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Abstract

In the recent paper of [BR16], the authors show that, for any constant 10−15 > ε > 0 the
communication complexity of ε-approximate Nash equilibria in 2-player n× n games is nΩ(ε),
resolving the long open problem of whether or not there exists a polylogarithmic communication
protocol. In this paper we address an open question they pose regarding the communication
complexity of 2-player ε-approximate correlated equilibria.

For our upper bounds, we provide a communication protocol that outputs a ε-approximate
correlated equilibrium for multiplayer multi-action games after exchanging Õ(mn4ε−4) bits,
saving over the naive O(mnm)-bits protocol when the number of players is large.

For our lower bounds, we exhibit a simple two player game that has a logarithmic information
lower bound: for any Ω(n−1) < ε < 1

10 , the two players need to communicate Ω(ε−1/2 log n)-
bits of information to compute any ε-correlated equilibrium in the game. For the m-players,
2-action setting we show a lower bound of Ω(m) bits, which matches the upper bound up
to polylogarithmic terms and shows that the linear dependence on the number of players is
unavoidable.
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1 Introduction

While Nash equilibria are arguably the most studied notion of equilibrium in strategic games,
recent results regarding their communication and computational complexity have undermined their
prevalence as a predictable solution concept when agents are computationally bounded. In particular,
these results show that two players cannot converge to any approximate Nash equilibria in the
limited communication setting where each player only knows its utility function. While there
have been multiple attempts to produce procedures that converge to Nash equilibria of general
games [HM06, GL07, FY03], it has been shown that at least exp(m) bits of communication are
required to compute Nash equilibria of m-player, constant action games [HM07]. For the case
of 2-player games, it has been recently shown that even computing approximate Nash equilibria
requires poly(n) bits of communication [BR16].

In addition, even in the setting where all the payoffs matrices are known, Nash equilibria seem to
be unnatural due to their computational hardness. Computing any exact Nash equilibrium is known
to be PPAD-complete, making it unlikely to have any polynomial time algorithm [CDT09, DGP09].
Furthermore, it has been shown that under the Exponential Time Hypothesis (ETH) for the class
PPAD, ε-approximate Nash equilibria cannot be computed in time faster than quasi-polynomial in
the number of strategies per player [Rub16]. This almost exactly matches the algorithm of [LMM03].
The picture becomes more bleak when we consider m-player games. In this case, the problem of
even approximating Nash equilibria becomes PPAD-complete [Rub14]. These results suggest that
approximate Nash equilibria may not be efficiently computable.

Correlated equilibria arise as an alternative equilibrium concept. This notion, introduced in
the seminal work of [Aum74], allows agents to cooperate in order to reach stability. Informally,
a strategy profile is a correlated equilibrium when a referee or trusted party can draw strategy
samples according to it and recommend them to the players in such a way that they have no
incentive to consistently deviate, assuming everyone else plays according to their recommendation.
Computationally, correlated equilibria are in sharp contrast to Nash equilibria: there exists an
ellipsoid-based algorithm to compute exact correlated equilibrium in polynomial time even
for multi-player games [PR08], for a large (but not universal) class of games including graphical
games, anonymous games, congestion games and scheduling games. Unfortunately this result is
still unsettling: one can imagine many settings where a referee may not have access to all utility
functions or where players may not want to share such information with a referee.

This is indeed comparable to many interesting communication or distributed computation
problems where if one party knows all parts of the input, it is easy to compute the output (e.g.
disjointness [BGPW13], equality, gap Hamming distance [CR11]). In particular, the hardness
comes only from the distributional nature of the input not the computational aspect,
unlike Nash equilibria.

With this in consideration it becomes more natural to ask whether there is a communication
protocol for computing correlated equilibria better than the naive one where each player sends their
payoff matrix to a referee who computes the answer. In the case of exact correlated equilibria for
2-player games, a simple reduction from the distributed version of linear programming shows that
sending the full payoff matrix is indeed optimal [CS89]. For the exact or approximate m-player,
constant action case, there are simple procedures that converge quickly and use at most polynomial
communication in the natural parameters of the input [HMC00, CL03, CBL06].

In this paper we address the question posed by [BR16] of bounding the communication complexity
of approximate correlated equilibrium. We make progress in both providing non-trivial protocols
(for the n ≥ 4 case) and deducing non-trivial lower bounds. The arguments used on the lower bound
proofs rely on tools from information complexity, which lower bounds communication complexity.
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1.1 Our results

Let Gm
n denote the set of all m-players, n-action game, described by the payoff tensor of size nm for

each player. We consider three regimes in particular : Gm
n , Gm

2 and G2
n.

Upper Bounds. Our upper bounds are similar in spirit to those of [HM10, GR16]. The protocol
we provide is based on a non-adaptive no-regret learning algorithm by [HMC00]. Unfortunately, this
protocol converges to a different notion of approximate correlated equilibrium and assumes that
the number of actions per player is constant. We overcome both of these barriers by showing
that running their protocol for a longer number of rounds converges to the standard notion of
approximate correlated equilibrium. Our result works for general games and has strong implications
for the case of m-player O(1)-action games. Unfortunately, for the 2-player n-action case, our
protocol has a communication cost higher than the naive protocol where one player just shares their
payoff, exchanging O(n2) bits. But its dependance on the number of players is significantly better
than the naive protocol as the number of players increases.

Theorem 1. There exists a communication protocol Π such that for any m-player n-action game
G ∈ Gm

n , the players compute an ε-CE after exchanging at most Õ(n4mε−4) bits.

Lower Bounds. Our lower bound is similar at a first glance to that of [BR16], but our techniques
differ significantly due to the nature of the solution concepts studied. As it is pointed out in [BR16]
the hardness of proving lower bounds for equilibria lies in being able to hide the solutions (which,
by [Nas51, Aum74], must exist). But unlike computing Nash equilibria, where the strategies
are independent, for correlated equilibrium the task of hiding solutions is much harder, in part
due to their more general nature as a solution concept (i.e. any lower bounds for ε-correlated
equilibria extend to ε-Nash equilibria). In particular, we need to dissuade from arbitrary correlated
distributions. This obstacle becomes clearer when we consider the communication complexity of
computing correlated equilibrium.

Even in this setting we exhibit a hard game in which Ω(ε−1/2 log n) bits of communication must
be exchanged for two players to agree on an approximate equilibrium. There is an easy, trivial lower
bound of Ω(log n) from games where both players have a dominant strategy.1 Our result provides
an explicit dependance on the approximation factor. In the m-player 2-action setting, we prove a
linear lower bound in the number of players. Note that this proves near-optimality of Theorem 1
and shows that the linear dependence on the number of players is unavoidable.

For the two-player case, the proof consists of two steps. First we construct a game where there
is a unique Nash Equilibrium and any ε-CE must have support size Ω(ε−1). Unfortunately, the
Nash Equilibrium is ‘trivial’ in a sense that it requires no communication between the players. We
circumvent this by adding a small side game that kills the trivial Nash Equilibrium but makes any
ε-correlated equilibria retain Ω(

√
ε) weight on the original game.

Theorem 2. There exists a 2-player n-action game G ∈ G2
n such that Ω(ε−1/2 log n) bits of

communication are required for the players to agree on a ε-CE for some small ε = Ω(1).

Moreover the game has the following nice property: for any ε-correlated equilibria, the players
must know the location of entries whose payoff is non-zero for at least Ω(1/

√
ε) number of rows.

Since the search space for each entry is exactly n, this implies the following corollary:

1Consider the following game. There is a row of 1’s for a row player, and a column of 1’s for column player. Payoff
is 0 for any other entries.
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Corollary 1. There exists a 2-player n-action game G ∈ G2
n such that the query complexity of

computing ε-approximate correlated equilibria is Ω(ε−1/2n) for some small ε = Ω(1).

In particular we will provide a game whose payoff matrices are “dominated” by two independent
permutation matrices for each player. On such games we show that at least one of the players must
learn Ω(log n/

√
ε)-bits of information about other player’s permutation.

For the m-player, 2-action game we provide a simple matching game. The players are randomly
split into two groups and can play one of two actions. The players on the first group only get a
payoff if they act according to some random signal provided to them, and the second players must
imitate their behavior. In order to achieve an approximate equilibrium, most players on the first
group need to share the strategy they are playing in order to be matched by their counterparts.

Theorem 3. There exists a m-player 2-action game G ∈ Gm
2 such that Ω(m) bits of communication

are required for the players to agree on a ε-CE for ε < 1/3.

1.2 Related Work

The communication complexity of predictable solution concepts has gained a lot of attention and by
now most problems pertaining exact and approximate Nash equilibria are well understood. It is
known that the communication complexity of computing pure Nash equilibria in 2-player n-action
games is poly(n) [CS04]. For m-player binary action games the complexity escalates to exp(m),
even if we relax the solution concepts from exact pure or mixed Nash equilibria [HM10]. These
results were extended to the case of approximate Nash equilibria. In particular, [BR16] showed
that the randomized communication complexity of computing ε-Nash equilibria in 2-player n-action
games and m-player binary action games is Ω(nε) and 2Ω(εm) for some constant ε > 0.

Some results are known for the communication complexity of computing correlated equilibria for
the family of m-player binary action games with bounded, integer payoffs. There is a protocol for
the family that computes correlated equilibria after exchanging polynomially many bits in terms of
n and the magnitude of the payoffs [HM10]. The former is based on the polynomial time algorithm
for computing correlated equilibria for a large class of games by [PR08] and the later is based on a
no-regret learning algorithm by [CBL06]. It is worth noting that in the same paper they exhibit
a family of multiplayer games that do not need to communicate at all to find exact correlated
equilibria.

Query Complexity. Another lens through which to consider the cost of computing equilibria is
that of query complexity. In this model, a single agent has black box access to the payoff function
and can query it on either pure strategies or mixed strategies. A long line of work [FGGS13,
HN13, Bab14, Rub16] has recently established that the query complexity of computing approximate
2-player n-action Nash equilibria and approximate m-player 2-action Nash equilibria is poly(n)
and exp(m), respectively, even for randomized algorithms. For approximate m-player correlated
equilibria, there is an exponential gap between the best randomized algorithms and the deterministic
lower bounds [HN13, Bab14].

In the case of correlated equilibria (and coarse correlated equilibria), [GR16] show that for
m-player binary action games and for any ε < 1/2 the query complexity is Θ(logm). They provide
an algorithm based on multiplicative weights that uses Õ(nmε−2) queries to compute ε-coarse
correlated equilibria in m-player n-action games.

Recently and independently of this work [AG17] have shown a lower bound of Ω(n) for the
randomized communication complexity of approximate correlated equilibria in the domain where
ε < 1

poly(n) . Their techniques and ideas are similar to ours, except their reduction is directly from
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the disjointness problem whereas our analysis is based on information-theoretic arguments specific
to the games we propose.

1.3 Future Directions

2 Though it closes the gap for m-player constant action correlated equilibria, our result leaves open
exponential gap for the communication complexity of approximate 2-player n-action correlated
equilibria, as well as for other small values of m. We conjecture that the right bounds are
O(n poly log n)). We share some future directions that might help in settling this question.

• Our argument for the lower bound for the 2-player n-action case relies on a claim about the
support size of the game we construct. It is known that approximate correlated equilibria with
small supports exist [BBP13] with size O(log2 n). There is a small gap with the best lower
bounds, Ω(log n). If there are games for which the upper bounds were tight, our techniques
could raise the communication lower by a log(n) factor.

• There exist algorithms to compute approximate correlated and coarse correlated equilib-
ria [BBP13, HN13]. However they either rely on computing exact correlated equilibria, which
is prohibitively expensive in the communication setting, or require polynomially many rounds,
which already brings the communication cost above our conjectured answer. Progress in
algorithms that are distributed in nature and exploit the structure of the solutions could
improve on the cost of the protocol we propose.

• Not much is known about the query complexity of 2-player n-action approximate correlated
equilibria. The folklore lower bound of Ω(n) from games with dominant strategies is significantly
far from the trivial upper bound of O(n2). The result from [BR16] relies heavily on having a
good understanding of the query complexity of exact, 2-player Nash equilibria and related Fixed
Point Problems. Recent connections between lower bounds in query complexity and lower
bounds in communication complexity [GPW15, Göö15] suggest that strong query complexity
lower bounds could provide better communication complexity lower bounds.

2 Preliminaries

2.1 Game Theoretic definitions

We consider m-player n-action games where each player has a strategy set Ai and a payoff function
ui : A→ [0, 1], where A =

∏
iAi. Let A−i =

∏
j 6=iAj . In 2-player games we will refer to the first

player as Alice and the second player as Bob.
In this paper, we will be interested in studying approximate correlated equilibria (CE) and

a different relaxation of exact correlated equilibria due to [HMC00], which we will refer to as
approximate Hart-Mas-Colell Correlated Equilibria (HMCE).

A common interpretation of ε-CE is that a referee or trusted third party draws a strategy
profile a ∈ A according to the correlated distribution x and recommends action ai to player i. A
distribution x is a ε-CE if any deviation from the recommended action does not yield a benefit
greater than ε for any player. A ε-HMCE only requires that no player benefits more than ε by
changing a single recommendation by any other action. We now formally define them in terms of
regret, in accordance to [BBP13] (for more standard, equivalent definitions, see e.g. [HN13]).

2rephrase this
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Definition 1. Let Rif (a) = ui(f(ai), a−i)− ui(a) be the regret of player i for playing switching rule

f at strategy profile a. A distribution x ∈ ∆(A) is an ε-correlated equilibrium if Ea∼x[Rif (a)] ≤ ε
for all players i and switching rules f : Ai → Ai.

Definition 2. A distribution x ∈ ∆(A) is an ε-Hart-Mas-Colell correlated equilibrium if for
every player i, every recommendation ai ∈ Ai and every action j ∈ Ai,

∑
a−i∈A−i [ui(j, a−i) −

ui(ai, a−i)]x(ai, a−i) ≤ ε.

The definitions are relaxations of the definition of exact (ε = 0) correlated equilibria. However, as
noted in [BBP13], approximate HMCE are uninteresting to study from a communication perspective.
For any game there exists a 0-communication protocol that produces 1

k -HMCE: independently of the
payoff functions the players can agree on a set of k strategies in ∆(A) and directly output a uniform
distribution over them, where 1

ε ≤ k ≤ n. It is not hard to see that this is indeed a 1
k -HMCE. The

advantage of working with this definition is that there exists a non-adaptive no-regret learning
algorithms to compute such ε-equilibria for m-player games with a constant number of actions in
a number of rounds polynomial in 1/ε [HMC00]. We adapt the algorithm into a communication
protocol and revisit their analysis with the consideration that the number of actions per player is
part of the input.

2.2 Communication Complexity definitions

In the classical communication problems there are m parties each of which are given inputs
xi ∈ {0, 1}n and who are interested in computing a joint function of their inputs, f(x), where
x = (x1, x2, ..., xm). The (randomized) communication complexity of a protocol Π for computing
the function f(x) is the (expected) number of bits the two parties need to exchange to compute
f(x) by following Π (with high probability). This quantity will be referred to as CC(Π, f, x).
The communication complexity of protocol Π for computing f is the worst-case communication
complexity for any pair of inputs, i.e. CC(Π, f) = maxx CC(Π, f, x). The communication complexity
of a function f is the minimum communication complexity over all protocols that compute f ,
CC(f) = minΠ CC(Π, f).

We will be interested in computing ε-CE, ε-HMCE of general games G = (A, u) belonging to
the family of m-player n-action games Gm

n with bounded payoff functions. We assume each player
only has access to their payoff function ui. We consider protocols where for every round t, each
player broadcasts as many bits as it wants to the other players. We say that Π is a protocol for
computing ε-CE of the game G if there exists a number of rounds T after which one of the players
outputs a distributions x ∈ ∆(A) that forms a ε-correlated equilibria with high probability. We let
CC(ε-CE,Gm

n ) = minΠ CC(Π, ε-CE,Gm
n ) = minΠ maxG∈Gmn CC(Π, ε-CE, G). We can analogously

define the communication complexity of computing ε-HMCE.
Our lower bound proofs also use tools from information theory. We defer them to Appendix A as

they are not fundamental to understanding the high level view of the high level view of the results.

3 Lower Bounds

3.1 Warm up: A candidate game

In this subsection we present the first component of our lower bound for the two-player n-action
case. The non-degenerate game we present, which we will refer to as the chasing game, has a simple
structure in terms of equilibria. It has a unique exact Nash equilibrium which corresponds to the
uniform strategy over all actions and multiple exact correlated equilibria that must be supported on
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Figure 1: An example of the game where n = 4, σA = {2, 3, 1}{4} and σB = {1, 3, 4, 2}. The red
squares denote the strategies where Alice gets a payoff of 1, the blue squares denote the strategies
where Bob gets a payoff of 1. The white squares give payoff 0 to both players.

a large number of actions. Moreover, we can show that any ε-correlated Nash equilibrium requires
strategies of support size at least Ω(ε−1). We defer any missing proofs to Appendix B.

The Chasing Game CGn. Take two permutations σA, σB from the set of [n] elements such
that σB is an n-cycle (σA is unconstrained). Then Alice gets payoff 1 whenever (i, σA(i)) is played
and 0 otherwise. Bob gets payoff 1 whenever (i, σA(j)) is played, where j is such that σB(i) = j,
and 0 otherwise. By our choice of σB, it is never the case that σB(i) = i. Even though we use
the permutations for the construction, we do not give the players access to them. Alice implicitly
knows hers, but it provides her no significant information about Bob’s payoff matrix (since there
are still (n− 1)! of them). Bob doesn’t know either and learns nothing about Alice’s payoff from
observing his own. An example for n = 4 is shown in Figure 1. The intuition is that Alice’s payoff
is a random permutation matrix and for each of her actions σB points to Bob’s best response. Due
to the cyclical nature of σB, if we look at Alice’s best response to Bob’s action we will come across
a different action for Alice, eventually spanning all [n] actions.

Claim 1. The unique exact Nash equilibrium of CGn is the uniform strategy. Any exact correlated
equilibria must be be supported on all the non-zero entries.

We now show something more subtle about the game: any ε-correlated equilibrium must be
supported on at least Ω(ε−1) entries.

Lemma 1. Any ε-CE must have support Ω(ε−1).

Proof. Let (i, j) be the entry with the largest total probability, p. If p ≤ 2ε then we are done,
since this would require at least ε−1 strategies. If p > 2ε and (i, j) is a (0, 0)-entry, then the entry
(i, σA(i)) must have total probability p′ ≥ ε, since otherwise Alice would simply deviate to σ−1

B (j)
and gain more than ε.

So there must be an entry (i, σA(i)) with probability p ≥ ε. Then the probability Bob gets
recommended σA(i), pB(i), must be non-zero. In order for this to be a correlated equilibrium,
(σ−1
B (i), σA(i)) must have total probability at least p− pB(i)ε, which is positive since p ≥ ε. This

means that Alice must get recommended σ−1
B (i) with non-zero probability pA(σ−1

B (i)). But then, in
turn, for this to be a ε-correlated equilibrium we need total probability at least p−pB(i)ε−pA(σ−1

B (i))ε
on (σ−1

B (i), i). This chaining reasoning goes on until p−ε
∑

i,i′∈Supp(pB(i)+pA(i′)) < ε. But we know
that the sum of the supported strategies is at most 2 so we get that p < 3ε. Since p is the largest
total mass, we must have at least 1

3ε strategies in the support of our ε-correlated equilibrium.
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Figure 2: An example of the modified game for n = 4. The orange entries denote a payoff of (c1, 0),
the light blue entries denote a payoff of (0, c1) and the purple entry denotes a payoff of (c2, c2).

3.2 Unrestricted lower bound for G2
n

Even though we have a good understanding of the approximate equilibria of the chasing game, we
still cannot show lower bounds for its communication complexity since there is a trivial solution,
namely the uniform distribution over all strategies. It turns out that a simple modification of the
game suffices to get a Ω(ε−1/2 log n) lower bound. We add a small game on the side which dissuades
from largely supported or 0-communication strategies. In particular, we show that for ε < 1

10 any
ε-CE must allocate most of its mass on the original chasing game. This allows us to use the results
from the previous section to bound the cost of communicating equilibria for this game.

Construction. Consider the chasing game CGn from the previous section with a slight adjustment:
give each player an additional action n+ 1. Choose ja, jb ∈ [n] independently at random. We refer
to GP as the main part of the game and the remainder as the auxiliary part of the game.

For i 6= ja make uA(n + 1, i) = c1 and 0 otherwise. For j 6= jb, make uB(j, n + 1) = c1 and
0 otherwise. Make uA(jb, n + 1) = uB(n + 1, ja) = c1, uA(i, n + 1) = 0 for all i ∈ [n]\{jb}, and
uB(n, j) = 0 for all j ∈ [n+ 1]\{ja} and uA(n+ 1, n+ 1) = uB(n+ 1, n+ 1) = c2 (see Figure 2 for
an example).

As a simple exercise note that after this amendment the uniform distribution is no longer a
ε-correlated equilibrium for 3ε ≤ c1, given that ε > 1

n . Any player can unilaterally switch to the new
strategy and gain n−1

n c1 − 1
n from deviating. We fix the values of these variables in the appendix,

but roughly speaking c1, c3 are O(
√
ε) and c2 is O(ε). We can still show that Ω(

√
ε) of the mass

of the game remains on the non-zero entries of the main game, as stated in the following Lemma
whose proof is on Appendix B.

Lemma 2. For any ε-CE, there is at least Ω(
√
ε) fraction of the mass on the non-zero entries of

the main part of the game and the support on these strategies must be Ω(ε−1). In particular, no
ε-CE can have 1 − o(

√
ε) fraction of the mass on the auxiliary part of the game or on the (0, 0)

entries of the main part of the game.

Now we are ready to argue that computing ε-CE in the main part of the game requires
Ω(ε−1/2 log n) communication.

Lemma 3. Any protocol Π that computes ε-CE of this game requires Ω
(

logn√
ε

)
information cost

for ε > Ω(1/n).

This Lemma directly implies Theorem 2. We suspect that this addition of auxiliary row and
column to rule out equilibria with large support will be useful elsewhere. Interestingly, this is in
direct contrast to Althofer games [?] which is used to rule out equilibria with small support.
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3.3 Unrestricted lower bound for Gm
2

In this section we exhibit a game G ∈ Gm
2 whose ε-correlated equilibrium communication complexity

is Ω(m). We defer the proof of Theorem 3 to Appendix B.

Construction Without loss of generality suppose m is anj even number. Each player is equipped
with two actions: 0 and 1. We will refer to the first m/2 as ‘state setters’ and define their payoffs
as follows: let ~R ∈ {0, 1}m/2 be a string of random boolean variables where each coordinate is set
independently at random at with probability 1/2. Then

ui(ai,~a−i) =

{
1 if ai = ri

0 otherwise .

We refer to the last m/2 players as ‘imitators’, and define their payoffs as follows:

ui(ai,~a−i) =

{
1 if ~ai−m/2 = ai

0 otherwise .

We state the following basic claims which implies the desired result and defer their proofs to
Appendix B.

Claim 2. For any ε-CE, state setter i must have > 1− ε mass on the recommended action ri.

Claim 3. For any ε-CE, imitator i must have mass > 1− ε on its setter’s action, ri−m/2.

4 Upper Bounds for General Games

In this section we present a high level view of the communication protocol for computing ε-CE based
on an adaptive algorithm of [HMC00] that converges to ε-HMCE. The overall communication cost
of the protocol is Õ(mn4ε−4). The number of rounds is Õ(n4ε−4) in order to guarantee convergence
to approximate correlated equilibria. The protocol is extremely simple: on each round a player picks
a strategy, based on the previous history of actions played, and writes it on a blackboard shared by
all the players. Thus for each round, there are m log n bits written on the blackboard. Note that
the naive upper bound is O(mnm) where every player simply shares their utility functions.

More specifically, at round t each player looks at the history of strategies h(t) = {s′t : s ∈ A, (t′ <
t)} played up until then and computes a matrix that measures the average regret of not having
played action k whenever action j was played, for all actions k, j ∈ Ai from round 1 up to round
t− 1. They then compute the stationary distribution of this matrix (which [HMC00] shows that
always exists), pick an action according to the stationary distribution and announce it to everyone
else. After T rounds, the first player (or any player) outputs the empirical distribution of actions
played zT , where for a given s ∈ A the probability it gets played is zT (s) = 1

T |{t ≤ T : s = st}|.
The beauty of the procedure is that players only need to communicate the index of the action they
perform at the current time period, using at most O(log n) bits of communication per player.

Intuitively, the matrix At simply counts the regret of not having played action k at time t when
action j was played. The matrices Dt, Rt average the regret and ignore actions with negative regret
up until time t, respectively. It is clear that the communication cost of the protocol will be Tm log n
where T is the number of rounds.

Blackwell’s Approachability Theorem (with an appropriate martingale inequality) then guarantees
that the `2-norm of the matrix At converges at the rate of 1/ε4 w.h.p. It is straightforward to

8



show that if `2 norm of each row of At is less than ε, then we have
√
nε-CE. Combining these

two observations, we obtain the bound of T = Õ(n4ε−4) on the number of rounds to guarantee
convergence w.h.p.
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[CL03] Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction
and game theory. Machine Learning, 51(3):239–261, 2003.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-hamming-distance. In Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing, STOC ’11, pages 51–60, New York, NY, USA,
2011. ACM.

[CS89] J. Chu and G. Schnitger. The communication complexity of several problems in
matrix computation. In Proceedings of the First Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’89, pages 22–31, New York, NY, USA, 1989. ACM.

[CS04] Vincent Conitzer and Tuomas Sandholm. Communication complexity as a lower bound
for learning in games. In Proceedings of the Twenty-first International Conference on
Machine Learning, ICML ’04, pages 24–, New York, NY, USA, 2004. ACM.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
&amp; Sons, 2012.

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–
259, 2009.

10



[FGGS13] John Fearnley, Martin Gairing, Paul Goldberg, and Rahul Savani. Learning equilibria
of games via payoff queries. In Proceedings of the Fourteenth ACM Conference on
Electronic Commerce, EC ’13, pages 397–414, New York, NY, USA, 2013. ACM.

[FV99] Dean P Foster and Rakesh Vohra. Regret in the on-line decision problem. Games and
Economic Behavior, 29(1):7–35, 1999.

[FY03] Dean P. Foster and H. Peyton Young. Learning, hypothesis testing, and nash equilibrium.
Games and Economic Behavior, 45(1):73–96, 2003.
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A Omitted definitions

A.1 Information Theoretic definitions

Our communication lower bounds are actually based on information theoretic results, so here we
provide the tools that will be used in Section 3. Throughout the paper log is the logarithm in base
2 and ln is the natural logarithm. For further references, we refer the reader to [CT12].

Definition 3 (Entropy). The entropy of a random variable A, denoted by H(A) is defined as∑
a∈Supp(A)

Pr[A = a] log
1

Pr[A = a]
.

Intuitively this quantifies how much uncertainty we have about variable A. This can be extended
to define the relation between various variables. For instance suppose we have possibly correlated
random variables A and B. Then we can define conditional entropy of A given B as H(A|B) :=
H(AB)−H(B). Note that if A = B, the conditional entropy is 0. We formalize this dependency as
mutual information.

Definition 4 (Mutual Information). The mutual information between two random variables A and
B, denoted by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

This quantity measures how much information the random variable B reveals about A and vice-versa
(even conditioned on the value of C).
We now provide useful properties that will be relevant to our proofs.

Fact 1 (Chain Rule for Mutual Information).

I(X1, . . . Xn;Y |Z) = I(X1;Y |Z) + I(X2;Y |Z,X1) + . . . I(Xn;Y |Z,Xn−1, . . . , X1)

Definition 5 (Information Complexity). The Information Cost of a 2-party protocol Π that computes
f is defined as

IC(Π) = I(Π;A|B) + I(Π;B|A),

where A is the input to the first party and B is the to the second party. The information cost of f
is simply the minimum information cost over all protocols that compute f .

It is easy to show that for any protocol Π computing a function f , CC(f,Π) ≥ IC(f,Π), since
1-bit can carry at most 1-bit of information. Namely refer to [?]

B Proofs omitted from Section 3

B.1 Lower bounds for 2-player, n action games

Proof of Claim 1. We will first show that for any action for any player there is a unique best
response. If Bob plays action i then Alice should simply respond with the unique action j = σ−1

A (i)
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to get a payoff of 1. This j may be the same as i but will not be the same as σ−1
B (σ−1

A (i)), the
action that gives Bob a payoff of 1 (because σB is a cycle, and so is σ−1

B ). Moreover, for any two
distinct actions by Bob, the best responses are distinct as well since the inverse of the permutation
is well-defined. Therefore any strategy played by Alice is a best response to a strategy played by
Bob.

Likewise, if Alice plays action i, it is in Bob’s best interest to play j = σA(σB(i)) to get payoff 1,
which is different from σA(i) which gives Alice a payoff of 1. Similarly, for any two distinct actions
played by Alice, Bob’s response must be distinct. Therefore, any strategy played by Bob is a best
response to a strategy played by Alice.

It is known that in 2 player games, an action is played on a Nash equilibrium if and only if it is
a best response to an action by the other player. We argued that every action is a best response, so
both players must play fully-supported strategies in equilibrium. Once the support is fixed, the
distribution that achieves a Nash equilibrium is unique. It isn’t hard to see the uniform distribution
over all actions gives a Nash equilibrium.

Proof. Let ai be Alice’s distribution conditioned on receiving recommendation i. It must be the
case that σA(i) ∈ Supp(ai), since otherwise Alice would deviate to σ−1

A (arg maxj aij). This also
means that Bob must be recommended to play σA(i) with non-zero probability. When he gets that
recommendation, by the same argument as before, there must be non-zero mass on Alice to play
σ−1
B (i), which is different from i. Otherwise, Bob would disregard the recommendation σA(i).

So now we also know that Alice gets recommended j = σ−1
B (i) with some probability and can

use the same argument as before to show that σ−1
B (σ−1

B (i)) must also be recommended with some
probability. Since σB is an n−cycle, chasing this argument will show that Alice gets recommended
every action with some probability. Moreover, on any action that she is recommended we know
that her distribution must assign some probability on the unique strategy that gives Bob a non-zero
payoff, otherwise he wouldn’t comply. Therefore we get that all 2n strategies where a player gets
non-zero payoff must have positive probability in an exact correlated equilibrium.

Throughout this subsection we use the following notation. Let pi,j denotes the probability that
is assigned on strategy (i, j), pi,∗ :=

∑
j pi,j , and p∗,j :=

∑
i pi,j . Some of the Lemmas in this section

will be in terms of c1, c2, c3. While we eventually set c1 = c3 =
√
ε and c2 = ε and assume ε < 1/100,

it is convenient to work out the results in general terms. Note that c1 > O(ε) since otherwise the
uniform distribution on the main game may still be an equilibrium. We also need c3 > c2 + ε since
otherwise (n+ 1, n+ 1) may constitute an approximate Nash equilibrium. It is possible that there
is a better assignment of c1, c2, c3 that yields the same result for larger ε. We do not optimize our
choice of these variables since it is unlikely that it will significantly affect the result (i.e. give even a
polylogarithmic improvement of the lower bound).

Claim 4. On any ε-CE, pn+1,n+1 <
c1+ε

c1+c3−c2 · pn+1,∗. In addition, pn+1,ja <
c1+ε
1+c1

· pn+1,∗ and

pjb,n+1 <
c1+ε
1+c1

· p∗,n+1.

Proof. We will show that for any player, conditioned on being recommended action n + 1, the
probability the other player assigns on action on n+1 is at most 1/2. Suppose Alice is recommended
action n + 1. Let pn+1,−ja =

∑
i 6=ja,n+1 pn+1,i. Alice’s current payoff is pn+1,−jac1 + pn+1,n+1c2.

Since this is an approximate equilibrium we get the following inequality for deviating to ja,

pn+1,jac1 + pn+1,n+1c2 + εpn+1,∗ ≥ pn+1,n+1c3.

Now since pn+1,∗ − pn+1,n+1 ≥ pn+1,∗ − pn+1,n+1 − pn+1,ja = pn+1,−ja , we get

c1pn+1,∗ + εpn+1,∗ ≥ pn+1,n+1(c3 − c2 + c1),
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and the rest follows from our choice of c1, c2, c3 and our assumption on ε.
For the second statement, recall that Alice’s current payoff is exactly c1(pn+1,∗ − pn+1,i∗ −

pn+1,n+1) + c2pn+1,n+1. Now if we consider a deviation to σ−1
A (ja):

c1(pn+1,∗ − pn+1,ja − pn+1,n+1) + c2pn+1,n+1 + εpn+1,∗ ≥ pn+1,ja .

Again rearranging we get,

pn+1,ja(1 + c1) ≤ c1pn+1,∗ + pn+1,n+1(c2 − c1) + εpn+1,∗ ≤ c1pn+1,∗ + εpn+1,∗,

where the last inequality uses the fact that c2 < c1. Then we get

c1 + ε

1 + c1
pn+1,∗ ≥ pn+1,ja∗.

The argument is symmetric for pjb,n+1.

Claim 5 (Row Bound). Consider an action i 6= ja for Alice. Then, 1+ε
1+c3

pi,∗ ≥ pi,n+1. Similarly for

any action j 6= jb for Bob, 1+ε
1+c3

p∗,j ≥ pn+1,j.

Proof. On recommendation i, Alice’s payoff is at most pi,∗ − pi,n+1. Now from deviating to ja, we
get

(pi,∗ − pi,n+1) + εpi,∗ ≥ c3pi,n+1.

Rearranging, we get the desired claim:

1 + ε

1 + c3
pi,∗ ≥ pi,n+1.

Applying a symmetric argument for Bob, we get 1+ε
1+c3

p∗,j ≥ pn+1,j as well.

Claim 6 (Main Part Bound). Let M1 :=
∑n

i=1 pi,∗ and M2 :=
∑n

j=1 p∗,j. If c1 = c3 =
√
ε, c2 = ε

and ε < 1/100, then at least one of these two inequalities must hold

M1 ≥ 1/4,

M2 ≥ 1/4.

Proof. First, observe that

M1 = 1− pn+1,n+1 − pja,n+1 −
n∑
i=1
i 6=ja

pi,n+1. (1)

Recall that from Claim 4 and Claim 5, we get

pn+1,n+1 ≤
c1 + ε

c1 + c3 − c2
pn+1,∗, (2)

pja,n+1 ≤
c1 + ε

1 + c1
pn+1,∗, (3)

n∑
i=1
i 6=ja

pi,n ≤
1 + ε

1 + c3

n∑
i=1
i 6=ja

pi,∗ ≤
1 + ε

1 + c3
M2. (4)
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Combining (2), (3) and (4), along with M1 = 1− pn+1,∗ we have

M1 ≥ 1− c1 + ε

c1 + c3 − c2
(1−M1)− c1 + ε

1 + c1
(1−M1)− 1 + ε

1 + c3
M2. (5)

By applying symmetric argument, we also get

M2 ≥ 1− c1 + ε

c1 + c3 − c2
(1−M2)− c1 + ε

1 + c1
(1−M2)− 1 + ε

1 + c3
M1. (6)

Let M0 := M1+M2
2 . Then combining (5) and (6) then rearranging we get(

1 +
1 + ε

1 + c3
− c1 + ε

c1 + c3 − c2
− c1 + ε

1 + c1

)
M0 ≥ 1− c1 + ε

1 + c3
− c1 + ε

c1 + c3 − c2
. (7)

Thus for ε < 1
100 and by our choice of c1, c2, c3, we have M0 ≥ 1/4. Since M0 is just the average of

M1,M2 then at least one of the two must be greater than 1/4.

Claim 7 (Chasing Points). For all i ∈ [n], pi,σA(i), pi,σA(σB(i)) < 5ε.

Proof. Suppose Alice is recommended with row i. If i 6= ja, then from the payoff bound we get for
any j ∈ [n],

pi,σA(i) + εpi,∗ > pi,j . (8)

In particular, this implies that pi,σA(i) + εpi,∗ > pi,σA(σB(i)). Otherwise, if i = ja, then the payoff
bound similarly gives for any j ∈ [n],

pi,σA(i) + c3pi,n+1 + εpi,∗ > pi,j . (9)

Via a symmetric argument for Bob we also get

pσ−1
A (jb),jb

+ c3pn+1,jb + εp∗,jb > pi,jb , (10)

pσ−1
A (j),j + εp∗,j > pi,j . (11)

Combining (8), (9), (10), (11) via applying them recursively, consider R ⊂ [n]× [n] where (i, j) ∈ R
if j = σA(i) or i = σ−1

A (j). Then for any (i, j), (k, l) ∈ R, we have

pi,j < pk,l + ε

∑
j

p∗,j +
∑
i

pi,∗

+ c3pn+1,jb + c3pja,n+1

< pk,l + 2ε+ c3pn+1,jb + c3pja,n+1. (12)

Note that (12) and our choice of c3 implies that if there exists (i, j) ∈ R such that pi,j < ε then
∀(k, l) ∈ R, pk,l < 5ε. Suppose no such (i, j) exists in R. Then∑

(i,j)∈R

pi,j > 2nε.

Since ε > 1/n, this is a contradiction.

Claim 8 (Non-zero mass). Consider N :=
∑n

i=1 pi,σA(i) + pi,σA(σB(i)), that is the total mass on the

non-zero entries in the main game. Then N ≥
√
ε

20 .
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Proof. Suppose not. Recall that either M1 or M2 has a mass of 1/4. Without loss of generality,

suppose M1 has at least mass of 1/4. If N <
√
ε

20 , note that we can rewrite N as

N = M1 · E
i∼P

[
pi,σA(i) + pi,σA(σB(i))

pi,∗

]
<
√
ε,

where P is defined as picking i with probability pi,∗/M1 for i ∈ [n]. Since M1 ≥ 1/4, There exists

i ∈ [n] such that
pi,σA(i)+pi,σA(σB(i))

pi,∗
<
√
ε

20 .

Suppose that i 6= ja. If
pi,jb
pi,∗

> 1/10, then consider a deviation to σ−1
A (jb). Then the new payoff

is at least 1/10, this is a contradiction. If
pi,n+1

pi,∗
> 1/10, then this is again a contradiction by

considering a deviation to ja, which guarantees a payoff of c1/10 �
√
ε

20 + ε. Otherwise, consider

deviating to (n+ 1)-row. Then the payoff is at least 0.8c1 �
√
ε

20 + ε, again a contradiction.
If i = ja, we divide into two cases depending on

pja,n+1

pja,∗
. Again note that the same argument

shows that
pja,jb
pja,∗

< 1/10. If
pja,n+1

pja,∗
< 1/10, then by deviating to action (n+ 1) guarantees payoff of

0.8c1. However, the current payoff is at most
√
ε

20 + c1/10, which is a contradiction. Otherwise, it
must be the case that

pja,n+1

pja,∗
> 1/10. Claim 4 shows that pja,n+1 < 2c1. Thus pja,∗ < 20c1 = O(

√
ε).

This implies that

E
i∼P

[
pi,σA(i) + pi,σA(σB(i))

pi,∗
| i 6= ja

]
<
√
ε,

reducing to the case to i 6= ja.

Note that Claim 7 and Claim 8 imply that for any ε-CE at least Ω(1/
√
ε) of the entries in the

permutation matrices are in the support of the ε-CE. Intuitively, this means that either Alice or
Bob learns about Ω(1/

√
ε)-entries of other player’s permutation. We make this observation concrete

in the following claim and lemma.

Claim 9. Consider row i 6= ja. Then pi,σA(i)/pi,∗ > Ω(
√
ε).

Proof. Denote p := pi,jb/pi,∗ and q := pi,n+1/pi,∗. Then from deviations to σ−1
A (jb), ja and (n+ 1)

we get the following set of inequalities:

pi,σA(i)/pi,∗ + ε > p,

pi,σA(i)/pi,∗ + ε > c1q,

pi,σA(i)/pi,∗ + ε > c1(1− p− q) + c2q.

To satisfy all these inequalities it is necessary that pi,σA(i)/pi,∗ > Ω(c1). Since c1 =
√
ε, this proves

the claim.

Lemma 4. Any protocol Π that computes ε-CE requires Ω
(

logn√
ε

)
information cost for ε > Ω(1/n).

Proof. We show that we can extract Ω
(

logn√
ε

)
-bits of information about the random permutation

from marginal distribution induced by ε-CE. Let R1 := {(i, σA(i))|i ∈ [n]} and w.l.o.g. suppose at
least Ω(1/

√
ε) elements in R1 is contained in the support of ε-CE as from Claim 7 and Claim 8. Let

Rsupp denote the set of first index in R1 that is included in the support of ε-CE. Then by Fact 2,
we can write I(X; Π|Y ) (i.e information learned by Bob about Alice’s input) as

I(X; Π|Y ) =
∑

i∈Rsupp

I(Xi; Π|Y, {Xr}r<ir∈Rsupp).
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Now for each term we can rewrite as

I(Xi; Π|Y, {Xr}r<ir∈Rsupp) = H(Xi|Y, {Xr}r<ir∈Rsupp)−H(Xi|Π, Y, {Xr}r<ir∈Rsupp)

by the definition of mutual information. Note that

H(Xi|Y, {Xr}r<ir∈Rsupp) = H(Xi|{Xr}r<ir∈Rsupp) ≥ Ω(log

(
n−O

(
1√
ε

))
) ≥ Ω(log n).

While after running the protocol, the mass on (i, σA(i))-entry is at least Ω(
√
ε). In other words, the

support size for the possible σA(i) is at most O(1/
√
ε). Then we have

H(Xi|Π, Y,Xi−1, . . . , X1) ≤ O
(

log
1√
ε

)
.

Then combining two bounds we get

I(X; Π|Y ) =
∑

i∈Rsupp

Ω(log
√
εn) ≥ Ω

(
log n√
ε

)
.

since ε = Ω(1/n). Thus the information cost of Π is at least Ω
(

logn√
ε

)
.

C Proofs omitted from Section 4

First, we formally state the protocol in Algorithm 1.

Algorithm 1 Protocol Π to compute ε-CE

• At time t = 1, each player plays according to some arbitrary initial distribution pi1.

• From t = 2 to t = T :

• Each player i computes the matrices Ait, D
i
t, R

i
t where

Ait(j, k) = 1sit=j
[ui(k, s−it )− ui(j, s−it )],

Dit(j, k) =
1

t

∑
τ=1

Aτ (j, k),

Rit(j, k) = max{0, Dt(j, k)}.

• Each player computes the stationary distribution of Rit, p
i
t, plays according to it and announces his move to everyone

else.

• At the end of the protocol, each player computes the empirical distribution zT of all strategies played.

It suffices to bound T such that guarantees ε-CE as an output. To bound T , we use the `2 norm
of the regret matrix as a “potential” function. This is indeed a natural candidate for the potential
function due to the following lemmas.

We connect maxj{
∑

k R
i
t(j, k)} to ε-CE through following observation.

Lemma 5. Consider any sequence of plays and let ε ≥ 0. If lim supt→∞maxj{
∑

k R
i
t(j, k)} ≤ ε

for all players i and all actions j ∈ Ai, the sequence of empirical distributions converges to the set
of ε-CE.
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Proof. For each player i and every j ∈ Ai we have

∑
k 6=j

Di
T (j, k) =

1

T

T∑
τ=1

∑
k 6=j

Aτ (j, k)

=
∑

s∈A:si=j

zT (s)
∑
k 6=j

(
ui(k, s−i)− ui(j, s−i)

)
= Es∼zT

[
Rif (s)

]
≤ ε,

for any switching rule f where the last equality follows from the fact that a switching rule is just
a linear combination of single deviations. Since the sum of the regret of all individual actions is
bounded by ε so is any convex combination of them.

Unfortunately, we do not immediately get lim supt→∞maxj{
∑

k R
i
t(j, k)} ≤ ε in terms of the

convergence rate, rather the guarantee bounds are on ||RiT ||2. However, it is not hard to show that
one implies the other with a loss in the approximation parameter.

Lemma 6 (`2 bound translation). If the regret matrix for each player i satisfies
√∑

k R
i
T (j, k)2 ≤ ε

for all j, then we obtain a
√
nε-CE.

Proof. By Lemma 5 it suffices to show that maxk{Rit(j, k)} ≤
√
nε.

max
j

{∑
k

Rit(j, k)

}
≤
√
nmax

j

√∑
k

RiT (j, k)2 ≤
√
n

√∑
j,k

RiT (j, k)2 ≤
√
nε,

where the first inequality follows from the relationship between the `1 and `2 norms, and the second
follows from the relationship between `∞ and `1.

These two lemmas imply that if ∀j, k
√∑

k R
i
T (j, k)2 < ε/

√
n, then the empirical distribution

indeed forms an ε-CE. The proof in [HMC00] shows the following theorem in a restricted setting.3

Theorem 4 ([HMC00]). Suppose that at each period t+1 every player i chooses strategies according
to the stationary distribution of Rit. Furthermore, suppose the number of actions per player is O(1).
Then the empirical distribution of plays zt converges as ||Rit||2 < ε if T ≥ 1/ε2.

The main component of the proof in [HMC00] is Blackwell’s Approachability Theorem [Bla56].
The standard setup considers an agent i who plays actions ai ∈ Ai and gets payoff vectors in RL, that
depends on his action and another action a−i ∈ A−i chosen by an opponent, possibly adversarially.
In other words, agent i’s payoff is of the form vi : Ai × A−i → RL. The game is played for many
rounds and the agents goal is to make her average payoff vector, DT = 1

T

∑T
t=1 vi(a

i
t, a
−i
t ), approach

some given set C ∈ RL. We say a convex, closed set C is approachable if there is a procedure
that almost surely guarantees that the `2 distance between DT , C approaches 0 as T goes to ∞,
irrespective of the opponents actions. Blackwell’s Approachability Theorem (see Appendix C) states
necessary and sufficient conditions under which this can be done. More precisely, the probability
that the proposed strategy is far from the set decays with the following Martingale bound.

3Though it is not mentioned explicitly, the analysis assumes that the number of actions per player is O(1) in
[HMC00]
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Lemma 7 (Section 4 of [FV99]).

Pr [d(DT , C) ≥ δ] < e−δ
4T/98R4

where R is the largest distance between any two points in the set of possible payoffs.

From a high level view, [HMC00] uses the result directly with L = n2 and the individual vector
payoffs vi as the regret matrix Rit. They show that the stationary distribution of the regret matrices
is exactly the vector qλ that guarantees convergence in Blackwell’s Theorem. Unfortunately the
dimension of the vectors plays a role in the convergence rate, and we need to take a close look into
the proof of the Theorem.

Let ρt be the distance between the average payoff vector of agent i and the convex set C. The
analysis of Blackwell’s Theorem relies on recursively bounding ρt+1 as a function of ρt. Reorganizing
the terms yields the following recursion:

(t+ 1)2ρ2
t+1 ≤ t2ρt + ||vi(ai, a−i)− πC(Dt)||2,

where πC(Dt) is the projection of the average regret vector at time t onto set C. In many applications
of Blackwell’s Theorem, C is contained in bounded region as well as the payoff vector vi. Thus, a
standard analysis would bound the rightmost term by a constant (arguing that all points belong to
some ball of bounded radius) and, with the use of a telescoping argument, show that the distance
converges at a rate of O( 1√

T
).

However, in our case, if the dimension is a parameter we care about, then an appropriate upper
bound in the worst case on the rightmost term would be O(L) (this is because the vectors lie
on L-dimensional space and are entry-wise bounded due to the nature of the utility functions.).
Carrying the standard analysis as is would then give a convergence rate of O( n√

T
), which would in

turn significantly blow up the cost of our communication protocol. In order to obtain ε-CE, we need
n√
T
< ε√

n
, and thus T > n3/ε, which is in fact worse than a naive protocol for 2-player setting.

Even worsening the problem, the rate of the convergence is in expectation, while we must
argue that the bound holds with high probability. The Martingale bound guaranteed by Lemma 7
heavily depends on the dimension due to the R factor, which is n in our setting, since the payoff
vectors are only bounded by 1 in `∞ norm.

To fully exploit Lemma 6, instead of bounding the `2 norm of the whole matrix, we bound√∑
k R

i
t(j, k)2, that is the `2 norm of each row via the same adaptive process.

Lemma 8. Protocol Π with T = O
(
n4 log(mn)

ε4

)
rounds produces a ε-CE.

Proof. With T = O
(
n4 log(mn)

ε4

)
rounds in Theorem 7 guarantee that

Pr

√∑
k

RiT (j, k)2 ≥ ε√
n

 < 1/(mn)3

By applying the union bound, this implies that with high probability for all players i,
√∑

k R
i
T (j, k)2 ≤

ε for all j.

Proof of Theorem 1. Combining Lemma 8 with Lemma 6 finishes the proof of Theorem 1: the
protocol runs for Õ(n4ε−4) rounds and each round requires O(m log n) bits of communication.
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