥ 0.99 · |I| · 2m−2 > ε2n.
This concludes the proof of Claim 5.

3 The Set-Size-Set-Queries (SSSQ) Problem

We first introduce the Set-Size-Set-Queries (SSSQ for short) problem, which is an artificial problem
that we use as a bridge to prove Theorem 2. We use the same parameters p, q and m from the
definition of Dyes and Dno, with n being sufficiently large (so m = Ω(n) is sufficiently large as well).

We start by defining Ayes and Ano, two distributions over subsets of [m]: A ∼ Ayes is drawn
by independently including each element of [m] with probability p and A ∼ Ano is drawn by
independently including each element with probability q. In SSSQ, the algorithm needs to determine
whether an unknown A ⊆ [m] is drawn from Ayes or Ano. (For intuition, to see that this task is
reasonable, we observe here that a straightforward Chernoff bound shows that almost every outcome
of A ∼ Ayes is larger than almost every outcome of A ∼ Ano by Ω(

√
n log n).)

Let A be a subset of [m] which is hidden in an oracle. An algorithm accesses A (in order to
tell whether it is drawn from Ayes or Ano) by interacting with the oracle in the following way: each
time it calls the oracle, it does so by sending a subset of [m] to the oracle. The oracle responds as
follows: for each j in the subset, it returns a bit that is 0 if j /∈ A, and is 1 with probability ε/

√
n

and 0 with probability 1 − ε/
√
n if j ∈ A. The cost of such an oracle call is the size of the subset

provided to the oracle.
More formally, a deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ accesses the

set A hidden in the oracle by submitting a list of queries T = (T1, . . . , Td), for some d ≥ 1, where
each Ti ⊆ [m] is a set. (Thus, we call each Ti a set query, as part of the name SSSQ.)

• Given T , the oracle returns a list of random vectors v = (v1, . . . ,vd), where vi ∈ {0, 1}Ti and
each bit vi,j is independently distributed as follows: if j /∈ A then vi,j = 0, and if j ∈ A then

vi,j =

{
1 with probability ε/

√
n

0 with probability 1− (ε/
√
n).

(4)

Note that the random vectors in v depend on both T and A.

• Given v = (v1, . . . ,vd), Alg returns (deterministically) the value of g(v) ∈ {“yes”, “no”}.

The performance of Alg = (g, T ) is measured by its query complexity and its advantage.
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• The query complexity of Alg is defined as
∑d

i=1 |Ti|, the total size of all the set queries. On
the other hand, the advantage of Alg is defined as

Pr
A∼Ayes

[
Alg(A) = “yes”

]
− Pr

A∼Ano

[
Alg(A) = “yes”

]
.

Remark 8. In the definition above, g is a deterministic map from all possible sequences of vectors
returned by the oracle to “yes” or “no.” Considering only deterministic as opposed to randomized
g is without loss of generality since given any query sequence T , the highest possible advantage can
always be achieved by a deterministic map g.

We prove the following lower bound for any deterministic, non-adaptive Alg in Section 5.

Lemma 9. Any deterministic, non-adaptive Alg for SSSQ with advantage at least 2/3 satisfies

d∑
i=1

|Ti| ≥
n3/2

ε · log3 n · log2(n/ε)
.

4 Reducing from SSSQ to distinguishing Dyes and Dno

In this section we reduce from SSSQ to the problem of distinguishing the pair of distributions Dyes

and Dno. More precisely, let Alg∗ = (h,X) denote a deterministic and nonadaptive algorithm that
makes q ≤ (n/ε)2 string queries1 X = (x1, . . . , xq) to a hidden function f drawn from either Dyes or
Dno, applies the (deterministic) map h to return h(f(x1), . . . , f(xq)) ∈ {“yes”, “no”}, and satisfies

Pr
f∼Dyes

[
Alg∗(f) = “yes”

]
− Pr

f∼Dno

[
Alg∗(f) = “yes”

]
≥ 3/4. (5)

We show how to define from Alg∗ = (h,X) an algorithm Alg = (g, T ) for the problem SSSQ with
query complexity at most τ · q and advantage 2/3, where τ = cα · 5 log(n/ε) and

cα = − 1

log(1.5− α)
> 0 with (1.5− α)cα = 1/2

is a constant that depends on α. Given this reduction it follows from Lemma 9 that q ≥ Ω̃(n3/2/ε).
This finishes the proof of Theorem 2.

We start with some notation. Recall that in both Dyes and Dno, M is a subset of [n] of size t
drawn uniformly at random. For a fixed M of size t, we use Eyes(M) to denote the distribution of A
and H sampled in the randomized procedure for Dyes, conditioning on M = M . We define Eno(M)
similarly. Then conditioning on M = M , f ∼ Dyes is distributed as fM,A,H with (A,H) ∼ Eyes(M)
and f ∼ Dno is distributed as fM,A,H with (A,H) ∼ Eno(M). This allows us to rewrite (5) as

1(
n
t

) · ∑
M :|M |=t

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
− Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])
≥ 3

4
.

We say M ⊂ [n] is good if any two queries xi and xj in X with Hamming distance ‖xi−xj‖1 ≥ τ
have different projections on M , i.e., (xi)|M 6= (xj)|M . We prove below that most M ’s are good.

1Any algorithm that makes more than this many queries already fits the Ω̃(n3/2/ε) lower bound we aim for.
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Claim 10. PrM
[
M is not good

]
= o(1).

Proof. For each pair of strings xi and xj in X with Hamming distance at least τ , the probability
of them having the same projection on M (drawn uniformly from all size-t subsets) is at most(

n−τ
t

)(
n
t

) =
(n− τ − t+ 1) · · · (n− t)

(n− τ + 1) · · ·n
≤
(

1− t

n

)τ
≤
(
2(1− α) + o(1)

)τ
< (1.5− α)τ ≤ O

( ε
n

)5
,

by our choices of cα and τ . The claim follows by a union bound over at most q2 ≤ (n/ε)4 pairs.

We can split the sum (5) into two sums: the sum over good M and the sum over bad M . By
Claim 10 the contribution from the bad M is at most o(1), and thus we have that

1(
n
t

) · ∑
good M

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
− Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])

is at least 3/4− o(1). Thus, there must exist a good set M ⊂ [n] of size t with

Pr
(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
− Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
≥ 2/3. (6)

Fix such a good M . We use Alg∗ = (h,X) and M to define an algorithm Alg = (g, T ) for SSSQ as
follows (note that the algorithm Alg below actually works over the universe M (of size m) instead
of [m] as in the original definition of SSSQ but this can be handled by picking any bijection between
M and [m]; accordingly A ∼ Ayes is drawn by including each element of M with probability p and
A ∼ Ano is drawn by including each element of M with probability q). We start with T :

1. First we use M to define an equivalence relation ∼ over the query set X, where xi ∼ xj if
(xi)|M = (xj)|M . Let X1, . . . , Xd, d ≥ 1, denote the equivalence classes of X, and let us write
ρ(`) for each ` ∈ [d] to denote the value Γ(x) ∈ [N ] that is shared by all strings x ∈ X`.

2. Next we define a sequence of subsets of M , T = (T1, . . . , Td), as the set queries of Alg, where

T` =
{
i ∈M : ∃x, y ∈ X` such that xi 6= yi

}
. (7)

To upper bound |T`|, fixing an arbitrary string x ∈ X` and recalling that M is good, we have that

|T`| ≤
∑
y∈X`

‖x− y‖1 ≤
∑
y∈X`

τ = τ · |X`|.

As a result, the query complexity of Alg (using T as its set queries) is at most

d∑
`=1

|T`| ≤ τ ·
d∑
`=1

|X`| ≤ τ · q.

It remains to define h and then prove that the advantage of Alg = (g, T ) for SSSQ is at least
2/3. Indeed the g that we define is a randomized map and we describe it as a randomized procedure
below (by Remark 8 one can extract from g a deterministic map that achieves the same advantage):
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1. Given v1, . . . , vd, v` ∈ {0, 1}T` , as the strings returned by the oracle upon being given T , let

R` =
{
j ∈ T` : v`,j = 1

}
. (8)

For each ` ∈ [d], the procedure draws a random function f ` : {0, 1}R` → {0, 1}, by flipping
2|R`| many independent and unbiased random bits.

2. Next for each query x ∈ X`, ` ∈ [d], we feed f `(x|R`) to h as the bit that the oracle returns
upon the query x. Finally the procedure returns the result (“yes” or “no”) that h returns.

In the rest of the proof we show that the advantage of Alg = (g, T ) is exactly the same as the LHS
of (6) and thus, is at least 2/3.

For convenience, we use Vyes to denote the distribution of responses v = (v1, . . . ,vd) to T when
A ∼ Ayes, and Vno to denote the distribution when A ∼ Ano. Then the advantage of Alg is

Pr
v∼Vyes

[
g(v) = “yes”

]
− Pr

v∼Vno

[
g(v) = “yes”

]
.

It suffices to show that

Pr
v∼Vyes

[
g(v) = “yes”

]
= Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
and (9)

Pr
v∼Vno

[
g(v) = “yes”

]
= Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
. (10)

We show (9); the proof of (10) is similar. From the definition of Vyes and Eyes(M) the distribution of
(R` : ` ∈ [d]) derived from v ∼ Vyes using (8) is the same as the distribution of (Sρ(`) ∩ T` : ` ∈ [d]):
both are sampled by first drawing a random subset A of M and then drawing a random subset of
A∩T` independently by including each element of A∩T` with the same probability ε/

√
n (recall in

particular equation (4) and step 3 of the randomized procedure specifying Dyes in Section 2). Since
fM,A,H(x) for x ∈ X` is determined by a random Boolean function hρ(`) from {0, 1}Sρ(`) to {0, 1},
and since all the queries in X` only differ by coordinates in T`, the distribution of the q bits that g
feeds to h when v ∼ Vyes is the same as the distribution of (f(x) : x ∈ X) when f ∼ Eyes(M). This
finishes the proof of (9), and concludes our reduction argument.

5 A lower bound on the non-adaptive query complexity of SSSQ

We will prove Lemma 9 by first giving a reduction from an even simpler algorithmic task, which we
describe next in Section 5.1. We will then prove a lower bound for the simpler task in Section 5.2.

5.1 Set-Size-Element-Queries (SSEQ)

Recall the parameters m, p, q and ε and the two distributions Ayes and Ano used in the definition
of problem SSSQ. We now introduce a simpler algorithmic task called the Set-Size-Element-Queries
(SSEQ) problem using the same parameters and distributions.

Let A be a subset of [m] hidden in an oracle. An algorithm accesses the oracle to tell whether it
is drawn from Ayes or Ano. The difference between SSSQ and SSEQ is the way an algorithm accesses
A. In SSEQ, an algorithm Alg′ = (h, `) submits a vector ` = (`1, . . . , `m) of nonnegative integers.
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• On receiving `, the oracle returns a random response vector b ∈ {0, 1}m, where each entry bi
is distributed independently as follows: if i /∈ A then bi = 0, and if i ∈ A then

bi =

{
1 with probability λ(`i)

0 with probability 1− λ(`i)
, where λ(`i) = 1−

(
1− ε√

n

)`i
.

Equivalently, for each i ∈ A, the oracle independently flips `i coins, each of which is 1 with
probability ε/

√
n, and at the end returns bi = 1 to the algorithm if and only if at least one

of the coins is 1. Thus, we refer to each `i as `i element-queries for the ith element.

• After receiving the vector b from the oracle, Alg′ returns the value h(b) ∈ {“yes”, “no”}.
Here h is a deterministic map from {0, 1}m to {“yes”, “no”}.

Similar to before, the performance of Alg′ is measured by its query complexity and its advantage:

• The query complexity of Alg′ = (h, `) is defined as ‖`‖1 =
∑m

i=1 `i. For its advantage, we let
Byes denote the distribution of response vectors b to query ` when A ∼ Ayes, and Bno denote
the distribution when A ∼ Dno. The advantage of Alg′ = (h, `) is then defined as

Pr
b∼Byes

[
h(b) = “yes”

]
− Pr

b∼Bno

[
h(b) = “yes”

]
.

Remark 11. It is worth pointing out (we will use it later) that the highest possible advantage over
all deterministic maps h is a monotonically non-decreasing function of the coordinates of `. To see
this, let A be the underlying set and let ` and `′ be two vectors with `i ≤ `′i for every i ∈ [m]. Let
b and b′ be the random vectors returned by the oracle upon ` and `′. Then we can define b∗ using
b′ as follows: b∗i = 0 if b′i = 0; otherwise when b′i = 1, we set

b∗i =

{
1 with probability λ(`i)/λ(`′i)

0 with probability 1− λ(`i)/λ(`′i)
.

One can verify that the distribution of b is exactly the same as the distribution of b∗. Hence there
is a randomized map h′ such that the advantage of (h′, `′) is at least as large as the highest possible
advantage achievable using `. The remark now follows by our earlier observation in Remark 8 that
the highest possible advantage using `′ is always achieved by a deterministic h′.

The following lemma reduces the proof of Lemma 9 to proving a lower bound for SSEQ.

Lemma 12. Given any deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ, there is a
deterministic and non-adaptive algorithm Alg′ = (h, `) for SSEQ with the same query complexity as
Alg and advantage at least as large as that of Alg.

Proof. We show how to construct Alg′ = (h, `) from Alg = (g, T ), where h is a randomized map,
such that Alg′ has exactly the same query complexity and advantage as those of Alg. The lemma
then follows from the observation we made earlier in Remark 8.

We define ` first. Given T = (T1, . . . , Td) for some d ≥ 1, ` = (`1, . . . , `m) is defined as

`j =
∣∣{i ∈ [d] : j ∈ Ti}

∣∣.
So ‖`‖1 =

∑d
i=1 |Ti|. To define h we describe a randomized procedure P that, given any b ∈ {0, 1}m,

outputs a sequence of random vectors v = (v1, . . . ,vd) such that the following claim holds.
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Claim 13. If b ∼ Byes (or Bno), then P (b) is distributed the same as Vyes (or Vno, respectively).

Assuming Claim 13, we can set h = g ◦P and the advantage of Alg′ would be the same as that
of Alg. In the rest of the proof, we describe the randomized procedure P and prove Claim 13.

Given b ∈ {0, 1}m, P outputs a sequence of random vectors v = (v1, . . . ,vd) as follows:

• If bj = 0, then for each i ∈ [d] with j ∈ Ti, P sets vi,j = 0.

• If bj = 1 (this implies that `j > 0 and j ∈ Ti for some i ∈ [d]), P sets (vi,j : i ∈ [d], j ∈ Ti) to
be a length-r, where r = |{i ∈ [d] : j ∈ Ti}|, binary string in which each bit is independently
1 with probability ε/

√
n and 0 with probability 1− ε/

√
n, conditioned on its not being 0r.

Proof of Claim 13. It suffices to prove that, fixing any A ⊆ [m] as the underlying set hidden in the
oracle, the distribution of v is the same as the distribution of P (b). The claim then follows since in
the definitions of both Byes and Vyes (or Bno and Vno), A is drawn from Ayes (or Ano, respectively).

Consider a sequence v of d vectors v1, . . . , vd with vi ∈ {0, 1}Ti for each i ∈ [d], and let

nj,1 = |{i ∈ [d] : j ∈ Ti and vi,j = 1}| and nj,0 = |{i ∈ [d] : j ∈ Ti and vi,j = 0}|,

for each j ∈ [m]. Then the v returned by the oracle (in SSSQ) is equal to v with probability:

1
{
∀j /∈ A, nj,1 = 0

}
·
∏
j∈A

(
ε√
n

)nj,1 (
1− ε√

n

)nj,0
, (11)

since all coordinates vi,j are independent. On the other hand, the probability of P (b) = v is

1
{
∀j /∈ A, nj,1 = 0

}
·
∏
j∈A

(
1
{
nj,0 = `j

}
·
(

1− ε√
n

)`j
+ 1

{
nj,1 ≥ 1

}
·
(

ε√
n

)nj,1 (
1− ε√

n

)nj,0)
,

which is exactly the same as the probability of v = v in (11).

This finishes the proof of Lemma 12.

5.2 A lower bound for SSEQ

We prove the following lower bound for SSEQ, from which Lemma 9 follows:

Lemma 14. Any deterministic, non-adaptive Alg′ for SSEQ with advantage at least 2/3 satisfies

‖`‖1 > s
def
=

n3/2

ε · log3 n · log2(n/ε)
.

Proof. Assume for contradiction that there is an algorithm Alg′ = (h, `) with ‖`‖1 ≤ s and advan-
tage at least 2/3. Let `∗ be the vector obtained from ` by rounding each positive `i to the smallest
power of 2 that is at least as large as `i (and taking `∗i = 0 if `i = 0). From Remark 11, there must
be a map h∗ such that (h∗, `∗) also has advantage at least 2/3 but now we have 1) ‖`∗‖1 ≤ 2s and
2) every positive entry of `∗ is a power of 2. Below we abuse notation and still use Alg′ = (h, `) to
denote (h∗, `∗): Alg′ = (h, `) satisfies ‖`‖1 ≤ 2s, every positive entry of ` is a power of 2, and has
advantage at least 2/3. We obtain a contradiction below by showing that any such ` can only have
an advantage of o(1).
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Let L = dlog(2s)e = O(log(n/ε)). Given that ‖`‖1 ≤ 2s we can partition {i ∈ [m] : `i > 0} into
L+ 1 sets C0, . . . , CL, where bin Cj contains those coordinates i ∈ [m] with `i = 2j . We may make
two further assumptions on Alg′ = (h, `) that will simplify the lower bound proof:

• We may reorder the entries in decreasing order and assume without loss of generality that

` =

2L, . . . , 2L︸ ︷︷ ︸
cL

, 2L−1, . . . , 2L−1︸ ︷︷ ︸
cL−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
c0

, 0, . . . , 0

 , (12)

where cj = |Cj | satisfies
∑

j cj · 2j ≤ 2s. This is without loss of generality since Ayes and Ano

are symmetric in the coordinates (and so are Byes and Bno).

• For the same reason we may assume that the map h(b) depends only on the number of 1’s of
b in each set Cj , which we refer to as the summary S(b) of b:

S(b)
def
=
(
‖b|CL‖1, ‖b|CL−1

‖1, . . . , ‖b|C0
‖1
)
∈ ZL+1

≥0 .

To see that this is without loss of generality, consider a randomized procedure P that, given
b ∈ {0, 1}m, applies an independent random permutation over the entries of Cj for each bin
j ∈ [0 : L]. One can verify that the random map h′ = h ◦ P only depends on the summary
S(b) of b but achieves the same advantage as h.

Given a query ` as in (12), we define Syes to be the distribution of S(b) for b ∼ Byes (recall that
Byes is the distribution of the vector b returned by the oracle upon the query ` when A ∼ Ayes).
Similarly we define Sno as the distribution of S(b) for b ∼ Bno. As h only depends on the summary
the advantage is at most dTV(Syes,Sno), which we upper bound below by o(1).

From the definition of Byes (or Bno, respectively) and the fact that Ayes (or Ano, respectively) is
symmetric over the m coordinates, we have that the L+ 1 entries of Syes (of Sno, respectively) are
mutually independent, and that their entries for each Cj , j ∈ [0 : L], are distributed as Bin(cj , pλj)
(as Bin(cj , qλj), respectively), where we have λj = 1− (1− (ε/

√
n))2j .

In order to prove that dTV(Syes,Sno) = o(1) and achieve the desired contradiction, we will give
upper bounds on the total variation distance between their Cj-entries for each j ∈ {0, . . . , L}.

Claim 15. Let X ∼ Bin(cj , pλj) and Y ∼ Bin(cj , qλj). Then dTV(X,Y) ≤ o (1/L) .

We delay the proof of Claim 15, but assuming it we may simply apply the following well-known
proposition to conclude that dTV(Syes,Sno) = o(1).

Proposition 16 (Subadditivity of total variation distance). Let X = (X1, . . . ,Xk) and Y = (Y1,
. . . ,Yk) be two tuples of independent random variables. Then dTV(X,Y) ≤

∑k
i=1 dTV(Xi,Yi).

This gives us a contradiction and finishes the proof of Lemma 14.

Below we prove Claim 15.

Proof of Claim 15. The claim is trivial when cj = 0 so we assume below that cj > 0.
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Let r = pλj and x = log n · λj/
√
n. Then X ∼ Bin(cj , r) and Y ∼ Bin(cj , r + x). As indicated

in Equation (2.15) of [AJ06], Equation (15) of [Roo00] gives

dTV(X,Y) ≤ O
(

τ(x)

(1− τ(x))2

)
, where τ(x)

def
= x

√
cj + 2

2r(1− r)
, (13)

whenever τ(x) < 1. Substituting for x and r, we have (using cj ≥ 1, r ≤ 1/2 and p = 1/2)

τ(x) = O

(
log n · λj√

n
·
√
cj
r

)
= O

(
log n ·

√
λj · cj
n

)
= O

 1

L
·

√
n1/2 · λj

2j · ε · log n

 ,

where the last inequality follows from

cj · 2j ≤ 2s ≤ O

(
n3/2

ε · log3 n · L2

)
.

Finally, note that (using 1− x > e−2x for small positive x and 1− x ≤ e−x for all x):

1− λj =

(
1− ε√

n

)2j

≥
(
e−2ε/

√
n
)2j

= e−2j+1ε/
√
n ≥ 1−O(2jε/

√
n)

and

√
n · λj

2j · ε
= O(1). This implies τ(x) = o(1/L) = o(1). The claim then follows from (13).
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A Proof of Theorem 1 assuming Theorem 2

We prove the following claim in Appendix A.1.

Claim 17. Let ε(n) be a function that satisfies 2−n ≤ ε(n) ≤ 1/5 for sufficiently large n. Then any
non-adaptive algorithm that accepts the all-0 function with probability at least 5/6 and rejects every
function that is ε-far from (n− 1)-juntas with probability at least 5/6 must make Ω(1/ε) queries.

Next let k(n) and ε(n) be the pair of functions from the statement of Theorem 1. We consider
a sufficiently large n (letting k = k(n) and ε = ε(n) below) and separate the proof into two cases:

2−(2α−1)k/(2α) ≤ ε ≤ 1/6 and 2−n ≤ ε < 2−(2α−1)k/(2α).

For the first case, if k = O(1) then the bound we aim for is simply Ω̃(1/ε), which follows trivially
from Claim 17 (since k ≤ αn < n−1 and the all-0 function is a k-junta). Otherwise we combine the
following reduction with Theorem 2: any ε-tester for k-juntas over n-variable functions can be used
to obtain an ε-tester for k-juntas over (k/α)-variable functions. This can be done by adding n−k/α
dummy variables to any (k/α)-variable function to make the number of variables n (as k ≤ αn).
The lower bound then follows from Theorem 2 since α is a constant. For the second case, the lower
bound claimed in Theorem 1 is Ω̃(1/ε), which follows again from Claim 17. This concludes the
proof of Theorem 1 given Theorem 2 and Claim 17.

A.1 Proof of Claim 17

Let C be a sufficiently large constant. We prove Claim 17 by considering two cases:

ε ≥ C log n

2n
and ε <

C log n

2n
.

For the first case of 2nε ≥ C log n, we use D1 to denote the following distribution over n-variable
Boolean functions: to draw g ∼ D1, independently for each x ∈ {0, 1}n the value of g(x) is set to 0
with probability 1− 3ε (recall that ε ≤ 1/5) and 1 with probability 3ε.

We prove the following lemma for the distribution D1:

Lemma 18. With probability at least 1− o(1), g ∼ D1 is ε-far from every (n− 1)-junta.

Proof. Note that every (n− 1)-junta is such that for some i ∈ [n], the function does not depend on
the i-th variable; we refer to such a function as a type-i junta. An easy lower bound for the distance
from a function g to all type-i juntas is the number of g-bichromatic edges (x, x(i)) divided by 2n.
When g ∼ D1 each edge (x, x(i)) is independently g-bichromatic with probability 6ε(1−3ε) ≥ 12ε/5
(as ε ≤ 1/5). Thus when 2nε ≥ C log n, the expected number of such edges is at least

2n−1 · (12ε/5) ≥ (6/5) · 2nε ≥ (6/5) · C log n.

Using a Chernoff bound, the probability of having fewer than 2nε bichromatic edges along direction
i is at most 1/n2 when C is sufficiently large. The lemma follows from a union bound over i.

As a result, when 2nε ≥ C log n, if A is a non-adaptive algorithm with the property described
in Claim 17, then A must satisfy

Pr
[
A accepts the all-0 function

]
− Pr

g∼D1

[
A accepts g

]
≥ 2/3− o(1).
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But any such non-adaptive algorithm must make Ω(1/ε) queries as otherwise with high probability
all of its queries to g ∼ D1 would be answered 0, and hence its behavior would be the same as if it
were running on the all-0 function.

Finally we work on the case when 1 ≤ 2nε = O(log n). The proof is the same except that we let
g be drawn from D2, which we define to be the distribution where all entries of g ∼ D2 are 0 except
for exactly 2nε of them picked uniformly at random. The claim follows from the following lemma:

Lemma 19. With probability at least 1− o(1), g ∼ D2 is ε-far from every (n− 1)-junta.

Proof. This follows from the observation that, with probability 1− o(1), no two points picked form
an edge. When this happens, we have 2nε bichromatic edges along the ith direction for all i.
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