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Abstract

We consider a robust analog of the planted clique problem. In this analog, a set S of vertices is
chosen and all edges in S are included; then, edges between S and the rest of the graph are included with
probability 1

2 , while edges not touching S are allowed to vary arbitrarily. For this semi-random model, we
show that the information-theoretic threshold for recovery is Θ̃(

√
n), in sharp contrast to the classical

information-theoretic threshold of Θ(log(n)). This matches the conjectured computational threshold
for the classical planted clique problem, and thus raises the intriguing possibility that, once we require
robustness, there is no computational-statistical gap for planted clique.
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1 Introduction

The planted clique problem is perhaps the most famous example of a computational-statistical gap —
while it is information-theoretically possible to recover planted cliques even of size 2 log2(n), the best
efficient recovery algorithms require the clique to have size Ω(

√
n). It has long been conjectured that no

polynomial-time algorithm can find cliques of size n1/2−ε, with recent breakthrough work by Barak et al.
(2016) establishing this for the class of sum-of-squares algorithms. There thus appears to be an exponential
gap between what is possible statistically and what is tractable computationally.

In this paper we revisit this gap, and question whether recovering cliques of size k �
√
n is actually

meaningful, or if it can only be done by over-exploiting the particular details of the planted clique model.
Recall that in the planted clique model, a set S of vertices is chosen at random and all vertices in S are
connected; the remaining edges are then each included independently with probability 1

2 . While this model
is convenient in its simplicity, it also has a number of peculiarities — for instance, simply returning the
highest-degree nodes already performs nearly as well at recovering S as sophisticated spectral algorithms.

Feige and Kilian (2001) argue that it is more realistic to consider a semi-random model, in which edges
that do not touch any vertices in the clique are allowed to vary arbitrarily. This forces recovery algorithms to
be more robust by not relying on simple heuristics such as maximum degree to identify the planted clique. It
is then natural to ask — once we require such robustness, how large must a clique be to be identifiable? To
this end, we establish a strong information-theoretic lower bound:

Theorem. In the semi-random model, it is information-theoretically impossible to even approximately recover
planted cliques of size o(

√
n). Moreover, it is information-theoretically possible to exactly recover cliques of

size ω(
√
n log(n)).

It is striking that the information-theoretic threshold in the semi-random model essentially matches
the computational threshold of

√
n in the standard model. We conjecture that, in the semi-random model,

the computational and statistical thresholds in fact coincide — i.e., there is an efficient algorithm for
recovering cliques of size

√
n log(n). In such a case, the previous exponential gap between the statistical

and computational limits would vanish entirely.

The Model

We now explain and justify the semi-random model in more detail. We consider a graph on n nodes with a
planted clique of size k. Label the nodes 1, . . . , n, and let S ⊆ {1, . . . , n} be the set of vertices in the clique.
We represent the graph by its adjacency matrix A ∈ {0, 1}n×n, which must be symmetric and satisfy Aii = 0
for all i. Beyond these constraints, A is generated as follows:

Aij =


1 : i, j ∈ S

Ber(12) : i ∈ S, j 6∈ S or j ∈ S, i 6∈ S
arbitrary : else

(1)

Here Ber(p) denotes the Bernoulli distribution with parameter p (i.e., a coin toss with probability p of being
1). In words, A is generated by planting a clique S and connecting all pairs of vertices in S; then connecting
each clique vertex to each non-clique vertex independently with probability 1

2 ; and finally filling in edges
between non-clique vertices arbitrarily. This is essentially the model considered by Feige and Kilian (2001),
except they additionally allow any number of edges between S and [n]\S to be deleted. Note that lower
bounds in our model imply lower bounds in Feige and Kilian’s model.
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The motivation for this model comes from thinking of planted clique recovery as a community detection
problem, where there is a community of vertices in a large random graph which are connected to each
other with high probability (in this case, probability 1). It would be strange if whether a set of vertices S is
considered a community could be affected by edges having nothing to do with S. The semi-random model
above essentially asserts this.

From another perspective, even if we don’t believe that the edges outside of S are truly arbitrary, it also
seems unlikely that they are completely random (as in the classical planted clique problem) or a disjoint union
of other planted cliques (as in the stochastic block model). It would be ideal to design recovery algorithms
that are not tied to the specifics of these toy models, and allowing arbitrary edge connections outside of the
planted structure is one way of getting at this.

Recovery criterion. Because edges not touching S can be chosen arbitrarily, the set S need not be the unique
clique in the graph, even when k � log(n). Indeed, even if k = n

2 , we could observe a graph with two
cliques of size n

2 (with all edges between them occurring with probability 1
2 ) and it would be impossible to

tell which of the two was the planted clique S.
To overcome this ambiguity, one is given a vertex v sampled uniformly from S, and asked to output an

estimate Ŝ of the entire set S. Intuitively, given a vertex that belongs to S, one should be able to tell which of
its neighbors are also part of S, and which are due to random chance; this is a baseline pre-requisite for more
difficult tasks such as predicting the probability of occurrence of a held-out edge.

Our error metric is |S4Ŝ|, the symmetric difference between S and Ŝ. We will show that when k �
√
n,

even partial recovery is impossible under this metric; in fact, we will show that it is impossible to distinguish
between the case where a subset of k vertices belongs to a unique planted clique, and the case where
every vertex belongs to exactly two planted cliques. In contrast, when k �

√
n log(n), exact recovery is

possible—|S4Ŝ| = 0 with high probability.

Results

Our main result is an information-theoretic lower bound on recovery in the semi-random model:

Theorem 1.1. Fix δ < 1. Then for sufficiently large n, there is a distribution over instances of the semi-
random planted clique model, each with planted clique size at least k = 1

6δ
1/3√n, such that given the

adjacency matrix A and v sampled uniformly from S, any candidate Ŝ(A, v) for S must satisfy

EA,v
[
|S4Ŝ(A, v)|

]
≥ (1− δ)EA[|S|]. (2)

Note that we can trivially obtain symmetric difference |S| − 1 by taking Ŝ(A, v) = {v}. Theorem 1.1
thus says that, when k �

√
n, it is impossible to improve upon this trivial bound by even a small amount.

The proof idea is to construct a distribution P0 over matrices A where every vertex belongs to exactly
two identically distributed cliques, and show that it has small total variational distance to an instance P1 of
the semi-random model. Then, given v, it is impossible to tell which of the two cliques is S, and so one
cannot do better than simply outputting {v} (note that guessing one of the cliques at random would lead to
|S4Ŝ| = 2|S| − 2 half the time, and 0 the other half, which is still |S| − 1 on average).

A key challenge is that P0 has a number of dependencies in it which do not exist in P1. To address this,
we establish a technical lemma – Lemma 2.1 – which shows that these dependencies are “sufficiently hidden”
by the randomness in the edges between S and [n]\S.

In addition to our lower bound, we establish an upper bound showing that exact recovery is information-
theoretically possible for sets of size

√
n log(n), and computationally possible for sets of size n2/3 log1/3(n):
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Theorem 1.2. Under the semi-random model, for a planted clique of size k = ω(
√
n log(n)), exact recovery

is possible with high probability— there is an Ŝ(A, v) such that PA,v[S = Ŝ(A, v)] = 1− o(1).
Moreover, there exists a constant C such that for k ≥ Cn2/3 log1/3(n), efficient exact recovery is

possible—there is a polynomial-time algorithm Ŝ(A, v) such that PA,v[S = Ŝ(A, v)] = 1− o(1).

The information-theoretic bound uses the fact that the true planted clique must have small intersection
with any other large clique, and holds in Feige and Kilian’s model as well. The computational bound is
essentially Corollary 9.3 of Charikar et al. (2017).

Open Problems

The results in this paper show that in the semi-random model, the information-theoretic threshold for planted
clique is between

√
n and

√
n log(n), while the computational threshold is at most Õ(n2/3). We believe that

both thresholds should be exactly on the order of
√
n log(n):

Conjecture 1.3. If k = o(
√
n log(n)), no algorithm can even partially recover S in the semi-random model.

Conjecture 1.4. If k = ω(
√
n log(n)), there is an algorithm that exactly recovers S in polynomial time in

the semi-random model.

In our lower bound construction below, we consider distributions over cliques that overlap in a single
element. Proving Conjecture 1.3 would require considering cliques that overlap in log(n) elements, which
seems possible but more challenging.

We can generalize the planted clique model to the more general planted dense subgraph model, in which
edges within S are formed with probability p, and edges between S and [n]\S are formed with probability
q. The planted clique model corresponds to p = 1, q = 1

2 . We can then ask for the information-theoretic
recovery threshold in this more general model, as a function of p and q.

Conjecture 1.5. The information-theoretic threshold for recovery in the semi-random planted dense subgraph

model is Θ̃(
√

n(p+q)
(p−q)2 ).

The threshold in Conjecture 1.5 is the Kesten-Stigum threshold (Kesten and Stigum, 1966b;a), which
is believed to be the threshold for efficient recoverability in the stochastic block model (Decelle et al.,
2011). As semi-random dense subgraph is a natural robust analog of the stochastic block model, a proof of
Conjecture 1.5 would be another data point suggesting a relationship between robustness and computation.
We remark that at least the upper bound can be established with similar ideas to Theorem 1.2.

Related Work

The type of semi-random model studied here was first proposed by Feige and Kilian (2001), who provide
algorithms for finding maximum independent sets and k-colorings that were later extended by Coja-Oghlan
(2007). While maximum independent set is equivalent to maximum clique, the regime they consider
corresponds to cliques of size Θ(n), with connection probabilities of 1− Õ(1/n) between the clique and
non-clique vertices; their results are thus inapplicable in our setting. In another direction, Makarychev
et al. (2012) proposed a similar (but more general) model for semi-random graph partitioning, and provided
algorithms for a number of problems including sparsest cut and small-set expansion.

Another popular semi-random model is the monotone adversaries model introduced by Blum and Spencer
(1995) and since considered by a number of authors (Feige and Krauthgamer, 2000; Coja-Oghlan, 2004;
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Chen et al., 2014; Guédon and Vershynin, 2014; Moitra et al., 2015; Agarwal et al., 2015). In this model, all
non-clique edges are generated with probability 1

2 , and then an adversary can remove any of the non-clique
edges. The monotone adversaries model rules out interesting phenomena such as the possibility of other
cliques appearing in the graph, and is thus arguably too restrictive. Moitra et al. (2015) study information-
theoretic thresholds for planted recovery problems in this model, but show only a constant factor gap between
the robust and non-robust thresholds, in contrast to the exponential log(n) vs.

√
n gap shown here.

Finally, there has recently been work on robust learning when a large fraction of the data can be arbitrarily
corrupted. We can embed our model in this model by treating each row of the adjacency matrix as a data point,
so that the k rows from the clique are “clean” while the remaining n−k are corrupted. This setting, where the
majority of points are corrupted, was studied by Steinhardt et al. (2016); Charikar et al. (2017); and Steinhardt
et al. (2017). In particular, Charikar et al. (2017) provide a polynomial-time algorithm which translates to
a Õ(n2/3) upper bound for planted clique, while Steinhardt et al. (2017) provide an information-theoretic
upper bound criterion for a general class of problems.

2 Lower Bound

In this section we will prove Theorem 1.1. The idea is to construct a distribution P0 which does not lie in the
semi-random model, and from which S cannot be recovered, and show that it is close to a distribution P1

lying in the semi-random model.

The base distribution P0. We will start by describing the distribution P0, which is parameterized by integers
n andm; it will induce cliques of size roughly n

m . It is constructed so that samples from P0 have the following
properties:

• The graph contains 2m cliques, each of size approximately n
m .

• Every vertex lies in two cliques.

• Every pair of cliques is either disjoint or has intersection 1.

We do this as follows: split the cliques into two groups each of size m. For each vertex i ∈ [n], sample
(without replacement) a pair (ai, bi) ∈ [m]× [m]. Vertex i will belong to the aith clique in the first group,
and the bith clique in the second group. Note that sampling without replacement ensures that no two cliques
intersect in more than one element.

Given a1:n and b1:n, we generate the adjacency matrix A for the graph as follows:

Aij =

{
1 : ai = aj or bi = bj ,

Ber(q) : else.
(3)

Here q will be chosen to be 1
2 −

1
2m−2 ; it is slightly less than 1

2 in order to correct for the extra edges created
by the two cliques, so that the expected degree is the same as in the semi-random model.

The semi-random instance P1. We want to construct a semi-random instance P1 that is close to P0. We will
do this via a coupling argument: we express a sample from P0 as a sequence of local decisions, and show that
each decision can either be exactly imitated under P1, or approximately imitated with small KL divergence.

First let us re-express P0 in a way that makes it look more like a planted clique instance, where we
will think of the clique corresponding to ai = 1 as the “planted” clique S. Let HG(n,K,N) denote the
hypergeometric distribution, which samples n items without replacement from [N ], and counts the number of
sampled items lying in {1, . . . ,K}. We can generate A ∼ P0 sequentially as follows:
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S [n]\SS [n]\S

S

Figure 1: Illustration of step 2 of P0 (left) vs. step 2′ of P1 (right). Each grid is the top s × n portion of
the adjacency matrix. Red edges are from cliques while blue edges are random. In the left matrix, b6 = 2,
b9 = 3, b11 = 5, b12 = 2, and b14 = 1 (the remaining elements of b6:14 are all larger than 5). The extra red
edges introduce anti-correlations in P0 which could potentially distinguish it from P1.

1. Sample s ∼ HG(n,m,m2) and let S be a uniformly random subset of [n] of size s. Set ai = 1 for
each i ∈ S and sample the corresponding bi from [m] without replacement. Connect all vertices in S.

2. For each i 6∈ S, determine which edges should exist between S and [n]\S. This involves sampling
(ai, bi) and determining if bi = bj for some j ∈ S (in which caseAji = 1), and including the remaining
edges with probability q.

3. Finally, fill in all of the remaining edges (i.e., the edges between elements of [n]\S) conditioned on the
decisions made in steps 1 and 2.

Steps 1 and 3 can be exactly mimicked under the semi-random model — step 1 because it involves
planting a clique at random, and step 3 because it only involves decisions in [n]\S, which we are allowed to
choose arbitrarily. For step 2, however, we cannot exactly mimic P0 in the semi-random model — our hands
are tied because all edges between S and [n]\S must be generated at random. Under P1, then, steps 1 and 3
are the same as P0, but we use the alternate step 2′:

2′. For each i 6∈ S, determine which edges should exist between S and [n]\S. This involves setting Aji to
be 1 with probability 1

2 independently for all j ∈ S.

It is also necessary to sample (ai, bi) in step 2′, since these are used in step 3. Since ai and bi do not affect
the edges generated in 2′, we can sample them however we want without violating the semi-random model.
For each i, we will thus mimic P0 by sampling (ai, bi) from the conditional distribution under P0 given the
decisions made so far (e.g. conditioned on S, on the previous (ai′ , bi′), and on Aji).

Comparing P0 and P1. We next want to show that P0 and P1 are close. For this, it helps to more concretely
represent the difference between P0 and P1 in step 2. For convenience, number the vertices in S as 1, . . . , s
and assume that bi = i for i = 1, . . . , s. Suppose that we have already filled in the edges from S to
vertices s+ 1, . . . , i− 1 (and also sampled bs+1, . . . , bi−1), and want to fill in the edges from S to vertex i.
Conditioned on bs+1:i−1, these edges have the following distribution under P0:

• For each j = 1, . . . , s, set Aji = 1 with probability q.

• Additionally, sample j0 ∼ π, where πj = m−1−|{bl=j|s+1≤l<i}|
m2−m−(i−s−1) . If j0 ∈ [s] then set Aj0i = 1 as well.
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The expression for πj comes from the fact that there are m− 1 pairs (a, b) with a 6= 1 and b = j, but some
might have been used up already from the samples bs+1, . . . , bi−1.

Under P1, the Aji are instead all generated independently with probability 1
2 . The following technical

lemma shows that these two distributions are close together:

Lemma 2.1. Fix non-negative reals τ1, . . . , τs and π1, . . . , πs such that τj ≤ 1
5 and

∑
j τj ≤ 1, and let

q ∈ [4/9, 1]. Consider random variables X1:s and X ′1:s defined as follows:

• X1:s ∼ Ber(q) initially, and then an index j0 is sampled with probability πj0 and Xj0 is set to 1. (With
probability 1−

∑s
j=1 πj , no Xj0 is set to 1 in this latter step.)

• X ′j ∼ Ber(q + τj(1− q)) for all j.

Then, we have DKL(PX , PX′) ≤ 10
(∑s

j=1 τ
2
j

)2
+ 10

∑s
j=1(τj − πj)

2, where PX and PX′ are the

distributions over X and X ′.

We can apply Lemma 2.1 with τi = 1
m (since q + (1− q)/m = 1

2 ), which yields

DKL(P0(A1:s,i), P1(A1:s,i) | b1:i−1, s) ≤ 10
s2

m4
+ 10

s∑
j=1

(πj(b1:i−1)− 1/m)2. (4)

Chaining the KL divergence. Having bounded the KL divergence of each local decision, we would like to
obtain a global bound on the difference between P0 and P1. We can do this with the following inequality,
which follows from the chain rule for KL divergence (all expectations are with respect to P0):

DKL(P0(A), P1(A)) ≤ Es
[ n∑
i=s+1

Eb1:i−1
[DKL(P0(A1:s,i), P1(A1:s,i) | b1:i−1, s)]

]
. (5)

Plugging (4) into (5), we obtain

DKL(P0(A), P1(A)) ≤ Es
[

10s2n

m4
+ 10

n∑
i=s+1

s∑
j=1

Eb1:i−1

[
(πj(b1:i−1)− 1/m)2

] ]
. (6)

To bound (6) we need to analyze the mean and variance of πj . By symmetry, E[πj(b1:i−1)] = πj(b1:s) = 1
m .

Also, Var[πj(b1:i−1)] = 1
(m2−m−(i−s−1))2 Var[

∑i−1
l=s+1 I[bl = j]]. We have (m2 −m − (i − s − 1))2 ≥

(m2− 2n)2 ≥ 1
2m

4 assuming m2 ≥ 7n. Furthermore, the events I[bl = j] are negatively correlated (because
we sample without replacement). Therefore, Var[πj ] is bounded above as

Var[πj(b1:i−1)] ≤
2

m4
Var

[ i−1∑
l=s+1

I[bl = j]
]

(7)

≤ 2

m4

i−1∑
l=s+1

Var[I[bl = j]] (8)

≤ 2(i− s− 1)

m5
≤ 2n

m5
. (9)

We thus have Eb1:i−1
[(πj(b1:i−1)− 1/m)2] = Varb1:i−1

[πj(b1:i−1)] ≤ 2n
m5 .
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Now, plugging back into (6) and using the fact that E[s] = n/m, Var[s] ≤ n/m, we obtain

DKL(P0(A), P1(A)) ≤ Es
[

10s2n

m4
+

20sn2

m5

]
(10)

≤ 10n

m4
((n/m)2 + n/m) +

20n3

m6
≤ 40n3

m6
. (11)

By Pinsker’s inequality, this implies that DTV (P0(A), P1(A)) ≤
√

20n3/m6 ≤ 5(n/m2)1.5.

Proving Theorem 1.1. Now that we have a bound on DTV (P0(A), P1(A)), proving Theorem 1.1 is straight-
forward. First note that under P0, each vertex v belongs to two cliques and it is impossible to tell which one
is S. Therefore, we have EP0 [|S4Ŝ(A, v)|] ≥ EP0 [|S| − 1] = n

m − 1.
We note that P0[|S| ≤ n

2m ] ≤ e−n/8m and P0[|S| ≥ 3n
2m ] ≤ e−n/8m (see Hoeffding (1963)). Therefore,

at the cost of an additional TV distance of 2e−n/8m, we can modify P1 to ensure that |S| ∈ [ n2m ,
3n
2m ] almost

surely, while also preserving E[|S|] for convenience.
Now, let Ŝ(A, v) be the optimal estimator under P1, which satisfies |Ŝ(A, v)| ≤ 3n

m since |S| ≤ 3n
2m . The

difference of E[|S4Ŝ(A, v)|] between P0 and P1 can be bounded by EP0 [|S4Ŝ(A, v)|E], where E is an
event of probability p = DTV (P0, P1). Then

EP0 [|S4Ŝ(A, v)|]− EP1 [|S4Ŝ(A, v)|] ≤ EP0 [|S4Ŝ(A, v)|E] (12)

≤ EP0 [(|S|+ |Ŝ(A, v)|)E] (13)

≤ p
(

4n

m
+
√

(2n/m) log(e/p)

)
, (14)

where the final line exploits the boundedness of |Ŝ| and the sub-Gaussianity of |S|.
In sum, we have EP1 [|S4Ŝ(A, v)|] ≥ EP0 [|S4Ŝ(A, v)|]− p

(
4n
m +

√
(2n/m) log(e/p)

)
, where p =

DTV (P0, P1). Using our previous bound p ≤ 5(n/m2)1.5 + 2e−n/8m and letting n� m log(m) to bound
lower-order terms, we obtain:

Proposition 2.2. If 24m log(m) ≤ n ≤ m2

7 , there is a distribution over instances of the semi-random planted
clique model such that S always has size at least n

2m , and E[|S4Ŝ(A, v)|] ≥ E[|S|](1− m
n − 25(n/m2)1.5).

We will set m = 3(1/δ)1/3
√
n, in which case we get cliques of size at least k = 1

6δ
1/3√n, and we have

25(n/m2)1.5 + m
n ≤ 0.93δ + 3

δ1/3
√
n

. For sufficiently large n, this is at most δ, which yields Theorem 1.1.

3 Upper Bound

We next turn to the upper bound (Theorem 1.2). The crux is the following lemma showing that the planted
clique is nearly disjoint from all other large cliques:

Proposition 3.1. Let S be a planted clique of size k in a subgraph of size n under the semi-random model.
Then, with probability at least 1− 2k

n2 , any other clique S′ of size at least k satisfies |S ∩ S′| < 3 log2(n).

Now, call a clique good if it has size at least k, and its intersection with any other clique of size at least k
is at most 3 log2(n). We have just seen that the planted clique S is good with probability 1− o(1). Moreover,
if k ≥ 3

√
n log2(n), then there must be less than 2n

k good cliques. To see this, note that by the principle of
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inclusion-exclusion, the union of m good cliques has size at least mk− 3
(
m
2

)
log2(n) > mk− 3

2m
2 log2(n),

and so we must have m(k − 3
2m log2(n)) < n. If we take m = 2n

k then we obtain 3
2m log2(n) < k

2 , and
hence m(k − 3

2m log2(n)) ≥ mk/2 = n, which is a contradiction. This shows that we indeed have m < 2n
k .

Now, since there are at most 2n
k good cliques, the total number of vertices in S that intersect with any

other good clique is at most 6n log2(n)
k , and so the fraction of such vertices in S is at most 6n log2(n)

k2
. This

yields the following recovery algorithm: given A and v, if v lies in a unique good clique then output that
clique as S; otherwise, output the empty set. With probability 1− 2k

n2 − 6n log2(n)
k2

, this gives us exact recovery
of the planted clique S, which completes the first part of Theorem 1.2.

For the second part, we invoke Corollary 9.3 of Charikar et al. (2017). While their result is more general,
in our context it specializes to the following:

Theorem 3.2 (Charikar et al. (2017)). Let A be a graph drawn from the semi-random model with a planted
clique of size k. Then there is a polynomial time algorithm which, with probability 1− exp(−Ω(k)), outputs
sets Ŝ1, . . . , Ŝm with m ≤ 4n

k , such that minmj=1 |S4Ŝj | = O
(
(n/k)2 log(n)

)
.

Now for a large enough constant C, if k ≥ C ·n2/3 log1/3(n) then the bound in Theorem 3.2 translates to
|S4Ŝj | ≤ k

8 . Then, any vertex i ∈ S will be connected to at least 7k
8 elements in Ŝj , while with probability

1− n exp(−Ω(k)), no vertex not in S will be connected to more than 3k
4 elements in Ŝj . We can thus define

S̃j to be the set of vertices that are connected to at least 7k
8 elements in Ŝj , and with high probability one of

the S̃j will be the planted clique S.
To finish, we remove any S̃j that is not a clique of size at least k, and then also any S̃j that has intersection

greater than 3 log2(n) with any of the other remaining S̃j′ . Given a vertex v, we return the S̃j that it belongs
to (if it exists and is unique) and otherwise return the empty set. By the same logic as before, this outputs S
with probability at least 1− 2k

n2 − 12n log2(n)
k2

− (n+ 1) exp(−Ω(k)) = 1− o(1).
This completes the proof of Theorem 1.2. We remark that Proposition 3.1 remains true under Feige and

Kilian’s model, and hence the information-theoretic part of Theorem 1.2 holds in that model as well.

A Proof of Lemma 2.1

Proof. Note that X ′1:s are independent Bernoulli variables, and hence

PX′(x1:s) =
s∏
j=1

(q + τj(1− q))xj ((1− q)(1− τj))1−xj (15)

=

( s∏
j=1

qxj (1− q)1−xj
) s∏
j=1

(1 + τj(1/q − 1))xj (1− τj)1−xj (16)

=

( s∏
j=1

qxj (1− q)1−xj
)( s∏

j=1

1 + τj(−1 + I[xj = 1]/q)

)
. (17)

On the other hand, by summing over the different possible samples from π, we can calculate PX as

PX(x1:s) = (1−
s∑
j=1

πj)

s∏
j=1

qxj (1− q)1−xj +

s∑
j=1

πjI[xj = 1]
∏
j′ 6=j

qxj′ (1− q)1−xj′ (18)

=

( s∏
j=1

qxj (1− q)1−xj
)(

1 +
s∑
j=1

πj(−1 + I[xj = 1]/q)

)
. (19)
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Note the similarity between (17) and (19). Motivated by this, we define yj(x) = πj(−1 + I[xj = 1]/q) and
zj(x) = τj(−1 + I[xj = 1]/q). Since q ≥ 4/9, we have |zj(x)| ≤ 1.25τj ≤ 1

4 , and
∑

j |zj(x)| ≤ 1.25.
By Lemma 2.7 of Tsybakov (2009), we can upper bound KL divergence by χ2-divergence:

DKL(PX , PX′) ≤ Dχ2(PX , PX′) (20)

=
∑

x∈{0,1}n

(PX(x)− PX′(x))2

PX′(x)
(21)

=
∑

x∈{0,1}n

( s∏
j=1

qxj (1− q)1−xj
)(∏s

j=1(1 + zj(x))−
∑s

j=1 yj(x)− 1
)2∏s

j=1(1 + zj(x))
. (22)

Using the fact that |zj(x)| ≤ 1
4 and hence 1 + zj(x) ≥ exp(−1.2|zj(x)|), we can bound the denominator

as
∏s
j=1(1 + zj(x)) ≥ exp(−1.2

∑s
j=1 |zj(x)|) ≥ exp(−1.5) > 1

5 . We can also re-write the term in
the numerator as

∑
|J |≥2

∏
j∈J zj(x) +

∑s
j=1(zj(x) − yj(x)), and treat the sum over x ∈ {0, 1}n as an

expectation with respect to a Ber(q) distribution. Together, these yield

DKL(PX , PX′) ≤ 5 · Ex1:s∼Ber(q)

( ∑
|J |≥2

∏
j∈J

zj(x) +
s∑
j=1

(zj(x)− yj(x))

)2
 . (23)

Now note that Ex∼Ber(q)[zj(x)] = Ex∼Ber(q)[yj(x)] = 0 for all j, and furthermore that the yj , zj are
independent across different j. Together this implies that most of the terms in (23) are 0; indeed, a term will
have expectation 0 unless each index j occurs twice, which implies

Ex

[( ∑
|J |≥2

∏
j∈J

zj(x) +

s∑
j=1

(zj(x)− yj(x))

)2]
= Ex

[ ∑
|J |≥2

∏
j∈J

zj(x)2 +

s∑
j=1

(zj(x)− yj(x))2

]
. (24)

Now, since q ≥ 4
9 we have zj(x)2 ≤ 1.6τ2j and (zj(x)− yj(x))2 ≤ 1.6(τj − πj)2. We thus obtain

DKL(PX , PX′) ≤ 5
∑
|J |≥2

∏
j∈J

1.6τ2j + 8

s∑
j=1

(τj − πj)2. (25)

To finish, we make use of the following lemma:

Lemma A.1. Suppose that cj ≥ 0 and
∑s

j=1 cj < 3. Then,∑
|J |≥2

∏
j∈J

cj ≤
∑

1≤j<j′≤s cjcj′

1− 1
3

∑s
j=1 cj

. (26)

Since
∑s

j=1 1.6τ2j ≤ 1.6
5 < 1

3 , Lemma A.1 yields the bound

DKL(PX , PX′) ≤
5 · 1.62

8/9

∑
j<j′

τ2j τ
2
j′ + 8

s∑
j=1

(τj − πj)2 (27)

≤ 8(
s∑
j=1

τ2j )2 + 8
s∑
j=1

(τj − πj)2, (28)

as was to be shown.
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Proof of Lemma A.1. For a given size r, let

Tr
def
=
∑
|J |=r

∏
j∈J

cj . (29)

We have (
∑s

j=1 cj)Tr ≥ (r+ 1)Tr+1, since the left-hand-side contains r+ 1 instances of each term in Tr+1,
as well as additional terms which will always be non-negative since the cj are non-negative. In particular, for
all r ≥ 2 we have Tr+1 ≤ 1

3(
∑s

j=1 cj)Tr. Then
∑

r≥2 Tr ≤
T2

1− 1
3

∑s
j=1 cj

, as was to be shown.

B Proof of Equation (5)

We make use of the chain rule for KL divergence, which says that given distributions P0(X1:N ) and P1(X1:N ),
we have DKL(P0(X1:N ), P1(X1:N )) =

∑N
i=1 E[DKL(P0(Xi), P1(Xi) | X1:i−1)] (all expectations are with

respect to P0).
In our case, we want to bound DKL(P0(A), P1(A)). We will add in the auxiliary variables b1:n and

s, which will only increase the KL divergence, and then apply the chain rule. For short-hand, we use
DKL(X | Y ) to denote DKL(P0(X | Y ), P1(X | Y )). We have:

DKL(P0(A), P1(A)) ≤ DKL(P0(A, b, s), P1(A, b, s)) (30)

= DKL(s,A1:s,1:s, b1:s) + Es
[ n∑
i=s+1

E[DKL(A1:s,i, bi | s,A1:s,1:i−1, b1:i−1)]

]
+ E[DKL(As+1:n,s+1:n | s,A1:s,1:n, b1:n)] (31)

= Es
[ n∑
i=s+1

E[DKL(A1:s,i, bi | s,A1:s,1:i−1, b1:i−1)]

]
, (32)

where the final equality is because all of the other conditional distributions are identical under P0 and P1.
Furthermore, A1:s,i, bi are independent of A1:s,1:i−1 conditioned on s and b1:i−1, so

DKL(A1:s,i, bi | s,A1:s,1:i−1, b1:i−1) = DKL(A1:s,i, bi | s, b1:i−1) (33)

= DKL(A1:s,i | s, b1:i−1) + E[DKL(bi | s, b1:i−1, A1:s,i)] (34)

= DKL(A1:s,i | s, b1:i−1). (35)

Here again the final equality is because bi has an identical conditional distribution under P0 and P1.
Plugging (35) into (32), we obtain

DKL(P0(A), P1(A)) ≤ Es
[ n∑
i=s+1

Eb1:i−1
[DKL(A1:s,i | s, b1:i−1)]

]
, (36)

which is exactly the statement of (5).

C Proof of Proposition 3.1

Take any candidate clique S′, which we can assume has size exactly k (since any larger S′′ would contain
a clique S′ of size k). For any such S′, all of the edges between S and S′ must be present, which occurs
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with probability (1/2)l(k−l), where l = |S ∩ S′|. On the other hand, there are
(
k
l

)(
n−k
k−l
)

sets of size k with
intersection l. Union bounding over all l ≥ l0, the probability that there is any clique with intersection greater
than l0 = 3 log2(n) is at most

∑
l0≤l<k

(
k

l

)(
n− k
k − l

)
2−l(k−l) ≤

∑
l0≤l<k

(
k

l

)(
n− k

2l

)k−l
(37)

≤
∑

l0≤l<k

(
k

l

)
(1/n2)k−l (38)

≤ (1 + 1/n2)k − 1 ≤ 1 +
2k

n2
, (39)

where the final inequality holds because (1 + 1/n2)k ≤ exp(k/n2) ≤ 1 + 2k/n2 since k/n2 ≤ 1.
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